blob: 331fa296c7e0ceef93b83e2b05be17192f229a8b [file] [log] [blame]
/*
* Generic process-grouping system.
*
* Based originally on the cpuset system, extracted by Paul Menage
* Copyright (C) 2006 Google, Inc
*
* Notifications support
* Copyright (C) 2009 Nokia Corporation
* Author: Kirill A. Shutemov
*
* Copyright notices from the original cpuset code:
* --------------------------------------------------
* Copyright (C) 2003 BULL SA.
* Copyright (C) 2004-2006 Silicon Graphics, Inc.
*
* Portions derived from Patrick Mochel's sysfs code.
* sysfs is Copyright (c) 2001-3 Patrick Mochel
*
* 2003-10-10 Written by Simon Derr.
* 2003-10-22 Updates by Stephen Hemminger.
* 2004 May-July Rework by Paul Jackson.
* ---------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cgroup.h>
#include <linux/cred.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/magic.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/string.h>
#include <linux/sort.h>
#include <linux/kmod.h>
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
#include <linux/hashtable.h>
#include <linux/pid_namespace.h>
#include <linux/idr.h>
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
#include <linux/kthread.h>
#include <linux/delay.h>
#include <linux/atomic.h>
/*
* pidlists linger the following amount before being destroyed. The goal
* is avoiding frequent destruction in the middle of consecutive read calls
* Expiring in the middle is a performance problem not a correctness one.
* 1 sec should be enough.
*/
#define CGROUP_PIDLIST_DESTROY_DELAY HZ
#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
MAX_CFTYPE_NAME + 2)
/*
* cgroup_mutex is the master lock. Any modification to cgroup or its
* hierarchy must be performed while holding it.
*
* css_set_rwsem protects task->cgroups pointer, the list of css_set
* objects, and the chain of tasks off each css_set.
*
* These locks are exported if CONFIG_PROVE_RCU so that accessors in
* cgroup.h can use them for lockdep annotations.
*/
#ifdef CONFIG_PROVE_RCU
DEFINE_MUTEX(cgroup_mutex);
DECLARE_RWSEM(css_set_rwsem);
EXPORT_SYMBOL_GPL(cgroup_mutex);
EXPORT_SYMBOL_GPL(css_set_rwsem);
#else
static DEFINE_MUTEX(cgroup_mutex);
static DECLARE_RWSEM(css_set_rwsem);
#endif
/*
* Protects cgroup_idr and css_idr so that IDs can be released without
* grabbing cgroup_mutex.
*/
static DEFINE_SPINLOCK(cgroup_idr_lock);
/*
* Protects cgroup_subsys->release_agent_path. Modifying it also requires
* cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
*/
static DEFINE_SPINLOCK(release_agent_path_lock);
#define cgroup_assert_mutex_or_rcu_locked() \
rcu_lockdep_assert(rcu_read_lock_held() || \
lockdep_is_held(&cgroup_mutex), \
"cgroup_mutex or RCU read lock required");
/*
* cgroup destruction makes heavy use of work items and there can be a lot
* of concurrent destructions. Use a separate workqueue so that cgroup
* destruction work items don't end up filling up max_active of system_wq
* which may lead to deadlock.
*/
static struct workqueue_struct *cgroup_destroy_wq;
/*
* pidlist destructions need to be flushed on cgroup destruction. Use a
* separate workqueue as flush domain.
*/
static struct workqueue_struct *cgroup_pidlist_destroy_wq;
/* generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
static struct cgroup_subsys *cgroup_subsys[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/* array of cgroup subsystem names */
#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
static const char *cgroup_subsys_name[] = {
#include <linux/cgroup_subsys.h>
};
#undef SUBSYS
/*
* The default hierarchy, reserved for the subsystems that are otherwise
* unattached - it never has more than a single cgroup, and all tasks are
* part of that cgroup.
*/
struct cgroup_root cgrp_dfl_root;
/*
* The default hierarchy always exists but is hidden until mounted for the
* first time. This is for backward compatibility.
*/
static bool cgrp_dfl_root_visible;
/* some controllers are not supported in the default hierarchy */
static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
#ifdef CONFIG_CGROUP_DEBUG
| (1 << debug_cgrp_id)
#endif
;
/* The list of hierarchy roots */
static LIST_HEAD(cgroup_roots);
static int cgroup_root_count;
/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
static DEFINE_IDR(cgroup_hierarchy_idr);
/*
* Assign a monotonically increasing serial number to csses. It guarantees
* cgroups with bigger numbers are newer than those with smaller numbers.
* Also, as csses are always appended to the parent's ->children list, it
* guarantees that sibling csses are always sorted in the ascending serial
* number order on the list. Protected by cgroup_mutex.
*/
static u64 css_serial_nr_next = 1;
/* This flag indicates whether tasks in the fork and exit paths should
* check for fork/exit handlers to call. This avoids us having to do
* extra work in the fork/exit path if none of the subsystems need to
* be called.
*/
static int need_forkexit_callback __read_mostly;
static struct cftype cgroup_base_files[];
static void cgroup_put(struct cgroup *cgrp);
static int rebind_subsystems(struct cgroup_root *dst_root,
unsigned int ss_mask);
static int cgroup_destroy_locked(struct cgroup *cgrp);
static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
bool visible);
static void css_release(struct percpu_ref *ref);
static void kill_css(struct cgroup_subsys_state *css);
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
bool is_add);
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
/* IDR wrappers which synchronize using cgroup_idr_lock */
static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
gfp_t gfp_mask)
{
int ret;
idr_preload(gfp_mask);
spin_lock_bh(&cgroup_idr_lock);
ret = idr_alloc(idr, ptr, start, end, gfp_mask);
spin_unlock_bh(&cgroup_idr_lock);
idr_preload_end();
return ret;
}
static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
{
void *ret;
spin_lock_bh(&cgroup_idr_lock);
ret = idr_replace(idr, ptr, id);
spin_unlock_bh(&cgroup_idr_lock);
return ret;
}
static void cgroup_idr_remove(struct idr *idr, int id)
{
spin_lock_bh(&cgroup_idr_lock);
idr_remove(idr, id);
spin_unlock_bh(&cgroup_idr_lock);
}
static struct cgroup *cgroup_parent(struct cgroup *cgrp)
{
struct cgroup_subsys_state *parent_css = cgrp->self.parent;
if (parent_css)
return container_of(parent_css, struct cgroup, self);
return NULL;
}
/**
* cgroup_css - obtain a cgroup's css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
*
* Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
* function must be called either under cgroup_mutex or rcu_read_lock() and
* the caller is responsible for pinning the returned css if it wants to
* keep accessing it outside the said locks. This function may return
* %NULL if @cgrp doesn't have @subsys_id enabled.
*/
static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
if (ss)
return rcu_dereference_check(cgrp->subsys[ss->id],
lockdep_is_held(&cgroup_mutex));
else
return &cgrp->self;
}
/**
* cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
* @cgrp: the cgroup of interest
* @ss: the subsystem of interest (%NULL returns @cgrp->self)
*
* Similar to cgroup_css() but returns the effctive css, which is defined
* as the matching css of the nearest ancestor including self which has @ss
* enabled. If @ss is associated with the hierarchy @cgrp is on, this
* function is guaranteed to return non-NULL css.
*/
static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
struct cgroup_subsys *ss)
{
lockdep_assert_held(&cgroup_mutex);
if (!ss)
return &cgrp->self;
if (!(cgrp->root->subsys_mask & (1 << ss->id)))
return NULL;
while (cgroup_parent(cgrp) &&
!(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
cgrp = cgroup_parent(cgrp);
return cgroup_css(cgrp, ss);
}
/* convenient tests for these bits */
static inline bool cgroup_is_dead(const struct cgroup *cgrp)
{
return !(cgrp->self.flags & CSS_ONLINE);
}
struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
{
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = of_cft(of);
/*
* This is open and unprotected implementation of cgroup_css().
* seq_css() is only called from a kernfs file operation which has
* an active reference on the file. Because all the subsystem
* files are drained before a css is disassociated with a cgroup,
* the matching css from the cgroup's subsys table is guaranteed to
* be and stay valid until the enclosing operation is complete.
*/
if (cft->ss)
return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
else
return &cgrp->self;
}
EXPORT_SYMBOL_GPL(of_css);
/**
* cgroup_is_descendant - test ancestry
* @cgrp: the cgroup to be tested
* @ancestor: possible ancestor of @cgrp
*
* Test whether @cgrp is a descendant of @ancestor. It also returns %true
* if @cgrp == @ancestor. This function is safe to call as long as @cgrp
* and @ancestor are accessible.
*/
bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
{
while (cgrp) {
if (cgrp == ancestor)
return true;
cgrp = cgroup_parent(cgrp);
}
return false;
}
static int cgroup_is_releasable(const struct cgroup *cgrp)
{
const int bits =
(1 << CGRP_RELEASABLE) |
(1 << CGRP_NOTIFY_ON_RELEASE);
return (cgrp->flags & bits) == bits;
}
static int notify_on_release(const struct cgroup *cgrp)
{
return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
}
/**
* for_each_css - iterate all css's of a cgroup
* @css: the iteration cursor
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
* @cgrp: the target cgroup to iterate css's of
*
* Should be called under cgroup_[tree_]mutex.
*/
#define for_each_css(css, ssid, cgrp) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
if (!((css) = rcu_dereference_check( \
(cgrp)->subsys[(ssid)], \
lockdep_is_held(&cgroup_mutex)))) { } \
else
/**
* for_each_e_css - iterate all effective css's of a cgroup
* @css: the iteration cursor
* @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
* @cgrp: the target cgroup to iterate css's of
*
* Should be called under cgroup_[tree_]mutex.
*/
#define for_each_e_css(css, ssid, cgrp) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
; \
else
/**
* for_each_subsys - iterate all enabled cgroup subsystems
* @ss: the iteration cursor
* @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
*/
#define for_each_subsys(ss, ssid) \
for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
(((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
/* iterate across the hierarchies */
#define for_each_root(root) \
list_for_each_entry((root), &cgroup_roots, root_list)
/* iterate over child cgrps, lock should be held throughout iteration */
#define cgroup_for_each_live_child(child, cgrp) \
list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
if (({ lockdep_assert_held(&cgroup_mutex); \
cgroup_is_dead(child); })) \
; \
else
/* the list of cgroups eligible for automatic release. Protected by
* release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_RAW_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
static void check_for_release(struct cgroup *cgrp);
/*
* A cgroup can be associated with multiple css_sets as different tasks may
* belong to different cgroups on different hierarchies. In the other
* direction, a css_set is naturally associated with multiple cgroups.
* This M:N relationship is represented by the following link structure
* which exists for each association and allows traversing the associations
* from both sides.
*/
struct cgrp_cset_link {
/* the cgroup and css_set this link associates */
struct cgroup *cgrp;
struct css_set *cset;
/* list of cgrp_cset_links anchored at cgrp->cset_links */
struct list_head cset_link;
/* list of cgrp_cset_links anchored at css_set->cgrp_links */
struct list_head cgrp_link;
};
/*
* The default css_set - used by init and its children prior to any
* hierarchies being mounted. It contains a pointer to the root state
* for each subsystem. Also used to anchor the list of css_sets. Not
* reference-counted, to improve performance when child cgroups
* haven't been created.
*/
struct css_set init_css_set = {
.refcount = ATOMIC_INIT(1),
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
.mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
.mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
.mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
};
static int css_set_count = 1; /* 1 for init_css_set */
/**
* cgroup_update_populated - updated populated count of a cgroup
* @cgrp: the target cgroup
* @populated: inc or dec populated count
*
* @cgrp is either getting the first task (css_set) or losing the last.
* Update @cgrp->populated_cnt accordingly. The count is propagated
* towards root so that a given cgroup's populated_cnt is zero iff the
* cgroup and all its descendants are empty.
*
* @cgrp's interface file "cgroup.populated" is zero if
* @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
* changes from or to zero, userland is notified that the content of the
* interface file has changed. This can be used to detect when @cgrp and
* its descendants become populated or empty.
*/
static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
{
lockdep_assert_held(&css_set_rwsem);
do {
bool trigger;
if (populated)
trigger = !cgrp->populated_cnt++;
else
trigger = !--cgrp->populated_cnt;
if (!trigger)
break;
if (cgrp->populated_kn)
kernfs_notify(cgrp->populated_kn);
cgrp = cgroup_parent(cgrp);
} while (cgrp);
}
/*
* hash table for cgroup groups. This improves the performance to find
* an existing css_set. This hash doesn't (currently) take into
* account cgroups in empty hierarchies.
*/
#define CSS_SET_HASH_BITS 7
static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
{
unsigned long key = 0UL;
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i)
key += (unsigned long)css[i];
key = (key >> 16) ^ key;
return key;
}
static void put_css_set_locked(struct css_set *cset, bool taskexit)
{
struct cgrp_cset_link *link, *tmp_link;
struct cgroup_subsys *ss;
int ssid;
lockdep_assert_held(&css_set_rwsem);
if (!atomic_dec_and_test(&cset->refcount))
return;
/* This css_set is dead. unlink it and release cgroup refcounts */
for_each_subsys(ss, ssid)
list_del(&cset->e_cset_node[ssid]);
hash_del(&cset->hlist);
css_set_count--;
list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
struct cgroup *cgrp = link->cgrp;
list_del(&link->cset_link);
list_del(&link->cgrp_link);
/* @cgrp can't go away while we're holding css_set_rwsem */
if (list_empty(&cgrp->cset_links)) {
cgroup_update_populated(cgrp, false);
if (notify_on_release(cgrp)) {
if (taskexit)
set_bit(CGRP_RELEASABLE, &cgrp->flags);
check_for_release(cgrp);
}
}
kfree(link);
}
kfree_rcu(cset, rcu_head);
}
static void put_css_set(struct css_set *cset, bool taskexit)
{
/*
* Ensure that the refcount doesn't hit zero while any readers
* can see it. Similar to atomic_dec_and_lock(), but for an
* rwlock
*/
if (atomic_add_unless(&cset->refcount, -1, 1))
return;
down_write(&css_set_rwsem);
put_css_set_locked(cset, taskexit);
up_write(&css_set_rwsem);
}
/*
* refcounted get/put for css_set objects
*/
static inline void get_css_set(struct css_set *cset)
{
atomic_inc(&cset->refcount);
}
/**
* compare_css_sets - helper function for find_existing_css_set().
* @cset: candidate css_set being tested
* @old_cset: existing css_set for a task
* @new_cgrp: cgroup that's being entered by the task
* @template: desired set of css pointers in css_set (pre-calculated)
*
* Returns true if "cset" matches "old_cset" except for the hierarchy
* which "new_cgrp" belongs to, for which it should match "new_cgrp".
*/
static bool compare_css_sets(struct css_set *cset,
struct css_set *old_cset,
struct cgroup *new_cgrp,
struct cgroup_subsys_state *template[])
{
struct list_head *l1, *l2;
/*
* On the default hierarchy, there can be csets which are
* associated with the same set of cgroups but different csses.
* Let's first ensure that csses match.
*/
if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
return false;
/*
* Compare cgroup pointers in order to distinguish between
* different cgroups in hierarchies. As different cgroups may
* share the same effective css, this comparison is always
* necessary.
*/
l1 = &cset->cgrp_links;
l2 = &old_cset->cgrp_links;
while (1) {
struct cgrp_cset_link *link1, *link2;
struct cgroup *cgrp1, *cgrp2;
l1 = l1->next;
l2 = l2->next;
/* See if we reached the end - both lists are equal length. */
if (l1 == &cset->cgrp_links) {
BUG_ON(l2 != &old_cset->cgrp_links);
break;
} else {
BUG_ON(l2 == &old_cset->cgrp_links);
}
/* Locate the cgroups associated with these links. */
link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
cgrp1 = link1->cgrp;
cgrp2 = link2->cgrp;
/* Hierarchies should be linked in the same order. */
BUG_ON(cgrp1->root != cgrp2->root);
/*
* If this hierarchy is the hierarchy of the cgroup
* that's changing, then we need to check that this
* css_set points to the new cgroup; if it's any other
* hierarchy, then this css_set should point to the
* same cgroup as the old css_set.
