| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright © 2019 Oracle and/or its affiliates. All rights reserved. |
| * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| * |
| * KVM Xen emulation |
| */ |
| |
| #include "x86.h" |
| #include "xen.h" |
| #include "hyperv.h" |
| |
| #include <linux/kvm_host.h> |
| #include <linux/sched/stat.h> |
| |
| #include <trace/events/kvm.h> |
| #include <xen/interface/xen.h> |
| #include <xen/interface/vcpu.h> |
| #include <xen/interface/event_channel.h> |
| |
| #include "trace.h" |
| |
| DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ); |
| |
| static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) |
| { |
| struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; |
| struct pvclock_wall_clock *wc; |
| gpa_t gpa = gfn_to_gpa(gfn); |
| u32 *wc_sec_hi; |
| u32 wc_version; |
| u64 wall_nsec; |
| int ret = 0; |
| int idx = srcu_read_lock(&kvm->srcu); |
| |
| if (gfn == GPA_INVALID) { |
| kvm_gfn_to_pfn_cache_destroy(kvm, gpc); |
| goto out; |
| } |
| |
| do { |
| ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, false, true, |
| gpa, PAGE_SIZE, false); |
| if (ret) |
| goto out; |
| |
| /* |
| * This code mirrors kvm_write_wall_clock() except that it writes |
| * directly through the pfn cache and doesn't mark the page dirty. |
| */ |
| wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); |
| |
| /* It could be invalid again already, so we need to check */ |
| read_lock_irq(&gpc->lock); |
| |
| if (gpc->valid) |
| break; |
| |
| read_unlock_irq(&gpc->lock); |
| } while (1); |
| |
| /* Paranoia checks on the 32-bit struct layout */ |
| BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900); |
| BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924); |
| BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); |
| |
| #ifdef CONFIG_X86_64 |
| /* Paranoia checks on the 64-bit struct layout */ |
| BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00); |
| BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c); |
| |
| if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { |
| struct shared_info *shinfo = gpc->khva; |
| |
| wc_sec_hi = &shinfo->wc_sec_hi; |
| wc = &shinfo->wc; |
| } else |
| #endif |
| { |
| struct compat_shared_info *shinfo = gpc->khva; |
| |
| wc_sec_hi = &shinfo->arch.wc_sec_hi; |
| wc = &shinfo->wc; |
| } |
| |
| /* Increment and ensure an odd value */ |
| wc_version = wc->version = (wc->version + 1) | 1; |
| smp_wmb(); |
| |
| wc->nsec = do_div(wall_nsec, 1000000000); |
| wc->sec = (u32)wall_nsec; |
| *wc_sec_hi = wall_nsec >> 32; |
| smp_wmb(); |
| |
| wc->version = wc_version + 1; |
| read_unlock_irq(&gpc->lock); |
| |
| kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE); |
| |
| out: |
| srcu_read_unlock(&kvm->srcu, idx); |
| return ret; |
| } |
| |
| static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state) |
| { |
| struct kvm_vcpu_xen *vx = &v->arch.xen; |
| u64 now = get_kvmclock_ns(v->kvm); |
| u64 delta_ns = now - vx->runstate_entry_time; |
| u64 run_delay = current->sched_info.run_delay; |
| |
| if (unlikely(!vx->runstate_entry_time)) |
| vx->current_runstate = RUNSTATE_offline; |
| |
| /* |
| * Time waiting for the scheduler isn't "stolen" if the |
| * vCPU wasn't running anyway. |
| */ |
| if (vx->current_runstate == RUNSTATE_running) { |
| u64 steal_ns = run_delay - vx->last_steal; |
| |
| delta_ns -= steal_ns; |
| |
| vx->runstate_times[RUNSTATE_runnable] += steal_ns; |
| } |
| vx->last_steal = run_delay; |
| |
| vx->runstate_times[vx->current_runstate] += delta_ns; |
| vx->current_runstate = state; |
| vx->runstate_entry_time = now; |
