| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * linux/arch/parisc/mm/init.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright 1999 SuSE GmbH |
| * changed by Philipp Rumpf |
| * Copyright 1999 Philipp Rumpf (prumpf@tux.org) |
| * Copyright 2004 Randolph Chung (tausq@debian.org) |
| * Copyright 2006-2007 Helge Deller (deller@gmx.de) |
| * |
| */ |
| |
| |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/gfp.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/initrd.h> |
| #include <linux/swap.h> |
| #include <linux/unistd.h> |
| #include <linux/nodemask.h> /* for node_online_map */ |
| #include <linux/pagemap.h> /* for release_pages */ |
| #include <linux/compat.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlb.h> |
| #include <asm/pdc_chassis.h> |
| #include <asm/mmzone.h> |
| #include <asm/sections.h> |
| #include <asm/msgbuf.h> |
| #include <asm/sparsemem.h> |
| |
| extern int data_start; |
| extern void parisc_kernel_start(void); /* Kernel entry point in head.S */ |
| |
| #if CONFIG_PGTABLE_LEVELS == 3 |
| /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout |
| * with the first pmd adjacent to the pgd and below it. gcc doesn't actually |
| * guarantee that global objects will be laid out in memory in the same order |
| * as the order of declaration, so put these in different sections and use |
| * the linker script to order them. */ |
| pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE))); |
| #endif |
| |
| pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE))); |
| pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE))); |
| |
| static struct resource data_resource = { |
| .name = "Kernel data", |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
| }; |
| |
| static struct resource code_resource = { |
| .name = "Kernel code", |
| .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
| }; |
| |
| static struct resource pdcdata_resource = { |
| .name = "PDC data (Page Zero)", |
| .start = 0, |
| .end = 0x9ff, |
| .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
| }; |
| |
| static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init; |
| |
| /* The following array is initialized from the firmware specific |
| * information retrieved in kernel/inventory.c. |
| */ |
| |
| physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata; |
| int npmem_ranges __initdata; |
| |
| #ifdef CONFIG_64BIT |
| #define MAX_MEM (1UL << MAX_PHYSMEM_BITS) |
| #else /* !CONFIG_64BIT */ |
| #define MAX_MEM (3584U*1024U*1024U) |
| #endif /* !CONFIG_64BIT */ |
| |
| static unsigned long mem_limit __read_mostly = MAX_MEM; |
| |
| static void __init mem_limit_func(void) |
| { |
| char *cp, *end; |
| unsigned long limit; |
| |
| /* We need this before __setup() functions are called */ |
| |
| limit = MAX_MEM; |
| for (cp = boot_command_line; *cp; ) { |
| if (memcmp(cp, "mem=", 4) == 0) { |
| cp += 4; |
| limit = memparse(cp, &end); |
| if (end != cp) |
| break; |
| cp = end; |
| } else { |
| while (*cp != ' ' && *cp) |
| ++cp; |
| while (*cp == ' ') |
| ++cp; |
| } |
| } |
| |
| if (limit < mem_limit) |
| mem_limit = limit; |
| } |
| |
| #define MAX_GAP (0x40000000UL >> PAGE_SHIFT) |
| |
| static void __init setup_bootmem(void) |
| { |
| unsigned long mem_max; |
| #ifndef CONFIG_SPARSEMEM |
| physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1]; |
| int npmem_holes; |
| #endif |
| int i, sysram_resource_count; |
| |
| disable_sr_hashing(); /* Turn off space register hashing */ |
| |
| /* |
| * Sort the ranges. Since the number of ranges is typically |
| * small, and performance is not an issue here, just do |
| * a simple insertion sort. |
| */ |
| |
