| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* |
| * DSA driver for: |
| * Hirschmann Hellcreek TSN switch. |
| * |
| * Copyright (C) 2019,2020 Hochschule Offenburg |
| * Copyright (C) 2019,2020 Linutronix GmbH |
| * Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de> |
| * Kurt Kanzenbach <kurt@linutronix.de> |
| */ |
| |
| #include <linux/ptp_clock_kernel.h> |
| #include "hellcreek.h" |
| #include "hellcreek_ptp.h" |
| #include "hellcreek_hwtstamp.h" |
| |
| u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset) |
| { |
| return readw(hellcreek->ptp_base + offset); |
| } |
| |
| void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data, |
| unsigned int offset) |
| { |
| writew(data, hellcreek->ptp_base + offset); |
| } |
| |
| /* Get nanoseconds from PTP clock */ |
| static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek) |
| { |
| u16 nsl, nsh; |
| |
| /* Take a snapshot */ |
| hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C); |
| |
| /* The time of the day is saved as 96 bits. However, due to hardware |
| * limitations the seconds are not or only partly kept in the PTP |
| * core. Currently only three bits for the seconds are available. That's |
| * why only the nanoseconds are used and the seconds are tracked in |
| * software. Anyway due to internal locking all five registers should be |
| * read. |
| */ |
| nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); |
| nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); |
| nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); |
| nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); |
| nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C); |
| |
| return (u64)nsl | ((u64)nsh << 16); |
| } |
| |
| static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek) |
| { |
| u64 ns; |
| |
| ns = hellcreek_ptp_clock_read(hellcreek); |
| if (ns < hellcreek->last_ts) |
| hellcreek->seconds++; |
| hellcreek->last_ts = ns; |
| ns += hellcreek->seconds * NSEC_PER_SEC; |
| |
| return ns; |
| } |
| |
| /* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns. |
| * There has to be a check whether an overflow occurred between the packet |
| * arrival and now. If so use the correct seconds (-1) for calculating the |
| * packet arrival time. |
| */ |
| u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns) |
| { |
| u64 s; |
| |
| __hellcreek_ptp_gettime(hellcreek); |
| if (hellcreek->last_ts > ns) |
| s = hellcreek->seconds * NSEC_PER_SEC; |
| else |
| s = (hellcreek->seconds - 1) * NSEC_PER_SEC; |
| |
| return s; |
| } |
| |
| static int hellcreek_ptp_gettime(struct ptp_clock_info *ptp, |
| struct timespec64 *ts) |
| { |
| struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); |
| u64 ns; |
| |
| mutex_lock(&hellcreek->ptp_lock); |
| ns = __hellcreek_ptp_gettime(hellcreek); |
| mutex_unlock(&hellcreek->ptp_lock); |
| |
| *ts = ns_to_timespec64(ns); |
| |
| return 0; |
| } |
| |
| static int hellcreek_ptp_settime(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); |
| u16 secl, nsh, nsl; |
| |
| secl = ts->tv_sec & 0xffff; |
| nsh = ((u32)ts->tv_nsec & 0xffff0000) >> 16; |
| nsl = ts->tv_nsec & 0xffff; |
| |
| mutex_lock(&hellcreek->ptp_lock); |
| |
| /* Update overflow data structure */ |
| hellcreek->seconds = ts->tv_sec; |
| hellcreek->last_ts = ts->tv_nsec; |
| |
| /* Set time in clock */ |
| hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C); |
| hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C); |
| hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C); |
| hellcreek_ptp_write(hellcreek, nsh, PR_CLOCK_WRITE_C); |
| hellcreek_ptp_write(hellcreek, nsl, PR_CLOCK_WRITE_C); |
| |
| mutex_unlock(&hellcreek->ptp_lock); |
| |
| return 0; |
| } |
| |
| static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); |
| u16 negative = 0, addendh, addendl; |
| u32 addend; |
| u64 adj; |
| |
| if (scaled_ppm < 0) { |
| negative = 1; |
| scaled_ppm = -scaled_ppm; |
| } |
| |
| /* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns |
| * from the 8 ns (period of the oscillator) every time the accumulator |
| * register overflows. The value stored in the addend register is added |
| * to the accumulator register every 8 ns. |
| * |
| * addend value = (2^30 * accumulator_overflow_rate) / |
| * oscillator_frequency |
| * where: |
| * |
| * oscillator_frequency = 125 MHz |
| * accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8 |
| */ |
| adj = scaled_ppm; |
| adj <<= 11; |
| addend = (u32)div_u64(adj, 15625); |
| |
| addendh = (addend & 0xffff0000) >> 16; |
| addendl = addend & 0xffff; |
| |
