| /* |
| * page.c - buffer/page management specific to NILFS |
| * |
| * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Written by Ryusuke Konishi <ryusuke@osrg.net>, |
| * Seiji Kihara <kihara@osrg.net>. |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/swap.h> |
| #include <linux/bitops.h> |
| #include <linux/page-flags.h> |
| #include <linux/list.h> |
| #include <linux/highmem.h> |
| #include <linux/pagevec.h> |
| #include <linux/gfp.h> |
| #include "nilfs.h" |
| #include "page.h" |
| #include "mdt.h" |
| |
| |
| #define NILFS_BUFFER_INHERENT_BITS \ |
| ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \ |
| (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated) | \ |
| (1UL << BH_NILFS_Checked)) |
| |
| static struct buffer_head * |
| __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index, |
| int blkbits, unsigned long b_state) |
| |
| { |
| unsigned long first_block; |
| struct buffer_head *bh; |
| |
| if (!page_has_buffers(page)) |
| create_empty_buffers(page, 1 << blkbits, b_state); |
| |
| first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits); |
| bh = nilfs_page_get_nth_block(page, block - first_block); |
| |
| touch_buffer(bh); |
| wait_on_buffer(bh); |
| return bh; |
| } |
| |
| /* |
| * Since the page cache of B-tree node pages or data page cache of pseudo |
| * inodes does not have a valid mapping->host pointer, calling |
| * mark_buffer_dirty() for their buffers causes a NULL pointer dereference; |
| * it calls __mark_inode_dirty(NULL) through __set_page_dirty(). |
| * To avoid this problem, the old style mark_buffer_dirty() is used instead. |
| */ |
| void nilfs_mark_buffer_dirty(struct buffer_head *bh) |
| { |
| if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) |
| __set_page_dirty_nobuffers(bh->b_page); |
| } |
| |
| struct buffer_head *nilfs_grab_buffer(struct inode *inode, |
| struct address_space *mapping, |
| unsigned long blkoff, |
| unsigned long b_state) |
| { |
| int blkbits = inode->i_blkbits; |
| pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits); |
| struct page *page, *opage; |
| struct buffer_head *bh, *obh; |
| |
| page = grab_cache_page(mapping, index); |
| if (unlikely(!page)) |
| return NULL; |
| |
| bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state); |
| if (unlikely(!bh)) { |
| unlock_page(page); |
| page_cache_release(page); |
| return NULL; |
| } |
| if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) { |
| /* |
| * Shadow page cache uses assoc_mapping to point its original |
| * page cache. The following code tries the original cache |
| * if the given cache is a shadow and it didn't hit. |
| */ |
| opage = find_lock_page(mapping->assoc_mapping, index); |
| if (!opage) |
| return bh; |
| |
| obh = __nilfs_get_page_block(opage, blkoff, index, blkbits, |
| b_state); |
| if (buffer_uptodate(obh)) { |
| nilfs_copy_buffer(bh, obh); |
| if (buffer_dirty(obh)) { |
| nilfs_mark_buffer_dirty(bh); |
| if (!buffer_nilfs_node(bh) && NILFS_MDT(inode)) |
| nilfs_mdt_mark_dirty(inode); |
| } |
| } |
| brelse(obh); |
| unlock_page(opage); |
| page_cache_release(opage); |
| } |
| return bh; |
| } |
| |
| /** |
| * nilfs_forget_buffer - discard dirty state |
| * @inode: owner inode of the buffer |
| * @bh: buffer head of the buffer to be discarded |
| */ |
| void nilfs_forget_buffer(struct buffer_head *bh) |
| { |
| struct page *page = bh->b_page; |
| |
| lock_buffer(bh); |
| clear_buffer_nilfs_volatile(bh); |
| clear_buffer_nilfs_checked(bh); |
| clear_buffer_dirty(bh); |
| if (nilfs_page_buffers_clean(page)) |
| __nilfs_clear_page_dirty(page); |
| |
| clear_buffer_uptodate(bh); |
| clear_buffer_mapped(bh); |
| bh->b_blocknr = -1; |
| ClearPageUptodate(page); |
| ClearPageMappedToDisk(page); |
| unlock_buffer(bh); |
| brelse(bh); |
| } |
| |
| /** |
