blob: 659b4a570d5b59bbe68facabce9fff131e8b2866 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
* Copyright 2016-2019 NXP
*
*/
#include <asm/cacheflush.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <soc/fsl/dpaa2-global.h>
#include "qbman-portal.h"
/* All QBMan command and result structures use this "valid bit" encoding */
#define QB_VALID_BIT ((u32)0x80)
/* QBMan portal management command codes */
#define QBMAN_MC_ACQUIRE 0x30
#define QBMAN_WQCHAN_CONFIGURE 0x46
/* CINH register offsets */
#define QBMAN_CINH_SWP_EQCR_PI 0x800
#define QBMAN_CINH_SWP_EQCR_CI 0x840
#define QBMAN_CINH_SWP_EQAR 0x8c0
#define QBMAN_CINH_SWP_CR_RT 0x900
#define QBMAN_CINH_SWP_VDQCR_RT 0x940
#define QBMAN_CINH_SWP_EQCR_AM_RT 0x980
#define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0
#define QBMAN_CINH_SWP_DQPI 0xa00
#define QBMAN_CINH_SWP_DCAP 0xac0
#define QBMAN_CINH_SWP_SDQCR 0xb00
#define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40
#define QBMAN_CINH_SWP_RCR_PI 0xc00
#define QBMAN_CINH_SWP_RAR 0xcc0
#define QBMAN_CINH_SWP_ISR 0xe00
#define QBMAN_CINH_SWP_IER 0xe40
#define QBMAN_CINH_SWP_ISDR 0xe80
#define QBMAN_CINH_SWP_IIR 0xec0
/* CENA register offsets */
#define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_CR 0x600
#define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
#define QBMAN_CENA_SWP_VDQCR 0x780
#define QBMAN_CENA_SWP_EQCR_CI 0x840
#define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
/* CENA register offsets in memory-backed mode */
#define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6))
#define QBMAN_CENA_SWP_CR_MEM 0x1600
#define QBMAN_CENA_SWP_RR_MEM 0x1680
#define QBMAN_CENA_SWP_VDQCR_MEM 0x1780
/* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
#define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
/* Define token used to determine if response written to memory is valid */
#define QMAN_DQ_TOKEN_VALID 1
/* SDQCR attribute codes */
#define QB_SDQCR_FC_SHIFT 29
#define QB_SDQCR_FC_MASK 0x1
#define QB_SDQCR_DCT_SHIFT 24
#define QB_SDQCR_DCT_MASK 0x3
#define QB_SDQCR_TOK_SHIFT 16
#define QB_SDQCR_TOK_MASK 0xff
#define QB_SDQCR_SRC_SHIFT 0
#define QB_SDQCR_SRC_MASK 0xffff
/* opaque token for static dequeues */
#define QMAN_SDQCR_TOKEN 0xbb
#define QBMAN_EQCR_DCA_IDXMASK 0x0f
#define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31)
#define EQ_DESC_SIZE_WITHOUT_FD 29
#define EQ_DESC_SIZE_FD_START 32
enum qbman_sdqcr_dct {
qbman_sdqcr_dct_null = 0,
qbman_sdqcr_dct_prio_ics,
qbman_sdqcr_dct_active_ics,
qbman_sdqcr_dct_active
};
enum qbman_sdqcr_fc {
qbman_sdqcr_fc_one = 0,
qbman_sdqcr_fc_up_to_3 = 1
};
/* Internal Function declaration */
static int qbman_swp_enqueue_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd);
static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd);
static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
uint32_t *flags,
int num_frames);
static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
uint32_t *flags,
int num_frames);
static int
qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
int num_frames);
static
int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
int num_frames);
static int qbman_swp_pull_direct(struct qbman_swp *s,
struct qbman_pull_desc *d);
static int qbman_swp_pull_mem_back(struct qbman_swp *s,
struct qbman_pull_desc *d);
const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
static int qbman_swp_release_direct(struct qbman_swp *s,
const struct qbman_release_desc *d,
const u64 *buffers,
unsigned int num_buffers);
static int qbman_swp_release_mem_back(struct qbman_swp *s,
const struct qbman_release_desc *d,
const u64 *buffers,
unsigned int num_buffers);
/* Function pointers */
int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd)
= qbman_swp_enqueue_direct;
int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
uint32_t *flags,
int num_frames)
= qbman_swp_enqueue_multiple_direct;
int
(*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
int num_frames)
= qbman_swp_enqueue_multiple_desc_direct;
int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
= qbman_swp_pull_direct;
const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
= qbman_swp_dqrr_next_direct;
int (*qbman_swp_release_ptr)(struct qbman_swp *s,
const struct qbman_release_desc *d,
const u64 *buffers,
unsigned int num_buffers)
= qbman_swp_release_direct;
/* Portal Access */
static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
{
return readl_relaxed(p->addr_cinh + offset);
}
static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
u32 value)
{
writel_relaxed(value, p->addr_cinh + offset);
}