| for (i = 1; i < npmem_ranges; i++) { |
| int j; |
| |
| for (j = i; j > 0; j--) { |
| physmem_range_t tmp; |
| |
| if (pmem_ranges[j-1].start_pfn < |
| pmem_ranges[j].start_pfn) { |
| |
| break; |
| } |
| tmp = pmem_ranges[j-1]; |
| pmem_ranges[j-1] = pmem_ranges[j]; |
| pmem_ranges[j] = tmp; |
| } |
| } |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* |
| * Throw out ranges that are too far apart (controlled by |
| * MAX_GAP). |
| */ |
| |
| for (i = 1; i < npmem_ranges; i++) { |
| if (pmem_ranges[i].start_pfn - |
| (pmem_ranges[i-1].start_pfn + |
| pmem_ranges[i-1].pages) > MAX_GAP) { |
| npmem_ranges = i; |
| printk("Large gap in memory detected (%ld pages). " |
| "Consider turning on CONFIG_SPARSEMEM\n", |
| pmem_ranges[i].start_pfn - |
| (pmem_ranges[i-1].start_pfn + |
| pmem_ranges[i-1].pages)); |
| break; |
| } |
| } |
| #endif |
| |
| /* Print the memory ranges */ |
| pr_info("Memory Ranges:\n"); |
| |
| for (i = 0; i < npmem_ranges; i++) { |
| struct resource *res = &sysram_resources[i]; |
| unsigned long start; |
| unsigned long size; |
| |
| size = (pmem_ranges[i].pages << PAGE_SHIFT); |
| start = (pmem_ranges[i].start_pfn << PAGE_SHIFT); |
| pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n", |
| i, start, start + (size - 1), size >> 20); |
| |
| /* request memory resource */ |
| res->name = "System RAM"; |
| res->start = start; |
| res->end = start + size - 1; |
| res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; |
| request_resource(&iomem_resource, res); |
| } |
| |
| sysram_resource_count = npmem_ranges; |
| |
| /* |
| * For 32 bit kernels we limit the amount of memory we can |
| * support, in order to preserve enough kernel address space |
| * for other purposes. For 64 bit kernels we don't normally |
| * limit the memory, but this mechanism can be used to |
| * artificially limit the amount of memory (and it is written |
| * to work with multiple memory ranges). |
| */ |
| |
| mem_limit_func(); /* check for "mem=" argument */ |
| |
| mem_max = 0; |
| for (i = 0; i < npmem_ranges; i++) { |
| unsigned long rsize; |
| |
| rsize = pmem_ranges[i].pages << PAGE_SHIFT; |
| if ((mem_max + rsize) > mem_limit) { |
| printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20); |
| if (mem_max == mem_limit) |
| npmem_ranges = i; |
| else { |
| pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT) |
| - (mem_max >> PAGE_SHIFT); |
| npmem_ranges = i + 1; |
| mem_max = mem_limit; |
| } |
| break; |
| } |
| mem_max += rsize; |
| } |
| |
| printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20); |
| |
| #ifndef CONFIG_SPARSEMEM |
| /* Merge the ranges, keeping track of the holes */ |
| { |
| unsigned long end_pfn; |
| unsigned long hole_pages; |
| |
| npmem_holes = 0; |
| end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages; |
| for (i = 1; i < npmem_ranges; i++) { |
| |
| hole_pages = pmem_ranges[i].start_pfn - end_pfn; |
| if (hole_pages) { |
| pmem_holes[npmem_holes].start_pfn = end_pfn; |
| pmem_holes[npmem_holes++].pages = hole_pages; |
| end_pfn += hole_pages; |
| } |
| end_pfn += pmem_ranges[i].pages; |
| } |
| |
| pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn; |
| npmem_ranges = 1; |
| } |
| #endif |
| |
| /* |
| * Initialize and free the full range of memory in each range. |
| */ |
| |
| max_pfn = 0; |
| for (i = 0; i < npmem_ranges; i++) { |
| unsigned long start_pfn; |
| unsigned long npages; |
| unsigned long start; |
| unsigned long size; |
| |
| start_pfn = pmem_ranges[i].start_pfn; |
| npages = pmem_ranges[i].pages; |
| |
| start = start_pfn << PAGE_SHIFT; |
| size = npages << PAGE_SHIFT; |
| |
| /* add system RAM memblock */ |
| memblock_add(start, size); |