| } |
| |
| void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state) |
| { |
| struct kvm_vcpu_xen *vx = &v->arch.xen; |
| uint64_t state_entry_time; |
| unsigned int offset; |
| |
| kvm_xen_update_runstate(v, state); |
| |
| if (!vx->runstate_set) |
| return; |
| |
| BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c); |
| |
| offset = offsetof(struct compat_vcpu_runstate_info, state_entry_time); |
| #ifdef CONFIG_X86_64 |
| /* |
| * The only difference is alignment of uint64_t in 32-bit. |
| * So the first field 'state' is accessed directly using |
| * offsetof() (where its offset happens to be zero), while the |
| * remaining fields which are all uint64_t, start at 'offset' |
| * which we tweak here by adding 4. |
| */ |
| BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != |
| offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4); |
| BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) != |
| offsetof(struct compat_vcpu_runstate_info, time) + 4); |
| |
| if (v->kvm->arch.xen.long_mode) |
| offset = offsetof(struct vcpu_runstate_info, state_entry_time); |
| #endif |
| /* |
| * First write the updated state_entry_time at the appropriate |
| * location determined by 'offset'. |
| */ |
| state_entry_time = vx->runstate_entry_time; |
| state_entry_time |= XEN_RUNSTATE_UPDATE; |
| |
| BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) != |
| sizeof(state_entry_time)); |
| BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) != |
| sizeof(state_entry_time)); |
| |
| if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, |
| &state_entry_time, offset, |
| sizeof(state_entry_time))) |
| return; |
| smp_wmb(); |
| |
| /* |
| * Next, write the new runstate. This is in the *same* place |
| * for 32-bit and 64-bit guests, asserted here for paranoia. |
| */ |
| BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != |
| offsetof(struct compat_vcpu_runstate_info, state)); |
| BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) != |
| sizeof(vx->current_runstate)); |
| BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) != |
| sizeof(vx->current_runstate)); |
| |
| if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, |
| &vx->current_runstate, |
| offsetof(struct vcpu_runstate_info, state), |
| sizeof(vx->current_runstate))) |
| return; |
| |
| /* |
| * Write the actual runstate times immediately after the |
| * runstate_entry_time. |
| */ |
| BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) != |
| offsetof(struct vcpu_runstate_info, time) - sizeof(u64)); |
| BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) != |
| offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64)); |
| BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != |
| sizeof_field(struct compat_vcpu_runstate_info, time)); |
| BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) != |
| sizeof(vx->runstate_times)); |
| |
| if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, |
| &vx->runstate_times[0], |
| offset + sizeof(u64), |
| sizeof(vx->runstate_times))) |
| return; |
| |
| smp_wmb(); |
| |
| /* |
| * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's |
| * runstate_entry_time field. |
| */ |
| |
| state_entry_time &= ~XEN_RUNSTATE_UPDATE; |
| if (kvm_write_guest_offset_cached(v->kvm, &v->arch.xen.runstate_cache, |
| &state_entry_time, offset, |
| sizeof(state_entry_time))) |
| return; |
| } |
| |
| int __kvm_xen_has_interrupt(struct kvm_vcpu *v) |
| { |
| unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel); |
| bool atomic = in_atomic() || !task_is_running(current); |
| int err; |
| u8 rc = 0; |