static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
{
return p->addr_cena + offset;
}
#define QBMAN_CINH_SWP_CFG 0xd00
#define SWP_CFG_DQRR_MF_SHIFT 20
#define SWP_CFG_EST_SHIFT 16
#define SWP_CFG_CPBS_SHIFT 15
#define SWP_CFG_WN_SHIFT 14
#define SWP_CFG_RPM_SHIFT 12
#define SWP_CFG_DCM_SHIFT 10
#define SWP_CFG_EPM_SHIFT 8
#define SWP_CFG_VPM_SHIFT 7
#define SWP_CFG_CPM_SHIFT 6
#define SWP_CFG_SD_SHIFT 5
#define SWP_CFG_SP_SHIFT 4
#define SWP_CFG_SE_SHIFT 3
#define SWP_CFG_DP_SHIFT 2
#define SWP_CFG_DE_SHIFT 1
#define SWP_CFG_EP_SHIFT 0
static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
u8 epm, int sd, int sp, int se,
int dp, int de, int ep)
{
return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
est << SWP_CFG_EST_SHIFT |
wn << SWP_CFG_WN_SHIFT |
rpm << SWP_CFG_RPM_SHIFT |
dcm << SWP_CFG_DCM_SHIFT |
epm << SWP_CFG_EPM_SHIFT |
sd << SWP_CFG_SD_SHIFT |
sp << SWP_CFG_SP_SHIFT |
se << SWP_CFG_SE_SHIFT |
dp << SWP_CFG_DP_SHIFT |
de << SWP_CFG_DE_SHIFT |
ep << SWP_CFG_EP_SHIFT);
}
#define QMAN_RT_MODE 0x00000100
static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
{
/* 'first' is included, 'last' is excluded */
if (first <= last)
return last - first;
else
return (2 * ringsize) - (first - last);
}
/**
* qbman_swp_init() - Create a functional object representing the given
* QBMan portal descriptor.
* @d: the given qbman swp descriptor
*
* Return qbman_swp portal for success, NULL if the object cannot
* be created.
*/
struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
{
struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
u32 reg;
u32 mask_size;
u32 eqcr_pi;
if (!p)
return NULL;
spin_lock_init(&p->access_spinlock);
p->desc = d;
p->mc.valid_bit = QB_VALID_BIT;
p->sdq = 0;
p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
p->mr.valid_bit = QB_VALID_BIT;
atomic_set(&p->vdq.available, 1);
p->vdq.valid_bit = QB_VALID_BIT;
p->dqrr.next_idx = 0;
p->dqrr.valid_bit = QB_VALID_BIT;
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
p->dqrr.dqrr_size = 4;
p->dqrr.reset_bug = 1;
} else {
p->dqrr.dqrr_size = 8;
p->dqrr.reset_bug = 0;
}
p->addr_cena = d->cena_bar;
p->addr_cinh = d->cinh_bar;
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
1, /* Writes Non-cacheable */
0, /* EQCR_CI stashing threshold */
3, /* RPM: RCR in array mode */
2, /* DCM: Discrete consumption ack */
2, /* EPM: EQCR in ring mode */
1, /* mem stashing drop enable enable */
1, /* mem stashing priority enable */
1, /* mem stashing enable */
1, /* dequeue stashing priority enable */
0, /* dequeue stashing enable enable */
0); /* EQCR_CI stashing priority enable */
} else {
memset(p->addr_cena, 0, 64 * 1024);
reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
1, /* Writes Non-cacheable */
1, /* EQCR_CI stashing threshold */
3, /* RPM: RCR in array mode */
2, /* DCM: Discrete consumption ack */
0, /* EPM: EQCR in ring mode */
1, /* mem stashing drop enable */
1, /* mem stashing priority enable */
1, /* mem stashing enable */
1, /* dequeue stashing priority enable */
0, /* dequeue stashing enable */
0); /* EQCR_CI stashing priority enable */
reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */
1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */
}
qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
if (!reg) {
pr_err("qbman: the portal is not enabled!\n");
kfree(p);
return NULL;
}
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
}
/*
* SDQCR needs to be initialized to 0 when no channels are
* being dequeued from or else the QMan HW will indicate an
* error. The values that were calculated above will be
* applied when dequeues from a specific channel are enabled.
*/
qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
p->eqcr.pi_ring_size = 8;
if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
p->eqcr.pi_ring_size = 32;
qbman_swp_enqueue_ptr =
qbman_swp_enqueue_mem_back;
qbman_swp_enqueue_multiple_ptr =
qbman_swp_enqueue_multiple_mem_back;
qbman_swp_enqueue_multiple_desc_ptr =
qbman_swp_enqueue_multiple_desc_mem_back;
qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
qbman_swp_release_ptr = qbman_swp_release_mem_back;
}
for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
& p->eqcr.pi_ci_mask;
p->eqcr.available = p->eqcr.pi_ring_size;
return p;
}
/**
* qbman_swp_finish() - Create and destroy a functional object representing
* the given QBMan portal descriptor.
* @p: the qbman_swp object to be destroyed
*/
void qbman_swp_finish(struct qbman_swp *p)
{
kfree(p);
}
/**
* qbman_swp_interrupt_read_status()
* @p: the given software portal
*
* Return the value in the SWP_ISR register.
