| /* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF) |
| * |
| * Copyright (C) 2013 Terry Lam <vtlam@google.com> |
| * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> |
| */ |
| |
| #include <linux/jhash.h> |
| #include <linux/jiffies.h> |
| #include <linux/module.h> |
| #include <linux/skbuff.h> |
| #include <linux/vmalloc.h> |
| #include <net/pkt_sched.h> |
| #include <net/sock.h> |
| |
| /* Heavy-Hitter Filter (HHF) |
| * |
| * Principles : |
| * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter |
| * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified |
| * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. |
| * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, |
| * in which the heavy-hitter bucket is served with less weight. |
| * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) |
| * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have |
| * higher share of bandwidth. |
| * |
| * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the |
| * following paper: |
| * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and |
| * Accounting", in ACM SIGCOMM, 2002. |
| * |
| * Conceptually, a multi-stage filter comprises k independent hash functions |
| * and k counter arrays. Packets are indexed into k counter arrays by k hash |
| * functions, respectively. The counters are then increased by the packet sizes. |
| * Therefore, |
| * - For a heavy-hitter flow: *all* of its k array counters must be large. |
| * - For a non-heavy-hitter flow: some of its k array counters can be large |
| * due to hash collision with other small flows; however, with high |
| * probability, not *all* k counters are large. |
| * |
| * By the design of the multi-stage filter algorithm, the false negative rate |
| * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is |
| * susceptible to false positives (non-heavy-hitters mistakenly classified as |
| * heavy-hitters). |
| * Therefore, we also implement the following optimizations to reduce false |
| * positives by avoiding unnecessary increment of the counter values: |
| * - Optimization O1: once a heavy-hitter is identified, its bytes are not |
| * accounted in the array counters. This technique is called "shielding" |
| * in Section 3.3.1 of [EV02]. |
| * - Optimization O2: conservative update of counters |
| * (Section 3.3.2 of [EV02]), |
| * New counter value = max {old counter value, |
| * smallest counter value + packet bytes} |
| * |
| * Finally, we refresh the counters periodically since otherwise the counter |
| * values will keep accumulating. |
| * |
| * Once a flow is classified as heavy-hitter, we also save its per-flow state |
| * in an exact-matching flow table so that its subsequent packets can be |
| * dispatched to the heavy-hitter bucket accordingly. |
| * |
| * |
| * At a high level, this qdisc works as follows: |
| * Given a packet p: |
| * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching |
| * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter |
| * bucket. |
| * - Otherwise, forward p to the multi-stage filter, denoted filter F |
| * + If F decides that p belongs to a non-heavy-hitter flow, then send p |
| * to the non-heavy-hitter bucket. |
| * + Otherwise, if F decides that p belongs to a new heavy-hitter flow, |
| * then set up a new flow entry for the flow-id of p in the table T and |
| * send p to the heavy-hitter bucket. |
| * |
| * In this implementation: |
| * - T is a fixed-size hash-table with 1024 entries. Hash collision is |
| * resolved by linked-list chaining. |
| * - F has four counter arrays, each array containing 1024 32-bit counters. |
| * That means 4 * 1024 * 32 bits = 16KB of memory. |
| * - Since each array in F contains 1024 counters, 10 bits are sufficient to |