| |
| /* |
| * If the global upcall vector (HVMIRQ_callback_vector) is set and |
| * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending. |
| */ |
| struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache; |
| struct kvm_memslots *slots = kvm_memslots(v->kvm); |
| bool ghc_valid = slots->generation == ghc->generation && |
| !kvm_is_error_hva(ghc->hva) && ghc->memslot; |
| |
| unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending); |
| |
| /* No need for compat handling here */ |
| BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) != |
| offsetof(struct compat_vcpu_info, evtchn_upcall_pending)); |
| BUILD_BUG_ON(sizeof(rc) != |
| sizeof_field(struct vcpu_info, evtchn_upcall_pending)); |
| BUILD_BUG_ON(sizeof(rc) != |
| sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending)); |
| |
| /* |
| * For efficiency, this mirrors the checks for using the valid |
| * cache in kvm_read_guest_offset_cached(), but just uses |
| * __get_user() instead. And falls back to the slow path. |
| */ |
| if (!evtchn_pending_sel && ghc_valid) { |
| /* Fast path */ |
| pagefault_disable(); |
| err = __get_user(rc, (u8 __user *)ghc->hva + offset); |
| pagefault_enable(); |
| if (!err) |
| return rc; |
| } |
| |
| /* Slow path */ |
| |
| /* |
| * This function gets called from kvm_vcpu_block() after setting the |
| * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately |
| * from a HLT. So we really mustn't sleep. If the page ended up absent |
| * at that point, just return 1 in order to trigger an immediate wake, |
| * and we'll end up getting called again from a context where we *can* |
| * fault in the page and wait for it. |
| */ |
| if (atomic) |
| return 1; |
| |
| if (!ghc_valid) { |
| err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len); |
| if (err || !ghc->memslot) { |
| /* |
| * If this failed, userspace has screwed up the |
| * vcpu_info mapping. No interrupts for you. |
| */ |
| return 0; |
| } |
| } |
| |
| /* |
| * Now we have a valid (protected by srcu) userspace HVA in |
| * ghc->hva which points to the struct vcpu_info. If there |
| * are any bits in the in-kernel evtchn_pending_sel then |
| * we need to write those to the guest vcpu_info and set |
| * its evtchn_upcall_pending flag. If there aren't any bits |
| * to add, we only want to *check* evtchn_upcall_pending. |
| */ |
| if (evtchn_pending_sel) { |
| bool long_mode = v->kvm->arch.xen.long_mode; |
| |
| if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info))) |
| return 0; |
| |
| if (IS_ENABLED(CONFIG_64BIT) && long_mode) { |
| struct vcpu_info __user *vi = (void __user *)ghc->hva; |
| |
| /* Attempt to set the evtchn_pending_sel bits in the |
| * guest, and if that succeeds then clear the same |
| * bits in the in-kernel version. */ |
| asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n" |
| "\tnotq %0\n" |
| "\t" LOCK_PREFIX "andq %0, %2\n" |
| "2:\n" |
| _ASM_EXTABLE_UA(1b, 2b) |
| : "=r" (evtchn_pending_sel), |
| "+m" (vi->evtchn_pending_sel), |
| "+m" (v->arch.xen.evtchn_pending_sel) |
| : "0" (evtchn_pending_sel)); |
| } else { |
| struct compat_vcpu_info __user *vi = (void __user *)ghc->hva; |
| u32 evtchn_pending_sel32 = evtchn_pending_sel; |
| |
| /* Attempt to set the evtchn_pending_sel bits in the |
| * guest, and if that succeeds then clear the same |
| * bits in the in-kernel version. */ |
| asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n" |
| "\tnotl %0\n" |
| "\t" LOCK_PREFIX "andl %0, %2\n" |
| "2:\n" |
| _ASM_EXTABLE_UA(1b, 2b) |
| : "=r" (evtchn_pending_sel32), |
| "+m" (vi->evtchn_pending_sel), |
