| /* |
| * AMD am53c974 driver. |
| * Copyright (c) 2014 Hannes Reinecke, SUSE Linux GmbH |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| |
| #include <scsi/scsi_host.h> |
| |
| #include "esp_scsi.h" |
| |
| #define DRV_MODULE_NAME "am53c974" |
| #define DRV_MODULE_VERSION "1.00" |
| |
| static bool am53c974_debug; |
| static bool am53c974_fenab = true; |
| |
| #define esp_dma_log(f, a...) \ |
| do { \ |
| if (am53c974_debug) \ |
| shost_printk(KERN_DEBUG, esp->host, f, ##a); \ |
| } while (0) |
| |
| #define ESP_DMA_CMD 0x10 |
| #define ESP_DMA_STC 0x11 |
| #define ESP_DMA_SPA 0x12 |
| #define ESP_DMA_WBC 0x13 |
| #define ESP_DMA_WAC 0x14 |
| #define ESP_DMA_STATUS 0x15 |
| #define ESP_DMA_SMDLA 0x16 |
| #define ESP_DMA_WMAC 0x17 |
| |
| #define ESP_DMA_CMD_IDLE 0x00 |
| #define ESP_DMA_CMD_BLAST 0x01 |
| #define ESP_DMA_CMD_ABORT 0x02 |
| #define ESP_DMA_CMD_START 0x03 |
| #define ESP_DMA_CMD_MASK 0x03 |
| #define ESP_DMA_CMD_DIAG 0x04 |
| #define ESP_DMA_CMD_MDL 0x10 |
| #define ESP_DMA_CMD_INTE_P 0x20 |
| #define ESP_DMA_CMD_INTE_D 0x40 |
| #define ESP_DMA_CMD_DIR 0x80 |
| |
| #define ESP_DMA_STAT_PWDN 0x01 |
| #define ESP_DMA_STAT_ERROR 0x02 |
| #define ESP_DMA_STAT_ABORT 0x04 |
| #define ESP_DMA_STAT_DONE 0x08 |
| #define ESP_DMA_STAT_SCSIINT 0x10 |
| #define ESP_DMA_STAT_BCMPLT 0x20 |
| |
| /* EEPROM is accessed with 16-bit values */ |
| #define DC390_EEPROM_READ 0x80 |
| #define DC390_EEPROM_LEN 0x40 |
| |
| /* |
| * DC390 EEPROM |
| * |
| * 8 * 4 bytes of per-device options |
| * followed by HBA specific options |
| */ |
| |
| /* Per-device options */ |
| #define DC390_EE_MODE1 0x00 |
| #define DC390_EE_SPEED 0x01 |
| |
| /* HBA-specific options */ |
| #define DC390_EE_ADAPT_SCSI_ID 0x40 |
| #define DC390_EE_MODE2 0x41 |
| #define DC390_EE_DELAY 0x42 |
| #define DC390_EE_TAG_CMD_NUM 0x43 |
| |
| #define DC390_EE_MODE1_PARITY_CHK 0x01 |
| #define DC390_EE_MODE1_SYNC_NEGO 0x02 |
| #define DC390_EE_MODE1_EN_DISC 0x04 |
| #define DC390_EE_MODE1_SEND_START 0x08 |
| #define DC390_EE_MODE1_TCQ 0x10 |
| |
| #define DC390_EE_MODE2_MORE_2DRV 0x01 |
| #define DC390_EE_MODE2_GREATER_1G 0x02 |
| #define DC390_EE_MODE2_RST_SCSI_BUS 0x04 |
| #define DC390_EE_MODE2_ACTIVE_NEGATION 0x08 |
| #define DC390_EE_MODE2_NO_SEEK 0x10 |
| #define DC390_EE_MODE2_LUN_CHECK 0x20 |
| |
| struct pci_esp_priv { |
| struct esp *esp; |
| u8 dma_status; |
| }; |
| |
| static void pci_esp_dma_drain(struct esp *esp); |
| |
| static inline struct pci_esp_priv *pci_esp_get_priv(struct esp *esp) |
| { |
| struct pci_dev *pdev = esp->dev; |
| |
| return pci_get_drvdata(pdev); |
| } |
| |
| static void pci_esp_write8(struct esp *esp, u8 val, unsigned long reg) |
| { |
| iowrite8(val, esp->regs + (reg * 4UL)); |
| } |
| |
| static u8 pci_esp_read8(struct esp *esp, unsigned long reg) |
| { |
| return ioread8(esp->regs + (reg * 4UL)); |
| } |
| |
| static void pci_esp_write32(struct esp *esp, u32 val, unsigned long reg) |
| { |
| return iowrite32(val, esp->regs + (reg * 4UL)); |
| } |
| |
| static dma_addr_t pci_esp_map_single(struct esp *esp, void *buf, |
| size_t sz, int dir) |