| |
| if ((start_pfn + npages) > max_pfn) |
| max_pfn = start_pfn + npages; |
| } |
| |
| /* |
| * We can't use memblock top-down allocations because we only |
| * created the initial mapping up to KERNEL_INITIAL_SIZE in |
| * the assembly bootup code. |
| */ |
| memblock_set_bottom_up(true); |
| |
| /* IOMMU is always used to access "high mem" on those boxes |
| * that can support enough mem that a PCI device couldn't |
| * directly DMA to any physical addresses. |
| * ISA DMA support will need to revisit this. |
| */ |
| max_low_pfn = max_pfn; |
| |
| /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */ |
| |
| #define PDC_CONSOLE_IO_IODC_SIZE 32768 |
| |
| memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free + |
| PDC_CONSOLE_IO_IODC_SIZE)); |
| memblock_reserve(__pa(KERNEL_BINARY_TEXT_START), |
| (unsigned long)(_end - KERNEL_BINARY_TEXT_START)); |
| |
| #ifndef CONFIG_SPARSEMEM |
| |
| /* reserve the holes */ |
| |
| for (i = 0; i < npmem_holes; i++) { |
| memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT), |
| (pmem_holes[i].pages << PAGE_SHIFT)); |
| } |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (initrd_start) { |
| printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end); |
| if (__pa(initrd_start) < mem_max) { |
| unsigned long initrd_reserve; |
| |
| if (__pa(initrd_end) > mem_max) { |
| initrd_reserve = mem_max - __pa(initrd_start); |
| } else { |
| initrd_reserve = initrd_end - initrd_start; |
| } |
| initrd_below_start_ok = 1; |
| printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max); |
| |
| memblock_reserve(__pa(initrd_start), initrd_reserve); |
| } |
| } |
| #endif |
| |
| data_resource.start = virt_to_phys(&data_start); |
| data_resource.end = virt_to_phys(_end) - 1; |
| code_resource.start = virt_to_phys(_text); |
| code_resource.end = virt_to_phys(&data_start)-1; |
| |
| /* We don't know which region the kernel will be in, so try |
| * all of them. |
| */ |
| for (i = 0; i < sysram_resource_count; i++) { |
| struct resource *res = &sysram_resources[i]; |
| request_resource(res, &code_resource); |
| request_resource(res, &data_resource); |
| } |
| request_resource(&sysram_resources[0], &pdcdata_resource); |
| |
| /* Initialize Page Deallocation Table (PDT) and check for bad memory. */ |
| pdc_pdt_init(); |
| |
| memblock_allow_resize(); |
| memblock_dump_all(); |
| } |
| |
| static bool kernel_set_to_readonly; |
| |
| static void __init map_pages(unsigned long start_vaddr, |
| unsigned long start_paddr, unsigned long size, |
| pgprot_t pgprot, int force) |
| { |
| pmd_t *pmd; |
| pte_t *pg_table; |
| unsigned long end_paddr; |
| unsigned long start_pmd; |
| unsigned long start_pte; |
| unsigned long tmp1; |
| unsigned long tmp2; |
| unsigned long address; |
| unsigned long vaddr; |
| unsigned long ro_start; |
| unsigned long ro_end; |
| unsigned long kernel_start, kernel_end; |
| |
| ro_start = __pa((unsigned long)_text); |
| ro_end = __pa((unsigned long)&data_start); |
| kernel_start = __pa((unsigned long)&__init_begin); |
| kernel_end = __pa((unsigned long)&_end); |
| |
| end_paddr = start_paddr + size; |
| |
| /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */ |
| start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1)); |
| start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)); |
| |
| address = start_paddr; |
| vaddr = start_vaddr; |
| while (address < end_paddr) { |
| pgd_t *pgd = pgd_offset_k(vaddr); |
| p4d_t *p4d = p4d_offset(pgd, vaddr); |
| pud_t *pud = pud_offset(p4d, vaddr); |
| |
| #if CONFIG_PGTABLE_LEVELS == 3 |
| if (pud_none(*pud)) { |
| pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER, |