*/
u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
}
/**
* qbman_swp_interrupt_clear_status()
* @p: the given software portal
* @mask: The mask to clear in SWP_ISR register
*/
void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
{
qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
}
/**
* qbman_swp_interrupt_get_trigger() - read interrupt enable register
* @p: the given software portal
*
* Return the value in the SWP_IER register.
*/
u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_IER);
}
/**
* qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
* @p: the given software portal
* @mask: The mask of bits to enable in SWP_IER
*/
void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
{
qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
}
/**
* qbman_swp_interrupt_get_inhibit() - read interrupt mask register
* @p: the given software portal object
*
* Return the value in the SWP_IIR register.
*/
int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
{
return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
}
/**
* qbman_swp_interrupt_set_inhibit() - write interrupt mask register
* @p: the given software portal object
* @mask: The mask to set in SWP_IIR register
*/
void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
{
qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
}
/*
* Different management commands all use this common base layer of code to issue
* commands and poll for results.
*/
/*
* Returns a pointer to where the caller should fill in their management command
* (caller should ignore the verb byte)
*/
void *qbman_swp_mc_start(struct qbman_swp *p)
{
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
else
return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
}
/*
* Commits merges in the caller-supplied command verb (which should not include
* the valid-bit) and submits the command to hardware
*/
void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
{
u8 *v = cmd;
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
dma_wmb();
*v = cmd_verb | p->mc.valid_bit;
} else {
*v = cmd_verb | p->mc.valid_bit;
dma_wmb();
qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
}
}
/*
* Checks for a completed response (returns non-NULL if only if the response
* is complete).
*/
void *qbman_swp_mc_result(struct qbman_swp *p)
{
u32 *ret, verb;
if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
/* Remove the valid-bit - command completed if the rest
* is non-zero.
*/
verb = ret[0] & ~QB_VALID_BIT;
if (!verb)
return NULL;
p->mc.valid_bit ^= QB_VALID_BIT;
} else {
ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
/* Command completed if the valid bit is toggled */
if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
return NULL;
/* Command completed if the rest is non-zero */
verb = ret[0] & ~QB_VALID_BIT;
if (!verb)
return NULL;
p->mr.valid_bit ^= QB_VALID_BIT;
}
return ret;
}
#define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
enum qb_enqueue_commands {
enqueue_empty = 0,
enqueue_response_always = 1,
enqueue_rejects_to_fq = 2
};
#define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
#define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
#define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
#define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7
/**
* qbman_eq_desc_clear() - Clear the contents of a descriptor to
* default/starting state.
*/
void qbman_eq_desc_clear(struct qbman_eq_desc *d)
{
memset(d, 0, sizeof(*d));
}
/**
* qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
* @d: the enqueue descriptor.
* @response_success: 1 = enqueue with response always; 0 = enqueue with
* rejections returned on a FQ.
*/
void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
{
d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
if (respond_success)
d->verb |= enqueue_response_always;
else
d->verb |= enqueue_rejects_to_fq;
}
/*
* Exactly one of the following descriptor "targets" should be set. (Calling any
* one of these will replace the effect of any prior call to one of these.)
* -enqueue to a frame queue
* -enqueue to a queuing destination
*/
/**
* qbman_eq_desc_set_fq() - set the FQ for the enqueue command
* @d: the enqueue descriptor
* @fqid: the id of the frame queue to be enqueued
*/
void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
{
d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
d->tgtid = cpu_to_le32(fqid);
}
/**
* qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
* @d: the enqueue descriptor
* @qdid: the id of the queuing destination to be enqueued
* @qd_bin: the queuing destination bin
* @qd_prio: the queuing destination priority
*/
void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
u32 qd_bin, u32 qd_prio)
{
d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
d->tgtid = cpu_to_le32(qdid);
d->qdbin = cpu_to_le16(qd_bin);
d->qpri = qd_prio;
}
#define EQAR_IDX(eqar) ((eqar) & 0x7)
#define EQAR_VB(eqar) ((eqar) & 0x80)
#define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
#define QB_RT_BIT ((u32)0x100)
/**
* qbman_swp_enqueue_direct() - Issue an enqueue command
* @s: the software portal used for enqueue
* @d: the enqueue descriptor
* @fd: the frame descriptor to be enqueued
*
* Please note that 'fd' should only be NULL if the "action" of the
* descriptor is "orp_hole" or "orp_nesn".
*
* Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
*/
static
int qbman_swp_enqueue_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd)
{
int flags = 0;
int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
if (ret >= 0)
ret = 0;
else
ret = -EBUSY;
return ret;
}
/**
* qbman_swp_enqueue_mem_back() - Issue an enqueue command
* @s: the software portal used for enqueue
* @d: the enqueue descriptor
* @fd: the frame descriptor to be enqueued
*
* Please note that 'fd' should only be NULL if the "action" of the
* descriptor is "orp_hole" or "orp_nesn".
