| /* |
| * linux/arch/arm/kernel/arch_timer.c |
| * |
| * Copyright (C) 2011 ARM Ltd. |
| * All Rights Reserved |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/smp.h> |
| #include <linux/cpu.h> |
| #include <linux/jiffies.h> |
| #include <linux/clockchips.h> |
| #include <linux/interrupt.h> |
| #include <linux/of_irq.h> |
| #include <linux/io.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/localtimer.h> |
| #include <asm/arch_timer.h> |
| #include <asm/system_info.h> |
| #include <asm/sched_clock.h> |
| |
| static unsigned long arch_timer_rate; |
| |
| enum ppi_nr { |
| PHYS_SECURE_PPI, |
| PHYS_NONSECURE_PPI, |
| VIRT_PPI, |
| HYP_PPI, |
| MAX_TIMER_PPI |
| }; |
| |
| static int arch_timer_ppi[MAX_TIMER_PPI]; |
| |
| static struct clock_event_device __percpu **arch_timer_evt; |
| |
| extern void init_current_timer_delay(unsigned long freq); |
| |
| static bool arch_timer_use_virtual = true; |
| |
| /* |
| * Architected system timer support. |
| */ |
| |
| #define ARCH_TIMER_CTRL_ENABLE (1 << 0) |
| #define ARCH_TIMER_CTRL_IT_MASK (1 << 1) |
| #define ARCH_TIMER_CTRL_IT_STAT (1 << 2) |
| |
| #define ARCH_TIMER_REG_CTRL 0 |
| #define ARCH_TIMER_REG_FREQ 1 |
| #define ARCH_TIMER_REG_TVAL 2 |
| |
| #define ARCH_TIMER_PHYS_ACCESS 0 |
| #define ARCH_TIMER_VIRT_ACCESS 1 |
| |
| /* |
| * These register accessors are marked inline so the compiler can |
| * nicely work out which register we want, and chuck away the rest of |
| * the code. At least it does so with a recent GCC (4.6.3). |
| */ |
| static inline void arch_timer_reg_write(const int access, const int reg, u32 val) |
| { |
| if (access == ARCH_TIMER_PHYS_ACCESS) { |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val)); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val)); |
| break; |
| } |
| } |
| |
| if (access == ARCH_TIMER_VIRT_ACCESS) { |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val)); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val)); |
| break; |
| } |
| } |
| |
| isb(); |
| } |
| |
| static inline u32 arch_timer_reg_read(const int access, const int reg) |
| { |
| u32 val = 0; |
| |
| if (access == ARCH_TIMER_PHYS_ACCESS) { |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val)); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val)); |
| break; |
| case ARCH_TIMER_REG_FREQ: |
| asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val)); |
| break; |
| } |
| } |
| |
| if (access == ARCH_TIMER_VIRT_ACCESS) { |
| switch (reg) { |
| case ARCH_TIMER_REG_CTRL: |
| asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val)); |
| break; |
| case ARCH_TIMER_REG_TVAL: |
| asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val)); |
| break; |
| } |
| } |
| |
| return val; |
| } |
| |
| static inline cycle_t arch_timer_counter_read(const int access) |
| { |
| cycle_t cval = 0; |
| |
| if (access == ARCH_TIMER_PHYS_ACCESS) |
| asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval)); |
| |
| if (access == ARCH_TIMER_VIRT_ACCESS) |
| asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval)); |
| |
| return cval; |
| } |
| |
| static inline cycle_t arch_counter_get_cntpct(void) |
| { |
| return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS); |
| } |
| |
| static inline cycle_t arch_counter_get_cntvct(void) |
| { |
| return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS); |
| } |
| |
| static irqreturn_t inline timer_handler(const int access, |
| struct clock_event_device *evt) |
| { |
| unsigned long ctrl; |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { |
| ctrl |= ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| evt->event_handler(evt); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = *(struct clock_event_device **)dev_id; |
| |
| return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); |
| } |
| |
| static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) |
| { |
| struct clock_event_device *evt = *(struct clock_event_device **)dev_id; |
| |
| return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); |
| } |
| |
| static inline void timer_set_mode(const int access, int mode) |
| { |
| unsigned long ctrl; |
| switch (mode) { |