| PAGE_SIZE << PMD_ORDER); |
| if (!pmd) |
| panic("pmd allocation failed.\n"); |
| pud_populate(NULL, pud, pmd); |
| } |
| #endif |
| |
| pmd = pmd_offset(pud, vaddr); |
| for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) { |
| if (pmd_none(*pmd)) { |
| pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE); |
| if (!pg_table) |
| panic("page table allocation failed\n"); |
| pmd_populate_kernel(NULL, pmd, pg_table); |
| } |
| |
| pg_table = pte_offset_kernel(pmd, vaddr); |
| for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) { |
| pte_t pte; |
| pgprot_t prot; |
| bool huge = false; |
| |
| if (force) { |
| prot = pgprot; |
| } else if (address < kernel_start || address >= kernel_end) { |
| /* outside kernel memory */ |
| prot = PAGE_KERNEL; |
| } else if (!kernel_set_to_readonly) { |
| /* still initializing, allow writing to RO memory */ |
| prot = PAGE_KERNEL_RWX; |
| huge = true; |
| } else if (address >= ro_start) { |
| /* Code (ro) and Data areas */ |
| prot = (address < ro_end) ? |
| PAGE_KERNEL_EXEC : PAGE_KERNEL; |
| huge = true; |
| } else { |
| prot = PAGE_KERNEL; |
| } |
| |
| pte = __mk_pte(address, prot); |
| if (huge) |
| pte = pte_mkhuge(pte); |
| |
| if (address >= end_paddr) |
| break; |
| |
| set_pte(pg_table, pte); |
| |
| address += PAGE_SIZE; |
| vaddr += PAGE_SIZE; |
| } |
| start_pte = 0; |
| |
| if (address >= end_paddr) |
| break; |
| } |
| start_pmd = 0; |
| } |
| } |
| |
| void __init set_kernel_text_rw(int enable_read_write) |
| { |
| unsigned long start = (unsigned long) __init_begin; |
| unsigned long end = (unsigned long) &data_start; |
| |
| map_pages(start, __pa(start), end-start, |
| PAGE_KERNEL_RWX, enable_read_write ? 1:0); |
| |
| /* force the kernel to see the new page table entries */ |
| flush_cache_all(); |
| flush_tlb_all(); |
| } |
| |
| void __ref free_initmem(void) |
| { |
| unsigned long init_begin = (unsigned long)__init_begin; |
| unsigned long init_end = (unsigned long)__init_end; |
| unsigned long kernel_end = (unsigned long)&_end; |
| |
| /* Remap kernel text and data, but do not touch init section yet. */ |
| kernel_set_to_readonly = true; |
| map_pages(init_end, __pa(init_end), kernel_end - init_end, |
| PAGE_KERNEL, 0); |
| |
| /* The init text pages are marked R-X. We have to |
| * flush the icache and mark them RW- |
| * |
| * This is tricky, because map_pages is in the init section. |
| * Do a dummy remap of the data section first (the data |
| * section is already PAGE_KERNEL) to pull in the TLB entries |
| * for map_kernel */ |
| map_pages(init_begin, __pa(init_begin), init_end - init_begin, |
| PAGE_KERNEL_RWX, 1); |
| /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute |
| * map_pages */ |
| map_pages(init_begin, __pa(init_begin), init_end - init_begin, |
| PAGE_KERNEL, 1); |
| |
| /* force the kernel to see the new TLB entries */ |
| __flush_tlb_range(0, init_begin, kernel_end); |
| |
| /* finally dump all the instructions which were cached, since the |
| * pages are no-longer executable */ |
| flush_icache_range(init_begin, init_end); |
| |
| free_initmem_default(POISON_FREE_INITMEM); |
| |
| /* set up a new led state on systems shipped LED State panel */ |
| pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE); |
| } |
| |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| void mark_rodata_ro(void) |
| { |
| /* rodata memory was already mapped with KERNEL_RO access rights by |
| pagetable_init() and map_pages(). No need to do additional stuff here */ |
| unsigned long roai_size = __end_ro_after_init - __start_ro_after_init; |
| |
| pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10); |
| } |
| #endif |