*
* Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
*/
static
int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd)
{
int flags = 0;
int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
if (ret >= 0)
ret = 0;
else
ret = -EBUSY;
return ret;
}
/**
* qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
* using one enqueue descriptor
* @s: the software portal used for enqueue
* @d: the enqueue descriptor
* @fd: table pointer of frame descriptor table to be enqueued
* @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
* @num_frames: number of fd to be enqueued
*
* Return the number of fd enqueued, or a negative error number.
*/
static
int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
uint32_t *flags,
int num_frames)
{
uint32_t *p = NULL;
const uint32_t *cl = (uint32_t *)d;
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
int i, num_enqueued = 0;
spin_lock(&s->access_spinlock);
half_mask = (s->eqcr.pi_ci_mask>>1);
full_mask = s->eqcr.pi_ci_mask;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
s->eqcr.ci &= full_mask;
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
eqcr_ci, s->eqcr.ci);
if (!s->eqcr.available) {
spin_unlock(&s->access_spinlock);
return 0;
}
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
/* Skip copying the verb */
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
&fd[i], sizeof(*fd));
eqcr_pi++;
}
dma_wmb();
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
p[0] = cl[0] | s->eqcr.pi_vb;
if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
}
eqcr_pi++;
if (!(eqcr_pi & half_mask))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
/* Flush all the cacheline without load/store in between */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++)
eqcr_pi++;
s->eqcr.pi = eqcr_pi & full_mask;
spin_unlock(&s->access_spinlock);
return num_enqueued;
}
/**
* qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
* using one enqueue descriptor
* @s: the software portal used for enqueue
* @d: the enqueue descriptor
* @fd: table pointer of frame descriptor table to be enqueued
* @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
* @num_frames: number of fd to be enqueued
*
* Return the number of fd enqueued, or a negative error number.
*/
static
int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
uint32_t *flags,
int num_frames)
{
uint32_t *p = NULL;
const uint32_t *cl = (uint32_t *)(d);
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
int i, num_enqueued = 0;
unsigned long irq_flags;
spin_lock(&s->access_spinlock);
local_irq_save(irq_flags);
half_mask = (s->eqcr.pi_ci_mask>>1);
full_mask = s->eqcr.pi_ci_mask;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
s->eqcr.ci = *p & full_mask;
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
eqcr_ci, s->eqcr.ci);
if (!s->eqcr.available) {
local_irq_restore(irq_flags);
spin_unlock(&s->access_spinlock);
return 0;
}
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
/* Skip copying the verb */
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
&fd[i], sizeof(*fd));
eqcr_pi++;
}
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
p[0] = cl[0] | s->eqcr.pi_vb;
if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
}
eqcr_pi++;
if (!(eqcr_pi & half_mask))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
s->eqcr.pi = eqcr_pi & full_mask;
dma_wmb();
qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
local_irq_restore(irq_flags);
spin_unlock(&s->access_spinlock);
return num_enqueued;
}
/**
* qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
* using multiple enqueue descriptor
* @s: the software portal used for enqueue
* @d: table of minimal enqueue descriptor
* @fd: table pointer of frame descriptor table to be enqueued
* @num_frames: number of fd to be enqueued
*
* Return the number of fd enqueued, or a negative error number.
*/
static
int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
int num_frames)
{
uint32_t *p;
const uint32_t *cl;
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
int i, num_enqueued = 0;
half_mask = (s->eqcr.pi_ci_mask>>1);
full_mask = s->eqcr.pi_ci_mask;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
eqcr_ci, s->eqcr.ci);
if (!s->eqcr.available)
return 0;
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
cl = (uint32_t *)(&d[i]);
/* Skip copying the verb */
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
&fd[i], sizeof(*fd));
eqcr_pi++;
}
dma_wmb();
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
cl = (uint32_t *)(&d[i]);
p[0] = cl[0] | s->eqcr.pi_vb;
eqcr_pi++;
if (!(eqcr_pi & half_mask))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
/* Flush all the cacheline without load/store in between */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++)
eqcr_pi++;
s->eqcr.pi = eqcr_pi & full_mask;
return num_enqueued;
}
/**
* qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
* using multiple enqueue descriptor
* @s: the software portal used for enqueue
* @d: table of minimal enqueue descriptor
* @fd: table pointer of frame descriptor table to be enqueued
* @num_frames: number of fd to be enqueued
*
* Return the number of fd enqueued, or a negative error number.
*/
static
int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
const struct qbman_eq_desc *d,
const struct dpaa2_fd *fd,
int num_frames)
{
uint32_t *p;
const uint32_t *cl;
uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
int i, num_enqueued = 0;
half_mask = (s->eqcr.pi_ci_mask>>1);
full_mask = s->eqcr.pi_ci_mask;
if (!s->eqcr.available) {
eqcr_ci = s->eqcr.ci;
p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
s->eqcr.ci = *p & full_mask;
s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
eqcr_ci, s->eqcr.ci);
if (!s->eqcr.available)
return 0;
}
eqcr_pi = s->eqcr.pi;
num_enqueued = (s->eqcr.available < num_frames) ?