| "+m" (v->arch.xen.evtchn_pending_sel) |
| : "0" (evtchn_pending_sel32)); |
| } |
| rc = 1; |
| unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err); |
| |
| err: |
| user_access_end(); |
| |
| mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); |
| } else { |
| __get_user(rc, (u8 __user *)ghc->hva + offset); |
| } |
| |
| return rc; |
| } |
| |
| int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) |
| { |
| int r = -ENOENT; |
| |
| mutex_lock(&kvm->lock); |
| |
| switch (data->type) { |
| case KVM_XEN_ATTR_TYPE_LONG_MODE: |
| if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) { |
| r = -EINVAL; |
| } else { |
| kvm->arch.xen.long_mode = !!data->u.long_mode; |
| r = 0; |
| } |
| break; |
| |
| case KVM_XEN_ATTR_TYPE_SHARED_INFO: |
| r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn); |
| break; |
| |
| case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: |
| if (data->u.vector && data->u.vector < 0x10) |
| r = -EINVAL; |
| else { |
| kvm->arch.xen.upcall_vector = data->u.vector; |
| r = 0; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data) |
| { |
| int r = -ENOENT; |
| |
| mutex_lock(&kvm->lock); |
| |
| switch (data->type) { |
| case KVM_XEN_ATTR_TYPE_LONG_MODE: |
| data->u.long_mode = kvm->arch.xen.long_mode; |
| r = 0; |
| break; |
| |
| case KVM_XEN_ATTR_TYPE_SHARED_INFO: |
| if (kvm->arch.xen.shinfo_cache.active) |
| data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa); |
| else |
| data->u.shared_info.gfn = GPA_INVALID; |
| r = 0; |
| break; |
| |
| case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR: |
| data->u.vector = kvm->arch.xen.upcall_vector; |
| r = 0; |
| break; |
| |
| default: |
| break; |
| } |
| |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) |
| { |
| int idx, r = -ENOENT; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| idx = srcu_read_lock(&vcpu->kvm->srcu); |
| |
| switch (data->type) { |
| case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: |
| /* No compat necessary here. */ |
| BUILD_BUG_ON(sizeof(struct vcpu_info) != |
| sizeof(struct compat_vcpu_info)); |
| BUILD_BUG_ON(offsetof(struct vcpu_info, time) != |
| offsetof(struct compat_vcpu_info, time)); |
| |
| if (data->u.gpa == GPA_INVALID) { |
| vcpu->arch.xen.vcpu_info_set = false; |
| r = 0; |
| break; |
| } |
| |
| r = kvm_gfn_to_hva_cache_init(vcpu->kvm, |
| &vcpu->arch.xen.vcpu_info_cache, |
| data->u.gpa, |
| sizeof(struct vcpu_info)); |
| if (!r) { |
| vcpu->arch.xen.vcpu_info_set = true; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: |
| if (data->u.gpa == GPA_INVALID) { |
| vcpu->arch.xen.vcpu_time_info_set = false; |
| r = 0; |
| break; |
| } |
| |
| r = kvm_gfn_to_hva_cache_init(vcpu->kvm, |
| &vcpu->arch.xen.vcpu_time_info_cache, |
| data->u.gpa, |
| sizeof(struct pvclock_vcpu_time_info)); |
| if (!r) { |
| vcpu->arch.xen.vcpu_time_info_set = true; |
| kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
| } |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| if (data->u.gpa == GPA_INVALID) { |
| vcpu->arch.xen.runstate_set = false; |
| r = 0; |
| break; |
| } |
| |
| r = kvm_gfn_to_hva_cache_init(vcpu->kvm, |
| &vcpu->arch.xen.runstate_cache, |
| data->u.gpa, |
| sizeof(struct vcpu_runstate_info)); |
| if (!r) { |
| vcpu->arch.xen.runstate_set = true; |
| } |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| if (data->u.runstate.state > RUNSTATE_offline) { |
| r = -EINVAL; |
| break; |
| } |
| |
| kvm_xen_update_runstate(vcpu, data->u.runstate.state); |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| if (data->u.runstate.state > RUNSTATE_offline) { |
| r = -EINVAL; |
