| /* |
| * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| * |
| * The filters are packed to hash tables of key nodes |
| * with a set of 32bit key/mask pairs at every node. |
| * Nodes reference next level hash tables etc. |
| * |
| * This scheme is the best universal classifier I managed to |
| * invent; it is not super-fast, but it is not slow (provided you |
| * program it correctly), and general enough. And its relative |
| * speed grows as the number of rules becomes larger. |
| * |
| * It seems that it represents the best middle point between |
| * speed and manageability both by human and by machine. |
| * |
| * It is especially useful for link sharing combined with QoS; |
| * pure RSVP doesn't need such a general approach and can use |
| * much simpler (and faster) schemes, sort of cls_rsvp.c. |
| * |
| * JHS: We should remove the CONFIG_NET_CLS_IND from here |
| * eventually when the meta match extension is made available |
| * |
| * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/errno.h> |
| #include <linux/percpu.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/skbuff.h> |
| #include <linux/bitmap.h> |
| #include <net/netlink.h> |
| #include <net/act_api.h> |
| #include <net/pkt_cls.h> |
| |
| struct tc_u_knode { |
| struct tc_u_knode __rcu *next; |
| u32 handle; |
| struct tc_u_hnode __rcu *ht_up; |
| struct tcf_exts exts; |
| #ifdef CONFIG_NET_CLS_IND |
| int ifindex; |
| #endif |
| u8 fshift; |
| struct tcf_result res; |
| struct tc_u_hnode __rcu *ht_down; |
| #ifdef CONFIG_CLS_U32_PERF |
| struct tc_u32_pcnt __percpu *pf; |
| #endif |
| #ifdef CONFIG_CLS_U32_MARK |
| u32 val; |
| u32 mask; |
| u32 __percpu *pcpu_success; |
| #endif |
| struct tcf_proto *tp; |
| struct rcu_head rcu; |
| /* The 'sel' field MUST be the last field in structure to allow for |
| * tc_u32_keys allocated at end of structure. |
| */ |
| struct tc_u32_sel sel; |
| }; |
| |
| struct tc_u_hnode { |
| struct tc_u_hnode __rcu *next; |
| u32 handle; |
| u32 prio; |
| struct tc_u_common *tp_c; |
| int refcnt; |
| unsigned int divisor; |
| struct tc_u_knode __rcu *ht[1]; |
| struct rcu_head rcu; |
| }; |
| |
| struct tc_u_common { |
| struct tc_u_hnode __rcu *hlist; |
| struct Qdisc *q; |
| int refcnt; |
| u32 hgenerator; |
| struct rcu_head rcu; |
| }; |
| |
| static inline unsigned int u32_hash_fold(__be32 key, |
| const struct tc_u32_sel *sel, |
| u8 fshift) |
| { |
| unsigned int h = ntohl(key & sel->hmask) >> fshift; |
| |
| return h; |
| } |
| |
| static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) |
| { |
| struct { |
| struct tc_u_knode *knode; |
| unsigned int off; |
| } stack[TC_U32_MAXDEPTH]; |
| |
| struct tc_u_hnode *ht = rcu_dereference_bh(tp->root); |
| unsigned int off = skb_network_offset(skb); |
| struct tc_u_knode *n; |
| int sdepth = 0; |
| int off2 = 0; |
| int sel = 0; |
| #ifdef CONFIG_CLS_U32_PERF |
| int j; |
| #endif |
| int i, r; |
| |
| next_ht: |
| n = rcu_dereference_bh(ht->ht[sel]); |
| |
| next_knode: |
| if (n) { |
| struct tc_u32_key *key = n->sel.keys; |
| |
| #ifdef CONFIG_CLS_U32_PERF |
| __this_cpu_inc(n->pf->rcnt); |
| j = 0; |
| #endif |
| |
| #ifdef CONFIG_CLS_U32_MARK |