| * nilfs_copy_buffer -- copy buffer data and flags |
| * @dbh: destination buffer |
| * @sbh: source buffer |
| */ |
| void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh) |
| { |
| void *kaddr0, *kaddr1; |
| unsigned long bits; |
| struct page *spage = sbh->b_page, *dpage = dbh->b_page; |
| struct buffer_head *bh; |
| |
| kaddr0 = kmap_atomic(spage, KM_USER0); |
| kaddr1 = kmap_atomic(dpage, KM_USER1); |
| memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size); |
| kunmap_atomic(kaddr1, KM_USER1); |
| kunmap_atomic(kaddr0, KM_USER0); |
| |
| dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS; |
| dbh->b_blocknr = sbh->b_blocknr; |
| dbh->b_bdev = sbh->b_bdev; |
| |
| bh = dbh; |
| bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped)); |
| while ((bh = bh->b_this_page) != dbh) { |
| lock_buffer(bh); |
| bits &= bh->b_state; |
| unlock_buffer(bh); |
| } |
| if (bits & (1UL << BH_Uptodate)) |
| SetPageUptodate(dpage); |
| else |
| ClearPageUptodate(dpage); |
| if (bits & (1UL << BH_Mapped)) |
| SetPageMappedToDisk(dpage); |
| else |
| ClearPageMappedToDisk(dpage); |
| } |
| |
| /** |
| * nilfs_page_buffers_clean - check if a page has dirty buffers or not. |
| * @page: page to be checked |
| * |
| * nilfs_page_buffers_clean() returns zero if the page has dirty buffers. |
| * Otherwise, it returns non-zero value. |
| */ |
| int nilfs_page_buffers_clean(struct page *page) |
| { |
| struct buffer_head *bh, *head; |
| |
| bh = head = page_buffers(page); |
| do { |
| if (buffer_dirty(bh)) |
| return 0; |
| bh = bh->b_this_page; |
| } while (bh != head); |
| return 1; |
| } |
| |
| void nilfs_page_bug(struct page *page) |
| { |
| struct address_space *m; |
| unsigned long ino = 0; |
| |
| if (unlikely(!page)) { |
| printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n"); |
| return; |
| } |
| |
| m = page->mapping; |
| if (m) { |
| struct inode *inode = NILFS_AS_I(m); |
| if (inode != NULL) |
| ino = inode->i_ino; |
| } |
| printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx " |
| "mapping=%p ino=%lu\n", |
| page, atomic_read(&page->_count), |
| (unsigned long long)page->index, page->flags, m, ino); |
| |
| if (page_has_buffers(page)) { |
| struct buffer_head *bh, *head; |
| int i = 0; |
| |
| bh = head = page_buffers(page); |
| do { |
| printk(KERN_CRIT |
| " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n", |
| i++, bh, atomic_read(&bh->b_count), |
| (unsigned long long)bh->b_blocknr, bh->b_state); |
| bh = bh->b_this_page; |
| } while (bh != head); |
| } |
| } |
| |
| /** |
| * nilfs_alloc_private_page - allocate a private page with buffer heads |
| * |
| * Return Value: On success, a pointer to the allocated page is returned. |
| * On error, NULL is returned. |
| */ |
| struct page *nilfs_alloc_private_page(struct block_device *bdev, int size, |
| unsigned long state) |
| { |
| struct buffer_head *bh, *head, *tail; |
| struct page *page; |
| |
| page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */ |
| if (unlikely(!page)) |
| return NULL; |
| |
| lock_page(page); |
| head = alloc_page_buffers(page, size, 0); |
| if (unlikely(!head)) { |
| unlock_page(page); |
| __free_page(page); |
| return NULL; |
| } |
| |
| bh = head; |
| do { |
| bh->b_state = (1UL << BH_NILFS_Allocated) | state; |
| tail = bh; |
| bh->b_bdev = bdev; |
| bh = bh->b_this_page; |
| } while (bh); |
| |
| tail->b_this_page = head; |
| attach_page_buffers(page, head); |
| |
| return page; |
| } |
| |
| void nilfs_free_private_page(struct page *page) |
| { |
| BUG_ON(!PageLocked(page)); |
| BUG_ON(page->mapping); |
| |
| if (page_has_buffers(page) && !try_to_free_buffers(page)) |
| NILFS_PAGE_BUG(page, "failed to free page"); |
| |
| unlock_page(page); |
| __free_page(page); |
| } |
| |
| /** |