| break; |
| } |
| if (data->u.runstate.state_entry_time != |
| (data->u.runstate.time_running + |
| data->u.runstate.time_runnable + |
| data->u.runstate.time_blocked + |
| data->u.runstate.time_offline)) { |
| r = -EINVAL; |
| break; |
| } |
| if (get_kvmclock_ns(vcpu->kvm) < |
| data->u.runstate.state_entry_time) { |
| r = -EINVAL; |
| break; |
| } |
| |
| vcpu->arch.xen.current_runstate = data->u.runstate.state; |
| vcpu->arch.xen.runstate_entry_time = |
| data->u.runstate.state_entry_time; |
| vcpu->arch.xen.runstate_times[RUNSTATE_running] = |
| data->u.runstate.time_running; |
| vcpu->arch.xen.runstate_times[RUNSTATE_runnable] = |
| data->u.runstate.time_runnable; |
| vcpu->arch.xen.runstate_times[RUNSTATE_blocked] = |
| data->u.runstate.time_blocked; |
| vcpu->arch.xen.runstate_times[RUNSTATE_offline] = |
| data->u.runstate.time_offline; |
| vcpu->arch.xen.last_steal = current->sched_info.run_delay; |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| if (data->u.runstate.state > RUNSTATE_offline && |
| data->u.runstate.state != (u64)-1) { |
| r = -EINVAL; |
| break; |
| } |
| /* The adjustment must add up */ |
| if (data->u.runstate.state_entry_time != |
| (data->u.runstate.time_running + |
| data->u.runstate.time_runnable + |
| data->u.runstate.time_blocked + |
| data->u.runstate.time_offline)) { |
| r = -EINVAL; |
| break; |
| } |
| |
| if (get_kvmclock_ns(vcpu->kvm) < |
| (vcpu->arch.xen.runstate_entry_time + |
| data->u.runstate.state_entry_time)) { |
| r = -EINVAL; |
| break; |
| } |
| |
| vcpu->arch.xen.runstate_entry_time += |
| data->u.runstate.state_entry_time; |
| vcpu->arch.xen.runstate_times[RUNSTATE_running] += |
| data->u.runstate.time_running; |
| vcpu->arch.xen.runstate_times[RUNSTATE_runnable] += |
| data->u.runstate.time_runnable; |
| vcpu->arch.xen.runstate_times[RUNSTATE_blocked] += |
| data->u.runstate.time_blocked; |
| vcpu->arch.xen.runstate_times[RUNSTATE_offline] += |
| data->u.runstate.time_offline; |
| |
| if (data->u.runstate.state <= RUNSTATE_offline) |
| kvm_xen_update_runstate(vcpu, data->u.runstate.state); |
| r = 0; |
| break; |
| |
| default: |
| break; |
| } |
| |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| mutex_unlock(&vcpu->kvm->lock); |
| return r; |
| } |
| |
| int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) |
| { |
| int r = -ENOENT; |
| |
| mutex_lock(&vcpu->kvm->lock); |
| |
| switch (data->type) { |
| case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO: |
| if (vcpu->arch.xen.vcpu_info_set) |
| data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa; |
| else |
| data->u.gpa = GPA_INVALID; |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO: |
| if (vcpu->arch.xen.vcpu_time_info_set) |
| data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa; |
| else |
| data->u.gpa = GPA_INVALID; |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| if (vcpu->arch.xen.runstate_set) { |
| data->u.gpa = vcpu->arch.xen.runstate_cache.gpa; |
| r = 0; |
| } |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| data->u.runstate.state = vcpu->arch.xen.current_runstate; |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA: |
| if (!sched_info_on()) { |
| r = -EOPNOTSUPP; |
| break; |
| } |
| data->u.runstate.state = vcpu->arch.xen.current_runstate; |
| data->u.runstate.state_entry_time = |
| vcpu->arch.xen.runstate_entry_time; |
| data->u.runstate.time_running = |
| vcpu->arch.xen.runstate_times[RUNSTATE_running]; |
| data->u.runstate.time_runnable = |
| vcpu->arch.xen.runstate_times[RUNSTATE_runnable]; |
| data->u.runstate.time_blocked = |
| vcpu->arch.xen.runstate_times[RUNSTATE_blocked]; |