| { |
| return pci_map_single(esp->dev, buf, sz, dir); |
| } |
| |
| static int pci_esp_map_sg(struct esp *esp, struct scatterlist *sg, |
| int num_sg, int dir) |
| { |
| return pci_map_sg(esp->dev, sg, num_sg, dir); |
| } |
| |
| static void pci_esp_unmap_single(struct esp *esp, dma_addr_t addr, |
| size_t sz, int dir) |
| { |
| pci_unmap_single(esp->dev, addr, sz, dir); |
| } |
| |
| static void pci_esp_unmap_sg(struct esp *esp, struct scatterlist *sg, |
| int num_sg, int dir) |
| { |
| pci_unmap_sg(esp->dev, sg, num_sg, dir); |
| } |
| |
| static int pci_esp_irq_pending(struct esp *esp) |
| { |
| struct pci_esp_priv *pep = pci_esp_get_priv(esp); |
| |
| pep->dma_status = pci_esp_read8(esp, ESP_DMA_STATUS); |
| esp_dma_log("dma intr dreg[%02x]\n", pep->dma_status); |
| |
| if (pep->dma_status & (ESP_DMA_STAT_ERROR | |
| ESP_DMA_STAT_ABORT | |
| ESP_DMA_STAT_DONE | |
| ESP_DMA_STAT_SCSIINT)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void pci_esp_reset_dma(struct esp *esp) |
| { |
| /* Nothing to do ? */ |
| } |
| |
| static void pci_esp_dma_drain(struct esp *esp) |
| { |
| u8 resid; |
| int lim = 1000; |
| |
| |
| if ((esp->sreg & ESP_STAT_PMASK) == ESP_DOP || |
| (esp->sreg & ESP_STAT_PMASK) == ESP_DIP) |
| /* Data-In or Data-Out, nothing to be done */ |
| return; |
| |
| while (--lim > 0) { |
| resid = pci_esp_read8(esp, ESP_FFLAGS) & ESP_FF_FBYTES; |
| if (resid <= 1) |
| break; |
| cpu_relax(); |
| } |
| if (resid > 1) { |
| /* FIFO not cleared */ |
| shost_printk(KERN_INFO, esp->host, |
| "FIFO not cleared, %d bytes left\n", |
| resid); |
| } |
| |
| /* |
| * When there is a residual BCMPLT will never be set |
| * (obviously). But we still have to issue the BLAST |
| * command, otherwise the data will not being transferred. |
| * But we'll never know when the BLAST operation is |
| * finished. So check for some time and give up eventually. |
| */ |
| lim = 1000; |
| pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_BLAST, ESP_DMA_CMD); |
| while (pci_esp_read8(esp, ESP_DMA_STATUS) & ESP_DMA_STAT_BCMPLT) { |
| if (--lim == 0) |
| break; |
| cpu_relax(); |
| } |
| pci_esp_write8(esp, ESP_DMA_CMD_DIR | ESP_DMA_CMD_IDLE, ESP_DMA_CMD); |
| esp_dma_log("DMA blast done (%d tries, %d bytes left)\n", lim, resid); |
| /* BLAST residual handling is currently untested */ |
| if (WARN_ON_ONCE(resid == 1)) { |
| struct esp_cmd_entry *ent = esp->active_cmd; |
| |
| ent->flags |= ESP_CMD_FLAG_RESIDUAL; |
| } |
| } |
| |
| static void pci_esp_dma_invalidate(struct esp *esp) |
| { |
| struct pci_esp_priv *pep = pci_esp_get_priv(esp); |
| |
| esp_dma_log("invalidate DMA\n"); |
| |
| pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD); |
| pep->dma_status = 0; |
| } |
| |
| static int pci_esp_dma_error(struct esp *esp) |
| { |
| struct pci_esp_priv *pep = pci_esp_get_priv(esp); |
| |
| if (pep->dma_status & ESP_DMA_STAT_ERROR) { |
| u8 dma_cmd = pci_esp_read8(esp, ESP_DMA_CMD); |
| |
| if ((dma_cmd & ESP_DMA_CMD_MASK) == ESP_DMA_CMD_START) |
| pci_esp_write8(esp, ESP_DMA_CMD_ABORT, ESP_DMA_CMD); |
| |
| return 1; |
| } |