| * nilfs_copy_page -- copy the page with buffers |
| * @dst: destination page |
| * @src: source page |
| * @copy_dirty: flag whether to copy dirty states on the page's buffer heads. |
| * |
| * This function is for both data pages and btnode pages. The dirty flag |
| * should be treated by caller. The page must not be under i/o. |
| * Both src and dst page must be locked |
| */ |
| static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty) |
| { |
| struct buffer_head *dbh, *dbufs, *sbh, *sbufs; |
| unsigned long mask = NILFS_BUFFER_INHERENT_BITS; |
| |
| BUG_ON(PageWriteback(dst)); |
| |
| sbh = sbufs = page_buffers(src); |
| if (!page_has_buffers(dst)) |
| create_empty_buffers(dst, sbh->b_size, 0); |
| |
| if (copy_dirty) |
| mask |= (1UL << BH_Dirty); |
| |
| dbh = dbufs = page_buffers(dst); |
| do { |
| lock_buffer(sbh); |
| lock_buffer(dbh); |
| dbh->b_state = sbh->b_state & mask; |
| dbh->b_blocknr = sbh->b_blocknr; |
| dbh->b_bdev = sbh->b_bdev; |
| sbh = sbh->b_this_page; |
| dbh = dbh->b_this_page; |
| } while (dbh != dbufs); |
| |
| copy_highpage(dst, src); |
| |
| if (PageUptodate(src) && !PageUptodate(dst)) |
| SetPageUptodate(dst); |
| else if (!PageUptodate(src) && PageUptodate(dst)) |
| ClearPageUptodate(dst); |
| if (PageMappedToDisk(src) && !PageMappedToDisk(dst)) |
| SetPageMappedToDisk(dst); |
| else if (!PageMappedToDisk(src) && PageMappedToDisk(dst)) |
| ClearPageMappedToDisk(dst); |
| |
| do { |
| unlock_buffer(sbh); |
| unlock_buffer(dbh); |
| sbh = sbh->b_this_page; |
| dbh = dbh->b_this_page; |
| } while (dbh != dbufs); |
| } |
| |
| int nilfs_copy_dirty_pages(struct address_space *dmap, |
| struct address_space *smap) |
| { |
| struct pagevec pvec; |
| unsigned int i; |
| pgoff_t index = 0; |
| int err = 0; |
| |
| pagevec_init(&pvec, 0); |
| repeat: |
| if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY, |
| PAGEVEC_SIZE)) |
| return 0; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i], *dpage; |
| |
| lock_page(page); |
| if (unlikely(!PageDirty(page))) |
| NILFS_PAGE_BUG(page, "inconsistent dirty state"); |
| |
| dpage = grab_cache_page(dmap, page->index); |
| if (unlikely(!dpage)) { |
| /* No empty page is added to the page cache */ |
| err = -ENOMEM; |
| unlock_page(page); |
| break; |
| } |
| if (unlikely(!page_has_buffers(page))) |
| NILFS_PAGE_BUG(page, |
| "found empty page in dat page cache"); |
| |
| nilfs_copy_page(dpage, page, 1); |
| __set_page_dirty_nobuffers(dpage); |
| |
| unlock_page(dpage); |
| page_cache_release(dpage); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| |
| if (likely(!err)) |
| goto repeat; |
| return err; |
| } |
| |
| /** |
| * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache |
| * @dmap: destination page cache |
| * @smap: source page cache |
| * |
| * No pages must no be added to the cache during this process. |
| * This must be ensured by the caller. |
| */ |
| void nilfs_copy_back_pages(struct address_space *dmap, |
| struct address_space *smap) |
| { |
| struct pagevec pvec; |
| unsigned int i, n; |
| pgoff_t index = 0; |
| int err; |
| |
| pagevec_init(&pvec, 0); |
| repeat: |
| n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE); |
| if (!n) |
| return; |
| index = pvec.pages[n - 1]->index + 1; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i], *dpage; |
| pgoff_t offset = page->index; |
| |
| lock_page(page); |
| dpage = find_lock_page(dmap, offset); |
| if (dpage) { |
| /* override existing page on the destination cache */ |
| WARN_ON(PageDirty(dpage)); |
| nilfs_copy_page(dpage, page, 0); |
| unlock_page(dpage); |
| page_cache_release(dpage); |
| } else { |
| struct page *page2; |
| |
| /* move the page to the destination cache */ |
| spin_lock_irq(&smap->tree_lock); |
| page2 = radix_tree_delete(&smap->page_tree, offset); |
| WARN_ON(page2 != page); |