| |
| |
| /* |
| * Just an arbitrary offset to serve as a "hole" between mapping areas |
| * (between top of physical memory and a potential pcxl dma mapping |
| * area, and below the vmalloc mapping area). |
| * |
| * The current 32K value just means that there will be a 32K "hole" |
| * between mapping areas. That means that any out-of-bounds memory |
| * accesses will hopefully be caught. The vmalloc() routines leaves |
| * a hole of 4kB between each vmalloced area for the same reason. |
| */ |
| |
| /* Leave room for gateway page expansion */ |
| #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE |
| #error KERNEL_MAP_START is in gateway reserved region |
| #endif |
| #define MAP_START (KERNEL_MAP_START) |
| |
| #define VM_MAP_OFFSET (32*1024) |
| #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \ |
| & ~(VM_MAP_OFFSET-1))) |
| |
| void *parisc_vmalloc_start __ro_after_init; |
| EXPORT_SYMBOL(parisc_vmalloc_start); |
| |
| #ifdef CONFIG_PA11 |
| unsigned long pcxl_dma_start __ro_after_init; |
| #endif |
| |
| void __init mem_init(void) |
| { |
| /* Do sanity checks on IPC (compat) structures */ |
| BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48); |
| #ifndef CONFIG_64BIT |
| BUILD_BUG_ON(sizeof(struct semid64_ds) != 80); |
| BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104); |
| BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104); |
| #endif |
| #ifdef CONFIG_COMPAT |
| BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm)); |
| BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80); |
| BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104); |
| BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104); |
| #endif |
| |
| /* Do sanity checks on page table constants */ |
| BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t)); |
| BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t)); |
| BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t)); |
| BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD |
| > BITS_PER_LONG); |
| |
| high_memory = __va((max_pfn << PAGE_SHIFT)); |
| set_max_mapnr(max_low_pfn); |
| memblock_free_all(); |
| |
| #ifdef CONFIG_PA11 |
| if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) { |
| pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START); |
| parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start |
| + PCXL_DMA_MAP_SIZE); |
| } else |
| #endif |
| parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START); |
| |
| mem_init_print_info(NULL); |
| |
| #if 0 |
| /* |
| * Do not expose the virtual kernel memory layout to userspace. |
| * But keep code for debugging purposes. |
| */ |
| printk("virtual kernel memory layout:\n" |
| " vmalloc : 0x%px - 0x%px (%4ld MB)\n" |
| " fixmap : 0x%px - 0x%px (%4ld kB)\n" |
| " memory : 0x%px - 0x%px (%4ld MB)\n" |
| " .init : 0x%px - 0x%px (%4ld kB)\n" |
| " .data : 0x%px - 0x%px (%4ld kB)\n" |
| " .text : 0x%px - 0x%px (%4ld kB)\n", |
| |
| (void*)VMALLOC_START, (void*)VMALLOC_END, |
| (VMALLOC_END - VMALLOC_START) >> 20, |
| |
| (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE), |
| (unsigned long)(FIXMAP_SIZE / 1024), |
| |
| __va(0), high_memory, |
| ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20, |
| |
| __init_begin, __init_end, |
| ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10, |
| |
| _etext, _edata, |
| ((unsigned long)_edata - (unsigned long)_etext) >> 10, |
| |
| _text, _etext, |
| ((unsigned long)_etext - (unsigned long)_text) >> 10); |
| #endif |
| } |
| |
| unsigned long *empty_zero_page __ro_after_init; |
| EXPORT_SYMBOL(empty_zero_page); |
| |
| /* |
| * pagetable_init() sets up the page tables |
| * |