| * index into each array. |
| * Hence, instead of having four hash functions, we chop the 32-bit |
| * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is |
| * computed as XOR sum of those three chunks. |
| * - We need to clear the counter arrays periodically; however, directly |
| * memsetting 16KB of memory can lead to cache eviction and unwanted delay. |
| * So by representing each counter by a valid bit, we only need to reset |
| * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. |
| * - The Deficit Round Robin engine is taken from fq_codel implementation |
| * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to |
| * fq_codel_flow in fq_codel implementation. |
| * |
| */ |
| |
| /* Non-configurable parameters */ |
| #define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */ |
| #define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */ |
| #define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */ |
| #define HHF_BIT_MASK_LEN 10 /* masking 10 bits */ |
| #define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */ |
| |
| #define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */ |
| enum wdrr_bucket_idx { |
| WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */ |
| WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */ |
| }; |
| |
| #define hhf_time_before(a, b) \ |
| (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) |
| |
| /* Heavy-hitter per-flow state */ |
| struct hh_flow_state { |
| u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */ |
| u32 hit_timestamp; /* last time heavy-hitter was seen */ |
| struct list_head flowchain; /* chaining under hash collision */ |
| }; |
| |
| /* Weighted Deficit Round Robin (WDRR) scheduler */ |
| struct wdrr_bucket { |
| struct sk_buff *head; |
| struct sk_buff *tail; |
| struct list_head bucketchain; |
| int deficit; |
| }; |
| |
| struct hhf_sched_data { |
| struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; |
| u32 perturbation; /* hash perturbation */ |
| u32 quantum; /* psched_mtu(qdisc_dev(sch)); */ |
| u32 drop_overlimit; /* number of times max qdisc packet |
| * limit was hit |
| */ |
| struct list_head *hh_flows; /* table T (currently active HHs) */ |
| u32 hh_flows_limit; /* max active HH allocs */ |
| u32 hh_flows_overlimit; /* num of disallowed HH allocs */ |
| u32 hh_flows_total_cnt; /* total admitted HHs */ |
| u32 hh_flows_current_cnt; /* total current HHs */ |
| u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ |
| u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays |
| * was reset |
| */ |
| unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits |
| * of hhf_arrays |
| */ |
| /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ |
| struct list_head new_buckets; /* list of new buckets */ |
| struct list_head old_buckets; /* list of old buckets */ |
| |
| /* Configurable HHF parameters */ |
| u32 hhf_reset_timeout; /* interval to reset counter |
| * arrays in filter F |
| * (default 40ms) |
| */ |
| u32 hhf_admit_bytes; /* counter thresh to classify as |
| * HH (default 128KB). |
| * With these default values, |
| * 128KB / 40ms = 25 Mbps |
| * i.e., we expect to capture HHs |
| * sending > 25 Mbps. |
| */ |
| u32 hhf_evict_timeout; /* aging threshold to evict idle |
| * HHs out of table T. This should |
| * be large enough to avoid |
| * reordering during HH eviction. |
| * (default 1s) |
| */ |
| u32 hhf_non_hh_weight; /* WDRR weight for non-HHs |
| * (default 2, |
| * i.e., non-HH : HH = 2 : 1) |
| */ |
| }; |
| |
| static u32 hhf_time_stamp(void) |
| { |
| return jiffies; |
| } |
| |
| /* Looks up a heavy-hitter flow in a chaining list of table T. */ |
| static struct hh_flow_state *seek_list(const u32 hash, |
| struct list_head *head, |
| struct hhf_sched_data *q) |