| if (pep->dma_status & ESP_DMA_STAT_ABORT) { |
| pci_esp_write8(esp, ESP_DMA_CMD_IDLE, ESP_DMA_CMD); |
| pep->dma_status = pci_esp_read8(esp, ESP_DMA_CMD); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void pci_esp_send_dma_cmd(struct esp *esp, u32 addr, u32 esp_count, |
| u32 dma_count, int write, u8 cmd) |
| { |
| struct pci_esp_priv *pep = pci_esp_get_priv(esp); |
| u32 val = 0; |
| |
| BUG_ON(!(cmd & ESP_CMD_DMA)); |
| |
| pep->dma_status = 0; |
| |
| /* Set DMA engine to IDLE */ |
| if (write) |
| /* DMA write direction logic is inverted */ |
| val |= ESP_DMA_CMD_DIR; |
| pci_esp_write8(esp, ESP_DMA_CMD_IDLE | val, ESP_DMA_CMD); |
| |
| pci_esp_write8(esp, (esp_count >> 0) & 0xff, ESP_TCLOW); |
| pci_esp_write8(esp, (esp_count >> 8) & 0xff, ESP_TCMED); |
| if (esp->config2 & ESP_CONFIG2_FENAB) |
| pci_esp_write8(esp, (esp_count >> 16) & 0xff, ESP_TCHI); |
| |
| pci_esp_write32(esp, esp_count, ESP_DMA_STC); |
| pci_esp_write32(esp, addr, ESP_DMA_SPA); |
| |
| esp_dma_log("start dma addr[%x] count[%d:%d]\n", |
| addr, esp_count, dma_count); |
| |
| scsi_esp_cmd(esp, cmd); |
| /* Send DMA Start command */ |
| pci_esp_write8(esp, ESP_DMA_CMD_START | val, ESP_DMA_CMD); |
| } |
| |
| static u32 pci_esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len) |
| { |
| int dma_limit = 16; |
| u32 base, end; |
| |
| /* |
| * If CONFIG2_FENAB is set we can |
| * handle up to 24 bit addresses |
| */ |
| if (esp->config2 & ESP_CONFIG2_FENAB) |
| dma_limit = 24; |
| |
| if (dma_len > (1U << dma_limit)) |
| dma_len = (1U << dma_limit); |
| |
| /* |
| * Prevent crossing a 24-bit address boundary. |
| */ |
| base = dma_addr & ((1U << 24) - 1U); |
| end = base + dma_len; |
| if (end > (1U << 24)) |
| end = (1U <<24); |
| dma_len = end - base; |
| |
| return dma_len; |
| } |
| |
| static const struct esp_driver_ops pci_esp_ops = { |
| .esp_write8 = pci_esp_write8, |
| .esp_read8 = pci_esp_read8, |
| .map_single = pci_esp_map_single, |
| .map_sg = pci_esp_map_sg, |
| .unmap_single = pci_esp_unmap_single, |
| .unmap_sg = pci_esp_unmap_sg, |
| .irq_pending = pci_esp_irq_pending, |
| .reset_dma = pci_esp_reset_dma, |
| .dma_drain = pci_esp_dma_drain, |
| .dma_invalidate = pci_esp_dma_invalidate, |
| .send_dma_cmd = pci_esp_send_dma_cmd, |
| .dma_error = pci_esp_dma_error, |
| .dma_length_limit = pci_esp_dma_length_limit, |
| }; |
| |
| /* |
| * Read DC-390 eeprom |
| */ |
| static void dc390_eeprom_prepare_read(struct pci_dev *pdev, u8 cmd) |
| { |
| u8 carry_flag = 1, j = 0x80, bval; |
| int i; |
| |
| for (i = 0; i < 9; i++) { |
| if (carry_flag) { |
| pci_write_config_byte(pdev, 0x80, 0x40); |
| bval = 0xc0; |
| } else |
| bval = 0x80; |
| |
| udelay(160); |
| pci_write_config_byte(pdev, 0x80, bval); |
| udelay(160); |
| pci_write_config_byte(pdev, 0x80, 0); |
| udelay(160); |
| |
| carry_flag = (cmd & j) ? 1 : 0; |
| j >>= 1; |
| } |
| } |
| |
| static u16 dc390_eeprom_get_data(struct pci_dev *pdev) |
| { |
| int i; |
| u16 wval = 0; |
| u8 bval; |
| |
| for (i = 0; i < 16; i++) { |
| wval <<= 1; |
| |
| pci_write_config_byte(pdev, 0x80, 0x80); |