s->eqcr.available : num_frames;
s->eqcr.available -= num_enqueued;
/* Fill in the EQCR ring */
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
cl = (uint32_t *)(&d[i]);
/* Skip copying the verb */
memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
&fd[i], sizeof(*fd));
eqcr_pi++;
}
/* Set the verb byte, have to substitute in the valid-bit */
eqcr_pi = s->eqcr.pi;
for (i = 0; i < num_enqueued; i++) {
p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
cl = (uint32_t *)(&d[i]);
p[0] = cl[0] | s->eqcr.pi_vb;
eqcr_pi++;
if (!(eqcr_pi & half_mask))
s->eqcr.pi_vb ^= QB_VALID_BIT;
}
s->eqcr.pi = eqcr_pi & full_mask;
dma_wmb();
qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
return num_enqueued;
}
/* Static (push) dequeue */
/**
* qbman_swp_push_get() - Get the push dequeue setup
* @p: the software portal object
* @channel_idx: the channel index to query
* @enabled: returned boolean to show whether the push dequeue is enabled
* for the given channel
*/
void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
{
u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
WARN_ON(channel_idx > 15);
*enabled = src | (1 << channel_idx);
}
/**
* qbman_swp_push_set() - Enable or disable push dequeue
* @p: the software portal object
* @channel_idx: the channel index (0 to 15)
* @enable: enable or disable push dequeue
*/
void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
{
u16 dqsrc;
WARN_ON(channel_idx > 15);
if (enable)
s->sdq |= 1 << channel_idx;
else
s->sdq &= ~(1 << channel_idx);
/* Read make the complete src map. If no channels are enabled
* the SDQCR must be 0 or else QMan will assert errors
*/
dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
if (dqsrc != 0)
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
else
qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
}
#define QB_VDQCR_VERB_DCT_SHIFT 0
#define QB_VDQCR_VERB_DT_SHIFT 2
#define QB_VDQCR_VERB_RLS_SHIFT 4
#define QB_VDQCR_VERB_WAE_SHIFT 5
enum qb_pull_dt_e {
qb_pull_dt_channel,
qb_pull_dt_workqueue,
qb_pull_dt_framequeue
};
/**
* qbman_pull_desc_clear() - Clear the contents of a descriptor to
* default/starting state
* @d: the pull dequeue descriptor to be cleared
*/
void qbman_pull_desc_clear(struct qbman_pull_desc *d)
{
memset(d, 0, sizeof(*d));
}
/**
* qbman_pull_desc_set_storage()- Set the pull dequeue storage
* @d: the pull dequeue descriptor to be set
* @storage: the pointer of the memory to store the dequeue result
* @storage_phys: the physical address of the storage memory
* @stash: to indicate whether write allocate is enabled
*
* If not called, or if called with 'storage' as NULL, the result pull dequeues
* will produce results to DQRR. If 'storage' is non-NULL, then results are
* produced to the given memory location (using the DMA address which
* the caller provides in 'storage_phys'), and 'stash' controls whether or not
* those writes to main-memory express a cache-warming attribute.
*/
void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
struct dpaa2_dq *storage,
dma_addr_t storage_phys,
int stash)
{
/* save the virtual address */
d->rsp_addr_virt = (u64)(uintptr_t)storage;
if (!storage) {
d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
return;
}
d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
if (stash)
d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
else
d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
d->rsp_addr = cpu_to_le64(storage_phys);
}
/**
* qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
* @d: the pull dequeue descriptor to be set
* @numframes: number of frames to be set, must be between 1 and 16, inclusive
*/
void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
{
d->numf = numframes - 1;
}
/*
* Exactly one of the following descriptor "actions" should be set. (Calling any
* one of these will replace the effect of any prior call to one of these.)
* - pull dequeue from the given frame queue (FQ)
* - pull dequeue from any FQ in the given work queue (WQ)
* - pull dequeue from any FQ in any WQ in the given channel
*/
/**
* qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
* @fqid: the frame queue index of the given FQ
*/
void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
{
d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(fqid);
}
/**
* qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
* @wqid: composed of channel id and wqid within the channel
* @dct: the dequeue command type
*/
void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
enum qbman_pull_type_e dct)
{
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(wqid);
}
/**
* qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
* dequeues
* @chid: the channel id to be dequeued
* @dct: the dequeue command type
*/
void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
enum qbman_pull_type_e dct)
{
d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
d->dq_src = cpu_to_le32(chid);
}
/**
* qbman_swp_pull_direct() - Issue the pull dequeue command
* @s: the software portal object
* @d: the software portal descriptor which has been configured with
* the set of qbman_pull_desc_set_*() calls
*
* Return 0 for success, and -EBUSY if the software portal is not ready
* to do pull dequeue.
*/
static
int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
{
struct qbman_pull_desc *p;
if (!atomic_dec_and_test(&s->vdq.available)) {
atomic_inc(&s->vdq.available);
return -EBUSY;
}
s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
else
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
p->numf = d->numf;
p->tok = QMAN_DQ_TOKEN_VALID;
p->dq_src = d->dq_src;
p->rsp_addr = d->rsp_addr;
p->rsp_addr_virt = d->rsp_addr_virt;
dma_wmb();
/* Set the verb byte, have to substitute in the valid-bit */
p->verb = d->verb | s->vdq.valid_bit;
s->vdq.valid_bit ^= QB_VALID_BIT;
return 0;
}
/**
* qbman_swp_pull_mem_back() - Issue the pull dequeue command
* @s: the software portal object
* @d: the software portal descriptor which has been configured with
* the set of qbman_pull_desc_set_*() calls
*
* Return 0 for success, and -EBUSY if the software portal is not ready
* to do pull dequeue.