| { |
| struct hh_flow_state *flow, *next; |
| u32 now = hhf_time_stamp(); |
| |
| if (list_empty(head)) |
| return NULL; |
| |
| list_for_each_entry_safe(flow, next, head, flowchain) { |
| u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; |
| |
| if (hhf_time_before(prev, now)) { |
| /* Delete expired heavy-hitters, but preserve one entry |
| * to avoid kzalloc() when next time this slot is hit. |
| */ |
| if (list_is_last(&flow->flowchain, head)) |
| return NULL; |
| list_del(&flow->flowchain); |
| kfree(flow); |
| q->hh_flows_current_cnt--; |
| } else if (flow->hash_id == hash) { |
| return flow; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Returns a flow state entry for a new heavy-hitter. Either reuses an expired |
| * entry or dynamically alloc a new entry. |
| */ |
| static struct hh_flow_state *alloc_new_hh(struct list_head *head, |
| struct hhf_sched_data *q) |
| { |
| struct hh_flow_state *flow; |
| u32 now = hhf_time_stamp(); |
| |
| if (!list_empty(head)) { |
| /* Find an expired heavy-hitter flow entry. */ |
| list_for_each_entry(flow, head, flowchain) { |
| u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; |
| |
| if (hhf_time_before(prev, now)) |
| return flow; |
| } |
| } |
| |
| if (q->hh_flows_current_cnt >= q->hh_flows_limit) { |
| q->hh_flows_overlimit++; |
| return NULL; |
| } |
| /* Create new entry. */ |
| flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); |
| if (!flow) |
| return NULL; |
| |
| q->hh_flows_current_cnt++; |
| INIT_LIST_HEAD(&flow->flowchain); |
| list_add_tail(&flow->flowchain, head); |
| |
| return flow; |
| } |
| |
| /* Assigns packets to WDRR buckets. Implements a multi-stage filter to |
| * classify heavy-hitters. |
| */ |
| static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| u32 tmp_hash, hash; |
| u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; |
| struct hh_flow_state *flow; |
| u32 pkt_len, min_hhf_val; |
| int i; |
| u32 prev; |
| u32 now = hhf_time_stamp(); |
| |
| /* Reset the HHF counter arrays if this is the right time. */ |
| prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; |
| if (hhf_time_before(prev, now)) { |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) |
| bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); |
| q->hhf_arrays_reset_timestamp = now; |
| } |
| |
| /* Get hashed flow-id of the skb. */ |
| hash = skb_get_hash_perturb(skb, q->perturbation); |
| |
| /* Check if this packet belongs to an already established HH flow. */ |
| flow_pos = hash & HHF_BIT_MASK; |
| flow = seek_list(hash, &q->hh_flows[flow_pos], q); |
| if (flow) { /* found its HH flow */ |
| flow->hit_timestamp = now; |
| return WDRR_BUCKET_FOR_HH; |
| } |
| |
| /* Now pass the packet through the multi-stage filter. */ |
| tmp_hash = hash; |
| xorsum = 0; |
| for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { |
| /* Split the skb_hash into three 10-bit chunks. */ |
| filter_pos[i] = tmp_hash & HHF_BIT_MASK; |
| xorsum ^= filter_pos[i]; |
| tmp_hash >>= HHF_BIT_MASK_LEN; |
| } |
| /* The last chunk is computed as XOR sum of other chunks. */ |
| filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; |
| |
| pkt_len = qdisc_pkt_len(skb); |
| min_hhf_val = ~0U; |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) { |
| u32 val; |
| |
| if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { |
| q->hhf_arrays[i][filter_pos[i]] = 0; |
| __set_bit(filter_pos[i], q->hhf_valid_bits[i]); |
| } |
| |
| val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; |
| if (min_hhf_val > val) |
| min_hhf_val = val; |
| } |
| |
| /* Found a new HH iff all counter values > HH admit threshold. */ |
| if (min_hhf_val > q->hhf_admit_bytes) { |
| /* Just captured a new heavy-hitter. */ |