*/
if (cgrp1->root == new_cgrp->root) {
if (cgrp1 != new_cgrp)
return false;
} else {
if (cgrp1 != cgrp2)
return false;
}
}
return true;
}
/**
* find_existing_css_set - init css array and find the matching css_set
* @old_cset: the css_set that we're using before the cgroup transition
* @cgrp: the cgroup that we're moving into
* @template: out param for the new set of csses, should be clear on entry
*/
static struct css_set *find_existing_css_set(struct css_set *old_cset,
struct cgroup *cgrp,
struct cgroup_subsys_state *template[])
{
struct cgroup_root *root = cgrp->root;
struct cgroup_subsys *ss;
struct css_set *cset;
unsigned long key;
int i;
/*
* Build the set of subsystem state objects that we want to see in the
* new css_set. while subsystems can change globally, the entries here
* won't change, so no need for locking.
*/
for_each_subsys(ss, i) {
if (root->subsys_mask & (1UL << i)) {
/*
* @ss is in this hierarchy, so we want the
* effective css from @cgrp.
*/
template[i] = cgroup_e_css(cgrp, ss);
} else {
/*
* @ss is not in this hierarchy, so we don't want
* to change the css.
*/
template[i] = old_cset->subsys[i];
}
}
key = css_set_hash(template);
hash_for_each_possible(css_set_table, cset, hlist, key) {
if (!compare_css_sets(cset, old_cset, cgrp, template))
continue;
/* This css_set matches what we need */
return cset;
}
/* No existing cgroup group matched */
return NULL;
}
static void free_cgrp_cset_links(struct list_head *links_to_free)
{
struct cgrp_cset_link *link, *tmp_link;
list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
list_del(&link->cset_link);
kfree(link);
}
}
/**
* allocate_cgrp_cset_links - allocate cgrp_cset_links
* @count: the number of links to allocate
* @tmp_links: list_head the allocated links are put on
*
* Allocate @count cgrp_cset_link structures and chain them on @tmp_links
* through ->cset_link. Returns 0 on success or -errno.
*/
static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
{
struct cgrp_cset_link *link;
int i;
INIT_LIST_HEAD(tmp_links);
for (i = 0; i < count; i++) {
link = kzalloc(sizeof(*link), GFP_KERNEL);
if (!link) {
free_cgrp_cset_links(tmp_links);
return -ENOMEM;
}
list_add(&link->cset_link, tmp_links);
}
return 0;
}
/**
* link_css_set - a helper function to link a css_set to a cgroup
* @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
* @cset: the css_set to be linked
* @cgrp: the destination cgroup
*/
static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
struct cgroup *cgrp)
{
struct cgrp_cset_link *link;
BUG_ON(list_empty(tmp_links));
if (cgroup_on_dfl(cgrp))
cset->dfl_cgrp = cgrp;
link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
link->cset = cset;
link->cgrp = cgrp;
if (list_empty(&cgrp->cset_links))
cgroup_update_populated(cgrp, true);
list_move(&link->cset_link, &cgrp->cset_links);
/*
* Always add links to the tail of the list so that the list
* is sorted by order of hierarchy creation
*/
list_add_tail(&link->cgrp_link, &cset->cgrp_links);
}
/**
* find_css_set - return a new css_set with one cgroup updated
* @old_cset: the baseline css_set
* @cgrp: the cgroup to be updated
*
* Return a new css_set that's equivalent to @old_cset, but with @cgrp
* substituted into the appropriate hierarchy.
*/
static struct css_set *find_css_set(struct css_set *old_cset,
struct cgroup *cgrp)
{
struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
struct css_set *cset;
struct list_head tmp_links;
struct cgrp_cset_link *link;
struct cgroup_subsys *ss;
unsigned long key;
int ssid;
lockdep_assert_held(&cgroup_mutex);
/* First see if we already have a cgroup group that matches
* the desired set */
down_read(&css_set_rwsem);
cset = find_existing_css_set(old_cset, cgrp, template);
if (cset)
get_css_set(cset);
up_read(&css_set_rwsem);
if (cset)
return cset;
cset = kzalloc(sizeof(*cset), GFP_KERNEL);
if (!cset)
return NULL;
/* Allocate all the cgrp_cset_link objects that we'll need */
if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
kfree(cset);
return NULL;
}
atomic_set(&cset->refcount, 1);
INIT_LIST_HEAD(&cset->cgrp_links);
INIT_LIST_HEAD(&cset->tasks);
INIT_LIST_HEAD(&cset->mg_tasks);
INIT_LIST_HEAD(&cset->mg_preload_node);
INIT_LIST_HEAD(&cset->mg_node);
INIT_HLIST_NODE(&cset->hlist);
/* Copy the set of subsystem state objects generated in
* find_existing_css_set() */
memcpy(cset->subsys, template, sizeof(cset->subsys));
down_write(&css_set_rwsem);
/* Add reference counts and links from the new css_set. */
list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == cgrp->root)
c = cgrp;
link_css_set(&tmp_links, cset, c);
}
BUG_ON(!list_empty(&tmp_links));
css_set_count++;
/* Add @cset to the hash table */
key = css_set_hash(cset->subsys);
hash_add(css_set_table, &cset->hlist, key);
for_each_subsys(ss, ssid)
list_add_tail(&cset->e_cset_node[ssid],
&cset->subsys[ssid]->cgroup->e_csets[ssid]);
up_write(&css_set_rwsem);
return cset;
}
static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
{
struct cgroup *root_cgrp = kf_root->kn->priv;
return root_cgrp->root;
}
static int cgroup_init_root_id(struct cgroup_root *root)
{
int id;
lockdep_assert_held(&cgroup_mutex);
id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
if (id < 0)
return id;
root->hierarchy_id = id;
return 0;
}
static void cgroup_exit_root_id(struct cgroup_root *root)
{
lockdep_assert_held(&cgroup_mutex);
if (root->hierarchy_id) {
idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
root->hierarchy_id = 0;
}
}
static void cgroup_free_root(struct cgroup_root *root)
{
if (root) {
/* hierarhcy ID shoulid already have been released */
WARN_ON_ONCE(root->hierarchy_id);
idr_destroy(&root->cgroup_idr);
kfree(root);
}
}
static void cgroup_destroy_root(struct cgroup_root *root)
{
struct cgroup *cgrp = &root->cgrp;
struct cgrp_cset_link *link, *tmp_link;
mutex_lock(&cgroup_mutex);
BUG_ON(atomic_read(&root->nr_cgrps));
BUG_ON(!list_empty(&cgrp->self.children));
/* Rebind all subsystems back to the default hierarchy */
rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
/*
* Release all the links from cset_links to this hierarchy's
* root cgroup
*/
down_write(&css_set_rwsem);
list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
list_del(&link->cset_link);
list_del(&link->cgrp_link);
kfree(link);
}
up_write(&css_set_rwsem);
if (!list_empty(&root->root_list)) {
list_del(&root->root_list);
cgroup_root_count--;
}
cgroup_exit_root_id(root);
mutex_unlock(&cgroup_mutex);
kernfs_destroy_root(root->kf_root);
cgroup_free_root(root);
}
/* look up cgroup associated with given css_set on the specified hierarchy */
static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
struct cgroup_root *root)
{
struct cgroup *res = NULL;
lockdep_assert_held(&cgroup_mutex);
lockdep_assert_held(&css_set_rwsem);
if (cset == &init_css_set) {
res = &root->cgrp;
} else {
struct cgrp_cset_link *link;
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
if (c->root == root) {
res = c;
break;
}
}
}
BUG_ON(!res);
return res;
}
/*
* Return the cgroup for "task" from the given hierarchy. Must be
* called with cgroup_mutex and css_set_rwsem held.
*/
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
struct cgroup_root *root)
{
/*
* No need to lock the task - since we hold cgroup_mutex the
* task can't change groups, so the only thing that can happen
* is that it exits and its css is set back to init_css_set.
*/
return cset_cgroup_from_root(task_css_set(task), root);
}
/*
* A task must hold cgroup_mutex to modify cgroups.
*
* Any task can increment and decrement the count field without lock.
* So in general, code holding cgroup_mutex can't rely on the count
* field not changing. However, if the count goes to zero, then only
* cgroup_attach_task() can increment it again. Because a count of zero
* means that no tasks are currently attached, therefore there is no
* way a task attached to that cgroup can fork (the other way to
* increment the count). So code holding cgroup_mutex can safely
* assume that if the count is zero, it will stay zero. Similarly, if
* a task holds cgroup_mutex on a cgroup with zero count, it
* knows that the cgroup won't be removed, as cgroup_rmdir()
* needs that mutex.
*
* The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
* (usually) take cgroup_mutex. These are the two most performance
* critical pieces of code here. The exception occurs on cgroup_exit(),
* when a task in a notify_on_release cgroup exits. Then cgroup_mutex
* is taken, and if the cgroup count is zero, a usermode call made
* to the release agent with the name of the cgroup (path relative to
* the root of cgroup file system) as the argument.
*
* A cgroup can only be deleted if both its 'count' of using tasks
* is zero, and its list of 'children' cgroups is empty. Since all
* tasks in the system use _some_ cgroup, and since there is always at
* least one task in the system (init, pid == 1), therefore, root cgroup
* always has either children cgroups and/or using tasks. So we don't
* need a special hack to ensure that root cgroup cannot be deleted.
*
* P.S. One more locking exception. RCU is used to guard the
* update of a tasks cgroup pointer by cgroup_attach_task()
*/
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
static const struct file_operations proc_cgroupstats_operations;
static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
char *buf)
{
if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
!(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
cft->ss->name, cft->name);
else
strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
return buf;
}
/**
* cgroup_file_mode - deduce file mode of a control file
* @cft: the control file in question
*
* returns cft->mode if ->mode is not 0
* returns S_IRUGO|S_IWUSR if it has both a read and a write handler
* returns S_IRUGO if it has only a read handler
* returns S_IWUSR if it has only a write hander
*/
static umode_t cgroup_file_mode(const struct cftype *cft)
{
umode_t mode = 0;
if (cft->mode)
return cft->mode;
if (cft->read_u64 || cft->read_s64 || cft->seq_show)
mode |= S_IRUGO;
if (cft->write_u64 || cft->write_s64 || cft->write)
mode |= S_IWUSR;
return mode;
}
static void cgroup_get(struct cgroup *cgrp)
{
WARN_ON_ONCE(cgroup_is_dead(cgrp));
css_get(&cgrp->self);
}
static void cgroup_put(struct cgroup *cgrp)
{
css_put(&cgrp->self);
}
static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
{
cgrp->child_subsys_mask = cgrp->subtree_control;
}
/**
* cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
* @kn: the kernfs_node being serviced
*
* This helper undoes cgroup_kn_lock_live() and should be invoked before
* the method finishes if locking succeeded. Note that once this function
* returns the cgroup returned by cgroup_kn_lock_live() may become
* inaccessible any time. If the caller intends to continue to access the
* cgroup, it should pin it before invoking this function.
*/
static void cgroup_kn_unlock(struct kernfs_node *kn)
{
struct cgroup *cgrp;
if (kernfs_type(kn) == KERNFS_DIR)
cgrp = kn->priv;
else
cgrp = kn->parent->priv;
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
cgroup_put(cgrp);
}
/**
* cgroup_kn_lock_live - locking helper for cgroup kernfs methods
* @kn: the kernfs_node being serviced
*
* This helper is to be used by a cgroup kernfs method currently servicing
* @kn. It breaks the active protection, performs cgroup locking and
* verifies that the associated cgroup is alive. Returns the cgroup if
* alive; otherwise, %NULL. A successful return should be undone by a
* matching cgroup_kn_unlock() invocation.
*
* Any cgroup kernfs method implementation which requires locking the
* associated cgroup should use this helper. It avoids nesting cgroup
* locking under kernfs active protection and allows all kernfs operations
* including self-removal.
*/
static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
{
struct cgroup *cgrp;
if (kernfs_type(kn) == KERNFS_DIR)
cgrp = kn->priv;
else
cgrp = kn->parent->priv;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. cgroup liveliness check alone provides enough
* protection against removal. Ensure @cgrp stays accessible and
* break the active_ref protection.
*/
cgroup_get(cgrp);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_mutex);
if (!cgroup_is_dead(cgrp))
return cgrp;
cgroup_kn_unlock(kn);
return NULL;
}
static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
lockdep_assert_held(&cgroup_mutex);
kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
}
/**
* cgroup_clear_dir - remove subsys files in a cgroup directory
* @cgrp: target cgroup
* @subsys_mask: mask of the subsystem ids whose files should be removed
*/
static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
{
struct cgroup_subsys *ss;
int i;
for_each_subsys(ss, i) {
struct cftype *cfts;
if (!(subsys_mask & (1 << i)))
continue;
list_for_each_entry(cfts, &ss->cfts, node)
cgroup_addrm_files(cgrp, cfts, false);
}
}
static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
{
struct cgroup_subsys *ss;
unsigned int tmp_ss_mask;
int ssid, i, ret;
lockdep_assert_held(&cgroup_mutex);
for_each_subsys(ss, ssid) {
if (!(ss_mask & (1 << ssid)))
continue;
/* if @ss has non-root csses attached to it, can't move */
if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
return -EBUSY;
/* can't move between two non-dummy roots either */
if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
return -EBUSY;
}
/* skip creating root files on dfl_root for inhibited subsystems */
tmp_ss_mask = ss_mask;
if (dst_root == &cgrp_dfl_root)
tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
if (ret) {
if (dst_root != &cgrp_dfl_root)
return ret;
/*
* Rebinding back to the default root is not allowed to
* fail. Using both default and non-default roots should
* be rare. Moving subsystems back and forth even more so.
* Just warn about it and continue.
*/
if (cgrp_dfl_root_visible) {
pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
ret, ss_mask);
pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
}
}
/*
* Nothing can fail from this point on. Remove files for the
* removed subsystems and rebind each subsystem.