| negative = (negative << 15) & 0x8000; |
| |
| mutex_lock(&hellcreek->ptp_lock); |
| |
| /* Set drift register */ |
| hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C); |
| hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C); |
| hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C); |
| hellcreek_ptp_write(hellcreek, addendh, PR_CLOCK_DRIFT_C); |
| hellcreek_ptp_write(hellcreek, addendl, PR_CLOCK_DRIFT_C); |
| |
| mutex_unlock(&hellcreek->ptp_lock); |
| |
| return 0; |
| } |
| |
| static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct hellcreek *hellcreek = ptp_to_hellcreek(ptp); |
| u16 negative = 0, counth, countl; |
| u32 count_val; |
| |
| /* If the offset is larger than IP-Core slow offset resources. Don't |
| * consider slow adjustment. Rather, add the offset directly to the |
| * current time |
| */ |
| if (abs(delta) > MAX_SLOW_OFFSET_ADJ) { |
| struct timespec64 now, then = ns_to_timespec64(delta); |
| |
| hellcreek_ptp_gettime(ptp, &now); |
| now = timespec64_add(now, then); |
| hellcreek_ptp_settime(ptp, &now); |
| |
| return 0; |
| } |
| |
| if (delta < 0) { |
| negative = 1; |
| delta = -delta; |
| } |
| |
| /* 'count_val' does not exceed the maximum register size (2^30) */ |
| count_val = div_s64(delta, MAX_NS_PER_STEP); |
| |
| counth = (count_val & 0xffff0000) >> 16; |
| countl = count_val & 0xffff; |
| |
| negative = (negative << 15) & 0x8000; |
| |
| mutex_lock(&hellcreek->ptp_lock); |
| |
| /* Set offset write register */ |
| hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C); |
| hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C); |
| hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS, |
| PR_CLOCK_OFFSET_C); |
| hellcreek_ptp_write(hellcreek, countl, PR_CLOCK_OFFSET_C); |
| hellcreek_ptp_write(hellcreek, counth, PR_CLOCK_OFFSET_C); |
| |
| mutex_unlock(&hellcreek->ptp_lock); |
| |
| return 0; |
| } |
| |
| static int hellcreek_ptp_enable(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static void hellcreek_ptp_overflow_check(struct work_struct *work) |
| { |
| struct delayed_work *dw = to_delayed_work(work); |
| struct hellcreek *hellcreek; |
| |
| hellcreek = dw_overflow_to_hellcreek(dw); |
| |
| mutex_lock(&hellcreek->ptp_lock); |
| __hellcreek_ptp_gettime(hellcreek); |
| mutex_unlock(&hellcreek->ptp_lock); |
| |
| schedule_delayed_work(&hellcreek->overflow_work, |
| HELLCREEK_OVERFLOW_PERIOD); |
| } |
| |
| int hellcreek_ptp_setup(struct hellcreek *hellcreek) |
| { |
| u16 status; |
| |
| /* Set up the overflow work */ |
| INIT_DELAYED_WORK(&hellcreek->overflow_work, |
| hellcreek_ptp_overflow_check); |
| |
| /* Setup PTP clock */ |
| hellcreek->ptp_clock_info.owner = THIS_MODULE; |
| snprintf(hellcreek->ptp_clock_info.name, |
| sizeof(hellcreek->ptp_clock_info.name), |
| dev_name(hellcreek->dev)); |
| |
| /* IP-Core can add up to 0.5 ns per 8 ns cycle, which means |
| * accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts |
| * the nominal frequency by 6.25%) |
| */ |
| hellcreek->ptp_clock_info.max_adj = 62500000; |
| hellcreek->ptp_clock_info.n_alarm = 0; |
| hellcreek->ptp_clock_info.n_pins = 0; |
| hellcreek->ptp_clock_info.n_ext_ts = 0; |
| hellcreek->ptp_clock_info.n_per_out = 0; |
| hellcreek->ptp_clock_info.pps = 0; |
| hellcreek->ptp_clock_info.adjfine = hellcreek_ptp_adjfine; |
| hellcreek->ptp_clock_info.adjtime = hellcreek_ptp_adjtime; |
| hellcreek->ptp_clock_info.gettime64 = hellcreek_ptp_gettime; |
| hellcreek->ptp_clock_info.settime64 = hellcreek_ptp_settime; |
| hellcreek->ptp_clock_info.enable = hellcreek_ptp_enable; |
| hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work; |
| |
| hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info, |
| hellcreek->dev); |
| if (IS_ERR(hellcreek->ptp_clock)) |
| return PTR_ERR(hellcreek->ptp_clock); |
| |
| /* Enable the offset correction process, if no offset correction is |
| * already taking place |
| */ |
| status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C); |
| if (!(status & PR_CLOCK_STATUS_C_OFS_ACT)) |
| hellcreek_ptp_write(hellcreek, |
| status | PR_CLOCK_STATUS_C_ENA_OFS, |
| PR_CLOCK_STATUS_C); |
| |
| /* Enable the drift correction process */ |
| hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT, |
| PR_CLOCK_STATUS_C); |
| |
| schedule_delayed_work(&hellcreek->overflow_work, |
| HELLCREEK_OVERFLOW_PERIOD); |
| |
| return 0; |
| } |
| |
| void hellcreek_ptp_free(struct hellcreek *hellcreek) |
| { |
| cancel_delayed_work_sync(&hellcreek->overflow_work); |
| if (hellcreek->ptp_clock) |
| ptp_clock_unregister(hellcreek->ptp_clock); |
| hellcreek->ptp_clock = NULL; |
| } |