| flow = alloc_new_hh(&q->hh_flows[flow_pos], q); |
| if (!flow) /* memory alloc problem */ |
| return WDRR_BUCKET_FOR_NON_HH; |
| flow->hash_id = hash; |
| flow->hit_timestamp = now; |
| q->hh_flows_total_cnt++; |
| |
| /* By returning without updating counters in q->hhf_arrays, |
| * we implicitly implement "shielding" (see Optimization O1). |
| */ |
| return WDRR_BUCKET_FOR_HH; |
| } |
| |
| /* Conservative update of HHF arrays (see Optimization O2). */ |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) { |
| if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) |
| q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; |
| } |
| return WDRR_BUCKET_FOR_NON_HH; |
| } |
| |
| /* Removes one skb from head of bucket. */ |
| static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) |
| { |
| struct sk_buff *skb = bucket->head; |
| |
| bucket->head = skb->next; |
| skb->next = NULL; |
| return skb; |
| } |
| |
| /* Tail-adds skb to bucket. */ |
| static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) |
| { |
| if (bucket->head == NULL) |
| bucket->head = skb; |
| else |
| bucket->tail->next = skb; |
| bucket->tail = skb; |
| skb->next = NULL; |
| } |
| |
| static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| struct wdrr_bucket *bucket; |
| |
| /* Always try to drop from heavy-hitters first. */ |
| bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; |
| if (!bucket->head) |
| bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; |
| |
| if (bucket->head) { |
| struct sk_buff *skb = dequeue_head(bucket); |
| |
| sch->q.qlen--; |
| qdisc_qstats_backlog_dec(sch, skb); |
| qdisc_drop(skb, sch, to_free); |
| } |
| |
| /* Return id of the bucket from which the packet was dropped. */ |
| return bucket - q->buckets; |
| } |
| |
| static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| enum wdrr_bucket_idx idx; |
| struct wdrr_bucket *bucket; |
| unsigned int prev_backlog; |
| |
| idx = hhf_classify(skb, sch); |
| |
| bucket = &q->buckets[idx]; |
| bucket_add(bucket, skb); |
| qdisc_qstats_backlog_inc(sch, skb); |
| |
| if (list_empty(&bucket->bucketchain)) { |
| unsigned int weight; |
| |
| /* The logic of new_buckets vs. old_buckets is the same as |
| * new_flows vs. old_flows in the implementation of fq_codel, |
| * i.e., short bursts of non-HHs should have strict priority. |
| */ |
| if (idx == WDRR_BUCKET_FOR_HH) { |
| /* Always move heavy-hitters to old bucket. */ |
| weight = 1; |
| list_add_tail(&bucket->bucketchain, &q->old_buckets); |
| } else { |
| weight = q->hhf_non_hh_weight; |
| list_add_tail(&bucket->bucketchain, &q->new_buckets); |
| } |
| bucket->deficit = weight * q->quantum; |
| } |
| if (++sch->q.qlen <= sch->limit) |
| return NET_XMIT_SUCCESS; |
| |
| prev_backlog = sch->qstats.backlog; |
| q->drop_overlimit++; |
| /* Return Congestion Notification only if we dropped a packet from this |
| * bucket. |
| */ |
| if (hhf_drop(sch, to_free) == idx) |
| return NET_XMIT_CN; |
| |
| /* As we dropped a packet, better let upper stack know this. */ |
| qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); |
| return NET_XMIT_SUCCESS; |
| } |
| |
| static struct sk_buff *hhf_dequeue(struct Qdisc *sch) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| struct sk_buff *skb = NULL; |
| struct wdrr_bucket *bucket; |
| struct list_head *head; |
| |
| begin: |
| head = &q->new_buckets; |
| if (list_empty(head)) { |
| head = &q->old_buckets; |
| if (list_empty(head)) |
| return NULL; |
| } |
| bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); |
| |
| if (bucket->deficit <= 0) { |
| int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? |
| 1 : q->hhf_non_hh_weight; |
| |
| bucket->deficit += weight * q->quantum; |
| list_move_tail(&bucket->bucketchain, &q->old_buckets); |