| if ((skb->mark & n->mask) != n->val) { |
| n = rcu_dereference_bh(n->next); |
| goto next_knode; |
| } else { |
| __this_cpu_inc(*n->pcpu_success); |
| } |
| #endif |
| |
| for (i = n->sel.nkeys; i > 0; i--, key++) { |
| int toff = off + key->off + (off2 & key->offmask); |
| __be32 *data, hdata; |
| |
| if (skb_headroom(skb) + toff > INT_MAX) |
| goto out; |
| |
| data = skb_header_pointer(skb, toff, 4, &hdata); |
| if (!data) |
| goto out; |
| if ((*data ^ key->val) & key->mask) { |
| n = rcu_dereference_bh(n->next); |
| goto next_knode; |
| } |
| #ifdef CONFIG_CLS_U32_PERF |
| __this_cpu_inc(n->pf->kcnts[j]); |
| j++; |
| #endif |
| } |
| |
| ht = rcu_dereference_bh(n->ht_down); |
| if (!ht) { |
| check_terminal: |
| if (n->sel.flags & TC_U32_TERMINAL) { |
| |
| *res = n->res; |
| #ifdef CONFIG_NET_CLS_IND |
| if (!tcf_match_indev(skb, n->ifindex)) { |
| n = rcu_dereference_bh(n->next); |
| goto next_knode; |
| } |
| #endif |
| #ifdef CONFIG_CLS_U32_PERF |
| __this_cpu_inc(n->pf->rhit); |
| #endif |
| r = tcf_exts_exec(skb, &n->exts, res); |
| if (r < 0) { |
| n = rcu_dereference_bh(n->next); |
| goto next_knode; |
| } |
| |
| return r; |
| } |
| n = rcu_dereference_bh(n->next); |
| goto next_knode; |
| } |
| |
| /* PUSH */ |
| if (sdepth >= TC_U32_MAXDEPTH) |
| goto deadloop; |
| stack[sdepth].knode = n; |
| stack[sdepth].off = off; |
| sdepth++; |
| |
| ht = rcu_dereference_bh(n->ht_down); |
| sel = 0; |
| if (ht->divisor) { |
| __be32 *data, hdata; |
| |
| data = skb_header_pointer(skb, off + n->sel.hoff, 4, |
| &hdata); |
| if (!data) |
| goto out; |
| sel = ht->divisor & u32_hash_fold(*data, &n->sel, |
| n->fshift); |
| } |
| if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT))) |
| goto next_ht; |
| |
| if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) { |
| off2 = n->sel.off + 3; |
| if (n->sel.flags & TC_U32_VAROFFSET) { |
| __be16 *data, hdata; |
| |
| data = skb_header_pointer(skb, |
| off + n->sel.offoff, |
| 2, &hdata); |
| if (!data) |
| goto out; |
| off2 += ntohs(n->sel.offmask & *data) >> |
| n->sel.offshift; |
| } |
| off2 &= ~3; |
| } |
| if (n->sel.flags & TC_U32_EAT) { |
| off += off2; |
| off2 = 0; |
| } |
| |
| if (off < skb->len) |
| goto next_ht; |
| } |
| |
| /* POP */ |
| if (sdepth--) { |
| n = stack[sdepth].knode; |
| ht = rcu_dereference_bh(n->ht_up); |
| off = stack[sdepth].off; |
| goto check_terminal; |
| } |
| out: |
| return -1; |
| |
| deadloop: |
| net_warn_ratelimited("cls_u32: dead loop\n"); |
| return -1; |
| } |
| |
| static struct tc_u_hnode * |
| u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) |
| { |
| struct tc_u_hnode *ht; |
| |
| for (ht = rtnl_dereference(tp_c->hlist); |
| ht; |
| ht = rtnl_dereference(ht->next)) |
| if (ht->handle == handle) |
| break; |
| |
| return ht; |
| } |
| |
| static struct tc_u_knode * |
| u32_lookup_key(struct tc_u_hnode *ht, u32 handle) |
| { |
| unsigned int sel; |
| struct tc_u_knode *n = NULL; |
| |
| sel = TC_U32_HASH(handle); |
| if (sel > ht->divisor) |
| goto out; |
| |
| for (n = rtnl_dereference(ht->ht[sel]); |
| n; |
| n = rtnl_dereference(n->next)) |
| if (n->handle == handle) |
| break; |
| out: |
| return n; |
| } |
| |
| |