*/
static
int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
{
struct qbman_pull_desc *p;
if (!atomic_dec_and_test(&s->vdq.available)) {
atomic_inc(&s->vdq.available);
return -EBUSY;
}
s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
else
p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
p->numf = d->numf;
p->tok = QMAN_DQ_TOKEN_VALID;
p->dq_src = d->dq_src;
p->rsp_addr = d->rsp_addr;
p->rsp_addr_virt = d->rsp_addr_virt;
/* Set the verb byte, have to substitute in the valid-bit */
p->verb = d->verb | s->vdq.valid_bit;
s->vdq.valid_bit ^= QB_VALID_BIT;
dma_wmb();
qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
return 0;
}
#define QMAN_DQRR_PI_MASK 0xf
/**
* qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
* @s: the software portal object
*
* Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
* only once, so repeated calls can return a sequence of DQRR entries, without
* requiring they be consumed immediately or in any particular order.
*/
const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
{
u32 verb;
u32 response_verb;
u32 flags;
struct dpaa2_dq *p;
/* Before using valid-bit to detect if something is there, we have to
* handle the case of the DQRR reset bug...
*/
if (unlikely(s->dqrr.reset_bug)) {
/*
* We pick up new entries by cache-inhibited producer index,
* which means that a non-coherent mapping would require us to
* invalidate and read *only* once that PI has indicated that
* there's an entry here. The first trip around the DQRR ring
* will be much less efficient than all subsequent trips around
* it...
*/
u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
QMAN_DQRR_PI_MASK;
/* there are new entries if pi != next_idx */
if (pi == s->dqrr.next_idx)
return NULL;
/*
* if next_idx is/was the last ring index, and 'pi' is
* different, we can disable the workaround as all the ring
* entries have now been DMA'd to so valid-bit checking is
* repaired. Note: this logic needs to be based on next_idx
* (which increments one at a time), rather than on pi (which
* can burst and wrap-around between our snapshots of it).
*/
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
s->dqrr.next_idx, pi);
s->dqrr.reset_bug = 0;
}
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
}
p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
verb = p->dq.verb;
/*
* If the valid-bit isn't of the expected polarity, nothing there. Note,
* in the DQRR reset bug workaround, we shouldn't need to skip these
* check, because we've already determined that a new entry is available
* and we've invalidated the cacheline before reading it, so the
* valid-bit behaviour is repaired and should tell us what we already
* knew from reading PI.
*/
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return NULL;
}
/*
* There's something there. Move "next_idx" attention to the next ring
* entry (and prefetch it) before returning what we found.
*/
s->dqrr.next_idx++;
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
if (!s->dqrr.next_idx)
s->dqrr.valid_bit ^= QB_VALID_BIT;
/*
* If this is the final response to a volatile dequeue command
* indicate that the vdq is available
*/
flags = p->dq.stat;
response_verb = verb & QBMAN_RESULT_MASK;
if ((response_verb == QBMAN_RESULT_DQ) &&
(flags & DPAA2_DQ_STAT_VOLATILE) &&
(flags & DPAA2_DQ_STAT_EXPIRED))
atomic_inc(&s->vdq.available);
prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return p;
}
/**
* qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
* @s: the software portal object
*
* Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
* only once, so repeated calls can return a sequence of DQRR entries, without
* requiring they be consumed immediately or in any particular order.
*/
const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
{
u32 verb;
u32 response_verb;
u32 flags;
struct dpaa2_dq *p;
/* Before using valid-bit to detect if something is there, we have to
* handle the case of the DQRR reset bug...
*/
if (unlikely(s->dqrr.reset_bug)) {
/*
* We pick up new entries by cache-inhibited producer index,
* which means that a non-coherent mapping would require us to
* invalidate and read *only* once that PI has indicated that
* there's an entry here. The first trip around the DQRR ring
* will be much less efficient than all subsequent trips around
* it...
*/
u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
QMAN_DQRR_PI_MASK;
/* there are new entries if pi != next_idx */
if (pi == s->dqrr.next_idx)
return NULL;
/*
* if next_idx is/was the last ring index, and 'pi' is
* different, we can disable the workaround as all the ring
* entries have now been DMA'd to so valid-bit checking is
* repaired. Note: this logic needs to be based on next_idx
* (which increments one at a time), rather than on pi (which
* can burst and wrap-around between our snapshots of it).
*/
if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
s->dqrr.next_idx, pi);
s->dqrr.reset_bug = 0;
}
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
}
p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
verb = p->dq.verb;
/*
* If the valid-bit isn't of the expected polarity, nothing there. Note,
* in the DQRR reset bug workaround, we shouldn't need to skip these
* check, because we've already determined that a new entry is available
* and we've invalidated the cacheline before reading it, so the
* valid-bit behaviour is repaired and should tell us what we already
* knew from reading PI.