| * Note that gateway_init() places the Linux gateway page at page 0. |
| * Since gateway pages cannot be dereferenced this has the desirable |
| * side effect of trapping those pesky NULL-reference errors in the |
| * kernel. |
| */ |
| static void __init pagetable_init(void) |
| { |
| int range; |
| |
| /* Map each physical memory range to its kernel vaddr */ |
| |
| for (range = 0; range < npmem_ranges; range++) { |
| unsigned long start_paddr; |
| unsigned long end_paddr; |
| unsigned long size; |
| |
| start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT; |
| size = pmem_ranges[range].pages << PAGE_SHIFT; |
| end_paddr = start_paddr + size; |
| |
| map_pages((unsigned long)__va(start_paddr), start_paddr, |
| size, PAGE_KERNEL, 0); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| if (initrd_end && initrd_end > mem_limit) { |
| printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end); |
| map_pages(initrd_start, __pa(initrd_start), |
| initrd_end - initrd_start, PAGE_KERNEL, 0); |
| } |
| #endif |
| |
| empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); |
| if (!empty_zero_page) |
| panic("zero page allocation failed.\n"); |
| |
| } |
| |
| static void __init gateway_init(void) |
| { |
| unsigned long linux_gateway_page_addr; |
| /* FIXME: This is 'const' in order to trick the compiler |
| into not treating it as DP-relative data. */ |
| extern void * const linux_gateway_page; |
| |
| linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK; |
| |
| /* |
| * Setup Linux Gateway page. |
| * |
| * The Linux gateway page will reside in kernel space (on virtual |
| * page 0), so it doesn't need to be aliased into user space. |
| */ |
| |
| map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page), |
| PAGE_SIZE, PAGE_GATEWAY, 1); |
| } |
| |
| static void __init parisc_bootmem_free(void) |
| { |
| unsigned long zones_size[MAX_NR_ZONES] = { 0, }; |
| unsigned long holes_size[MAX_NR_ZONES] = { 0, }; |
| unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0; |
| int i; |
| |
| for (i = 0; i < npmem_ranges; i++) { |
| unsigned long start = pmem_ranges[i].start_pfn; |
| unsigned long size = pmem_ranges[i].pages; |
| unsigned long end = start + size; |
| |
| if (mem_start_pfn > start) |
| mem_start_pfn = start; |
| if (mem_end_pfn < end) |
| mem_end_pfn = end; |
| mem_size_pfn += size; |
| } |
| |
| zones_size[0] = mem_end_pfn - mem_start_pfn; |
| holes_size[0] = zones_size[0] - mem_size_pfn; |
| |
| free_area_init_node(0, zones_size, mem_start_pfn, holes_size); |
| } |
| |
| void __init paging_init(void) |
| { |
| setup_bootmem(); |
| pagetable_init(); |
| gateway_init(); |
| flush_cache_all_local(); /* start with known state */ |
| flush_tlb_all_local(NULL); |
| |
| /* |
| * Mark all memblocks as present for sparsemem using |
| * memory_present() and then initialize sparsemem. |
| */ |
| memblocks_present(); |
| sparse_init(); |
| parisc_bootmem_free(); |
| } |
| |
| #ifdef CONFIG_PA20 |
| |
| /* |
| * Currently, all PA20 chips have 18 bit protection IDs, which is the |
| * limiting factor (space ids are 32 bits). |
| */ |
| |
| #define NR_SPACE_IDS 262144 |
| |
| #else |
| |
| /* |
| * Currently we have a one-to-one relationship between space IDs and |
| * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only |
| * support 15 bit protection IDs, so that is the limiting factor. |
| * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's |
| * probably not worth the effort for a special case here. |
| */ |
| |
| #define NR_SPACE_IDS 32768 |
| |
| #endif /* !CONFIG_PA20 */ |
| |
| #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2) |
| #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long))) |