| udelay(160); |
| pci_write_config_byte(pdev, 0x80, 0x40); |
| udelay(160); |
| pci_read_config_byte(pdev, 0x00, &bval); |
| |
| if (bval == 0x22) |
| wval |= 1; |
| } |
| |
| return wval; |
| } |
| |
| static void dc390_read_eeprom(struct pci_dev *pdev, u16 *ptr) |
| { |
| u8 cmd = DC390_EEPROM_READ, i; |
| |
| for (i = 0; i < DC390_EEPROM_LEN; i++) { |
| pci_write_config_byte(pdev, 0xc0, 0); |
| udelay(160); |
| |
| dc390_eeprom_prepare_read(pdev, cmd++); |
| *ptr++ = dc390_eeprom_get_data(pdev); |
| |
| pci_write_config_byte(pdev, 0x80, 0); |
| pci_write_config_byte(pdev, 0x80, 0); |
| udelay(160); |
| } |
| } |
| |
| static void dc390_check_eeprom(struct esp *esp) |
| { |
| u8 EEbuf[128]; |
| u16 *ptr = (u16 *)EEbuf, wval = 0; |
| int i; |
| |
| dc390_read_eeprom((struct pci_dev *)esp->dev, ptr); |
| |
| for (i = 0; i < DC390_EEPROM_LEN; i++, ptr++) |
| wval += *ptr; |
| |
| /* no Tekram EEprom found */ |
| if (wval != 0x1234) { |
| struct pci_dev *pdev = esp->dev; |
| dev_printk(KERN_INFO, &pdev->dev, |
| "No valid Tekram EEprom found\n"); |
| return; |
| } |
| esp->scsi_id = EEbuf[DC390_EE_ADAPT_SCSI_ID]; |
| esp->num_tags = 2 << EEbuf[DC390_EE_TAG_CMD_NUM]; |
| if (EEbuf[DC390_EE_MODE2] & DC390_EE_MODE2_ACTIVE_NEGATION) |
| esp->config4 |= ESP_CONFIG4_RADE | ESP_CONFIG4_RAE; |
| } |
| |
| static int pci_esp_probe_one(struct pci_dev *pdev, |
| const struct pci_device_id *id) |
| { |
| struct scsi_host_template *hostt = &scsi_esp_template; |
| int err = -ENODEV; |
| struct Scsi_Host *shost; |
| struct esp *esp; |
| struct pci_esp_priv *pep; |
| |
| if (pci_enable_device(pdev)) { |
| dev_printk(KERN_INFO, &pdev->dev, "cannot enable device\n"); |
| return -ENODEV; |
| } |
| |
| if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { |
| dev_printk(KERN_INFO, &pdev->dev, |
| "failed to set 32bit DMA mask\n"); |
| goto fail_disable_device; |
| } |
| |
| shost = scsi_host_alloc(hostt, sizeof(struct esp)); |
| if (!shost) { |
| dev_printk(KERN_INFO, &pdev->dev, |
| "failed to allocate scsi host\n"); |
| err = -ENOMEM; |
| goto fail_disable_device; |
| } |
| |
| pep = kzalloc(sizeof(struct pci_esp_priv), GFP_KERNEL); |
| if (!pep) { |
| dev_printk(KERN_INFO, &pdev->dev, |
| "failed to allocate esp_priv\n"); |
| err = -ENOMEM; |
| goto fail_host_alloc; |
| } |
| |
| esp = shost_priv(shost); |
| esp->host = shost; |
| esp->dev = pdev; |
| esp->ops = &pci_esp_ops; |
| /* |
| * The am53c974 HBA has a design flaw of generating |
| * spurious DMA completion interrupts when using |
| * DMA for command submission. |
| */ |
| esp->flags |= ESP_FLAG_USE_FIFO; |
| /* |
| * Enable CONFIG2_FENAB to allow for large DMA transfers |
| */ |
| if (am53c974_fenab) |
| esp->config2 |= ESP_CONFIG2_FENAB; |
| |
| pep->esp = esp; |
| |
| if (pci_request_regions(pdev, DRV_MODULE_NAME)) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "pci memory selection failed\n"); |
| goto fail_priv_alloc; |
| } |
| |
| esp->regs = pci_iomap(pdev, 0, pci_resource_len(pdev, 0)); |
| if (!esp->regs) { |
| dev_printk(KERN_ERR, &pdev->dev, "pci I/O map failed\n"); |
| err = -EINVAL; |