*/
for_each_subsys(ss, ssid)
if (ss_mask & (1 << ssid))
cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
for_each_subsys(ss, ssid) {
struct cgroup_root *src_root;
struct cgroup_subsys_state *css;
struct css_set *cset;
if (!(ss_mask & (1 << ssid)))
continue;
src_root = ss->root;
css = cgroup_css(&src_root->cgrp, ss);
WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
ss->root = dst_root;
css->cgroup = &dst_root->cgrp;
down_write(&css_set_rwsem);
hash_for_each(css_set_table, i, cset, hlist)
list_move_tail(&cset->e_cset_node[ss->id],
&dst_root->cgrp.e_csets[ss->id]);
up_write(&css_set_rwsem);
src_root->subsys_mask &= ~(1 << ssid);
src_root->cgrp.subtree_control &= ~(1 << ssid);
cgroup_refresh_child_subsys_mask(&src_root->cgrp);
/* default hierarchy doesn't enable controllers by default */
dst_root->subsys_mask |= 1 << ssid;
if (dst_root != &cgrp_dfl_root) {
dst_root->cgrp.subtree_control |= 1 << ssid;
cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
}
if (ss->bind)
ss->bind(css);
}
kernfs_activate(dst_root->cgrp.kn);
return 0;
}
static int cgroup_show_options(struct seq_file *seq,
struct kernfs_root *kf_root)
{
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_subsys *ss;
int ssid;
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(seq, ",%s", ss->name);
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
seq_puts(seq, ",sane_behavior");
if (root->flags & CGRP_ROOT_NOPREFIX)
seq_puts(seq, ",noprefix");
if (root->flags & CGRP_ROOT_XATTR)
seq_puts(seq, ",xattr");
spin_lock(&release_agent_path_lock);
if (strlen(root->release_agent_path))
seq_printf(seq, ",release_agent=%s", root->release_agent_path);
spin_unlock(&release_agent_path_lock);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
seq_puts(seq, ",clone_children");
if (strlen(root->name))
seq_printf(seq, ",name=%s", root->name);
return 0;
}
struct cgroup_sb_opts {
unsigned int subsys_mask;
unsigned int flags;
char *release_agent;
bool cpuset_clone_children;
char *name;
/* User explicitly requested empty subsystem */
bool none;
};
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
{
char *token, *o = data;
bool all_ss = false, one_ss = false;
unsigned int mask = -1U;
struct cgroup_subsys *ss;
int i;
#ifdef CONFIG_CPUSETS
mask = ~(1U << cpuset_cgrp_id);
#endif
memset(opts, 0, sizeof(*opts));
while ((token = strsep(&o, ",")) != NULL) {
if (!*token)
return -EINVAL;
if (!strcmp(token, "none")) {
/* Explicitly have no subsystems */
opts->none = true;
continue;
}
if (!strcmp(token, "all")) {
/* Mutually exclusive option 'all' + subsystem name */
if (one_ss)
return -EINVAL;
all_ss = true;
continue;
}
if (!strcmp(token, "__DEVEL__sane_behavior")) {
opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
continue;
}
if (!strcmp(token, "noprefix")) {
opts->flags |= CGRP_ROOT_NOPREFIX;
continue;
}
if (!strcmp(token, "clone_children")) {
opts->cpuset_clone_children = true;
continue;
}
if (!strcmp(token, "xattr")) {
opts->flags |= CGRP_ROOT_XATTR;
continue;
}
if (!strncmp(token, "release_agent=", 14)) {
/* Specifying two release agents is forbidden */
if (opts->release_agent)
return -EINVAL;
opts->release_agent =
kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
if (!opts->release_agent)
return -ENOMEM;
continue;
}
if (!strncmp(token, "name=", 5)) {
const char *name = token + 5;
/* Can't specify an empty name */
if (!strlen(name))
return -EINVAL;
/* Must match [\w.-]+ */
for (i = 0; i < strlen(name); i++) {
char c = name[i];
if (isalnum(c))
continue;
if ((c == '.') || (c == '-') || (c == '_'))
continue;
return -EINVAL;
}
/* Specifying two names is forbidden */
if (opts->name)
return -EINVAL;
opts->name = kstrndup(name,
MAX_CGROUP_ROOT_NAMELEN - 1,
GFP_KERNEL);
if (!opts->name)
return -ENOMEM;
continue;
}
for_each_subsys(ss, i) {
if (strcmp(token, ss->name))
continue;
if (ss->disabled)
continue;
/* Mutually exclusive option 'all' + subsystem name */
if (all_ss)
return -EINVAL;
opts->subsys_mask |= (1 << i);
one_ss = true;
break;
}
if (i == CGROUP_SUBSYS_COUNT)
return -ENOENT;
}
/* Consistency checks */
if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
opts->cpuset_clone_children || opts->release_agent ||
opts->name) {
pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
return -EINVAL;
}
} else {
/*
* If the 'all' option was specified select all the
* subsystems, otherwise if 'none', 'name=' and a subsystem
* name options were not specified, let's default to 'all'
*/
if (all_ss || (!one_ss && !opts->none && !opts->name))
for_each_subsys(ss, i)
if (!ss->disabled)
opts->subsys_mask |= (1 << i);
/*
* We either have to specify by name or by subsystems. (So
* all empty hierarchies must have a name).
*/
if (!opts->subsys_mask && !opts->name)
return -EINVAL;
}
/*
* Option noprefix was introduced just for backward compatibility
* with the old cpuset, so we allow noprefix only if mounting just
* the cpuset subsystem.
*/
if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
return -EINVAL;
/* Can't specify "none" and some subsystems */
if (opts->subsys_mask && opts->none)
return -EINVAL;
return 0;
}
static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
{
int ret = 0;
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
struct cgroup_sb_opts opts;
unsigned int added_mask, removed_mask;
if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("sane_behavior: remount is not allowed\n");
return -EINVAL;
}
mutex_lock(&cgroup_mutex);
/* See what subsystems are wanted */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
task_tgid_nr(current), current->comm);
added_mask = opts.subsys_mask & ~root->subsys_mask;
removed_mask = root->subsys_mask & ~opts.subsys_mask;
/* Don't allow flags or name to change at remount */
if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
(opts.name && strcmp(opts.name, root->name))) {
pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
root->flags & CGRP_ROOT_OPTION_MASK, root->name);
ret = -EINVAL;
goto out_unlock;
}
/* remounting is not allowed for populated hierarchies */
if (!list_empty(&root->cgrp.self.children)) {
ret = -EBUSY;
goto out_unlock;
}
ret = rebind_subsystems(root, added_mask);
if (ret)
goto out_unlock;
rebind_subsystems(&cgrp_dfl_root, removed_mask);
if (opts.release_agent) {
spin_lock(&release_agent_path_lock);
strcpy(root->release_agent_path, opts.release_agent);
spin_unlock(&release_agent_path_lock);
}
out_unlock:
kfree(opts.release_agent);
kfree(opts.name);
mutex_unlock(&cgroup_mutex);
return ret;
}
/*
* To reduce the fork() overhead for systems that are not actually using
* their cgroups capability, we don't maintain the lists running through
* each css_set to its tasks until we see the list actually used - in other
* words after the first mount.
*/
static bool use_task_css_set_links __read_mostly;
static void cgroup_enable_task_cg_lists(void)
{
struct task_struct *p, *g;
down_write(&css_set_rwsem);
if (use_task_css_set_links)
goto out_unlock;
use_task_css_set_links = true;
/*
* We need tasklist_lock because RCU is not safe against
* while_each_thread(). Besides, a forking task that has passed
* cgroup_post_fork() without seeing use_task_css_set_links = 1
* is not guaranteed to have its child immediately visible in the
* tasklist if we walk through it with RCU.
*/
read_lock(&tasklist_lock);
do_each_thread(g, p) {
WARN_ON_ONCE(!list_empty(&p->cg_list) ||
task_css_set(p) != &init_css_set);
/*
* We should check if the process is exiting, otherwise
* it will race with cgroup_exit() in that the list
* entry won't be deleted though the process has exited.
* Do it while holding siglock so that we don't end up
* racing against cgroup_exit().
*/
spin_lock_irq(&p->sighand->siglock);
if (!(p->flags & PF_EXITING)) {
struct css_set *cset = task_css_set(p);
list_add(&p->cg_list, &cset->tasks);
get_css_set(cset);
}
spin_unlock_irq(&p->sighand->siglock);
} while_each_thread(g, p);
read_unlock(&tasklist_lock);
out_unlock:
up_write(&css_set_rwsem);
}
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
struct cgroup_subsys *ss;
int ssid;
INIT_LIST_HEAD(&cgrp->self.sibling);
INIT_LIST_HEAD(&cgrp->self.children);
INIT_LIST_HEAD(&cgrp->cset_links);
INIT_LIST_HEAD(&cgrp->release_list);
INIT_LIST_HEAD(&cgrp->pidlists);
mutex_init(&cgrp->pidlist_mutex);
cgrp->self.cgroup = cgrp;
cgrp->self.flags |= CSS_ONLINE;
for_each_subsys(ss, ssid)
INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
init_waitqueue_head(&cgrp->offline_waitq);
}
static void init_cgroup_root(struct cgroup_root *root,
struct cgroup_sb_opts *opts)
{
struct cgroup *cgrp = &root->cgrp;
INIT_LIST_HEAD(&root->root_list);
atomic_set(&root->nr_cgrps, 1);
cgrp->root = root;
init_cgroup_housekeeping(cgrp);
idr_init(&root->cgroup_idr);
root->flags = opts->flags;
if (opts->release_agent)
strcpy(root->release_agent_path, opts->release_agent);
if (opts->name)
strcpy(root->name, opts->name);
if (opts->cpuset_clone_children)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
}
static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
{
LIST_HEAD(tmp_links);
struct cgroup *root_cgrp = &root->cgrp;
struct css_set *cset;
int i, ret;
lockdep_assert_held(&cgroup_mutex);
ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
if (ret < 0)
goto out;
root_cgrp->id = ret;
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
if (ret)
goto out;
/*
* We're accessing css_set_count without locking css_set_rwsem here,
* but that's OK - it can only be increased by someone holding
* cgroup_lock, and that's us. The worst that can happen is that we
* have some link structures left over
*/
ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
if (ret)
goto cancel_ref;
ret = cgroup_init_root_id(root);
if (ret)
goto cancel_ref;
root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
KERNFS_ROOT_CREATE_DEACTIVATED,
root_cgrp);
if (IS_ERR(root->kf_root)) {
ret = PTR_ERR(root->kf_root);
goto exit_root_id;
}
root_cgrp->kn = root->kf_root->kn;
ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
if (ret)
goto destroy_root;
ret = rebind_subsystems(root, ss_mask);
if (ret)
goto destroy_root;
/*
* There must be no failure case after here, since rebinding takes
* care of subsystems' refcounts, which are explicitly dropped in
* the failure exit path.
*/
list_add(&root->root_list, &cgroup_roots);
cgroup_root_count++;
/*
* Link the root cgroup in this hierarchy into all the css_set
* objects.
*/
down_write(&css_set_rwsem);
hash_for_each(css_set_table, i, cset, hlist)
link_css_set(&tmp_links, cset, root_cgrp);
up_write(&css_set_rwsem);
BUG_ON(!list_empty(&root_cgrp->self.children));
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
kernfs_activate(root_cgrp->kn);
ret = 0;
goto out;
destroy_root:
kernfs_destroy_root(root->kf_root);
root->kf_root = NULL;
exit_root_id:
cgroup_exit_root_id(root);
cancel_ref:
percpu_ref_cancel_init(&root_cgrp->self.refcnt);
out:
free_cgrp_cset_links(&tmp_links);
return ret;
}
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
struct cgroup_root *root;
struct cgroup_sb_opts opts;
struct dentry *dentry;
int ret;
bool new_sb;
/*
* The first time anyone tries to mount a cgroup, enable the list
* linking each css_set to its tasks and fix up all existing tasks.
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
mutex_lock(&cgroup_mutex);
/* First find the desired set of subsystems */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
/* look for a matching existing root */
if (!opts.subsys_mask && !opts.none && !opts.name) {
cgrp_dfl_root_visible = true;
root = &cgrp_dfl_root;
cgroup_get(&root->cgrp);
ret = 0;
goto out_unlock;
}
for_each_root(root) {
bool name_match = false;
if (root == &cgrp_dfl_root)
continue;
/*
* If we asked for a name then it must match. Also, if
* name matches but sybsys_mask doesn't, we should fail.
* Remember whether name matched.
*/
if (opts.name) {
if (strcmp(opts.name, root->name))
continue;
name_match = true;
}
/*
* If we asked for subsystems (or explicitly for no
* subsystems) then they must match.
*/
if ((opts.subsys_mask || opts.none) &&
(opts.subsys_mask != root->subsys_mask)) {
if (!name_match)
continue;
ret = -EBUSY;
goto out_unlock;
}
if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
pr_err("sane_behavior: new mount options should match the existing superblock\n");
ret = -EINVAL;
goto out_unlock;
} else {
pr_warn("new mount options do not match the existing superblock, will be ignored\n");
}
}
/*
* A root's lifetime is governed by its root cgroup.
* tryget_live failure indicate that the root is being
* destroyed. Wait for destruction to complete so that the
* subsystems are free. We can use wait_queue for the wait
* but this path is super cold. Let's just sleep for a bit
* and retry.
*/
if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
mutex_unlock(&cgroup_mutex);
msleep(10);
ret = restart_syscall();
goto out_free;
}
ret = 0;
goto out_unlock;
}
/*
* No such thing, create a new one. name= matching without subsys
* specification is allowed for already existing hierarchies but we
* can't create new one without subsys specification.
*/
if (!opts.subsys_mask && !opts.none) {
ret = -EINVAL;
goto out_unlock;
}
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root) {
ret = -ENOMEM;
goto out_unlock;
}
init_cgroup_root(root, &opts);
ret = cgroup_setup_root(root, opts.subsys_mask);
if (ret)
cgroup_free_root(root);
out_unlock:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(opts.release_agent);
kfree(opts.name);
if (ret)
return ERR_PTR(ret);
dentry = kernfs_mount(fs_type, flags, root->kf_root,
CGROUP_SUPER_MAGIC, &new_sb);
if (IS_ERR(dentry) || !new_sb)
cgroup_put(&root->cgrp);
return dentry;
}
static void cgroup_kill_sb(struct super_block *sb)
{
struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
struct cgroup_root *root = cgroup_root_from_kf(kf_root);
/*
* If @root doesn't have any mounts or children, start killing it.
* This prevents new mounts by disabling percpu_ref_tryget_live().
* cgroup_mount() may wait for @root's release.
*
* And don't kill the default root.
*/
if (css_has_online_children(&root->cgrp.self) ||
root == &cgrp_dfl_root)
cgroup_put(&root->cgrp);
else
percpu_ref_kill(&root->cgrp.self.refcnt);
kernfs_kill_sb(sb);
}
static struct file_system_type cgroup_fs_type = {
.name = "cgroup",
.mount = cgroup_mount,
.kill_sb = cgroup_kill_sb,
};
static struct kobject *cgroup_kobj;
/**
* task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
* @task: target task
* @buf: the buffer to write the path into
* @buflen: the length of the buffer
*
* Determine @task's cgroup on the first (the one with the lowest non-zero
* hierarchy_id) cgroup hierarchy and copy its path into @buf. This
* function grabs cgroup_mutex and shouldn't be used inside locks used by
* cgroup controller callbacks.
*
* Return value is the same as kernfs_path().
*/
char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
{
struct cgroup_root *root;
struct cgroup *cgrp;
int hierarchy_id = 1;
char *path = NULL;
mutex_lock(&cgroup_mutex);
down_read(&css_set_rwsem);
root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
if (root) {
cgrp = task_cgroup_from_root(task, root);
path = cgroup_path(cgrp, buf, buflen);
} else {
/* if no hierarchy exists, everyone is in "/" */
if (strlcpy(buf, "/", buflen) < buflen)
path = buf;
}
up_read(&css_set_rwsem);
mutex_unlock(&cgroup_mutex);
return path;
}
EXPORT_SYMBOL_GPL(task_cgroup_path);
/* used to track tasks and other necessary states during migration */
struct cgroup_taskset {
/* the src and dst cset list running through cset->mg_node */
struct list_head src_csets;
struct list_head dst_csets;
/*
* Fields for cgroup_taskset_*() iteration.
*
* Before migration is committed, the target migration tasks are on
* ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
* the csets on ->dst_csets. ->csets point to either ->src_csets
* or ->dst_csets depending on whether migration is committed.
*
* ->cur_csets and ->cur_task point to the current task position
* during iteration.
*/
struct list_head *csets;
struct css_set *cur_cset;
struct task_struct *cur_task;
};
/**
* cgroup_taskset_first - reset taskset and return the first task
* @tset: taskset of interest
*
* @tset iteration is initialized and the first task is returned.
*/
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
tset->cur_task = NULL;
return cgroup_taskset_next(tset);
}
/**
* cgroup_taskset_next - iterate to the next task in taskset
* @tset: taskset of interest
*
* Return the next task in @tset. Iteration must have been initialized
* with cgroup_taskset_first().
*/
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
struct css_set *cset = tset->cur_cset;
struct task_struct *task = tset->cur_task;
while (&cset->mg_node != tset->csets) {
if (!task)
task = list_first_entry(&cset->mg_tasks,
struct task_struct, cg_list);
else
task = list_next_entry(task, cg_list);
if (&task->cg_list != &cset->mg_tasks) {
tset->cur_cset = cset;
tset->cur_task = task;
return task;
}
cset = list_next_entry(cset, mg_node);
task = NULL;
}
return NULL;
}
/**
* cgroup_task_migrate - move a task from one cgroup to another.
* @old_cgrp: the cgroup @tsk is being migrated from
* @tsk: the task being migrated
* @new_cset: the new css_set @tsk is being attached to
*
* Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
*/
static void cgroup_task_migrate(struct cgroup *old_cgrp,
struct task_struct *tsk,
struct css_set *new_cset)
{
struct css_set *old_cset;
lockdep_assert_held(&cgroup_mutex);
lockdep_assert_held(&css_set_rwsem);
/*
* We are synchronized through threadgroup_lock() against PF_EXITING
* setting such that we can't race against cgroup_exit() changing the
* css_set to init_css_set and dropping the old one.
*/
WARN_ON_ONCE(tsk->flags & PF_EXITING);
old_cset = task_css_set(tsk);
get_css_set(new_cset);
rcu_assign_pointer(tsk->cgroups, new_cset);
/*
* Use move_tail so that cgroup_taskset_first() still returns the
* leader after migration. This works because cgroup_migrate()
* ensures that the dst_cset of the leader is the first on the
* tset's dst_csets list.