| data->u.runstate.time_offline = |
| vcpu->arch.xen.runstate_times[RUNSTATE_offline]; |
| r = 0; |
| break; |
| |
| case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST: |
| r = -EINVAL; |
| break; |
| |
| default: |
| break; |
| } |
| |
| mutex_unlock(&vcpu->kvm->lock); |
| return r; |
| } |
| |
| int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| u32 page_num = data & ~PAGE_MASK; |
| u64 page_addr = data & PAGE_MASK; |
| bool lm = is_long_mode(vcpu); |
| |
| /* Latch long_mode for shared_info pages etc. */ |
| vcpu->kvm->arch.xen.long_mode = lm; |
| |
| /* |
| * If Xen hypercall intercept is enabled, fill the hypercall |
| * page with VMCALL/VMMCALL instructions since that's what |
| * we catch. Else the VMM has provided the hypercall pages |
| * with instructions of its own choosing, so use those. |
| */ |
| if (kvm_xen_hypercall_enabled(kvm)) { |
| u8 instructions[32]; |
| int i; |
| |
| if (page_num) |
| return 1; |
| |
| /* mov imm32, %eax */ |
| instructions[0] = 0xb8; |
| |
| /* vmcall / vmmcall */ |
| kvm_x86_ops.patch_hypercall(vcpu, instructions + 5); |
| |
| /* ret */ |
| instructions[8] = 0xc3; |
| |
| /* int3 to pad */ |
| memset(instructions + 9, 0xcc, sizeof(instructions) - 9); |
| |
| for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) { |
| *(u32 *)&instructions[1] = i; |
| if (kvm_vcpu_write_guest(vcpu, |
| page_addr + (i * sizeof(instructions)), |
| instructions, sizeof(instructions))) |
| return 1; |
| } |
| } else { |
| /* |
| * Note, truncation is a non-issue as 'lm' is guaranteed to be |
| * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes. |
| */ |
| hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64 |
| : kvm->arch.xen_hvm_config.blob_addr_32; |
| u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 |
| : kvm->arch.xen_hvm_config.blob_size_32; |
| u8 *page; |
| |
| if (page_num >= blob_size) |
| return 1; |
| |
| blob_addr += page_num * PAGE_SIZE; |
| |
| page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| |
| if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) { |
| kfree(page); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc) |
| { |
| if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) |
| return -EINVAL; |
| |
| /* |
| * With hypercall interception the kernel generates its own |
| * hypercall page so it must not be provided. |
| */ |
| if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) && |
| (xhc->blob_addr_32 || xhc->blob_addr_64 || |
| xhc->blob_size_32 || xhc->blob_size_64)) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (xhc->msr && !kvm->arch.xen_hvm_config.msr) |
| static_branch_inc(&kvm_xen_enabled.key); |
| else if (!xhc->msr && kvm->arch.xen_hvm_config.msr) |
| static_branch_slow_dec_deferred(&kvm_xen_enabled); |
| |
| memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc)); |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| } |
| |
| void kvm_xen_init_vm(struct kvm *kvm) |
| { |
| } |
| |
| void kvm_xen_destroy_vm(struct kvm *kvm) |
| { |
| kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache); |
| |
| if (kvm->arch.xen_hvm_config.msr) |
| static_branch_slow_dec_deferred(&kvm_xen_enabled); |
| } |
| |
| static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result) |
| { |
| kvm_rax_write(vcpu, result); |
| return kvm_skip_emulated_instruction(vcpu); |
| } |
| |
| static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu) |
| { |
| struct kvm_run *run = vcpu->run; |
| |
| if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip))) |
| return 1; |
| |
| return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result); |