| goto begin; |
| } |
| |
| if (bucket->head) { |
| skb = dequeue_head(bucket); |
| sch->q.qlen--; |
| qdisc_qstats_backlog_dec(sch, skb); |
| } |
| |
| if (!skb) { |
| /* Force a pass through old_buckets to prevent starvation. */ |
| if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) |
| list_move_tail(&bucket->bucketchain, &q->old_buckets); |
| else |
| list_del_init(&bucket->bucketchain); |
| goto begin; |
| } |
| qdisc_bstats_update(sch, skb); |
| bucket->deficit -= qdisc_pkt_len(skb); |
| |
| return skb; |
| } |
| |
| static void hhf_reset(struct Qdisc *sch) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = hhf_dequeue(sch)) != NULL) |
| rtnl_kfree_skbs(skb, skb); |
| } |
| |
| static void hhf_destroy(struct Qdisc *sch) |
| { |
| int i; |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) { |
| kvfree(q->hhf_arrays[i]); |
| kvfree(q->hhf_valid_bits[i]); |
| } |
| |
| if (!q->hh_flows) |
| return; |
| |
| for (i = 0; i < HH_FLOWS_CNT; i++) { |
| struct hh_flow_state *flow, *next; |
| struct list_head *head = &q->hh_flows[i]; |
| |
| if (list_empty(head)) |
| continue; |
| list_for_each_entry_safe(flow, next, head, flowchain) { |
| list_del(&flow->flowchain); |
| kfree(flow); |
| } |
| } |
| kvfree(q->hh_flows); |
| } |
| |
| static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { |
| [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 }, |
| [TCA_HHF_QUANTUM] = { .type = NLA_U32 }, |
| [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, |
| [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 }, |
| [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 }, |
| [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 }, |
| [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 }, |
| }; |
| |
| static int hhf_change(struct Qdisc *sch, struct nlattr *opt) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| struct nlattr *tb[TCA_HHF_MAX + 1]; |
| unsigned int qlen, prev_backlog; |
| int err; |
| u64 non_hh_quantum; |
| u32 new_quantum = q->quantum; |
| u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; |
| |
| if (!opt) |
| return -EINVAL; |
| |
| err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy, NULL); |
| if (err < 0) |
| return err; |
| |
| if (tb[TCA_HHF_QUANTUM]) |
| new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); |
| |
| if (tb[TCA_HHF_NON_HH_WEIGHT]) |
| new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); |
| |
| non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; |
| if (non_hh_quantum > INT_MAX) |
| return -EINVAL; |
| |
| sch_tree_lock(sch); |
| |
| if (tb[TCA_HHF_BACKLOG_LIMIT]) |
| sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); |
| |
| q->quantum = new_quantum; |
| q->hhf_non_hh_weight = new_hhf_non_hh_weight; |
| |
| if (tb[TCA_HHF_HH_FLOWS_LIMIT]) |
| q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); |
| |
| if (tb[TCA_HHF_RESET_TIMEOUT]) { |
| u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); |
| |
| q->hhf_reset_timeout = usecs_to_jiffies(us); |
| } |
| |
| if (tb[TCA_HHF_ADMIT_BYTES]) |
| q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); |
| |
| if (tb[TCA_HHF_EVICT_TIMEOUT]) { |
| u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); |
| |
| q->hhf_evict_timeout = usecs_to_jiffies(us); |
| } |
| |
| qlen = sch->q.qlen; |
| prev_backlog = sch->qstats.backlog; |
| while (sch->q.qlen > sch->limit) { |
| struct sk_buff *skb = hhf_dequeue(sch); |
| |
| rtnl_kfree_skbs(skb, skb); |
| } |
| qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, |
| prev_backlog - sch->qstats.backlog); |
| |
| sch_tree_unlock(sch); |
| return 0; |
| } |
| |
| static int hhf_init(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| int i; |
| |
| sch->limit = 1000; |