| case CLOCK_EVT_MODE_UNUSED: |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| ctrl &= ~ARCH_TIMER_CTRL_ENABLE; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void arch_timer_set_mode_virt(enum clock_event_mode mode, |
| struct clock_event_device *clk) |
| { |
| timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode); |
| } |
| |
| static void arch_timer_set_mode_phys(enum clock_event_mode mode, |
| struct clock_event_device *clk) |
| { |
| timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode); |
| } |
| |
| static inline void set_next_event(const int access, unsigned long evt) |
| { |
| unsigned long ctrl; |
| ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL); |
| ctrl |= ARCH_TIMER_CTRL_ENABLE; |
| ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; |
| arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt); |
| arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl); |
| } |
| |
| static int arch_timer_set_next_event_virt(unsigned long evt, |
| struct clock_event_device *unused) |
| { |
| set_next_event(ARCH_TIMER_VIRT_ACCESS, evt); |
| return 0; |
| } |
| |
| static int arch_timer_set_next_event_phys(unsigned long evt, |
| struct clock_event_device *unused) |
| { |
| set_next_event(ARCH_TIMER_PHYS_ACCESS, evt); |
| return 0; |
| } |
| |
| static int __cpuinit arch_timer_setup(struct clock_event_device *clk) |
| { |
| clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; |
| clk->name = "arch_sys_timer"; |
| clk->rating = 450; |
| if (arch_timer_use_virtual) { |
| clk->irq = arch_timer_ppi[VIRT_PPI]; |
| clk->set_mode = arch_timer_set_mode_virt; |
| clk->set_next_event = arch_timer_set_next_event_virt; |
| } else { |
| clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; |
| clk->set_mode = arch_timer_set_mode_phys; |
| clk->set_next_event = arch_timer_set_next_event_phys; |
| } |
| |
| clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL); |
| |
| clockevents_config_and_register(clk, arch_timer_rate, |
| 0xf, 0x7fffffff); |
| |
| *__this_cpu_ptr(arch_timer_evt) = clk; |
| |
| if (arch_timer_use_virtual) |
| enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); |
| else { |
| enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); |
| if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); |
| } |
| |
| return 0; |
| } |
| |
| /* Is the optional system timer available? */ |
| static int local_timer_is_architected(void) |
| { |
| return (cpu_architecture() >= CPU_ARCH_ARMv7) && |
| ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1; |
| } |
| |
| static int arch_timer_available(void) |
| { |
| unsigned long freq; |
| |
| if (!local_timer_is_architected()) |
| return -ENXIO; |
| |
| if (arch_timer_rate == 0) { |
| freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS, |
| ARCH_TIMER_REG_FREQ); |
| |
| /* Check the timer frequency. */ |
| if (freq == 0) { |
| pr_warn("Architected timer frequency not available\n"); |
| return -EINVAL; |
| } |
| |
| arch_timer_rate = freq; |
| } |
| |
| pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n", |
| arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100, |
| arch_timer_use_virtual ? "virt" : "phys"); |
| return 0; |
| } |
| |
| static u32 notrace arch_counter_get_cntpct32(void) |
| { |
| cycle_t cnt = arch_counter_get_cntpct(); |
| |
| /* |
| * The sched_clock infrastructure only knows about counters |
| * with at most 32bits. Forget about the upper 24 bits for the |
| * time being... |
| */ |
| return (u32)cnt; |
| } |
| |
| static u32 notrace arch_counter_get_cntvct32(void) |
| { |
| cycle_t cnt = arch_counter_get_cntvct(); |
| |
| /* |
| * The sched_clock infrastructure only knows about counters |
| * with at most 32bits. Forget about the upper 24 bits for the |
| * time being... |
| */ |
| return (u32)cnt; |
| } |
| |
| static cycle_t arch_counter_read(struct clocksource *cs) |
| { |
| /* |
| * Always use the physical counter for the clocksource. |
| * CNTHCTL.PL1PCTEN must be set to 1. |
| */ |
| return arch_counter_get_cntpct(); |
| } |
| |
| int read_current_timer(unsigned long *timer_val) |
| { |
| if (!arch_timer_rate) |
| return -ENXIO; |
| *timer_val = arch_counter_get_cntpct(); |
| return 0; |
| } |
| |
| static struct clocksource clocksource_counter = { |
| .name = "arch_sys_counter", |
| .rating = 400, |