*/
list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
/*
* We just gained a reference on old_cset by taking it from the
* task. As trading it for new_cset is protected by cgroup_mutex,
* we're safe to drop it here; it will be freed under RCU.
*/
set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
put_css_set_locked(old_cset, false);
}
/**
* cgroup_migrate_finish - cleanup after attach
* @preloaded_csets: list of preloaded css_sets
*
* Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
* those functions for details.
*/
static void cgroup_migrate_finish(struct list_head *preloaded_csets)
{
struct css_set *cset, *tmp_cset;
lockdep_assert_held(&cgroup_mutex);
down_write(&css_set_rwsem);
list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
cset->mg_src_cgrp = NULL;
cset->mg_dst_cset = NULL;
list_del_init(&cset->mg_preload_node);
put_css_set_locked(cset, false);
}
up_write(&css_set_rwsem);
}
/**
* cgroup_migrate_add_src - add a migration source css_set
* @src_cset: the source css_set to add
* @dst_cgrp: the destination cgroup
* @preloaded_csets: list of preloaded css_sets
*
* Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
* @src_cset and add it to @preloaded_csets, which should later be cleaned
* up by cgroup_migrate_finish().
*
* This function may be called without holding threadgroup_lock even if the
* target is a process. Threads may be created and destroyed but as long
* as cgroup_mutex is not dropped, no new css_set can be put into play and
* the preloaded css_sets are guaranteed to cover all migrations.
*/
static void cgroup_migrate_add_src(struct css_set *src_cset,
struct cgroup *dst_cgrp,
struct list_head *preloaded_csets)
{
struct cgroup *src_cgrp;
lockdep_assert_held(&cgroup_mutex);
lockdep_assert_held(&css_set_rwsem);
src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
if (!list_empty(&src_cset->mg_preload_node))
return;
WARN_ON(src_cset->mg_src_cgrp);
WARN_ON(!list_empty(&src_cset->mg_tasks));
WARN_ON(!list_empty(&src_cset->mg_node));
src_cset->mg_src_cgrp = src_cgrp;
get_css_set(src_cset);
list_add(&src_cset->mg_preload_node, preloaded_csets);
}
/**
* cgroup_migrate_prepare_dst - prepare destination css_sets for migration
* @dst_cgrp: the destination cgroup (may be %NULL)
* @preloaded_csets: list of preloaded source css_sets
*
* Tasks are about to be moved to @dst_cgrp and all the source css_sets
* have been preloaded to @preloaded_csets. This function looks up and
* pins all destination css_sets, links each to its source, and append them
* to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
* source css_set is assumed to be its cgroup on the default hierarchy.
*
* This function must be called after cgroup_migrate_add_src() has been
* called on each migration source css_set. After migration is performed
* using cgroup_migrate(), cgroup_migrate_finish() must be called on
* @preloaded_csets.
*/
static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
struct list_head *preloaded_csets)
{
LIST_HEAD(csets);
struct css_set *src_cset, *tmp_cset;
lockdep_assert_held(&cgroup_mutex);
/*
* Except for the root, child_subsys_mask must be zero for a cgroup
* with tasks so that child cgroups don't compete against tasks.
*/
if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
dst_cgrp->child_subsys_mask)
return -EBUSY;
/* look up the dst cset for each src cset and link it to src */
list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
struct css_set *dst_cset;
dst_cset = find_css_set(src_cset,
dst_cgrp ?: src_cset->dfl_cgrp);
if (!dst_cset)
goto err;
WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
/*
* If src cset equals dst, it's noop. Drop the src.
* cgroup_migrate() will skip the cset too. Note that we
* can't handle src == dst as some nodes are used by both.
*/
if (src_cset == dst_cset) {
src_cset->mg_src_cgrp = NULL;
list_del_init(&src_cset->mg_preload_node);
put_css_set(src_cset, false);
put_css_set(dst_cset, false);
continue;
}
src_cset->mg_dst_cset = dst_cset;
if (list_empty(&dst_cset->mg_preload_node))
list_add(&dst_cset->mg_preload_node, &csets);
else
put_css_set(dst_cset, false);
}
list_splice_tail(&csets, preloaded_csets);
return 0;
err:
cgroup_migrate_finish(&csets);
return -ENOMEM;
}
/**
* cgroup_migrate - migrate a process or task to a cgroup
* @cgrp: the destination cgroup
* @leader: the leader of the process or the task to migrate
* @threadgroup: whether @leader points to the whole process or a single task
*
* Migrate a process or task denoted by @leader to @cgrp. If migrating a
* process, the caller must be holding threadgroup_lock of @leader. The
* caller is also responsible for invoking cgroup_migrate_add_src() and
* cgroup_migrate_prepare_dst() on the targets before invoking this
* function and following up with cgroup_migrate_finish().
*
* As long as a controller's ->can_attach() doesn't fail, this function is
* guaranteed to succeed. This means that, excluding ->can_attach()
* failure, when migrating multiple targets, the success or failure can be
* decided for all targets by invoking group_migrate_prepare_dst() before
* actually starting migrating.
*/
static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
bool threadgroup)
{
struct cgroup_taskset tset = {
.src_csets = LIST_HEAD_INIT(tset.src_csets),
.dst_csets = LIST_HEAD_INIT(tset.dst_csets),
.csets = &tset.src_csets,
};
struct cgroup_subsys_state *css, *failed_css = NULL;
struct css_set *cset, *tmp_cset;
struct task_struct *task, *tmp_task;
int i, ret;
/*
* Prevent freeing of tasks while we take a snapshot. Tasks that are
* already PF_EXITING could be freed from underneath us unless we
* take an rcu_read_lock.
*/
down_write(&css_set_rwsem);
rcu_read_lock();
task = leader;
do {
/* @task either already exited or can't exit until the end */
if (task->flags & PF_EXITING)
goto next;
/* leave @task alone if post_fork() hasn't linked it yet */
if (list_empty(&task->cg_list))
goto next;
cset = task_css_set(task);
if (!cset->mg_src_cgrp)
goto next;
/*
* cgroup_taskset_first() must always return the leader.
* Take care to avoid disturbing the ordering.
*/
list_move_tail(&task->cg_list, &cset->mg_tasks);
if (list_empty(&cset->mg_node))
list_add_tail(&cset->mg_node, &tset.src_csets);
if (list_empty(&cset->mg_dst_cset->mg_node))
list_move_tail(&cset->mg_dst_cset->mg_node,
&tset.dst_csets);
next:
if (!threadgroup)
break;
} while_each_thread(leader, task);
rcu_read_unlock();
up_write(&css_set_rwsem);
/* methods shouldn't be called if no task is actually migrating */
if (list_empty(&tset.src_csets))
return 0;
/* check that we can legitimately attach to the cgroup */
for_each_e_css(css, i, cgrp) {
if (css->ss->can_attach) {
ret = css->ss->can_attach(css, &tset);
if (ret) {
failed_css = css;
goto out_cancel_attach;
}
}
}
/*
* Now that we're guaranteed success, proceed to move all tasks to
* the new cgroup. There are no failure cases after here, so this
* is the commit point.
*/
down_write(&css_set_rwsem);
list_for_each_entry(cset, &tset.src_csets, mg_node) {
list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
cgroup_task_migrate(cset->mg_src_cgrp, task,
cset->mg_dst_cset);
}
up_write(&css_set_rwsem);
/*
* Migration is committed, all target tasks are now on dst_csets.
* Nothing is sensitive to fork() after this point. Notify
* controllers that migration is complete.
*/
tset.csets = &tset.dst_csets;
for_each_e_css(css, i, cgrp)
if (css->ss->attach)
css->ss->attach(css, &tset);
ret = 0;
goto out_release_tset;
out_cancel_attach:
for_each_e_css(css, i, cgrp) {
if (css == failed_css)
break;
if (css->ss->cancel_attach)
css->ss->cancel_attach(css, &tset);
}
out_release_tset:
down_write(&css_set_rwsem);
list_splice_init(&tset.dst_csets, &tset.src_csets);
list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
list_del_init(&cset->mg_node);
}
up_write(&css_set_rwsem);
return ret;
}
/**
* cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
* @dst_cgrp: the cgroup to attach to
* @leader: the task or the leader of the threadgroup to be attached
* @threadgroup: attach the whole threadgroup?
*
* Call holding cgroup_mutex and threadgroup_lock of @leader.
*/
static int cgroup_attach_task(struct cgroup *dst_cgrp,
struct task_struct *leader, bool threadgroup)
{
LIST_HEAD(preloaded_csets);
struct task_struct *task;
int ret;
/* look up all src csets */
down_read(&css_set_rwsem);
rcu_read_lock();
task = leader;
do {
cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
&preloaded_csets);
if (!threadgroup)
break;
} while_each_thread(leader, task);
rcu_read_unlock();
up_read(&css_set_rwsem);
/* prepare dst csets and commit */
ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
if (!ret)
ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
cgroup_migrate_finish(&preloaded_csets);
return ret;
}
/*
* Find the task_struct of the task to attach by vpid and pass it along to the
* function to attach either it or all tasks in its threadgroup. Will lock
* cgroup_mutex and threadgroup.
*/
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off, bool threadgroup)
{
struct task_struct *tsk;
const struct cred *cred = current_cred(), *tcred;
struct cgroup *cgrp;
pid_t pid;
int ret;
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
return -EINVAL;
cgrp = cgroup_kn_lock_live(of->kn);
if (!cgrp)
return -ENODEV;
retry_find_task:
rcu_read_lock();
if (pid) {
tsk = find_task_by_vpid(pid);
if (!tsk) {
rcu_read_unlock();
ret = -ESRCH;
goto out_unlock_cgroup;
}
/*
* even if we're attaching all tasks in the thread group, we
* only need to check permissions on one of them.
*/
tcred = __task_cred(tsk);
if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
!uid_eq(cred->euid, tcred->uid) &&
!uid_eq(cred->euid, tcred->suid)) {
rcu_read_unlock();
ret = -EACCES;
goto out_unlock_cgroup;
}
} else
tsk = current;
if (threadgroup)
tsk = tsk->group_leader;
/*
* Workqueue threads may acquire PF_NO_SETAFFINITY and become
* trapped in a cpuset, or RT worker may be born in a cgroup
* with no rt_runtime allocated. Just say no.
*/
if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
rcu_read_unlock();
goto out_unlock_cgroup;
}
get_task_struct(tsk);
rcu_read_unlock();
threadgroup_lock(tsk);
if (threadgroup) {
if (!thread_group_leader(tsk)) {
/*
* a race with de_thread from another thread's exec()
* may strip us of our leadership, if this happens,
* there is no choice but to throw this task away and
* try again; this is
* "double-double-toil-and-trouble-check locking".
*/
threadgroup_unlock(tsk);
put_task_struct(tsk);
goto retry_find_task;
}
}
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
threadgroup_unlock(tsk);
put_task_struct(tsk);
out_unlock_cgroup:
cgroup_kn_unlock(of->kn);
return ret ?: nbytes;
}
/**
* cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
* @from: attach to all cgroups of a given task
* @tsk: the task to be attached
*/
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
{
struct cgroup_root *root;
int retval = 0;
mutex_lock(&cgroup_mutex);
for_each_root(root) {
struct cgroup *from_cgrp;
if (root == &cgrp_dfl_root)
continue;
down_read(&css_set_rwsem);
from_cgrp = task_cgroup_from_root(from, root);
up_read(&css_set_rwsem);
retval = cgroup_attach_task(from_cgrp, tsk, false);
if (retval)
break;
}
mutex_unlock(&cgroup_mutex);
return retval;
}
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, false);
}
static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, true);
}
static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
struct cgroup *cgrp;
BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
cgrp = cgroup_kn_lock_live(of->kn);
if (!cgrp)
return -ENODEV;
spin_lock(&release_agent_path_lock);
strlcpy(cgrp->root->release_agent_path, strstrip(buf),
sizeof(cgrp->root->release_agent_path));
spin_unlock(&release_agent_path_lock);
cgroup_kn_unlock(of->kn);
return nbytes;
}
static int cgroup_release_agent_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
spin_lock(&release_agent_path_lock);
seq_puts(seq, cgrp->root->release_agent_path);
spin_unlock(&release_agent_path_lock);
seq_putc(seq, '\n');
return 0;
}
static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
return 0;
}
static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
{
struct cgroup_subsys *ss;
bool printed = false;
int ssid;
for_each_subsys(ss, ssid) {
if (ss_mask & (1 << ssid)) {
if (printed)
seq_putc(seq, ' ');
seq_printf(seq, "%s", ss->name);
printed = true;
}
}
if (printed)
seq_putc(seq, '\n');
}
/* show controllers which are currently attached to the default hierarchy */
static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
~cgrp_dfl_root_inhibit_ss_mask);
return 0;
}
/* show controllers which are enabled from the parent */
static int cgroup_controllers_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
return 0;
}
/* show controllers which are enabled for a given cgroup's children */
static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
{
struct cgroup *cgrp = seq_css(seq)->cgroup;
cgroup_print_ss_mask(seq, cgrp->subtree_control);
return 0;
}
/**
* cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
* @cgrp: root of the subtree to update csses for
*
* @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
* css associations need to be updated accordingly. This function looks up
* all css_sets which are attached to the subtree, creates the matching
* updated css_sets and migrates the tasks to the new ones.
*/
static int cgroup_update_dfl_csses(struct cgroup *cgrp)
{
LIST_HEAD(preloaded_csets);
struct cgroup_subsys_state *css;
struct css_set *src_cset;
int ret;
lockdep_assert_held(&cgroup_mutex);
/* look up all csses currently attached to @cgrp's subtree */
down_read(&css_set_rwsem);
css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
struct cgrp_cset_link *link;
/* self is not affected by child_subsys_mask change */
if (css->cgroup == cgrp)
continue;
list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, cgrp,
&preloaded_csets);
}
up_read(&css_set_rwsem);
/* NULL dst indicates self on default hierarchy */
ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
if (ret)
goto out_finish;
list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
struct task_struct *last_task = NULL, *task;
/* src_csets precede dst_csets, break on the first dst_cset */
if (!src_cset->mg_src_cgrp)
break;
/*
* All tasks in src_cset need to be migrated to the
* matching dst_cset. Empty it process by process. We
* walk tasks but migrate processes. The leader might even
* belong to a different cset but such src_cset would also
* be among the target src_csets because the default
* hierarchy enforces per-process membership.
*/
while (true) {
down_read(&css_set_rwsem);
task = list_first_entry_or_null(&src_cset->tasks,
struct task_struct, cg_list);
if (task) {
task = task->group_leader;
WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
get_task_struct(task);
}
up_read(&css_set_rwsem);
if (!task)
break;
/* guard against possible infinite loop */
if (WARN(last_task == task,
"cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
goto out_finish;
last_task = task;
threadgroup_lock(task);
/* raced against de_thread() from another thread? */
if (!thread_group_leader(task)) {
threadgroup_unlock(task);
put_task_struct(task);
continue;
}
ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
threadgroup_unlock(task);
put_task_struct(task);
if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
goto out_finish;
}
}
out_finish:
cgroup_migrate_finish(&preloaded_csets);
return ret;
}
/* change the enabled child controllers for a cgroup in the default hierarchy */
static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
char *buf, size_t nbytes,
loff_t off)
{
unsigned int enable = 0, disable = 0;
unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
struct cgroup *cgrp, *child;
struct cgroup_subsys *ss;
char *tok;
int ssid, ret;
/*
* Parse input - space separated list of subsystem names prefixed
* with either + or -.
*/
buf = strstrip(buf);
while ((tok = strsep(&buf, " "))) {
if (tok[0] == '\0')
continue;
for_each_subsys(ss, ssid) {
if (ss->disabled || strcmp(tok + 1, ss->name) ||
((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
continue;
if (*tok == '+') {
enable |= 1 << ssid;
disable &= ~(1 << ssid);
} else if (*tok == '-') {
disable |= 1 << ssid;
enable &= ~(1 << ssid);
} else {
return -EINVAL;
}
break;
}
if (ssid == CGROUP_SUBSYS_COUNT)
return -EINVAL;
}
cgrp = cgroup_kn_lock_live(of->kn);
if (!cgrp)
return -ENODEV;
for_each_subsys(ss, ssid) {
if (enable & (1 << ssid)) {
if (cgrp->subtree_control & (1 << ssid)) {
enable &= ~(1 << ssid);
continue;
}
/* unavailable or not enabled on the parent? */
if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
(cgroup_parent(cgrp) &&
!(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
ret = -ENOENT;
goto out_unlock;
}
/*
* @ss is already enabled through dependency and
* we'll just make it visible. Skip draining.