| } |
| |
| int kvm_xen_hypercall(struct kvm_vcpu *vcpu) |
| { |
| bool longmode; |
| u64 input, params[6]; |
| |
| input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX); |
| |
| /* Hyper-V hypercalls get bit 31 set in EAX */ |
| if ((input & 0x80000000) && |
| kvm_hv_hypercall_enabled(vcpu)) |
| return kvm_hv_hypercall(vcpu); |
| |
| longmode = is_64_bit_hypercall(vcpu); |
| if (!longmode) { |
| params[0] = (u32)kvm_rbx_read(vcpu); |
| params[1] = (u32)kvm_rcx_read(vcpu); |
| params[2] = (u32)kvm_rdx_read(vcpu); |
| params[3] = (u32)kvm_rsi_read(vcpu); |
| params[4] = (u32)kvm_rdi_read(vcpu); |
| params[5] = (u32)kvm_rbp_read(vcpu); |
| } |
| #ifdef CONFIG_X86_64 |
| else { |
| params[0] = (u64)kvm_rdi_read(vcpu); |
| params[1] = (u64)kvm_rsi_read(vcpu); |
| params[2] = (u64)kvm_rdx_read(vcpu); |
| params[3] = (u64)kvm_r10_read(vcpu); |
| params[4] = (u64)kvm_r8_read(vcpu); |
| params[5] = (u64)kvm_r9_read(vcpu); |
| } |
| #endif |
| trace_kvm_xen_hypercall(input, params[0], params[1], params[2], |
| params[3], params[4], params[5]); |
| |
| vcpu->run->exit_reason = KVM_EXIT_XEN; |
| vcpu->run->xen.type = KVM_EXIT_XEN_HCALL; |
| vcpu->run->xen.u.hcall.longmode = longmode; |
| vcpu->run->xen.u.hcall.cpl = kvm_x86_ops.get_cpl(vcpu); |
| vcpu->run->xen.u.hcall.input = input; |
| vcpu->run->xen.u.hcall.params[0] = params[0]; |
| vcpu->run->xen.u.hcall.params[1] = params[1]; |
| vcpu->run->xen.u.hcall.params[2] = params[2]; |
| vcpu->run->xen.u.hcall.params[3] = params[3]; |
| vcpu->run->xen.u.hcall.params[4] = params[4]; |
| vcpu->run->xen.u.hcall.params[5] = params[5]; |
| vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu); |
| vcpu->arch.complete_userspace_io = |
| kvm_xen_hypercall_complete_userspace; |
| |
| return 0; |
| } |
| |
| static inline int max_evtchn_port(struct kvm *kvm) |
| { |
| if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) |
| return EVTCHN_2L_NR_CHANNELS; |
| else |
| return COMPAT_EVTCHN_2L_NR_CHANNELS; |
| } |
| |
| /* |
| * This follows the kvm_set_irq() API, so it returns: |
| * < 0 Interrupt was ignored (masked or not delivered for other reasons) |
| * = 0 Interrupt was coalesced (previous irq is still pending) |
| * > 0 Number of CPUs interrupt was delivered to |
| */ |
| int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e, |
| struct kvm *kvm) |
| { |
| struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; |
| struct kvm_vcpu *vcpu; |
| unsigned long *pending_bits, *mask_bits; |
| unsigned long flags; |
| int port_word_bit; |
| bool kick_vcpu = false; |
| int idx; |
| int rc; |
| |
| vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu); |
| if (!vcpu) |
| return -1; |
| |
| if (!vcpu->arch.xen.vcpu_info_set) |
| return -1; |
| |
| if (e->xen_evtchn.port >= max_evtchn_port(kvm)) |
| return -1; |
| |
| rc = -EWOULDBLOCK; |
| read_lock_irqsave(&gpc->lock, flags); |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE)) |
| goto out_rcu; |
| |
| if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) { |
| struct shared_info *shinfo = gpc->khva; |
| pending_bits = (unsigned long *)&shinfo->evtchn_pending; |
| mask_bits = (unsigned long *)&shinfo->evtchn_mask; |
| port_word_bit = e->xen_evtchn.port / 64; |
| } else { |
| struct compat_shared_info *shinfo = gpc->khva; |
| pending_bits = (unsigned long *)&shinfo->evtchn_pending; |
| mask_bits = (unsigned long *)&shinfo->evtchn_mask; |
| port_word_bit = e->xen_evtchn.port / 32; |
| } |
| |
| /* |
| * If this port wasn't already set, and if it isn't masked, then |
| * we try to set the corresponding bit in the in-kernel shadow of |