*/
if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
prefetch(qbman_get_cmd(s,
QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return NULL;
}
/*
* There's something there. Move "next_idx" attention to the next ring
* entry (and prefetch it) before returning what we found.
*/
s->dqrr.next_idx++;
s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
if (!s->dqrr.next_idx)
s->dqrr.valid_bit ^= QB_VALID_BIT;
/*
* If this is the final response to a volatile dequeue command
* indicate that the vdq is available
*/
flags = p->dq.stat;
response_verb = verb & QBMAN_RESULT_MASK;
if ((response_verb == QBMAN_RESULT_DQ) &&
(flags & DPAA2_DQ_STAT_VOLATILE) &&
(flags & DPAA2_DQ_STAT_EXPIRED))
atomic_inc(&s->vdq.available);
prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
return p;
}
/**
* qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
* qbman_swp_dqrr_next().
* @s: the software portal object
* @dq: the DQRR entry to be consumed
*/
void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
{
qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
}
/**
* qbman_result_has_new_result() - Check and get the dequeue response from the
* dq storage memory set in pull dequeue command
* @s: the software portal object
* @dq: the dequeue result read from the memory
*
* Return 1 for getting a valid dequeue result, or 0 for not getting a valid
* dequeue result.
*
* Only used for user-provided storage of dequeue results, not DQRR. For
* efficiency purposes, the driver will perform any required endianness
* conversion to ensure that the user's dequeue result storage is in host-endian
* format. As such, once the user has called qbman_result_has_new_result() and
* been returned a valid dequeue result, they should not call it again on
* the same memory location (except of course if another dequeue command has
* been executed to produce a new result to that location).
*/
int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
{
if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
return 0;
/*
* Set token to be 0 so we will detect change back to 1
* next time the looping is traversed. Const is cast away here
* as we want users to treat the dequeue responses as read only.
*/
((struct dpaa2_dq *)dq)->dq.tok = 0;
/*
* Determine whether VDQCR is available based on whether the
* current result is sitting in the first storage location of
* the busy command.
*/
if (s->vdq.storage == dq) {
s->vdq.storage = NULL;
atomic_inc(&s->vdq.available);
}
return 1;
}
/**
* qbman_release_desc_clear() - Clear the contents of a descriptor to
* default/starting state.
*/
void qbman_release_desc_clear(struct qbman_release_desc *d)
{
memset(d, 0, sizeof(*d));
d->verb = 1 << 5; /* Release Command Valid */
}
/**
* qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
*/
void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
{
d->bpid = cpu_to_le16(bpid);
}
/**
* qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
* interrupt source should be asserted after the release command is completed.
*/
void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
{
if (enable)
d->verb |= 1 << 6;
else
d->verb &= ~(1 << 6);
}
#define RAR_IDX(rar) ((rar) & 0x7)
#define RAR_VB(rar) ((rar) & 0x80)
#define RAR_SUCCESS(rar) ((rar) & 0x100)
/**
* qbman_swp_release_direct() - Issue a buffer release command
* @s: the software portal object
* @d: the release descriptor
* @buffers: a pointer pointing to the buffer address to be released
* @num_buffers: number of buffers to be released, must be less than 8
*
* Return 0 for success, -EBUSY if the release command ring is not ready.
*/
int qbman_swp_release_direct(struct qbman_swp *s,
const struct qbman_release_desc *d,
const u64 *buffers, unsigned int num_buffers)
{
int i;
struct qbman_release_desc *p;
u32 rar;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
if (!RAR_SUCCESS(rar))
return -EBUSY;
/* Start the release command */
p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
/* Copy the caller's buffer pointers to the command */
for (i = 0; i < num_buffers; i++)
p->buf[i] = cpu_to_le64(buffers[i]);
p->bpid = d->bpid;
/*
* Set the verb byte, have to substitute in the valid-bit
* and the number of buffers.
*/
dma_wmb();
p->verb = d->verb | RAR_VB(rar) | num_buffers;
return 0;
}
/**
* qbman_swp_release_mem_back() - Issue a buffer release command
* @s: the software portal object
* @d: the release descriptor
* @buffers: a pointer pointing to the buffer address to be released
* @num_buffers: number of buffers to be released, must be less than 8
*
* Return 0 for success, -EBUSY if the release command ring is not ready.
*/
int qbman_swp_release_mem_back(struct qbman_swp *s,
const struct qbman_release_desc *d,
const u64 *buffers, unsigned int num_buffers)
{
int i;
struct qbman_release_desc *p;
u32 rar;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
if (!RAR_SUCCESS(rar))
return -EBUSY;
/* Start the release command */
p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
/* Copy the caller's buffer pointers to the command */
for (i = 0; i < num_buffers; i++)
p->buf[i] = cpu_to_le64(buffers[i]);
p->bpid = d->bpid;
p->verb = d->verb | RAR_VB(rar) | num_buffers;
dma_wmb();
qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
RAR_IDX(rar) * 4, QMAN_RT_MODE);
return 0;
}
struct qbman_acquire_desc {
u8 verb;
u8 reserved;
__le16 bpid;
u8 num;
u8 reserved2[59];
};
struct qbman_acquire_rslt {
u8 verb;
u8 rslt;
__le16 reserved;
u8 num;
u8 reserved2[3];
__le64 buf[7];
};
/**
* qbman_swp_acquire() - Issue a buffer acquire command
* @s: the software portal object
* @bpid: the buffer pool index
* @buffers: a pointer pointing to the acquired buffer addresses
* @num_buffers: number of buffers to be acquired, must be less than 8
*
* Return 0 for success, or negative error code if the acquire command
* fails.