*/
if (cgrp->child_subsys_mask & (1 << ssid))
continue;
/*
* Because css offlining is asynchronous, userland
* might try to re-enable the same controller while
* the previous instance is still around. In such
* cases, wait till it's gone using offline_waitq.
*/
cgroup_for_each_live_child(child, cgrp) {
DEFINE_WAIT(wait);
if (!cgroup_css(child, ss))
continue;
cgroup_get(child);
prepare_to_wait(&child->offline_waitq, &wait,
TASK_UNINTERRUPTIBLE);
cgroup_kn_unlock(of->kn);
schedule();
finish_wait(&child->offline_waitq, &wait);
cgroup_put(child);
return restart_syscall();
}
} else if (disable & (1 << ssid)) {
if (!(cgrp->subtree_control & (1 << ssid))) {
disable &= ~(1 << ssid);
continue;
}
/* a child has it enabled? */
cgroup_for_each_live_child(child, cgrp) {
if (child->subtree_control & (1 << ssid)) {
ret = -EBUSY;
goto out_unlock;
}
}
}
}
if (!enable && !disable) {
ret = 0;
goto out_unlock;
}
/*
* Except for the root, subtree_control must be zero for a cgroup
* with tasks so that child cgroups don't compete against tasks.
*/
if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
ret = -EBUSY;
goto out_unlock;
}
/*
* Update subsys masks and calculate what needs to be done. More
* subsystems than specified may need to be enabled or disabled
* depending on subsystem dependencies.
*/
cgrp->subtree_control |= enable;
cgrp->subtree_control &= ~disable;
old_ctrl = cgrp->child_subsys_mask;
cgroup_refresh_child_subsys_mask(cgrp);
new_ctrl = cgrp->child_subsys_mask;
css_enable = ~old_ctrl & new_ctrl;
css_disable = old_ctrl & ~new_ctrl;
enable |= css_enable;
disable |= css_disable;
/*
* Create new csses or make the existing ones visible. A css is
* created invisible if it's being implicitly enabled through
* dependency. An invisible css is made visible when the userland
* explicitly enables it.
*/
for_each_subsys(ss, ssid) {
if (!(enable & (1 << ssid)))
continue;
cgroup_for_each_live_child(child, cgrp) {
if (css_enable & (1 << ssid))
ret = create_css(child, ss,
cgrp->subtree_control & (1 << ssid));
else
ret = cgroup_populate_dir(child, 1 << ssid);
if (ret)
goto err_undo_css;
}
}
/*
* At this point, cgroup_e_css() results reflect the new csses
* making the following cgroup_update_dfl_csses() properly update
* css associations of all tasks in the subtree.
*/
ret = cgroup_update_dfl_csses(cgrp);
if (ret)
goto err_undo_css;
/*
* All tasks are migrated out of disabled csses. Kill or hide
* them. A css is hidden when the userland requests it to be
* disabled while other subsystems are still depending on it.
*/
for_each_subsys(ss, ssid) {
if (!(disable & (1 << ssid)))
continue;
cgroup_for_each_live_child(child, cgrp) {
if (css_disable & (1 << ssid))
kill_css(cgroup_css(child, ss));
else
cgroup_clear_dir(child, 1 << ssid);
}
}
kernfs_activate(cgrp->kn);
ret = 0;
out_unlock:
cgroup_kn_unlock(of->kn);
return ret ?: nbytes;
err_undo_css:
cgrp->subtree_control &= ~enable;
cgrp->subtree_control |= disable;
cgroup_refresh_child_subsys_mask(cgrp);
for_each_subsys(ss, ssid) {
if (!(enable & (1 << ssid)))
continue;
cgroup_for_each_live_child(child, cgrp) {
struct cgroup_subsys_state *css = cgroup_css(child, ss);
if (!css)
continue;
if (css_enable & (1 << ssid))
kill_css(css);
else
cgroup_clear_dir(child, 1 << ssid);
}
}
goto out_unlock;
}
static int cgroup_populated_show(struct seq_file *seq, void *v)
{
seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
return 0;
}
static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct cgroup *cgrp = of->kn->parent->priv;
struct cftype *cft = of->kn->priv;
struct cgroup_subsys_state *css;
int ret;
if (cft->write)
return cft->write(of, buf, nbytes, off);
/*
* kernfs guarantees that a file isn't deleted with operations in
* flight, which means that the matching css is and stays alive and
* doesn't need to be pinned. The RCU locking is not necessary
* either. It's just for the convenience of using cgroup_css().
*/
rcu_read_lock();
css = cgroup_css(cgrp, cft->ss);
rcu_read_unlock();
if (cft->write_u64) {
unsigned long long v;
ret = kstrtoull(buf, 0, &v);
if (!ret)
ret = cft->write_u64(css, cft, v);
} else if (cft->write_s64) {
long long v;
ret = kstrtoll(buf, 0, &v);
if (!ret)
ret = cft->write_s64(css, cft, v);
} else {
ret = -EINVAL;
}
return ret ?: nbytes;
}
static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
{
return seq_cft(seq)->seq_start(seq, ppos);
}
static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
{
return seq_cft(seq)->seq_next(seq, v, ppos);
}
static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
{
seq_cft(seq)->seq_stop(seq, v);
}
static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
struct cftype *cft = seq_cft(m);
struct cgroup_subsys_state *css = seq_css(m);
if (cft->seq_show)
return cft->seq_show(m, arg);
if (cft->read_u64)
seq_printf(m, "%llu\n", cft->read_u64(css, cft));
else if (cft->read_s64)
seq_printf(m, "%lld\n", cft->read_s64(css, cft));
else
return -EINVAL;
return 0;
}
static struct kernfs_ops cgroup_kf_single_ops = {
.atomic_write_len = PAGE_SIZE,
.write = cgroup_file_write,
.seq_show = cgroup_seqfile_show,
};
static struct kernfs_ops cgroup_kf_ops = {
.atomic_write_len = PAGE_SIZE,
.write = cgroup_file_write,
.seq_start = cgroup_seqfile_start,
.seq_next = cgroup_seqfile_next,
.seq_stop = cgroup_seqfile_stop,
.seq_show = cgroup_seqfile_show,
};
/*
* cgroup_rename - Only allow simple rename of directories in place.
*/
static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
const char *new_name_str)
{
struct cgroup *cgrp = kn->priv;
int ret;
if (kernfs_type(kn) != KERNFS_DIR)
return -ENOTDIR;
if (kn->parent != new_parent)
return -EIO;
/*
* This isn't a proper migration and its usefulness is very
* limited. Disallow if sane_behavior.
*/
if (cgroup_sane_behavior(cgrp))
return -EPERM;
/*
* We're gonna grab cgroup_mutex which nests outside kernfs
* active_ref. kernfs_rename() doesn't require active_ref
* protection. Break them before grabbing cgroup_mutex.
*/
kernfs_break_active_protection(new_parent);
kernfs_break_active_protection(kn);
mutex_lock(&cgroup_mutex);
ret = kernfs_rename(kn, new_parent, new_name_str);
mutex_unlock(&cgroup_mutex);
kernfs_unbreak_active_protection(kn);
kernfs_unbreak_active_protection(new_parent);
return ret;
}
/* set uid and gid of cgroup dirs and files to that of the creator */
static int cgroup_kn_set_ugid(struct kernfs_node *kn)
{
struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
.ia_uid = current_fsuid(),
.ia_gid = current_fsgid(), };
if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
return 0;
return kernfs_setattr(kn, &iattr);
}
static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
{
char name[CGROUP_FILE_NAME_MAX];
struct kernfs_node *kn;
struct lock_class_key *key = NULL;
int ret;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
key = &cft->lockdep_key;
#endif
kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
cgroup_file_mode(cft), 0, cft->kf_ops, cft,
NULL, false, key);
if (IS_ERR(kn))
return PTR_ERR(kn);
ret = cgroup_kn_set_ugid(kn);
if (ret) {
kernfs_remove(kn);
return ret;
}
if (cft->seq_show == cgroup_populated_show)
cgrp->populated_kn = kn;
return 0;
}
/**
* cgroup_addrm_files - add or remove files to a cgroup directory
* @cgrp: the target cgroup
* @cfts: array of cftypes to be added
* @is_add: whether to add or remove
*
* Depending on @is_add, add or remove files defined by @cfts on @cgrp.
* For removals, this function never fails. If addition fails, this
* function doesn't remove files already added. The caller is responsible
* for cleaning up.
*/
static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
bool is_add)
{
struct cftype *cft;
int ret;
lockdep_assert_held(&cgroup_mutex);
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* does cft->flags tell us to skip this file on @cgrp? */
if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
continue;
if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
continue;
if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
continue;
if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
continue;
if (is_add) {
ret = cgroup_add_file(cgrp, cft);
if (ret) {
pr_warn("%s: failed to add %s, err=%d\n",
__func__, cft->name, ret);
return ret;
}
} else {
cgroup_rm_file(cgrp, cft);
}
}
return 0;
}
static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
{
LIST_HEAD(pending);
struct cgroup_subsys *ss = cfts[0].ss;
struct cgroup *root = &ss->root->cgrp;
struct cgroup_subsys_state *css;
int ret = 0;
lockdep_assert_held(&cgroup_mutex);
/* add/rm files for all cgroups created before */
css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
struct cgroup *cgrp = css->cgroup;
if (cgroup_is_dead(cgrp))
continue;
ret = cgroup_addrm_files(cgrp, cfts, is_add);
if (ret)
break;
}
if (is_add && !ret)
kernfs_activate(root->kn);
return ret;
}
static void cgroup_exit_cftypes(struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
/* free copy for custom atomic_write_len, see init_cftypes() */
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
kfree(cft->kf_ops);
cft->kf_ops = NULL;
cft->ss = NULL;
}
}
static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
struct cftype *cft;
for (cft = cfts; cft->name[0] != '\0'; cft++) {
struct kernfs_ops *kf_ops;
WARN_ON(cft->ss || cft->kf_ops);
if (cft->seq_start)
kf_ops = &cgroup_kf_ops;
else
kf_ops = &cgroup_kf_single_ops;
/*
* Ugh... if @cft wants a custom max_write_len, we need to
* make a copy of kf_ops to set its atomic_write_len.
*/
if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
if (!kf_ops) {
cgroup_exit_cftypes(cfts);
return -ENOMEM;
}
kf_ops->atomic_write_len = cft->max_write_len;
}
cft->kf_ops = kf_ops;
cft->ss = ss;
}
return 0;
}
static int cgroup_rm_cftypes_locked(struct cftype *cfts)
{
lockdep_assert_held(&cgroup_mutex);
if (!cfts || !cfts[0].ss)
return -ENOENT;
list_del(&cfts->node);
cgroup_apply_cftypes(cfts, false);
cgroup_exit_cftypes(cfts);
return 0;
}
/**
* cgroup_rm_cftypes - remove an array of cftypes from a subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Unregister @cfts. Files described by @cfts are removed from all
* existing cgroups and all future cgroups won't have them either. This
* function can be called anytime whether @cfts' subsys is attached or not.
*
* Returns 0 on successful unregistration, -ENOENT if @cfts is not
* registered.
*/
int cgroup_rm_cftypes(struct cftype *cfts)
{
int ret;
mutex_lock(&cgroup_mutex);
ret = cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_add_cftypes - add an array of cftypes to a subsystem
* @ss: target cgroup subsystem
* @cfts: zero-length name terminated array of cftypes
*
* Register @cfts to @ss. Files described by @cfts are created for all
* existing cgroups to which @ss is attached and all future cgroups will
* have them too. This function can be called anytime whether @ss is
* attached or not.
*
* Returns 0 on successful registration, -errno on failure. Note that this
* function currently returns 0 as long as @cfts registration is successful
* even if some file creation attempts on existing cgroups fail.
*/
int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
{
int ret;
if (ss->disabled)
return 0;
if (!cfts || cfts[0].name[0] == '\0')
return 0;
ret = cgroup_init_cftypes(ss, cfts);
if (ret)
return ret;
mutex_lock(&cgroup_mutex);
list_add_tail(&cfts->node, &ss->cfts);
ret = cgroup_apply_cftypes(cfts, true);
if (ret)
cgroup_rm_cftypes_locked(cfts);
mutex_unlock(&cgroup_mutex);
return ret;
}
/**
* cgroup_task_count - count the number of tasks in a cgroup.
* @cgrp: the cgroup in question
*
* Return the number of tasks in the cgroup.
*/
static int cgroup_task_count(const struct cgroup *cgrp)
{
int count = 0;
struct cgrp_cset_link *link;
down_read(&css_set_rwsem);
list_for_each_entry(link, &cgrp->cset_links, cset_link)
count += atomic_read(&link->cset->refcount);
up_read(&css_set_rwsem);
return count;
}
/**
* css_next_child - find the next child of a given css
* @pos: the current position (%NULL to initiate traversal)
* @parent: css whose children to walk
*
* This function returns the next child of @parent and should be called
* under either cgroup_mutex or RCU read lock. The only requirement is
* that @parent and @pos are accessible. The next sibling is guaranteed to
* be returned regardless of their states.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *parent)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/*
* @pos could already have been unlinked from the sibling list.
* Once a cgroup is removed, its ->sibling.next is no longer
* updated when its next sibling changes. CSS_RELEASED is set when
* @pos is taken off list, at which time its next pointer is valid,
* and, as releases are serialized, the one pointed to by the next
* pointer is guaranteed to not have started release yet. This
* implies that if we observe !CSS_RELEASED on @pos in this RCU
* critical section, the one pointed to by its next pointer is
* guaranteed to not have finished its RCU grace period even if we
* have dropped rcu_read_lock() inbetween iterations.
*
* If @pos has CSS_RELEASED set, its next pointer can't be
* dereferenced; however, as each css is given a monotonically
* increasing unique serial number and always appended to the
* sibling list, the next one can be found by walking the parent's
* children until the first css with higher serial number than
* @pos's. While this path can be slower, it happens iff iteration
* races against release and the race window is very small.
*/
if (!pos) {
next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
} else if (likely(!(pos->flags & CSS_RELEASED))) {
next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
} else {
list_for_each_entry_rcu(next, &parent->children, sibling)
if (next->serial_nr > pos->serial_nr)
break;
}
/*
* @next, if not pointing to the head, can be dereferenced and is
* the next sibling.
*/
if (&next->sibling != &parent->children)
return next;
return NULL;
}
/**
* css_next_descendant_pre - find the next descendant for pre-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_pre(). Find the next descendant
* to visit for pre-order traversal of @root's descendants. @root is
* included in the iteration and the first node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @root are accessible and @pos is a descendant of @root.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit @root */
if (!pos)
return root;
/* visit the first child if exists */
next = css_next_child(NULL, pos);
if (next)
return next;
/* no child, visit my or the closest ancestor's next sibling */
while (pos != root) {
next = css_next_child(pos, pos->parent);
if (next)
return next;
pos = pos->parent;
}
return NULL;
}
/**
* css_rightmost_descendant - return the rightmost descendant of a css
* @pos: css of interest
*
* Return the rightmost descendant of @pos. If there's no descendant, @pos
* is returned. This can be used during pre-order traversal to skip
* subtree of @pos.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct rightmost descendant as
* long as @pos is accessible.
*/
struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last, *tmp;
cgroup_assert_mutex_or_rcu_locked();
do {
last = pos;
/* ->prev isn't RCU safe, walk ->next till the end */
pos = NULL;
css_for_each_child(tmp, last)
pos = tmp;
} while (pos);
return last;
}
static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state *pos)
{
struct cgroup_subsys_state *last;
do {
last = pos;
pos = css_next_child(NULL, pos);
} while (pos);
return last;
}
/**
* css_next_descendant_post - find the next descendant for post-order walk
* @pos: the current position (%NULL to initiate traversal)
* @root: css whose descendants to walk
*
* To be used by css_for_each_descendant_post(). Find the next descendant
* to visit for post-order traversal of @root's descendants. @root is
* included in the iteration and the last node to be visited.