| * evtchn_pending_sel for the target vCPU. And if *that* wasn't |
| * already set, then we kick the vCPU in question to write to the |
| * *real* evtchn_pending_sel in its own guest vcpu_info struct. |
| */ |
| if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) { |
| rc = 0; /* It was already raised */ |
| } else if (test_bit(e->xen_evtchn.port, mask_bits)) { |
| rc = -1; /* Masked */ |
| } else { |
| rc = 1; /* Delivered. But was the vCPU waking already? */ |
| if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel)) |
| kick_vcpu = true; |
| } |
| |
| out_rcu: |
| srcu_read_unlock(&kvm->srcu, idx); |
| read_unlock_irqrestore(&gpc->lock, flags); |
| |
| if (kick_vcpu) { |
| kvm_make_request(KVM_REQ_EVENT, vcpu); |
| kvm_vcpu_kick(vcpu); |
| } |
| |
| return rc; |
| } |
| |
| /* This is the version called from kvm_set_irq() as the .set function */ |
| static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, |
| int irq_source_id, int level, bool line_status) |
| { |
| bool mm_borrowed = false; |
| int rc; |
| |
| if (!level) |
| return -1; |
| |
| rc = kvm_xen_set_evtchn_fast(e, kvm); |
| if (rc != -EWOULDBLOCK) |
| return rc; |
| |
| if (current->mm != kvm->mm) { |
| /* |
| * If not on a thread which already belongs to this KVM, |
| * we'd better be in the irqfd workqueue. |
| */ |
| if (WARN_ON_ONCE(current->mm)) |
| return -EINVAL; |
| |
| kthread_use_mm(kvm->mm); |
| mm_borrowed = true; |
| } |
| |
| /* |
| * For the irqfd workqueue, using the main kvm->lock mutex is |
| * fine since this function is invoked from kvm_set_irq() with |
| * no other lock held, no srcu. In future if it will be called |
| * directly from a vCPU thread (e.g. on hypercall for an IPI) |
| * then it may need to switch to using a leaf-node mutex for |
| * serializing the shared_info mapping. |
| */ |
| mutex_lock(&kvm->lock); |
| |
| /* |
| * It is theoretically possible for the page to be unmapped |
| * and the MMU notifier to invalidate the shared_info before |
| * we even get to use it. In that case, this looks like an |
| * infinite loop. It was tempting to do it via the userspace |
| * HVA instead... but that just *hides* the fact that it's |
| * an infinite loop, because if a fault occurs and it waits |
| * for the page to come back, it can *still* immediately |
| * fault and have to wait again, repeatedly. |
| * |
| * Conversely, the page could also have been reinstated by |
| * another thread before we even obtain the mutex above, so |
| * check again *first* before remapping it. |
| */ |
| do { |
| struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache; |
| int idx; |
| |
| rc = kvm_xen_set_evtchn_fast(e, kvm); |
| if (rc != -EWOULDBLOCK) |
| break; |
| |
| idx = srcu_read_lock(&kvm->srcu); |
| rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, |
| PAGE_SIZE, false); |
| srcu_read_unlock(&kvm->srcu, idx); |
| } while(!rc); |
| |
| mutex_unlock(&kvm->lock); |
| |
| if (mm_borrowed) |
| kthread_unuse_mm(kvm->mm); |
| |
| return rc; |
| } |
| |
| int kvm_xen_setup_evtchn(struct kvm *kvm, |
| struct kvm_kernel_irq_routing_entry *e, |
| const struct kvm_irq_routing_entry *ue) |
| |
| { |
| if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm)) |
| return -EINVAL; |
| |
| /* We only support 2 level event channels for now */ |
| if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) |
| return -EINVAL; |
| |
| e->xen_evtchn.port = ue->u.xen_evtchn.port; |
| e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu; |
| e->xen_evtchn.priority = ue->u.xen_evtchn.priority; |
| e->set = evtchn_set_fn; |
| |
| return 0; |
| } |