| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/export.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| |
| #include <soc/tegra/fuse.h> |
| |
| #include "mc.h" |
| |
| static const struct of_device_id tegra_mc_of_match[] = { |
| #ifdef CONFIG_ARCH_TEGRA_2x_SOC |
| { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc }, |
| #endif |
| #ifdef CONFIG_ARCH_TEGRA_3x_SOC |
| { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc }, |
| #endif |
| #ifdef CONFIG_ARCH_TEGRA_114_SOC |
| { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc }, |
| #endif |
| #ifdef CONFIG_ARCH_TEGRA_124_SOC |
| { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc }, |
| #endif |
| #ifdef CONFIG_ARCH_TEGRA_132_SOC |
| { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc }, |
| #endif |
| #ifdef CONFIG_ARCH_TEGRA_210_SOC |
| { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc }, |
| #endif |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, tegra_mc_of_match); |
| |
| static void tegra_mc_devm_action_put_device(void *data) |
| { |
| struct tegra_mc *mc = data; |
| |
| put_device(mc->dev); |
| } |
| |
| /** |
| * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle |
| * @dev: device pointer for the consumer device |
| * |
| * This function will search for the Memory Controller node in a device-tree |
| * and retrieve the Memory Controller handle. |
| * |
| * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc. |
| */ |
| struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev) |
| { |
| struct platform_device *pdev; |
| struct device_node *np; |
| struct tegra_mc *mc; |
| int err; |
| |
| np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0); |
| if (!np) |
| return ERR_PTR(-ENOENT); |
| |
| pdev = of_find_device_by_node(np); |
| of_node_put(np); |
| if (!pdev) |
| return ERR_PTR(-ENODEV); |
| |
| mc = platform_get_drvdata(pdev); |
| if (!mc) { |
| put_device(&pdev->dev); |
| return ERR_PTR(-EPROBE_DEFER); |
| } |
| |
| err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc); |
| if (err) { |
| put_device(mc->dev); |
| return ERR_PTR(err); |
| } |
| |
| return mc; |
| } |
| EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get); |
| |
| static int tegra_mc_block_dma_common(struct tegra_mc *mc, |
| const struct tegra_mc_reset *rst) |
| { |
| unsigned long flags; |
| u32 value; |
| |
| spin_lock_irqsave(&mc->lock, flags); |
| |
| value = mc_readl(mc, rst->control) | BIT(rst->bit); |
| mc_writel(mc, value, rst->control); |
| |
| spin_unlock_irqrestore(&mc->lock, flags); |
| |
| return 0; |
| } |
| |
| static bool tegra_mc_dma_idling_common(struct tegra_mc *mc, |
| const struct tegra_mc_reset *rst) |
| { |
| return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0; |
| } |
| |
| static int tegra_mc_unblock_dma_common(struct tegra_mc *mc, |
| const struct tegra_mc_reset *rst) |
| { |
| unsigned long flags; |
| u32 value; |
| |
| spin_lock_irqsave(&mc->lock, flags); |
| |
| value = mc_readl(mc, rst->control) & ~BIT(rst->bit); |
| mc_writel(mc, value, rst->control); |
| |
| spin_unlock_irqrestore(&mc->lock, flags); |
| |
| return 0; |
| } |
| |
| static int tegra_mc_reset_status_common(struct tegra_mc *mc, |
| const struct tegra_mc_reset *rst) |
| { |
| return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0; |
| } |
| |
| const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = { |
| .block_dma = tegra_mc_block_dma_common, |
| .dma_idling = tegra_mc_dma_idling_common, |
| .unblock_dma = tegra_mc_unblock_dma_common, |
| .reset_status = tegra_mc_reset_status_common, |
| }; |
| |
| static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev) |
| { |
| return container_of(rcdev, struct tegra_mc, reset); |
| } |
| |