*
* While this function requires cgroup_mutex or RCU read locking, it
* doesn't require the whole traversal to be contained in a single critical
* section. This function will return the correct next descendant as long
* as both @pos and @cgroup are accessible and @pos is a descendant of
* @cgroup.
*
* If a subsystem synchronizes ->css_online() and the start of iteration, a
* css which finished ->css_online() is guaranteed to be visible in the
* future iterations and will stay visible until the last reference is put.
* A css which hasn't finished ->css_online() or already finished
* ->css_offline() may show up during traversal. It's each subsystem's
* responsibility to synchronize against on/offlining.
*/
struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state *pos,
struct cgroup_subsys_state *root)
{
struct cgroup_subsys_state *next;
cgroup_assert_mutex_or_rcu_locked();
/* if first iteration, visit leftmost descendant which may be @root */
if (!pos)
return css_leftmost_descendant(root);
/* if we visited @root, we're done */
if (pos == root)
return NULL;
/* if there's an unvisited sibling, visit its leftmost descendant */
next = css_next_child(pos, pos->parent);
if (next)
return css_leftmost_descendant(next);
/* no sibling left, visit parent */
return pos->parent;
}
/**
* css_has_online_children - does a css have online children
* @css: the target css
*
* Returns %true if @css has any online children; otherwise, %false. This
* function can be called from any context but the caller is responsible
* for synchronizing against on/offlining as necessary.
*/
bool css_has_online_children(struct cgroup_subsys_state *css)
{
struct cgroup_subsys_state *child;
bool ret = false;
rcu_read_lock();
css_for_each_child(child, css) {
if (css->flags & CSS_ONLINE) {
ret = true;
break;
}
}
rcu_read_unlock();
return ret;
}
/**
* css_advance_task_iter - advance a task itererator to the next css_set
* @it: the iterator to advance
*
* Advance @it to the next css_set to walk.
*/
static void css_advance_task_iter(struct css_task_iter *it)
{
struct list_head *l = it->cset_pos;
struct cgrp_cset_link *link;
struct css_set *cset;
/* Advance to the next non-empty css_set */
do {
l = l->next;
if (l == it->cset_head) {
it->cset_pos = NULL;
return;
}
if (it->ss) {
cset = container_of(l, struct css_set,
e_cset_node[it->ss->id]);
} else {
link = list_entry(l, struct cgrp_cset_link, cset_link);
cset = link->cset;
}
} while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
it->cset_pos = l;
if (!list_empty(&cset->tasks))
it->task_pos = cset->tasks.next;
else
it->task_pos = cset->mg_tasks.next;
it->tasks_head = &cset->tasks;
it->mg_tasks_head = &cset->mg_tasks;
}
/**
* css_task_iter_start - initiate task iteration
* @css: the css to walk tasks of
* @it: the task iterator to use
*
* Initiate iteration through the tasks of @css. The caller can call
* css_task_iter_next() to walk through the tasks until the function
* returns NULL. On completion of iteration, css_task_iter_end() must be
* called.
*
* Note that this function acquires a lock which is released when the
* iteration finishes. The caller can't sleep while iteration is in
* progress.
*/
void css_task_iter_start(struct cgroup_subsys_state *css,
struct css_task_iter *it)
__acquires(css_set_rwsem)
{
/* no one should try to iterate before mounting cgroups */
WARN_ON_ONCE(!use_task_css_set_links);
down_read(&css_set_rwsem);
it->ss = css->ss;
if (it->ss)
it->cset_pos = &css->cgroup->e_csets[css->ss->id];
else
it->cset_pos = &css->cgroup->cset_links;
it->cset_head = it->cset_pos;
css_advance_task_iter(it);
}
/**
* css_task_iter_next - return the next task for the iterator
* @it: the task iterator being iterated
*
* The "next" function for task iteration. @it should have been
* initialized via css_task_iter_start(). Returns NULL when the iteration
* reaches the end.
*/
struct task_struct *css_task_iter_next(struct css_task_iter *it)
{
struct task_struct *res;
struct list_head *l = it->task_pos;
/* If the iterator cg is NULL, we have no tasks */
if (!it->cset_pos)
return NULL;
res = list_entry(l, struct task_struct, cg_list);
/*
* Advance iterator to find next entry. cset->tasks is consumed
* first and then ->mg_tasks. After ->mg_tasks, we move onto the
* next cset.
*/
l = l->next;
if (l == it->tasks_head)
l = it->mg_tasks_head->next;
if (l == it->mg_tasks_head)
css_advance_task_iter(it);
else
it->task_pos = l;
return res;
}
/**
* css_task_iter_end - finish task iteration
* @it: the task iterator to finish
*
* Finish task iteration started by css_task_iter_start().
*/
void css_task_iter_end(struct css_task_iter *it)
__releases(css_set_rwsem)
{
up_read(&css_set_rwsem);
}
/**
* cgroup_trasnsfer_tasks - move tasks from one cgroup to another
* @to: cgroup to which the tasks will be moved
* @from: cgroup in which the tasks currently reside
*
* Locking rules between cgroup_post_fork() and the migration path
* guarantee that, if a task is forking while being migrated, the new child
* is guaranteed to be either visible in the source cgroup after the
* parent's migration is complete or put into the target cgroup. No task
* can slip out of migration through forking.
*/
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
{
LIST_HEAD(preloaded_csets);
struct cgrp_cset_link *link;
struct css_task_iter it;
struct task_struct *task;
int ret;
mutex_lock(&cgroup_mutex);
/* all tasks in @from are being moved, all csets are source */
down_read(&css_set_rwsem);
list_for_each_entry(link, &from->cset_links, cset_link)
cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
up_read(&css_set_rwsem);
ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
if (ret)
goto out_err;
/*
* Migrate tasks one-by-one until @form is empty. This fails iff
* ->can_attach() fails.
*/
do {
css_task_iter_start(&from->self, &it);
task = css_task_iter_next(&it);
if (task)
get_task_struct(task);
css_task_iter_end(&it);
if (task) {
ret = cgroup_migrate(to, task, false);
put_task_struct(task);
}
} while (task && !ret);
out_err:
cgroup_migrate_finish(&preloaded_csets);
mutex_unlock(&cgroup_mutex);
return ret;
}
/*
* Stuff for reading the 'tasks'/'procs' files.
*
* Reading this file can return large amounts of data if a cgroup has
* *lots* of attached tasks. So it may need several calls to read(),
* but we cannot guarantee that the information we produce is correct
* unless we produce it entirely atomically.
*
*/
/* which pidlist file are we talking about? */
enum cgroup_filetype {
CGROUP_FILE_PROCS,
CGROUP_FILE_TASKS,
};
/*
* A pidlist is a list of pids that virtually represents the contents of one
* of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
* a pair (one each for procs, tasks) for each pid namespace that's relevant
* to the cgroup.
*/
struct cgroup_pidlist {
/*
* used to find which pidlist is wanted. doesn't change as long as
* this particular list stays in the list.
*/
struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
/* array of xids */
pid_t *list;
/* how many elements the above list has */
int length;
/* each of these stored in a list by its cgroup */
struct list_head links;
/* pointer to the cgroup we belong to, for list removal purposes */
struct cgroup *owner;
/* for delayed destruction */
struct delayed_work destroy_dwork;
};
/*
* The following two functions "fix" the issue where there are more pids
* than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
* TODO: replace with a kernel-wide solution to this problem
*/
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
if (PIDLIST_TOO_LARGE(count))
return vmalloc(count * sizeof(pid_t));
else
return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
if (is_vmalloc_addr(p))
vfree(p);
else
kfree(p);
}
/*
* Used to destroy all pidlists lingering waiting for destroy timer. None
* should be left afterwards.
*/
static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
{
struct cgroup_pidlist *l, *tmp_l;
mutex_lock(&cgrp->pidlist_mutex);
list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
mutex_unlock(&cgrp->pidlist_mutex);
flush_workqueue(cgroup_pidlist_destroy_wq);
BUG_ON(!list_empty(&cgrp->pidlists));
}
static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
destroy_dwork);
struct cgroup_pidlist *tofree = NULL;
mutex_lock(&l->owner->pidlist_mutex);
/*
* Destroy iff we didn't get queued again. The state won't change
* as destroy_dwork can only be queued while locked.
*/
if (!delayed_work_pending(dwork)) {
list_del(&l->links);
pidlist_free(l->list);
put_pid_ns(l->key.ns);
tofree = l;
}
mutex_unlock(&l->owner->pidlist_mutex);
kfree(tofree);
}
/*
* pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
* Returns the number of unique elements.
*/
static int pidlist_uniq(pid_t *list, int length)
{
int src, dest = 1;
/*
* we presume the 0th element is unique, so i starts at 1. trivial
* edge cases first; no work needs to be done for either
*/
if (length == 0 || length == 1)
return length;
/* src and dest walk down the list; dest counts unique elements */
for (src = 1; src < length; src++) {
/* find next unique element */
while (list[src] == list[src-1]) {
src++;
if (src == length)
goto after;
}
/* dest always points to where the next unique element goes */
list[dest] = list[src];
dest++;
}
after:
return dest;
}
/*
* The two pid files - task and cgroup.procs - guaranteed that the result
* is sorted, which forced this whole pidlist fiasco. As pid order is
* different per namespace, each namespace needs differently sorted list,
* making it impossible to use, for example, single rbtree of member tasks
* sorted by task pointer. As pidlists can be fairly large, allocating one
* per open file is dangerous, so cgroup had to implement shared pool of
* pidlists keyed by cgroup and namespace.
*
* All this extra complexity was caused by the original implementation
* committing to an entirely unnecessary property. In the long term, we
* want to do away with it. Explicitly scramble sort order if
* sane_behavior so that no such expectation exists in the new interface.
*
* Scrambling is done by swapping every two consecutive bits, which is
* non-identity one-to-one mapping which disturbs sort order sufficiently.
*/
static pid_t pid_fry(pid_t pid)
{
unsigned a = pid & 0x55555555;
unsigned b = pid & 0xAAAAAAAA;
return (a << 1) | (b >> 1);
}
static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
{
if (cgroup_sane_behavior(cgrp))
return pid_fry(pid);
else
return pid;
}
static int cmppid(const void *a, const void *b)
{
return *(pid_t *)a - *(pid_t *)b;
}
static int fried_cmppid(const void *a, const void *b)
{
return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
}
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
/* don't need task_nsproxy() if we're looking at ourself */
struct pid_namespace *ns = task_active_pid_ns(current);
lockdep_assert_held(&cgrp->pidlist_mutex);
list_for_each_entry(l, &cgrp->pidlists, links)
if (l->key.type == type && l->key.ns == ns)
return l;
return NULL;
}
/*
* find the appropriate pidlist for our purpose (given procs vs tasks)
* returns with the lock on that pidlist already held, and takes care
* of the use count, or returns NULL with no locks held if we're out of
* memory.
*/
static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
enum cgroup_filetype type)
{
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
l = cgroup_pidlist_find(cgrp, type);
if (l)
return l;
/* entry not found; create a new one */
l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
if (!l)
return l;
INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
l->key.type = type;
/* don't need task_nsproxy() if we're looking at ourself */
l->key.ns = get_pid_ns(task_active_pid_ns(current));
l->owner = cgrp;
list_add(&l->links, &cgrp->pidlists);
return l;
}
/*
* Load a cgroup's pidarray with either procs' tgids or tasks' pids
*/
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
struct cgroup_pidlist **lp)
{
pid_t *array;
int length;
int pid, n = 0; /* used for populating the array */
struct css_task_iter it;
struct task_struct *tsk;
struct cgroup_pidlist *l;
lockdep_assert_held(&cgrp->pidlist_mutex);
/*
* If cgroup gets more users after we read count, we won't have
* enough space - tough. This race is indistinguishable to the
* caller from the case that the additional cgroup users didn't
* show up until sometime later on.
*/
length = cgroup_task_count(cgrp);
array = pidlist_allocate(length);
if (!array)
return -ENOMEM;
/* now, populate the array */
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
if (unlikely(n == length))
break;
/* get tgid or pid for procs or tasks file respectively */
if (type == CGROUP_FILE_PROCS)
pid = task_tgid_vnr(tsk);
else
pid = task_pid_vnr(tsk);
if (pid > 0) /* make sure to only use valid results */
array[n++] = pid;
}
css_task_iter_end(&it);
length = n;
/* now sort & (if procs) strip out duplicates */
if (cgroup_sane_behavior(cgrp))
sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
else
sort(array, length, sizeof(pid_t), cmppid, NULL);
if (type == CGROUP_FILE_PROCS)
length = pidlist_uniq(array, length);
l = cgroup_pidlist_find_create(cgrp, type);
if (!l) {
mutex_unlock(&cgrp->pidlist_mutex);
pidlist_free(array);
return -ENOMEM;
}
/* store array, freeing old if necessary */
pidlist_free(l->list);
l->list = array;
l->length = length;
*lp = l;
return 0;
}
/**
* cgroupstats_build - build and fill cgroupstats
* @stats: cgroupstats to fill information into
* @dentry: A dentry entry belonging to the cgroup for which stats have
* been requested.
*
* Build and fill cgroupstats so that taskstats can export it to user
* space.
*/
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup *cgrp;
struct css_task_iter it;
struct task_struct *tsk;
/* it should be kernfs_node belonging to cgroupfs and is a directory */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return -EINVAL;
mutex_lock(&cgroup_mutex);
/*
* We aren't being called from kernfs and there's no guarantee on
* @kn->priv's validity. For this and css_tryget_online_from_dir(),
* @kn->priv is RCU safe. Let's do the RCU dancing.
*/
rcu_read_lock();
cgrp = rcu_dereference(kn->priv);
if (!cgrp || cgroup_is_dead(cgrp)) {
rcu_read_unlock();
mutex_unlock(&cgroup_mutex);
return -ENOENT;
}
rcu_read_unlock();
css_task_iter_start(&cgrp->self, &it);
while ((tsk = css_task_iter_next(&it))) {
switch (tsk->state) {
case TASK_RUNNING:
stats->nr_running++;
break;
case TASK_INTERRUPTIBLE:
stats->nr_sleeping++;
break;
case TASK_UNINTERRUPTIBLE:
stats->nr_uninterruptible++;
break;
case TASK_STOPPED:
stats->nr_stopped++;
break;
default:
if (delayacct_is_task_waiting_on_io(tsk))
stats->nr_io_wait++;
break;
}
}
css_task_iter_end(&it);
mutex_unlock(&cgroup_mutex);
return 0;
}
/*
* seq_file methods for the tasks/procs files. The seq_file position is the
* next pid to display; the seq_file iterator is a pointer to the pid
* in the cgroup->l->list array.
*/
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
{
/*
* Initially we receive a position value that corresponds to
* one more than the last pid shown (or 0 on the first call or
* after a seek to the start). Use a binary-search to find the
* next pid to display, if any
*/
struct kernfs_open_file *of = s->private;
struct cgroup *cgrp = seq_css(s)->cgroup;
struct cgroup_pidlist *l;
enum cgroup_filetype type = seq_cft(s)->private;
int index = 0, pid = *pos;
int *iter, ret;
mutex_lock(&cgrp->pidlist_mutex);
/*
* !NULL @of->priv indicates that this isn't the first start()
* after open. If the matching pidlist is around, we can use that.
* Look for it. Note that @of->priv can't be used directly. It
* could already have been destroyed.
*/
if (of->priv)
of->priv = cgroup_pidlist_find(cgrp, type);
/*
* Either this is the first start() after open or the matching
* pidlist has been destroyed inbetween. Create a new one.