| |
| smap->nrpages--; |
| spin_unlock_irq(&smap->tree_lock); |
| |
| spin_lock_irq(&dmap->tree_lock); |
| err = radix_tree_insert(&dmap->page_tree, offset, page); |
| if (unlikely(err < 0)) { |
| WARN_ON(err == -EEXIST); |
| page->mapping = NULL; |
| page_cache_release(page); /* for cache */ |
| } else { |
| page->mapping = dmap; |
| dmap->nrpages++; |
| if (PageDirty(page)) |
| radix_tree_tag_set(&dmap->page_tree, |
| offset, |
| PAGECACHE_TAG_DIRTY); |
| } |
| spin_unlock_irq(&dmap->tree_lock); |
| } |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| |
| goto repeat; |
| } |
| |
| void nilfs_clear_dirty_pages(struct address_space *mapping) |
| { |
| struct pagevec pvec; |
| unsigned int i; |
| pgoff_t index = 0; |
| |
| pagevec_init(&pvec, 0); |
| |
| while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY, |
| PAGEVEC_SIZE)) { |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| struct page *page = pvec.pages[i]; |
| struct buffer_head *bh, *head; |
| |
| lock_page(page); |
| ClearPageUptodate(page); |
| ClearPageMappedToDisk(page); |
| bh = head = page_buffers(page); |
| do { |
| lock_buffer(bh); |
| clear_buffer_dirty(bh); |
| clear_buffer_nilfs_volatile(bh); |
| clear_buffer_nilfs_checked(bh); |
| clear_buffer_uptodate(bh); |
| clear_buffer_mapped(bh); |
| unlock_buffer(bh); |
| bh = bh->b_this_page; |
| } while (bh != head); |
| |
| __nilfs_clear_page_dirty(page); |
| unlock_page(page); |
| } |
| pagevec_release(&pvec); |
| cond_resched(); |
| } |
| } |
| |
| unsigned nilfs_page_count_clean_buffers(struct page *page, |
| unsigned from, unsigned to) |
| { |
| unsigned block_start, block_end; |
| struct buffer_head *bh, *head; |
| unsigned nc = 0; |
| |
| for (bh = head = page_buffers(page), block_start = 0; |
| bh != head || !block_start; |
| block_start = block_end, bh = bh->b_this_page) { |
| block_end = block_start + bh->b_size; |
| if (block_end > from && block_start < to && !buffer_dirty(bh)) |
| nc++; |
| } |
| return nc; |
| } |
| |
| void nilfs_mapping_init_once(struct address_space *mapping) |
| { |
| memset(mapping, 0, sizeof(*mapping)); |
| INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); |
| spin_lock_init(&mapping->tree_lock); |
| INIT_LIST_HEAD(&mapping->private_list); |
| spin_lock_init(&mapping->private_lock); |
| |
| spin_lock_init(&mapping->i_mmap_lock); |
| INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); |
| INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); |
| } |
| |
| void nilfs_mapping_init(struct address_space *mapping, |
| struct backing_dev_info *bdi, |
| const struct address_space_operations *aops) |
| { |
| mapping->host = NULL; |
| mapping->flags = 0; |
| mapping_set_gfp_mask(mapping, GFP_NOFS); |
| mapping->assoc_mapping = NULL; |
| mapping->backing_dev_info = bdi; |
| mapping->a_ops = aops; |
| } |
| |
| /* |
| * NILFS2 needs clear_page_dirty() in the following two cases: |
| * |
| * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears |
| * page dirty flags when it copies back pages from the shadow cache |
| * (gcdat->{i_mapping,i_btnode_cache}) to its original cache |
| * (dat->{i_mapping,i_btnode_cache}). |
| * |
| * 2) Some B-tree operations like insertion or deletion may dispose buffers |
| * in dirty state, and this needs to cancel the dirty state of their pages. |
| */ |
| int __nilfs_clear_page_dirty(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| |
| if (mapping) { |
| spin_lock_irq(&mapping->tree_lock); |
| if (test_bit(PG_dirty, &page->flags)) { |
| radix_tree_tag_clear(&mapping->page_tree, |
| page_index(page), |
| PAGECACHE_TAG_DIRTY); |
| spin_unlock_irq(&mapping->tree_lock); |
| return clear_page_dirty_for_io(page); |
| } |
| spin_unlock_irq(&mapping->tree_lock); |
| return 0; |
| } |
| return TestClearPageDirty(page); |
| } |