| static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc, |
| unsigned long id) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < mc->soc->num_resets; i++) |
| if (mc->soc->resets[i].id == id) |
| return &mc->soc->resets[i]; |
| |
| return NULL; |
| } |
| |
| static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev, |
| unsigned long id) |
| { |
| struct tegra_mc *mc = reset_to_mc(rcdev); |
| const struct tegra_mc_reset_ops *rst_ops; |
| const struct tegra_mc_reset *rst; |
| int retries = 500; |
| int err; |
| |
| rst = tegra_mc_reset_find(mc, id); |
| if (!rst) |
| return -ENODEV; |
| |
| rst_ops = mc->soc->reset_ops; |
| if (!rst_ops) |
| return -ENODEV; |
| |
| /* DMA flushing will fail if reset is already asserted */ |
| if (rst_ops->reset_status) { |
| /* check whether reset is asserted */ |
| if (rst_ops->reset_status(mc, rst)) |
| return 0; |
| } |
| |
| if (rst_ops->block_dma) { |
| /* block clients DMA requests */ |
| err = rst_ops->block_dma(mc, rst); |
| if (err) { |
| dev_err(mc->dev, "failed to block %s DMA: %d\n", |
| rst->name, err); |
| return err; |
| } |
| } |
| |
| if (rst_ops->dma_idling) { |
| /* wait for completion of the outstanding DMA requests */ |
| while (!rst_ops->dma_idling(mc, rst)) { |
| if (!retries--) { |
| dev_err(mc->dev, "failed to flush %s DMA\n", |
| rst->name); |
| return -EBUSY; |
| } |
| |
| usleep_range(10, 100); |
| } |
| } |
| |
| if (rst_ops->hotreset_assert) { |
| /* clear clients DMA requests sitting before arbitration */ |
| err = rst_ops->hotreset_assert(mc, rst); |
| if (err) { |
| dev_err(mc->dev, "failed to hot reset %s: %d\n", |
| rst->name, err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev, |
| unsigned long id) |
| { |
| struct tegra_mc *mc = reset_to_mc(rcdev); |
| const struct tegra_mc_reset_ops *rst_ops; |
| const struct tegra_mc_reset *rst; |
| int err; |
| |
| rst = tegra_mc_reset_find(mc, id); |
| if (!rst) |
| return -ENODEV; |
| |
| rst_ops = mc->soc->reset_ops; |
| if (!rst_ops) |
| return -ENODEV; |
| |
| if (rst_ops->hotreset_deassert) { |
| /* take out client from hot reset */ |
| err = rst_ops->hotreset_deassert(mc, rst); |
| if (err) { |
| dev_err(mc->dev, "failed to deassert hot reset %s: %d\n", |
| rst->name, err); |
| return err; |
| } |
| } |
| |
| if (rst_ops->unblock_dma) { |
| /* allow new DMA requests to proceed to arbitration */ |
| err = rst_ops->unblock_dma(mc, rst); |
| if (err) { |
| dev_err(mc->dev, "failed to unblock %s DMA : %d\n", |
| rst->name, err); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev, |
| unsigned long id) |
| { |
| struct tegra_mc *mc = reset_to_mc(rcdev); |
| const struct tegra_mc_reset_ops *rst_ops; |
| const struct tegra_mc_reset *rst; |
| |
| rst = tegra_mc_reset_find(mc, id); |
| if (!rst) |
| return -ENODEV; |
| |
| rst_ops = mc->soc->reset_ops; |
| if (!rst_ops) |
| return -ENODEV; |
| |
| return rst_ops->reset_status(mc, rst); |
| } |
| |
| static const struct reset_control_ops tegra_mc_reset_ops = { |
| .assert = tegra_mc_hotreset_assert, |
| .deassert = tegra_mc_hotreset_deassert, |
| .status = tegra_mc_hotreset_status, |
| }; |
| |
| static int tegra_mc_reset_setup(struct tegra_mc *mc) |
| { |
| int err; |
| |
| mc->reset.ops = &tegra_mc_reset_ops; |
| mc->reset.owner = THIS_MODULE; |
| mc->reset.of_node = mc->dev->of_node; |
| mc->reset.of_reset_n_cells = 1; |
| mc->reset.nr_resets = mc->soc->num_resets; |
| |
| err = reset_controller_register(&mc->reset); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc) |
| { |
| unsigned long long tick; |
| unsigned int i; |
| u32 value; |
| |
| /* compute the number of MC clock cycles per tick */ |
| tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk); |