*/
if (!of->priv) {
ret = pidlist_array_load(cgrp, type,
(struct cgroup_pidlist **)&of->priv);
if (ret)
return ERR_PTR(ret);
}
l = of->priv;
if (pid) {
int end = l->length;
while (index < end) {
int mid = (index + end) / 2;
if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
index = mid;
break;
} else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
index = mid + 1;
else
end = mid;
}
}
/* If we're off the end of the array, we're done */
if (index >= l->length)
return NULL;
/* Update the abstract position to be the actual pid that we found */
iter = l->list + index;
*pos = cgroup_pid_fry(cgrp, *iter);
return iter;
}
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
if (l)
mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
CGROUP_PIDLIST_DESTROY_DELAY);
mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
}
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
{
struct kernfs_open_file *of = s->private;
struct cgroup_pidlist *l = of->priv;
pid_t *p = v;
pid_t *end = l->list + l->length;
/*
* Advance to the next pid in the array. If this goes off the
* end, we're done
*/
p++;
if (p >= end) {
return NULL;
} else {
*pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
return p;
}
}
static int cgroup_pidlist_show(struct seq_file *s, void *v)
{
return seq_printf(s, "%d\n", *(int *)v);
}
static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return notify_on_release(css->cgroup);
}
static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
if (val)
set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
else
clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
return 0;
}
static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
}
static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
struct cftype *cft, u64 val)
{
if (val)
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
else
clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
return 0;
}
static struct cftype cgroup_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write = cgroup_procs_write,
.mode = S_IRUGO | S_IWUSR,
},
{
.name = "cgroup.clone_children",
.flags = CFTYPE_INSANE,
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
{
.name = "cgroup.controllers",
.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_root_controllers_show,
},
{
.name = "cgroup.controllers",
.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
.seq_show = cgroup_controllers_show,
},
{
.name = "cgroup.subtree_control",
.flags = CFTYPE_ONLY_ON_DFL,
.seq_show = cgroup_subtree_control_show,
.write = cgroup_subtree_control_write,
},
{
.name = "cgroup.populated",
.flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
.seq_show = cgroup_populated_show,
},
/*
* Historical crazy stuff. These don't have "cgroup." prefix and
* don't exist if sane_behavior. If you're depending on these, be
* prepared to be burned.
*/
{
.name = "tasks",
.flags = CFTYPE_INSANE, /* use "procs" instead */
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write = cgroup_tasks_write,
.mode = S_IRUGO | S_IWUSR,
},
{
.name = "notify_on_release",
.flags = CFTYPE_INSANE,
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
};
/**
* cgroup_populate_dir - create subsys files in a cgroup directory
* @cgrp: target cgroup
* @subsys_mask: mask of the subsystem ids whose files should be added
*
* On failure, no file is added.
*/
static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
{
struct cgroup_subsys *ss;
int i, ret = 0;
/* process cftsets of each subsystem */
for_each_subsys(ss, i) {
struct cftype *cfts;
if (!(subsys_mask & (1 << i)))
continue;
list_for_each_entry(cfts, &ss->cfts, node) {
ret = cgroup_addrm_files(cgrp, cfts, true);
if (ret < 0)
goto err;
}
}
return 0;
err:
cgroup_clear_dir(cgrp, subsys_mask);
return ret;
}
/*
* css destruction is four-stage process.
*
* 1. Destruction starts. Killing of the percpu_ref is initiated.
* Implemented in kill_css().
*
* 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
* and thus css_tryget_online() is guaranteed to fail, the css can be
* offlined by invoking offline_css(). After offlining, the base ref is
* put. Implemented in css_killed_work_fn().
*
* 3. When the percpu_ref reaches zero, the only possible remaining
* accessors are inside RCU read sections. css_release() schedules the
* RCU callback.
*
* 4. After the grace period, the css can be freed. Implemented in
* css_free_work_fn().
*
* It is actually hairier because both step 2 and 4 require process context
* and thus involve punting to css->destroy_work adding two additional
* steps to the already complex sequence.
*/
static void css_free_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup *cgrp = css->cgroup;
if (css->ss) {
/* css free path */
if (css->parent)
css_put(css->parent);
css->ss->css_free(css);
cgroup_put(cgrp);
} else {
/* cgroup free path */
atomic_dec(&cgrp->root->nr_cgrps);
cgroup_pidlist_destroy_all(cgrp);
if (cgroup_parent(cgrp)) {
/*
* We get a ref to the parent, and put the ref when
* this cgroup is being freed, so it's guaranteed
* that the parent won't be destroyed before its
* children.
*/
cgroup_put(cgroup_parent(cgrp));
kernfs_put(cgrp->kn);
kfree(cgrp);
} else {
/*
* This is root cgroup's refcnt reaching zero,
* which indicates that the root should be
* released.
*/
cgroup_destroy_root(cgrp->root);
}
}
}
static void css_free_rcu_fn(struct rcu_head *rcu_head)
{
struct cgroup_subsys_state *css =
container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
INIT_WORK(&css->destroy_work, css_free_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
static void css_release_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
struct cgroup_subsys *ss = css->ss;
struct cgroup *cgrp = css->cgroup;
mutex_lock(&cgroup_mutex);
css->flags |= CSS_RELEASED;
list_del_rcu(&css->sibling);
if (ss) {
/* css release path */
cgroup_idr_remove(&ss->css_idr, css->id);
} else {
/* cgroup release path */
cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
cgrp->id = -1;
}
mutex_unlock(&cgroup_mutex);
call_rcu(&css->rcu_head, css_free_rcu_fn);
}
static void css_release(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
INIT_WORK(&css->destroy_work, css_release_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
static void init_and_link_css(struct cgroup_subsys_state *css,
struct cgroup_subsys *ss, struct cgroup *cgrp)
{
lockdep_assert_held(&cgroup_mutex);
cgroup_get(cgrp);
memset(css, 0, sizeof(*css));
css->cgroup = cgrp;
css->ss = ss;
INIT_LIST_HEAD(&css->sibling);
INIT_LIST_HEAD(&css->children);
css->serial_nr = css_serial_nr_next++;
if (cgroup_parent(cgrp)) {
css->parent = cgroup_css(cgroup_parent(cgrp), ss);
css_get(css->parent);
}
BUG_ON(cgroup_css(cgrp, ss));
}
/* invoke ->css_online() on a new CSS and mark it online if successful */
static int online_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
int ret = 0;
lockdep_assert_held(&cgroup_mutex);
if (ss->css_online)
ret = ss->css_online(css);
if (!ret) {
css->flags |= CSS_ONLINE;
rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
}
return ret;
}
/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
static void offline_css(struct cgroup_subsys_state *css)
{
struct cgroup_subsys *ss = css->ss;
lockdep_assert_held(&cgroup_mutex);
if (!(css->flags & CSS_ONLINE))
return;
if (ss->css_offline)
ss->css_offline(css);
css->flags &= ~CSS_ONLINE;
RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
wake_up_all(&css->cgroup->offline_waitq);
}
/**
* create_css - create a cgroup_subsys_state
* @cgrp: the cgroup new css will be associated with
* @ss: the subsys of new css
* @visible: whether to create control knobs for the new css or not
*
* Create a new css associated with @cgrp - @ss pair. On success, the new
* css is online and installed in @cgrp with all interface files created if
* @visible. Returns 0 on success, -errno on failure.
*/
static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
bool visible)
{
struct cgroup *parent = cgroup_parent(cgrp);
struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
struct cgroup_subsys_state *css;
int err;
lockdep_assert_held(&cgroup_mutex);
css = ss->css_alloc(parent_css);
if (IS_ERR(css))
return PTR_ERR(css);
init_and_link_css(css, ss, cgrp);
err = percpu_ref_init(&css->refcnt, css_release);
if (err)
goto err_free_css;
err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
if (err < 0)
goto err_free_percpu_ref;
css->id = err;
if (visible) {
err = cgroup_populate_dir(cgrp, 1 << ss->id);
if (err)
goto err_free_id;
}
/* @css is ready to be brought online now, make it visible */
list_add_tail_rcu(&css->sibling, &parent_css->children);
cgroup_idr_replace(&ss->css_idr, css, css->id);
err = online_css(css);
if (err)
goto err_list_del;
if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
cgroup_parent(parent)) {
pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
current->comm, current->pid, ss->name);
if (!strcmp(ss->name, "memory"))
pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
ss->warned_broken_hierarchy = true;
}
return 0;
err_list_del:
list_del_rcu(&css->sibling);
cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
err_free_id:
cgroup_idr_remove(&ss->css_idr, css->id);
err_free_percpu_ref:
percpu_ref_cancel_init(&css->refcnt);
err_free_css:
call_rcu(&css->rcu_head, css_free_rcu_fn);
return err;
}
static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
umode_t mode)
{
struct cgroup *parent, *cgrp;
struct cgroup_root *root;
struct cgroup_subsys *ss;
struct kernfs_node *kn;
int ssid, ret;
parent = cgroup_kn_lock_live(parent_kn);
if (!parent)
return -ENODEV;
root = parent->root;
/* allocate the cgroup and its ID, 0 is reserved for the root */
cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
if (!cgrp) {
ret = -ENOMEM;
goto out_unlock;
}
ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
if (ret)
goto out_free_cgrp;
/*
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
*/
cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
if (cgrp->id < 0) {
ret = -ENOMEM;
goto out_cancel_ref;
}
init_cgroup_housekeeping(cgrp);
cgrp->self.parent = &parent->self;
cgrp->root = root;
if (notify_on_release(parent))
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
/* create the directory */
kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
if (IS_ERR(kn)) {
ret = PTR_ERR(kn);
goto out_free_id;
}
cgrp->kn = kn;
/*
* This extra ref will be put in cgroup_free_fn() and guarantees
* that @cgrp->kn is always accessible.
*/
kernfs_get(kn);
cgrp->self.serial_nr = css_serial_nr_next++;
/* allocation complete, commit to creation */
list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
atomic_inc(&root->nr_cgrps);
cgroup_get(parent);
/*
* @cgrp is now fully operational. If something fails after this
* point, it'll be released via the normal destruction path.
*/
cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
ret = cgroup_kn_set_ugid(kn);
if (ret)
goto out_destroy;
ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
if (ret)
goto out_destroy;
/* let's create and online css's */
for_each_subsys(ss, ssid) {
if (parent->child_subsys_mask & (1 << ssid)) {
ret = create_css(cgrp, ss,
parent->subtree_control & (1 << ssid));
if (ret)
goto out_destroy;
}
}
/*
* On the default hierarchy, a child doesn't automatically inherit
* subtree_control from the parent. Each is configured manually.
*/
if (!cgroup_on_dfl(cgrp)) {
cgrp->subtree_control = parent->subtree_control;
cgroup_refresh_child_subsys_mask(cgrp);
}
kernfs_activate(kn);
ret = 0;
goto out_unlock;
out_free_id:
cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
out_cancel_ref:
percpu_ref_cancel_init(&cgrp->self.refcnt);
out_free_cgrp:
kfree(cgrp);
out_unlock:
cgroup_kn_unlock(parent_kn);
return ret;
out_destroy:
cgroup_destroy_locked(cgrp);
goto out_unlock;
}
/*
* This is called when the refcnt of a css is confirmed to be killed.
* css_tryget_online() is now guaranteed to fail. Tell the subsystem to
* initate destruction and put the css ref from kill_css().
*/
static void css_killed_work_fn(struct work_struct *work)
{
struct cgroup_subsys_state *css =
container_of(work, struct cgroup_subsys_state, destroy_work);
mutex_lock(&cgroup_mutex);
offline_css(css);
mutex_unlock(&cgroup_mutex);
css_put(css);
}
/* css kill confirmation processing requires process context, bounce */
static void css_killed_ref_fn(struct percpu_ref *ref)
{
struct cgroup_subsys_state *css =
container_of(ref, struct cgroup_subsys_state, refcnt);
INIT_WORK(&css->destroy_work, css_killed_work_fn);
queue_work(cgroup_destroy_wq, &css->destroy_work);
}
/**
* kill_css - destroy a css
* @css: css to destroy
*
* This function initiates destruction of @css by removing cgroup interface
* files and putting its base reference. ->css_offline() will be invoked
* asynchronously once css_tryget_online() is guaranteed to fail and when
* the reference count reaches zero, @css will be released.
*/
static void kill_css(struct cgroup_subsys_state *css)
{
lockdep_assert_held(&cgroup_mutex);
/*
* This must happen before css is disassociated with its cgroup.
* See seq_css() for details.
*/
cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
/*
* Killing would put the base ref, but we need to keep it alive
* until after ->css_offline().
*/
css_get(css);
/*
* cgroup core guarantees that, by the time ->css_offline() is
* invoked, no new css reference will be given out via
* css_tryget_online(). We can't simply call percpu_ref_kill() and
* proceed to offlining css's because percpu_ref_kill() doesn't
* guarantee that the ref is seen as killed on all CPUs on return.
*
* Use percpu_ref_kill_and_confirm() to get notifications as each
* css is confirmed to be seen as killed on all CPUs.
*/
percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
}
/**
* cgroup_destroy_locked - the first stage of cgroup destruction
* @cgrp: cgroup to be destroyed
*
* css's make use of percpu refcnts whose killing latency shouldn't be
* exposed to userland and are RCU protected. Also, cgroup core needs to
* guarantee that css_tryget_online() won't succeed by the time
* ->css_offline() is invoked. To satisfy all the requirements,
* destruction is implemented in the following two steps.
*
* s1. Verify @cgrp can be destroyed and mark it dying. Remove all
* userland visible parts and start killing the percpu refcnts of
* css's. Set up so that the next stage will be kicked off once all
* the percpu refcnts are confirmed to be killed.
*
* s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
* rest of destruction. Once all cgroup references are gone, the
* cgroup is RCU-freed.
*
* This function implements s1. After this step, @cgrp is gone as far as
* the userland is concerned and a new cgroup with the same name may be
* created. As cgroup doesn't care about the names internally, this
* doesn't cause any problem.
*/
static int cgroup_destroy_locked(struct cgroup *cgrp)
__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
{
struct cgroup_subsys_state *css;
bool empty;
int ssid;
lockdep_assert_held(&cgroup_mutex);
/*
* css_set_rwsem synchronizes access to ->cset_links and prevents
* @cgrp from being removed while put_css_set() is in progress.
*/
down_read(&css_set_rwsem);
empty = list_empty(&cgrp->cset_links);
up_read(&css_set_rwsem);
if (!empty)
return -EBUSY;
/*
* Make sure there's no live children. We can't test emptiness of
* ->self.children as dead children linger on it while being
* drained; otherwise, "rmdir parent/child parent" may fail.
*/
if (css_has_online_children(&cgrp->self))
return -EBUSY;
/*
* Mark @cgrp dead. This prevents further task migration and child
* creation by disabling cgroup_lock_live_group().
*/
cgrp->self.flags &= ~CSS_ONLINE;
/* initiate massacre of all css's */
for_each_css(css, ssid, cgrp)
kill_css(css);
/* CSS_ONLINE is clear, remove from ->release_list for the last time */
raw_spin_lock(&release_list_lock);
if (!list_empty(&cgrp->release_list))
list_del_init(&cgrp->release_list);
raw_spin_unlock(&release_list_lock);
/*
* Remove @cgrp directory along with the base files. @cgrp has an
* extra ref on its kn.
*/
kernfs_remove(cgrp->kn);
set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
check_for_release(cgroup_parent(cgrp));
/* put the base reference */
percpu_ref_kill(&cgrp->self.refcnt);
return 0;
};
static int cgroup_rmdir(struct kernfs_node *kn)
{
struct cgroup *cgrp;
int ret = 0;
cgrp = cgroup_kn_lock_live(kn);
if (!cgrp)
return 0;
cgroup_get(cgrp); /* for @kn->priv clearing */
ret = cgroup_destroy_locked(cgrp);
cgroup_kn_unlock(kn);
/*
* There are two control paths which try to determine cgroup from
* dentry without going through kernfs - cgroupstats_build() and
* css_tryget_online_from_dir(). Those are supported by RCU
* protecting clearing of cgrp->kn->priv backpointer, which should
* happen after all files under it have been removed.
*/
if (!ret)
RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
cgroup_put(cgrp);
return ret;
}
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
.remount_fs = cgroup_remount,
.show_options = cgroup_show_options,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.rename = cgroup_rename,
};
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
{
struct cgroup_subsys_state *css;
printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
mutex_lock(&cgroup_mutex);
idr_init(&ss->css_idr);
INIT_LIST_HEAD(&ss->cfts);
/* Create the root cgroup state for this subsystem */
ss->root = &cgrp_dfl_root;
css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
/* We don't handle early failures gracefully */
BUG_ON(IS_ERR(css));
init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
/*
* Root csses are never destroyed and we can't initialize
* percpu_ref during early init. Disable refcnting.