| q->quantum = psched_mtu(qdisc_dev(sch)); |
| q->perturbation = prandom_u32(); |
| INIT_LIST_HEAD(&q->new_buckets); |
| INIT_LIST_HEAD(&q->old_buckets); |
| |
| /* Configurable HHF parameters */ |
| q->hhf_reset_timeout = HZ / 25; /* 40 ms */ |
| q->hhf_admit_bytes = 131072; /* 128 KB */ |
| q->hhf_evict_timeout = HZ; /* 1 sec */ |
| q->hhf_non_hh_weight = 2; |
| |
| if (opt) { |
| int err = hhf_change(sch, opt); |
| |
| if (err) |
| return err; |
| } |
| |
| if (!q->hh_flows) { |
| /* Initialize heavy-hitter flow table. */ |
| q->hh_flows = kvzalloc(HH_FLOWS_CNT * |
| sizeof(struct list_head), GFP_KERNEL); |
| if (!q->hh_flows) |
| return -ENOMEM; |
| for (i = 0; i < HH_FLOWS_CNT; i++) |
| INIT_LIST_HEAD(&q->hh_flows[i]); |
| |
| /* Cap max active HHs at twice len of hh_flows table. */ |
| q->hh_flows_limit = 2 * HH_FLOWS_CNT; |
| q->hh_flows_overlimit = 0; |
| q->hh_flows_total_cnt = 0; |
| q->hh_flows_current_cnt = 0; |
| |
| /* Initialize heavy-hitter filter arrays. */ |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) { |
| q->hhf_arrays[i] = kvzalloc(HHF_ARRAYS_LEN * |
| sizeof(u32), GFP_KERNEL); |
| if (!q->hhf_arrays[i]) { |
| /* Note: hhf_destroy() will be called |
| * by our caller. |
| */ |
| return -ENOMEM; |
| } |
| } |
| q->hhf_arrays_reset_timestamp = hhf_time_stamp(); |
| |
| /* Initialize valid bits of heavy-hitter filter arrays. */ |
| for (i = 0; i < HHF_ARRAYS_CNT; i++) { |
| q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / |
| BITS_PER_BYTE, GFP_KERNEL); |
| if (!q->hhf_valid_bits[i]) { |
| /* Note: hhf_destroy() will be called |
| * by our caller. |
| */ |
| return -ENOMEM; |
| } |
| } |
| |
| /* Initialize Weighted DRR buckets. */ |
| for (i = 0; i < WDRR_BUCKET_CNT; i++) { |
| struct wdrr_bucket *bucket = q->buckets + i; |
| |
| INIT_LIST_HEAD(&bucket->bucketchain); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| struct nlattr *opts; |
| |
| opts = nla_nest_start(skb, TCA_OPTIONS); |
| if (opts == NULL) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || |
| nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || |
| nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || |
| nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, |
| jiffies_to_usecs(q->hhf_reset_timeout)) || |
| nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || |
| nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, |
| jiffies_to_usecs(q->hhf_evict_timeout)) || |
| nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) |
| goto nla_put_failure; |
| |
| return nla_nest_end(skb, opts); |
| |
| nla_put_failure: |
| return -1; |
| } |
| |
| static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| { |
| struct hhf_sched_data *q = qdisc_priv(sch); |
| struct tc_hhf_xstats st = { |
| .drop_overlimit = q->drop_overlimit, |
| .hh_overlimit = q->hh_flows_overlimit, |
| .hh_tot_count = q->hh_flows_total_cnt, |
| .hh_cur_count = q->hh_flows_current_cnt, |
| }; |
| |
| return gnet_stats_copy_app(d, &st, sizeof(st)); |
| } |
| |
| static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { |
| .id = "hhf", |
| .priv_size = sizeof(struct hhf_sched_data), |
| |
| .enqueue = hhf_enqueue, |
| .dequeue = hhf_dequeue, |
| .peek = qdisc_peek_dequeued, |
| .init = hhf_init, |
| .reset = hhf_reset, |
| .destroy = hhf_destroy, |
| .change = hhf_change, |
| .dump = hhf_dump, |
| .dump_stats = hhf_dump_stats, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init hhf_module_init(void) |
| { |
| return register_qdisc(&hhf_qdisc_ops); |
| } |
| |
| static void __exit hhf_module_exit(void) |
| { |
| unregister_qdisc(&hhf_qdisc_ops); |
| } |
| |
| module_init(hhf_module_init) |
| module_exit(hhf_module_exit) |
| MODULE_AUTHOR("Terry Lam"); |
| MODULE_AUTHOR("Nandita Dukkipati"); |
| MODULE_LICENSE("GPL"); |