| do_div(tick, NSEC_PER_SEC); |
| |
| value = mc_readl(mc, MC_EMEM_ARB_CFG); |
| value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK; |
| value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick); |
| mc_writel(mc, value, MC_EMEM_ARB_CFG); |
| |
| /* write latency allowance defaults */ |
| for (i = 0; i < mc->soc->num_clients; i++) { |
| const struct tegra_mc_la *la = &mc->soc->clients[i].la; |
| u32 value; |
| |
| value = mc_readl(mc, la->reg); |
| value &= ~(la->mask << la->shift); |
| value |= (la->def & la->mask) << la->shift; |
| mc_writel(mc, value, la->reg); |
| } |
| |
| /* latch new values */ |
| mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); |
| |
| return 0; |
| } |
| |
| int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate) |
| { |
| unsigned int i; |
| struct tegra_mc_timing *timing = NULL; |
| |
| for (i = 0; i < mc->num_timings; i++) { |
| if (mc->timings[i].rate == rate) { |
| timing = &mc->timings[i]; |
| break; |
| } |
| } |
| |
| if (!timing) { |
| dev_err(mc->dev, "no memory timing registered for rate %lu\n", |
| rate); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < mc->soc->num_emem_regs; ++i) |
| mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration); |
| |
| unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc) |
| { |
| u8 dram_count; |
| |
| dram_count = mc_readl(mc, MC_EMEM_ADR_CFG); |
| dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV; |
| dram_count++; |
| |
| return dram_count; |
| } |
| EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count); |
| |
| static int load_one_timing(struct tegra_mc *mc, |
| struct tegra_mc_timing *timing, |
| struct device_node *node) |
| { |
| int err; |
| u32 tmp; |
| |
| err = of_property_read_u32(node, "clock-frequency", &tmp); |
| if (err) { |
| dev_err(mc->dev, |
| "timing %pOFn: failed to read rate\n", node); |
| return err; |
| } |
| |
| timing->rate = tmp; |
| timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs, |
| sizeof(u32), GFP_KERNEL); |
| if (!timing->emem_data) |
| return -ENOMEM; |
| |
| err = of_property_read_u32_array(node, "nvidia,emem-configuration", |
| timing->emem_data, |
| mc->soc->num_emem_regs); |
| if (err) { |
| dev_err(mc->dev, |
| "timing %pOFn: failed to read EMEM configuration\n", |
| node); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int load_timings(struct tegra_mc *mc, struct device_node *node) |
| { |
| struct device_node *child; |
| struct tegra_mc_timing *timing; |
| int child_count = of_get_child_count(node); |
| int i = 0, err; |
| |
| mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing), |
| GFP_KERNEL); |
| if (!mc->timings) |
| return -ENOMEM; |
| |
| mc->num_timings = child_count; |
| |
| for_each_child_of_node(node, child) { |
| timing = &mc->timings[i++]; |
| |
| err = load_one_timing(mc, timing, child); |
| if (err) { |
| of_node_put(child); |
| return err; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_mc_setup_timings(struct tegra_mc *mc) |
| { |
| struct device_node *node; |
| u32 ram_code, node_ram_code; |
| int err; |
| |
| ram_code = tegra_read_ram_code(); |
| |
| mc->num_timings = 0; |
| |
| for_each_child_of_node(mc->dev->of_node, node) { |
| err = of_property_read_u32(node, "nvidia,ram-code", |
| &node_ram_code); |
| if (err || (node_ram_code != ram_code)) |
| continue; |
| |
| err = load_timings(mc, node); |
| of_node_put(node); |
| if (err) |
| return err; |
| break; |
| } |
| |
| if (mc->num_timings == 0) |
| dev_warn(mc->dev, |
| "no memory timings for RAM code %u registered\n", |
| ram_code); |
| |
| return 0; |
| } |
| |
| static const char *const status_names[32] = { |
| [ 1] = "External interrupt", |
| [ 6] = "EMEM address decode error", |
| [ 7] = "GART page fault", |