*/
css->flags |= CSS_NO_REF;
if (early) {
/* allocation can't be done safely during early init */
css->id = 1;
} else {
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
BUG_ON(css->id < 0);
}
/* Update the init_css_set to contain a subsys
* pointer to this state - since the subsystem is
* newly registered, all tasks and hence the
* init_css_set is in the subsystem's root cgroup. */
init_css_set.subsys[ss->id] = css;
need_forkexit_callback |= ss->fork || ss->exit;
/* At system boot, before all subsystems have been
* registered, no tasks have been forked, so we don't
* need to invoke fork callbacks here. */
BUG_ON(!list_empty(&init_task.tasks));
BUG_ON(online_css(css));
mutex_unlock(&cgroup_mutex);
}
/**
* cgroup_init_early - cgroup initialization at system boot
*
* Initialize cgroups at system boot, and initialize any
* subsystems that request early init.
*/
int __init cgroup_init_early(void)
{
static struct cgroup_sb_opts __initdata opts =
{ .flags = CGRP_ROOT_SANE_BEHAVIOR };
struct cgroup_subsys *ss;
int i;
init_cgroup_root(&cgrp_dfl_root, &opts);
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
for_each_subsys(ss, i) {
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
ss->id, ss->name);
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
ss->id = i;
ss->name = cgroup_subsys_name[i];
if (ss->early_init)
cgroup_init_subsys(ss, true);
}
return 0;
}
/**
* cgroup_init - cgroup initialization
*
* Register cgroup filesystem and /proc file, and initialize
* any subsystems that didn't request early init.
*/
int __init cgroup_init(void)
{
struct cgroup_subsys *ss;
unsigned long key;
int ssid, err;
BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
mutex_lock(&cgroup_mutex);
/* Add init_css_set to the hash table */
key = css_set_hash(init_css_set.subsys);
hash_add(css_set_table, &init_css_set.hlist, key);
BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
mutex_unlock(&cgroup_mutex);
for_each_subsys(ss, ssid) {
if (ss->early_init) {
struct cgroup_subsys_state *css =
init_css_set.subsys[ss->id];
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
GFP_KERNEL);
BUG_ON(css->id < 0);
} else {
cgroup_init_subsys(ss, false);
}
list_add_tail(&init_css_set.e_cset_node[ssid],
&cgrp_dfl_root.cgrp.e_csets[ssid]);
/*
* Setting dfl_root subsys_mask needs to consider the
* disabled flag and cftype registration needs kmalloc,
* both of which aren't available during early_init.
*/
if (!ss->disabled) {
cgrp_dfl_root.subsys_mask |= 1 << ss->id;
WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
}
}
cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
if (!cgroup_kobj)
return -ENOMEM;
err = register_filesystem(&cgroup_fs_type);
if (err < 0) {
kobject_put(cgroup_kobj);
return err;
}
proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
return 0;
}
static int __init cgroup_wq_init(void)
{
/*
* There isn't much point in executing destruction path in
* parallel. Good chunk is serialized with cgroup_mutex anyway.
* Use 1 for @max_active.
*
* We would prefer to do this in cgroup_init() above, but that
* is called before init_workqueues(): so leave this until after.
*/
cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
BUG_ON(!cgroup_destroy_wq);
/*
* Used to destroy pidlists and separate to serve as flush domain.
* Cap @max_active to 1 too.
*/
cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
0, 1);
BUG_ON(!cgroup_pidlist_destroy_wq);
return 0;
}
core_initcall(cgroup_wq_init);
/*
* proc_cgroup_show()
* - Print task's cgroup paths into seq_file, one line for each hierarchy
* - Used for /proc/<pid>/cgroup.
*/
/* TODO: Use a proper seq_file iterator */
int proc_cgroup_show(struct seq_file *m, void *v)
{
struct pid *pid;
struct task_struct *tsk;
char *buf, *path;
int retval;
struct cgroup_root *root;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
retval = -ESRCH;
pid = m->private;
tsk = get_pid_task(pid, PIDTYPE_PID);
if (!tsk)
goto out_free;
retval = 0;
mutex_lock(&cgroup_mutex);
down_read(&css_set_rwsem);
for_each_root(root) {
struct cgroup_subsys *ss;
struct cgroup *cgrp;
int ssid, count = 0;
if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
continue;
seq_printf(m, "%d:", root->hierarchy_id);
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
seq_putc(m, ':');
cgrp = task_cgroup_from_root(tsk, root);
path = cgroup_path(cgrp, buf, PATH_MAX);
if (!path) {
retval = -ENAMETOOLONG;
goto out_unlock;
}
seq_puts(m, path);
seq_putc(m, '\n');
}
out_unlock:
up_read(&css_set_rwsem);
mutex_unlock(&cgroup_mutex);
put_task_struct(tsk);
out_free:
kfree(buf);
out:
return retval;
}
/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps), !ss->disabled);
mutex_unlock(&cgroup_mutex);
return 0;
}
static int cgroupstats_open(struct inode *inode, struct file *file)
{
return single_open(file, proc_cgroupstats_show, NULL);
}
static const struct file_operations proc_cgroupstats_operations = {
.open = cgroupstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* cgroup_fork - initialize cgroup related fields during copy_process()
* @child: pointer to task_struct of forking parent process.
*
* A task is associated with the init_css_set until cgroup_post_fork()
* attaches it to the parent's css_set. Empty cg_list indicates that
* @child isn't holding reference to its css_set.
*/
void cgroup_fork(struct task_struct *child)
{
RCU_INIT_POINTER(child->cgroups, &init_css_set);
INIT_LIST_HEAD(&child->cg_list);
}
/**
* cgroup_post_fork - called on a new task after adding it to the task list
* @child: the task in question
*
* Adds the task to the list running through its css_set if necessary and
* call the subsystem fork() callbacks. Has to be after the task is
* visible on the task list in case we race with the first call to
* cgroup_task_iter_start() - to guarantee that the new task ends up on its
* list.
*/
void cgroup_post_fork(struct task_struct *child)
{
struct cgroup_subsys *ss;
int i;
/*
* This may race against cgroup_enable_task_cg_links(). As that
* function sets use_task_css_set_links before grabbing
* tasklist_lock and we just went through tasklist_lock to add
* @child, it's guaranteed that either we see the set
* use_task_css_set_links or cgroup_enable_task_cg_lists() sees
* @child during its iteration.
*
* If we won the race, @child is associated with %current's
* css_set. Grabbing css_set_rwsem guarantees both that the
* association is stable, and, on completion of the parent's
* migration, @child is visible in the source of migration or
* already in the destination cgroup. This guarantee is necessary
* when implementing operations which need to migrate all tasks of
* a cgroup to another.
*
* Note that if we lose to cgroup_enable_task_cg_links(), @child
* will remain in init_css_set. This is safe because all tasks are
* in the init_css_set before cg_links is enabled and there's no
* operation which transfers all tasks out of init_css_set.
*/
if (use_task_css_set_links) {
struct css_set *cset;
down_write(&css_set_rwsem);
cset = task_css_set(current);
if (list_empty(&child->cg_list)) {
rcu_assign_pointer(child->cgroups, cset);
list_add(&child->cg_list, &cset->tasks);
get_css_set(cset);
}
up_write(&css_set_rwsem);
}
/*
* Call ss->fork(). This must happen after @child is linked on
* css_set; otherwise, @child might change state between ->fork()
* and addition to css_set.
*/
if (need_forkexit_callback) {
for_each_subsys(ss, i)
if (ss->fork)
ss->fork(child);
}
}
/**
* cgroup_exit - detach cgroup from exiting task
* @tsk: pointer to task_struct of exiting process
*
* Description: Detach cgroup from @tsk and release it.
*
* Note that cgroups marked notify_on_release force every task in
* them to take the global cgroup_mutex mutex when exiting.
* This could impact scaling on very large systems. Be reluctant to
* use notify_on_release cgroups where very high task exit scaling
* is required on large systems.
*
* We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
* call cgroup_exit() while the task is still competent to handle
* notify_on_release(), then leave the task attached to the root cgroup in
* each hierarchy for the remainder of its exit. No need to bother with
* init_css_set refcnting. init_css_set never goes away and we can't race
* with migration path - PF_EXITING is visible to migration path.
*/
void cgroup_exit(struct task_struct *tsk)
{
struct cgroup_subsys *ss;
struct css_set *cset;
bool put_cset = false;
int i;
/*
* Unlink from @tsk from its css_set. As migration path can't race
* with us, we can check cg_list without grabbing css_set_rwsem.
*/
if (!list_empty(&tsk->cg_list)) {
down_write(&css_set_rwsem);
list_del_init(&tsk->cg_list);
up_write(&css_set_rwsem);
put_cset = true;
}
/* Reassign the task to the init_css_set. */
cset = task_css_set(tsk);
RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
if (need_forkexit_callback) {
/* see cgroup_post_fork() for details */
for_each_subsys(ss, i) {
if (ss->exit) {
struct cgroup_subsys_state *old_css = cset->subsys[i];
struct cgroup_subsys_state *css = task_css(tsk, i);
ss->exit(css, old_css, tsk);
}
}
}
if (put_cset)
put_css_set(cset, true);
}
static void check_for_release(struct cgroup *cgrp)
{
if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
!css_has_online_children(&cgrp->self)) {
/*
* Control Group is currently removeable. If it's not
* already queued for a userspace notification, queue
* it now
*/
int need_schedule_work = 0;
raw_spin_lock(&release_list_lock);
if (!cgroup_is_dead(cgrp) &&
list_empty(&cgrp->release_list)) {
list_add(&cgrp->release_list, &release_list);
need_schedule_work = 1;
}
raw_spin_unlock(&release_list_lock);
if (need_schedule_work)
schedule_work(&release_agent_work);
}
}
/*
* Notify userspace when a cgroup is released, by running the
* configured release agent with the name of the cgroup (path
* relative to the root of cgroup file system) as the argument.
*
* Most likely, this user command will try to rmdir this cgroup.
*
* This races with the possibility that some other task will be
* attached to this cgroup before it is removed, or that some other
* user task will 'mkdir' a child cgroup of this cgroup. That's ok.
* The presumed 'rmdir' will fail quietly if this cgroup is no longer
* unused, and this cgroup will be reprieved from its death sentence,
* to continue to serve a useful existence. Next time it's released,
* we will get notified again, if it still has 'notify_on_release' set.
*
* The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
* means only wait until the task is successfully execve()'d. The
* separate release agent task is forked by call_usermodehelper(),
* then control in this thread returns here, without waiting for the
* release agent task. We don't bother to wait because the caller of
* this routine has no use for the exit status of the release agent
* task, so no sense holding our caller up for that.
*/
static void cgroup_release_agent(struct work_struct *work)
{
BUG_ON(work != &release_agent_work);
mutex_lock(&cgroup_mutex);
raw_spin_lock(&release_list_lock);
while (!list_empty(&release_list)) {
char *argv[3], *envp[3];
int i;
char *pathbuf = NULL, *agentbuf = NULL, *path;
struct cgroup *cgrp = list_entry(release_list.next,
struct cgroup,
release_list);
list_del_init(&cgrp->release_list);
raw_spin_unlock(&release_list_lock);
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!pathbuf)
goto continue_free;
path = cgroup_path(cgrp, pathbuf, PATH_MAX);
if (!path)
goto continue_free;
agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
if (!agentbuf)
goto continue_free;
i = 0;
argv[i++] = agentbuf;
argv[i++] = path;
argv[i] = NULL;
i = 0;
/* minimal command environment */
envp[i++] = "HOME=/";
envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
envp[i] = NULL;
/* Drop the lock while we invoke the usermode helper,
* since the exec could involve hitting disk and hence
* be a slow process */
mutex_unlock(&cgroup_mutex);
call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
mutex_lock(&cgroup_mutex);
continue_free:
kfree(pathbuf);
kfree(agentbuf);
raw_spin_lock(&release_list_lock);
}
raw_spin_unlock(&release_list_lock);
mutex_unlock(&cgroup_mutex);
}
static int __init cgroup_disable(char *str)
{
struct cgroup_subsys *ss;
char *token;
int i;
while ((token = strsep(&str, ",")) != NULL) {
if (!*token)
continue;
for_each_subsys(ss, i) {
if (!strcmp(token, ss->name)) {
ss->disabled = 1;
printk(KERN_INFO "Disabling %s control group"
" subsystem\n", ss->name);
break;
}
}
}
return 1;
}
__setup("cgroup_disable=", cgroup_disable);
/**
* css_tryget_online_from_dir - get corresponding css from a cgroup dentry
* @dentry: directory dentry of interest
* @ss: subsystem of interest
*
* If @dentry is a directory for a cgroup which has @ss enabled on it, try
* to get the corresponding css and return it. If such css doesn't exist
* or can't be pinned, an ERR_PTR value is returned.
*/
struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
struct cgroup_subsys *ss)
{
struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
struct cgroup_subsys_state *css = NULL;
struct cgroup *cgrp;
/* is @dentry a cgroup dir? */
if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
kernfs_type(kn) != KERNFS_DIR)
return ERR_PTR(-EBADF);
rcu_read_lock();
/*
* This path doesn't originate from kernfs and @kn could already
* have been or be removed at any point. @kn->priv is RCU
* protected for this access. See cgroup_rmdir() for details.
*/
cgrp = rcu_dereference(kn->priv);
if (cgrp)
css = cgroup_css(cgrp, ss);
if (!css || !css_tryget_online(css))
css = ERR_PTR(-ENOENT);
rcu_read_unlock();
return css;
}
/**
* css_from_id - lookup css by id
* @id: the cgroup id
* @ss: cgroup subsys to be looked into
*
* Returns the css if there's valid one with @id, otherwise returns NULL.
* Should be called under rcu_read_lock().
*/
struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return idr_find(&ss->css_idr, id);
}
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state *parent_css)
{
struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
if (!css)
return ERR_PTR(-ENOMEM);
return css;
}
static void debug_css_free(struct cgroup_subsys_state *css)
{
kfree(css);
}
static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return cgroup_task_count(css->cgroup);
}
static u64 current_css_set_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
return (u64)(unsigned long)current->cgroups;
}
static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
struct cftype *cft)
{
u64 count;
rcu_read_lock();
count = atomic_read(&task_css_set(current)->refcount);
rcu_read_unlock();
return count;
}
static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
{
struct cgrp_cset_link *link;
struct css_set *cset;
char *name_buf;
name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
if (!name_buf)
return -ENOMEM;
down_read(&css_set_rwsem);
rcu_read_lock();
cset = rcu_dereference(current->cgroups);
list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
struct cgroup *c = link->cgrp;
cgroup_name(c, name_buf, NAME_MAX + 1);
seq_printf(seq, "Root %d group %s\n",
c->root->hierarchy_id, name_buf);
}
rcu_read_unlock();
up_read(&css_set_rwsem);
kfree(name_buf);
return 0;
}
#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct seq_file *seq, void *v)
{
struct cgroup_subsys_state *css = seq_css(seq);
struct cgrp_cset_link *link;
down_read(&css_set_rwsem);
list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
struct css_set *cset = link->cset;
struct task_struct *task;
int count = 0;
seq_printf(seq, "css_set %p\n", cset);
list_for_each_entry(task, &cset->tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
list_for_each_entry(task, &cset->mg_tasks, cg_list) {
if (count++ > MAX_TASKS_SHOWN_PER_CSS)
goto overflow;
seq_printf(seq, " task %d\n", task_pid_vnr(task));
}
continue;
overflow:
seq_puts(seq, " ...\n");
}
up_read(&css_set_rwsem);
return 0;
}
static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
{
return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
}
static struct cftype debug_files[] = {
{
.name = "taskcount",
.read_u64 = debug_taskcount_read,
},
{
.name = "current_css_set",
.read_u64 = current_css_set_read,
},
{
.name = "current_css_set_refcount",
.read_u64 = current_css_set_refcount_read,
},
{
.name = "current_css_set_cg_links",
.seq_show = current_css_set_cg_links_read,
},
{
.name = "cgroup_css_links",
.seq_show = cgroup_css_links_read,
},
{
.name = "releasable",
.read_u64 = releasable_read,
},
{ } /* terminate */
};
struct cgroup_subsys debug_cgrp_subsys = {
.css_alloc = debug_css_alloc,
.css_free = debug_css_free,
.base_cftypes = debug_files,
};
#endif /* CONFIG_CGROUP_DEBUG */