| .read = arch_counter_read, |
| .mask = CLOCKSOURCE_MASK(56), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static void __cpuinit arch_timer_stop(struct clock_event_device *clk) |
| { |
| pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", |
| clk->irq, smp_processor_id()); |
| |
| if (arch_timer_use_virtual) |
| disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); |
| else { |
| disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); |
| if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); |
| } |
| |
| clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); |
| } |
| |
| static struct local_timer_ops arch_timer_ops __cpuinitdata = { |
| .setup = arch_timer_setup, |
| .stop = arch_timer_stop, |
| }; |
| |
| static struct clock_event_device arch_timer_global_evt; |
| |
| static int __init arch_timer_register(void) |
| { |
| int err; |
| int ppi; |
| |
| err = arch_timer_available(); |
| if (err) |
| goto out; |
| |
| arch_timer_evt = alloc_percpu(struct clock_event_device *); |
| if (!arch_timer_evt) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| clocksource_register_hz(&clocksource_counter, arch_timer_rate); |
| |
| if (arch_timer_use_virtual) { |
| ppi = arch_timer_ppi[VIRT_PPI]; |
| err = request_percpu_irq(ppi, arch_timer_handler_virt, |
| "arch_timer", arch_timer_evt); |
| } else { |
| ppi = arch_timer_ppi[PHYS_SECURE_PPI]; |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { |
| ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; |
| err = request_percpu_irq(ppi, arch_timer_handler_phys, |
| "arch_timer", arch_timer_evt); |
| if (err) |
| free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], |
| arch_timer_evt); |
| } |
| } |
| |
| if (err) { |
| pr_err("arch_timer: can't register interrupt %d (%d)\n", |
| ppi, err); |
| goto out_free; |
| } |
| |
| err = local_timer_register(&arch_timer_ops); |
| if (err) { |
| /* |
| * We couldn't register as a local timer (could be |
| * because we're on a UP platform, or because some |
| * other local timer is already present...). Try as a |
| * global timer instead. |
| */ |
| arch_timer_global_evt.cpumask = cpumask_of(0); |
| err = arch_timer_setup(&arch_timer_global_evt); |
| } |
| |
| if (err) |
| goto out_free_irq; |
| |
| init_current_timer_delay(arch_timer_rate); |
| return 0; |
| |
| out_free_irq: |
| if (arch_timer_use_virtual) |
| free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); |
| else { |
| free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], |
| arch_timer_evt); |
| if (arch_timer_ppi[PHYS_NONSECURE_PPI]) |
| free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], |
| arch_timer_evt); |
| } |
| |
| out_free: |
| free_percpu(arch_timer_evt); |
| out: |
| return err; |
| } |
| |
| static const struct of_device_id arch_timer_of_match[] __initconst = { |
| { .compatible = "arm,armv7-timer", }, |
| {}, |
| }; |
| |
| int __init arch_timer_of_register(void) |
| { |
| struct device_node *np; |
| u32 freq; |
| int i; |
| |
| np = of_find_matching_node(NULL, arch_timer_of_match); |
| if (!np) { |
| pr_err("arch_timer: can't find DT node\n"); |
| return -ENODEV; |
| } |
| |
| /* Try to determine the frequency from the device tree or CNTFRQ */ |
| if (!of_property_read_u32(np, "clock-frequency", &freq)) |
| arch_timer_rate = freq; |
| |
| for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) |
| arch_timer_ppi[i] = irq_of_parse_and_map(np, i); |
| |
| /* |
| * If no interrupt provided for virtual timer, we'll have to |
| * stick to the physical timer. It'd better be accessible... |
| */ |
| if (!arch_timer_ppi[VIRT_PPI]) { |
| arch_timer_use_virtual = false; |
| |
| if (!arch_timer_ppi[PHYS_SECURE_PPI] || |
| !arch_timer_ppi[PHYS_NONSECURE_PPI]) { |
| pr_warn("arch_timer: No interrupt available, giving up\n"); |
| return -EINVAL; |
| } |
| } |
| |
| return arch_timer_register(); |
| } |
| |
| int __init arch_timer_sched_clock_init(void) |
| { |
| u32 (*cnt32)(void); |
| int err; |
| |
| err = arch_timer_available(); |
| if (err) |
| return err; |
| |
| if (arch_timer_use_virtual) |
| cnt32 = arch_counter_get_cntvct32; |
| else |
| cnt32 = arch_counter_get_cntpct32; |
| |
| setup_sched_clock(cnt32, 32, arch_timer_rate); |
| return 0; |
| } |