| [ 8] = "Security violation", |
| [ 9] = "EMEM arbitration error", |
| [10] = "Page fault", |
| [11] = "Invalid APB ASID update", |
| [12] = "VPR violation", |
| [13] = "Secure carveout violation", |
| [16] = "MTS carveout violation", |
| }; |
| |
| static const char *const error_names[8] = { |
| [2] = "EMEM decode error", |
| [3] = "TrustZone violation", |
| [4] = "Carveout violation", |
| [6] = "SMMU translation error", |
| }; |
| |
| static irqreturn_t tegra_mc_irq(int irq, void *data) |
| { |
| struct tegra_mc *mc = data; |
| unsigned long status; |
| unsigned int bit; |
| |
| /* mask all interrupts to avoid flooding */ |
| status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; |
| if (!status) |
| return IRQ_NONE; |
| |
| for_each_set_bit(bit, &status, 32) { |
| const char *error = status_names[bit] ?: "unknown"; |
| const char *client = "unknown", *desc; |
| const char *direction, *secure; |
| phys_addr_t addr = 0; |
| unsigned int i; |
| char perm[7]; |
| u8 id, type; |
| u32 value; |
| |
| value = mc_readl(mc, MC_ERR_STATUS); |
| |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (mc->soc->num_address_bits > 32) { |
| addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) & |
| MC_ERR_STATUS_ADR_HI_MASK); |
| addr <<= 32; |
| } |
| #endif |
| |
| if (value & MC_ERR_STATUS_RW) |
| direction = "write"; |
| else |
| direction = "read"; |
| |
| if (value & MC_ERR_STATUS_SECURITY) |
| secure = "secure "; |
| else |
| secure = ""; |
| |
| id = value & mc->soc->client_id_mask; |
| |
| for (i = 0; i < mc->soc->num_clients; i++) { |
| if (mc->soc->clients[i].id == id) { |
| client = mc->soc->clients[i].name; |
| break; |
| } |
| } |
| |
| type = (value & MC_ERR_STATUS_TYPE_MASK) >> |
| MC_ERR_STATUS_TYPE_SHIFT; |
| desc = error_names[type]; |
| |
| switch (value & MC_ERR_STATUS_TYPE_MASK) { |
| case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE: |
| perm[0] = ' '; |
| perm[1] = '['; |
| |
| if (value & MC_ERR_STATUS_READABLE) |
| perm[2] = 'R'; |
| else |
| perm[2] = '-'; |
| |
| if (value & MC_ERR_STATUS_WRITABLE) |
| perm[3] = 'W'; |
| else |
| perm[3] = '-'; |
| |
| if (value & MC_ERR_STATUS_NONSECURE) |
| perm[4] = '-'; |
| else |
| perm[4] = 'S'; |
| |
| perm[5] = ']'; |
| perm[6] = '\0'; |
| break; |
| |
| default: |
| perm[0] = '\0'; |
| break; |
| } |
| |
| value = mc_readl(mc, MC_ERR_ADR); |
| addr |= value; |
| |
| dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n", |
| client, secure, direction, &addr, error, |
| desc, perm); |
| } |
| |
| /* clear interrupts */ |
| mc_writel(mc, status, MC_INTSTATUS); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data) |
| { |
| struct tegra_mc *mc = data; |
| unsigned long status; |
| unsigned int bit; |
| |
| /* mask all interrupts to avoid flooding */ |
| status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; |
| if (!status) |
| return IRQ_NONE; |
| |
| for_each_set_bit(bit, &status, 32) { |
| const char *direction = "read", *secure = ""; |
| const char *error = status_names[bit]; |
| const char *client, *desc; |
| phys_addr_t addr; |
| u32 value, reg; |
| u8 id, type; |
| |
| switch (BIT(bit)) { |
| case MC_INT_DECERR_EMEM: |
| reg = MC_DECERR_EMEM_OTHERS_STATUS; |
| value = mc_readl(mc, reg); |
| |
| id = value & mc->soc->client_id_mask; |
| desc = error_names[2]; |
| |
| if (value & BIT(31)) |
| direction = "write"; |
| break; |
| |
| case MC_INT_INVALID_GART_PAGE: |
| reg = MC_GART_ERROR_REQ; |
| value = mc_readl(mc, reg); |
| |
| id = (value >> 1) & mc->soc->client_id_mask; |
| desc = error_names[2]; |
| |
| if (value & BIT(0)) |
| direction = "write"; |
| break; |
| |
| case MC_INT_SECURITY_VIOLATION: |
| reg = MC_SECURITY_VIOLATION_STATUS; |