| |
| static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */ |
| static unsigned long dirty_space_id[SID_ARRAY_SIZE]; |
| static unsigned long space_id_index; |
| static unsigned long free_space_ids = NR_SPACE_IDS - 1; |
| static unsigned long dirty_space_ids = 0; |
| |
| static DEFINE_SPINLOCK(sid_lock); |
| |
| unsigned long alloc_sid(void) |
| { |
| unsigned long index; |
| |
| spin_lock(&sid_lock); |
| |
| if (free_space_ids == 0) { |
| if (dirty_space_ids != 0) { |
| spin_unlock(&sid_lock); |
| flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */ |
| spin_lock(&sid_lock); |
| } |
| BUG_ON(free_space_ids == 0); |
| } |
| |
| free_space_ids--; |
| |
| index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index); |
| space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1))); |
| space_id_index = index; |
| |
| spin_unlock(&sid_lock); |
| |
| return index << SPACEID_SHIFT; |
| } |
| |
| void free_sid(unsigned long spaceid) |
| { |
| unsigned long index = spaceid >> SPACEID_SHIFT; |
| unsigned long *dirty_space_offset; |
| |
| dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG); |
| index &= (BITS_PER_LONG - 1); |
| |
| spin_lock(&sid_lock); |
| |
| BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */ |
| |
| *dirty_space_offset |= (1L << index); |
| dirty_space_ids++; |
| |
| spin_unlock(&sid_lock); |
| } |
| |
| |
| #ifdef CONFIG_SMP |
| static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array) |
| { |
| int i; |
| |
| /* NOTE: sid_lock must be held upon entry */ |
| |
| *ndirtyptr = dirty_space_ids; |
| if (dirty_space_ids != 0) { |
| for (i = 0; i < SID_ARRAY_SIZE; i++) { |
| dirty_array[i] = dirty_space_id[i]; |
| dirty_space_id[i] = 0; |
| } |
| dirty_space_ids = 0; |
| } |
| |
| return; |
| } |
| |
| static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array) |
| { |
| int i; |
| |
| /* NOTE: sid_lock must be held upon entry */ |
| |
| if (ndirty != 0) { |
| for (i = 0; i < SID_ARRAY_SIZE; i++) { |
| space_id[i] ^= dirty_array[i]; |
| } |
| |
| free_space_ids += ndirty; |
| space_id_index = 0; |
| } |
| } |
| |
| #else /* CONFIG_SMP */ |
| |
| static void recycle_sids(void) |
| { |
| int i; |
| |
| /* NOTE: sid_lock must be held upon entry */ |
| |
| if (dirty_space_ids != 0) { |
| for (i = 0; i < SID_ARRAY_SIZE; i++) { |
| space_id[i] ^= dirty_space_id[i]; |
| dirty_space_id[i] = 0; |
| } |
| |
| free_space_ids += dirty_space_ids; |
| dirty_space_ids = 0; |
| space_id_index = 0; |
| } |
| } |
| #endif |
| |
| /* |
| * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is |
| * purged, we can safely reuse the space ids that were released but |
| * not flushed from the tlb. |
| */ |
| |
| #ifdef CONFIG_SMP |
| |
| static unsigned long recycle_ndirty; |
| static unsigned long recycle_dirty_array[SID_ARRAY_SIZE]; |
| static unsigned int recycle_inuse; |
| |
| void flush_tlb_all(void) |
| { |
| int do_recycle; |
| |
| __inc_irq_stat(irq_tlb_count); |
| do_recycle = 0; |
| spin_lock(&sid_lock); |
| if (dirty_space_ids > RECYCLE_THRESHOLD) { |
| BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */ |
| get_dirty_sids(&recycle_ndirty,recycle_dirty_array); |
| recycle_inuse++; |
| do_recycle++; |
| } |
| spin_unlock(&sid_lock); |
| on_each_cpu(flush_tlb_all_local, NULL, 1); |
| if (do_recycle) { |
| spin_lock(&sid_lock); |
| recycle_sids(recycle_ndirty,recycle_dirty_array); |
| recycle_inuse = 0; |
| spin_unlock(&sid_lock); |
| } |
| } |
| #else |
| void flush_tlb_all(void) |
| { |
| __inc_irq_stat(irq_tlb_count); |
| spin_lock(&sid_lock); |
| flush_tlb_all_local(NULL); |
| recycle_sids(); |
| spin_unlock(&sid_lock); |
| } |
| #endif |