| goto fail_release_regions; |
| } |
| esp->dma_regs = esp->regs; |
| |
| pci_set_master(pdev); |
| |
| esp->command_block = pci_alloc_consistent(pdev, 16, |
| &esp->command_block_dma); |
| if (!esp->command_block) { |
| dev_printk(KERN_ERR, &pdev->dev, |
| "failed to allocate command block\n"); |
| err = -ENOMEM; |
| goto fail_unmap_regs; |
| } |
| |
| err = request_irq(pdev->irq, scsi_esp_intr, IRQF_SHARED, |
| DRV_MODULE_NAME, esp); |
| if (err < 0) { |
| dev_printk(KERN_ERR, &pdev->dev, "failed to register IRQ\n"); |
| goto fail_unmap_command_block; |
| } |
| |
| esp->scsi_id = 7; |
| dc390_check_eeprom(esp); |
| |
| shost->this_id = esp->scsi_id; |
| shost->max_id = 8; |
| shost->irq = pdev->irq; |
| shost->io_port = pci_resource_start(pdev, 0); |
| shost->n_io_port = pci_resource_len(pdev, 0); |
| shost->unique_id = shost->io_port; |
| esp->scsi_id_mask = (1 << esp->scsi_id); |
| /* Assume 40MHz clock */ |
| esp->cfreq = 40000000; |
| |
| pci_set_drvdata(pdev, pep); |
| |
| err = scsi_esp_register(esp, &pdev->dev); |
| if (err) |
| goto fail_free_irq; |
| |
| return 0; |
| |
| fail_free_irq: |
| free_irq(pdev->irq, esp); |
| fail_unmap_command_block: |
| pci_free_consistent(pdev, 16, esp->command_block, |
| esp->command_block_dma); |
| fail_unmap_regs: |
| pci_iounmap(pdev, esp->regs); |
| fail_release_regions: |
| pci_release_regions(pdev); |
| fail_priv_alloc: |
| kfree(pep); |
| fail_host_alloc: |
| scsi_host_put(shost); |
| fail_disable_device: |
| pci_disable_device(pdev); |
| |
| return err; |
| } |
| |
| static void pci_esp_remove_one(struct pci_dev *pdev) |
| { |
| struct pci_esp_priv *pep = pci_get_drvdata(pdev); |
| struct esp *esp = pep->esp; |
| |
| scsi_esp_unregister(esp); |
| free_irq(pdev->irq, esp); |
| pci_free_consistent(pdev, 16, esp->command_block, |
| esp->command_block_dma); |
| pci_iounmap(pdev, esp->regs); |
| pci_release_regions(pdev); |
| pci_disable_device(pdev); |
| kfree(pep); |
| |
| scsi_host_put(esp->host); |
| } |
| |
| static struct pci_device_id am53c974_pci_tbl[] = { |
| { PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_SCSI, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(pci, am53c974_pci_tbl); |
| |
| static struct pci_driver am53c974_driver = { |
| .name = DRV_MODULE_NAME, |
| .id_table = am53c974_pci_tbl, |
| .probe = pci_esp_probe_one, |
| .remove = pci_esp_remove_one, |
| }; |
| |
| static int __init am53c974_module_init(void) |
| { |
| return pci_register_driver(&am53c974_driver); |
| } |
| |
| static void __exit am53c974_module_exit(void) |
| { |
| pci_unregister_driver(&am53c974_driver); |
| } |
| |
| MODULE_DESCRIPTION("AM53C974 SCSI driver"); |
| MODULE_AUTHOR("Hannes Reinecke <hare@suse.de>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION(DRV_MODULE_VERSION); |
| |
| module_param(am53c974_debug, bool, 0644); |
| MODULE_PARM_DESC(am53c974_debug, "Enable debugging"); |
| |
| module_param(am53c974_fenab, bool, 0444); |
| MODULE_PARM_DESC(am53c974_fenab, "Enable 24-bit DMA transfer sizes"); |
| |
| module_init(am53c974_module_init); |
| module_exit(am53c974_module_exit); |