*/
int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
unsigned int num_buffers)
{
struct qbman_acquire_desc *p;
struct qbman_acquire_rslt *r;
int i;
if (!num_buffers || (num_buffers > 7))
return -EINVAL;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->bpid = cpu_to_le16(bpid);
p->num = num_buffers;
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
if (unlikely(!r)) {
pr_err("qbman: acquire from BPID %d failed, no response\n",
bpid);
return -EIO;
}
/* Decode the outcome */
WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
bpid, r->rslt);
return -EIO;
}
WARN_ON(r->num > num_buffers);
/* Copy the acquired buffers to the caller's array */
for (i = 0; i < r->num; i++)
buffers[i] = le64_to_cpu(r->buf[i]);
return (int)r->num;
}
struct qbman_alt_fq_state_desc {
u8 verb;
u8 reserved[3];
__le32 fqid;
u8 reserved2[56];
};
struct qbman_alt_fq_state_rslt {
u8 verb;
u8 rslt;
u8 reserved[62];
};
#define ALT_FQ_FQID_MASK 0x00FFFFFF
int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
u8 alt_fq_verb)
{
struct qbman_alt_fq_state_desc *p;
struct qbman_alt_fq_state_rslt *r;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, alt_fq_verb);
if (unlikely(!r)) {
pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
alt_fq_verb);
return -EIO;
}
/* Decode the outcome */
WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
fqid, r->verb, r->rslt);
return -EIO;
}
return 0;
}
struct qbman_cdan_ctrl_desc {
u8 verb;
u8 reserved;
__le16 ch;
u8 we;
u8 ctrl;
__le16 reserved2;
__le64 cdan_ctx;
u8 reserved3[48];
};
struct qbman_cdan_ctrl_rslt {
u8 verb;
u8 rslt;
__le16 ch;
u8 reserved[60];
};
int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
u8 we_mask, u8 cdan_en,
u64 ctx)
{
struct qbman_cdan_ctrl_desc *p = NULL;
struct qbman_cdan_ctrl_rslt *r = NULL;
/* Start the management command */
p = qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* Encode the caller-provided attributes */
p->ch = cpu_to_le16(channelid);
p->we = we_mask;
if (cdan_en)
p->ctrl = 1;
else
p->ctrl = 0;
p->cdan_ctx = cpu_to_le64(ctx);
/* Complete the management command */
r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
if (unlikely(!r)) {
pr_err("qbman: wqchan config failed, no response\n");
return -EIO;
}
WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
/* Determine success or failure */
if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
channelid, r->rslt);
return -EIO;
}
return 0;
}
#define QBMAN_RESPONSE_VERB_MASK 0x7f
#define QBMAN_FQ_QUERY_NP 0x45
#define QBMAN_BP_QUERY 0x32
struct qbman_fq_query_desc {
u8 verb;
u8 reserved[3];
__le32 fqid;
u8 reserved2[56];
};
int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
struct qbman_fq_query_np_rslt *r)
{
struct qbman_fq_query_desc *p;
void *resp;
p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
/* FQID is a 24 bit value */
p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
if (!resp) {
pr_err("qbman: Query FQID %d NP fields failed, no response\n",
fqid);
return -EIO;
}
*r = *(struct qbman_fq_query_np_rslt *)resp;
/* Decode the outcome */
WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
/* Determine success or failure */
if (r->rslt != QBMAN_MC_RSLT_OK) {
pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
p->fqid, r->rslt);
return -EIO;
}
return 0;
}
u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
{
return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
}
u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
{
return le32_to_cpu(r->byte_cnt);
}
struct qbman_bp_query_desc {
u8 verb;
u8 reserved;
__le16 bpid;
u8 reserved2[60];
};
int qbman_bp_query(struct qbman_swp *s, u16 bpid,
struct qbman_bp_query_rslt *r)
{
struct qbman_bp_query_desc *p;
void *resp;
p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
if (!p)
return -EBUSY;
p->bpid = cpu_to_le16(bpid);
resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
if (!resp) {
pr_err("qbman: Query BPID %d fields failed, no response\n",
bpid);
return -EIO;
}
*r = *(struct qbman_bp_query_rslt *)resp;
/* Decode the outcome */
WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
/* Determine success or failure */
if (r->rslt != QBMAN_MC_RSLT_OK) {
pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
bpid, r->rslt);
return -EIO;
}
return 0;
}
u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
{
return le32_to_cpu(a->fill);
}