| value = mc_readl(mc, reg); |
| |
| id = value & mc->soc->client_id_mask; |
| type = (value & BIT(30)) ? 4 : 3; |
| desc = error_names[type]; |
| secure = "secure "; |
| |
| if (value & BIT(31)) |
| direction = "write"; |
| break; |
| |
| default: |
| continue; |
| } |
| |
| client = mc->soc->clients[id].name; |
| addr = mc_readl(mc, reg + sizeof(u32)); |
| |
| dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n", |
| client, secure, direction, &addr, error, |
| desc); |
| } |
| |
| /* clear interrupts */ |
| mc_writel(mc, status, MC_INTSTATUS); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Memory Controller (MC) has few Memory Clients that are issuing memory |
| * bandwidth allocation requests to the MC interconnect provider. The MC |
| * provider aggregates the requests and then sends the aggregated request |
| * up to the External Memory Controller (EMC) interconnect provider which |
| * re-configures hardware interface to External Memory (EMEM) in accordance |
| * to the required bandwidth. Each MC interconnect node represents an |
| * individual Memory Client. |
| * |
| * Memory interconnect topology: |
| * |
| * +----+ |
| * +--------+ | | |
| * | TEXSRD +--->+ | |
| * +--------+ | | |
| * | | +-----+ +------+ |
| * ... | MC +--->+ EMC +--->+ EMEM | |
| * | | +-----+ +------+ |
| * +--------+ | | |
| * | DISP.. +--->+ | |
| * +--------+ | | |
| * +----+ |
| */ |
| static int tegra_mc_interconnect_setup(struct tegra_mc *mc) |
| { |
| struct icc_node *node; |
| unsigned int i; |
| int err; |
| |
| /* older device-trees don't have interconnect properties */ |
| if (!device_property_present(mc->dev, "#interconnect-cells") || |
| !mc->soc->icc_ops) |
| return 0; |
| |
| mc->provider.dev = mc->dev; |
| mc->provider.data = &mc->provider; |
| mc->provider.set = mc->soc->icc_ops->set; |
| mc->provider.aggregate = mc->soc->icc_ops->aggregate; |
| mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended; |
| |
| err = icc_provider_add(&mc->provider); |
| if (err) |
| return err; |
| |
| /* create Memory Controller node */ |
| node = icc_node_create(TEGRA_ICC_MC); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto del_provider; |
| } |
| |
| node->name = "Memory Controller"; |
| icc_node_add(node, &mc->provider); |
| |
| /* link Memory Controller to External Memory Controller */ |
| err = icc_link_create(node, TEGRA_ICC_EMC); |
| if (err) |
| goto remove_nodes; |
| |
| for (i = 0; i < mc->soc->num_clients; i++) { |
| /* create MC client node */ |
| node = icc_node_create(mc->soc->clients[i].id); |
| if (IS_ERR(node)) { |
| err = PTR_ERR(node); |
| goto remove_nodes; |
| } |
| |
| node->name = mc->soc->clients[i].name; |
| icc_node_add(node, &mc->provider); |
| |
| /* link Memory Client to Memory Controller */ |
| err = icc_link_create(node, TEGRA_ICC_MC); |
| if (err) |
| goto remove_nodes; |
| } |
| |
| /* |
| * MC driver is registered too early, so early that generic driver |
| * syncing doesn't work for the MC. But it doesn't really matter |
| * since syncing works for the EMC drivers, hence we can sync the |
| * MC driver by ourselves and then EMC will complete syncing of |
| * the whole ICC state. |
| */ |
| icc_sync_state(mc->dev); |
| |
| return 0; |
| |
| remove_nodes: |
| icc_nodes_remove(&mc->provider); |
| del_provider: |
| icc_provider_del(&mc->provider); |
| |
| return err; |
| } |
| |
| static int tegra_mc_probe(struct platform_device *pdev) |
| { |
| struct resource *res; |
| struct tegra_mc *mc; |
| void *isr; |
| u64 mask; |
| int err; |
| |
| mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); |
| if (!mc) |
| return -ENOMEM; |
| |
| platform_set_drvdata(pdev, mc); |
| spin_lock_init(&mc->lock); |
| mc->soc = of_device_get_match_data(&pdev->dev); |
| mc->dev = &pdev->dev; |
| |
| mask = DMA_BIT_MASK(mc->soc->num_address_bits); |
| |
| err = dma_coerce_mask_and_coherent(&pdev->dev, mask); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); |
| return err; |
| } |
| |
| /* length of MC tick in nanoseconds */ |
| mc->tick = 30; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| mc->regs = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(mc->regs)) |
| return PTR_ERR(mc->regs); |
| |
| mc->clk = devm_clk_get(&pdev->dev, "mc"); |
| if (IS_ERR(mc->clk)) { |
| dev_err(&pdev->dev, "failed to get MC clock: %ld\n", |
| PTR_ERR(mc->clk)); |
| return PTR_ERR(mc->clk); |
| } |
| |
| #ifdef CONFIG_ARCH_TEGRA_2x_SOC |
| if (mc->soc == &tegra20_mc_soc) { |
| isr = tegra20_mc_irq; |
| } else |
| #endif |
| { |
| /* ensure that debug features are disabled */ |
| mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG); |
| |
| err = tegra_mc_setup_latency_allowance(mc); |
| if (err < 0) { |
| dev_err(&pdev->dev, |
| "failed to setup latency allowance: %d\n", |
| err); |
| return err; |
| } |
| |
| isr = tegra_mc_irq; |
| |
| err = tegra_mc_setup_timings(mc); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to setup timings: %d\n", |
| err); |
| return err; |
| } |
| } |
| |
| mc->irq = platform_get_irq(pdev, 0); |
| if (mc->irq < 0) |
| return mc->irq; |
| |
| WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n"); |
| |
| mc_writel(mc, mc->soc->intmask, MC_INTMASK); |
| |
| err = devm_request_irq(&pdev->dev, mc->irq, isr, 0, |
| dev_name(&pdev->dev), mc); |
| if (err < 0) { |
| dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq, |
| err); |
| return err; |
| } |
| |
| err = tegra_mc_reset_setup(mc); |
| if (err < 0) |
| dev_err(&pdev->dev, "failed to register reset controller: %d\n", |
| err); |
| |
| err = tegra_mc_interconnect_setup(mc); |
| if (err < 0) |
| dev_err(&pdev->dev, "failed to initialize interconnect: %d\n", |
| err); |
| |
| if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) { |
| mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc); |
| if (IS_ERR(mc->smmu)) { |
| dev_err(&pdev->dev, "failed to probe SMMU: %ld\n", |
| PTR_ERR(mc->smmu)); |
| mc->smmu = NULL; |
| } |
| } |
| |
| if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) { |
| mc->gart = tegra_gart_probe(&pdev->dev, mc); |
| if (IS_ERR(mc->gart)) { |
| dev_err(&pdev->dev, "failed to probe GART: %ld\n", |
| PTR_ERR(mc->gart)); |
| mc->gart = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_mc_suspend(struct device *dev) |
| { |
| struct tegra_mc *mc = dev_get_drvdata(dev); |
| int err; |
| |
| if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) { |
| err = tegra_gart_suspend(mc->gart); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int tegra_mc_resume(struct device *dev) |
| { |
| struct tegra_mc *mc = dev_get_drvdata(dev); |
| int err; |
| |
| if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) { |
| err = tegra_gart_resume(mc->gart); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops tegra_mc_pm_ops = { |
| .suspend = tegra_mc_suspend, |
| .resume = tegra_mc_resume, |
| }; |
| |
| static struct platform_driver tegra_mc_driver = { |
| .driver = { |
| .name = "tegra-mc", |
| .of_match_table = tegra_mc_of_match, |
| .pm = &tegra_mc_pm_ops, |
| .suppress_bind_attrs = true, |
| }, |
| .prevent_deferred_probe = true, |
| .probe = tegra_mc_probe, |
| }; |
| |
| static int tegra_mc_init(void) |
| { |
| return platform_driver_register(&tegra_mc_driver); |
| } |
| arch_initcall(tegra_mc_init); |
| |
| MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>"); |
| MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver"); |
| MODULE_LICENSE("GPL v2"); |