| static unsigned long u32_get(struct tcf_proto *tp, u32 handle) |
| { |
| struct tc_u_hnode *ht; |
| struct tc_u_common *tp_c = tp->data; |
| |
| if (TC_U32_HTID(handle) == TC_U32_ROOT) |
| ht = rtnl_dereference(tp->root); |
| else |
| ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); |
| |
| if (!ht) |
| return 0; |
| |
| if (TC_U32_KEY(handle) == 0) |
| return (unsigned long)ht; |
| |
| return (unsigned long)u32_lookup_key(ht, handle); |
| } |
| |
| static void u32_put(struct tcf_proto *tp, unsigned long f) |
| { |
| } |
| |
| static u32 gen_new_htid(struct tc_u_common *tp_c) |
| { |
| int i = 0x800; |
| |
| /* hgenerator only used inside rtnl lock it is safe to increment |
| * without read _copy_ update semantics |
| */ |
| do { |
| if (++tp_c->hgenerator == 0x7FF) |
| tp_c->hgenerator = 1; |
| } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); |
| |
| return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; |
| } |
| |
| static int u32_init(struct tcf_proto *tp) |
| { |
| struct tc_u_hnode *root_ht; |
| struct tc_u_common *tp_c; |
| |
| tp_c = tp->q->u32_node; |
| |
| root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL); |
| if (root_ht == NULL) |
| return -ENOBUFS; |
| |
| root_ht->divisor = 0; |
| root_ht->refcnt++; |
| root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; |
| root_ht->prio = tp->prio; |
| |
| if (tp_c == NULL) { |
| tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL); |
| if (tp_c == NULL) { |
| kfree(root_ht); |
| return -ENOBUFS; |
| } |
| tp_c->q = tp->q; |
| tp->q->u32_node = tp_c; |
| } |
| |
| tp_c->refcnt++; |
| RCU_INIT_POINTER(root_ht->next, tp_c->hlist); |
| rcu_assign_pointer(tp_c->hlist, root_ht); |
| root_ht->tp_c = tp_c; |
| |
| rcu_assign_pointer(tp->root, root_ht); |
| tp->data = tp_c; |
| return 0; |
| } |
| |
| static int u32_destroy_key(struct tcf_proto *tp, |
| struct tc_u_knode *n, |
| bool free_pf) |
| { |
| tcf_unbind_filter(tp, &n->res); |
| tcf_exts_destroy(tp, &n->exts); |
| if (n->ht_down) |
| n->ht_down->refcnt--; |
| #ifdef CONFIG_CLS_U32_PERF |
| if (free_pf) |
| free_percpu(n->pf); |
| #endif |
| #ifdef CONFIG_CLS_U32_MARK |
| if (free_pf) |
| free_percpu(n->pcpu_success); |
| #endif |
| kfree(n); |
| return 0; |
| } |
| |
| /* u32_delete_key_rcu should be called when free'ing a copied |
| * version of a tc_u_knode obtained from u32_init_knode(). When |
| * copies are obtained from u32_init_knode() the statistics are |
| * shared between the old and new copies to allow readers to |
| * continue to update the statistics during the copy. To support |
| * this the u32_delete_key_rcu variant does not free the percpu |
| * statistics. |
| */ |
| static void u32_delete_key_rcu(struct rcu_head *rcu) |
| { |
| struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); |
| |
| u32_destroy_key(key->tp, key, false); |
| } |
| |
| /* u32_delete_key_freepf_rcu is the rcu callback variant |
| * that free's the entire structure including the statistics |
| * percpu variables. Only use this if the key is not a copy |
| * returned by u32_init_knode(). See u32_delete_key_rcu() |
| * for the variant that should be used with keys return from |
| * u32_init_knode() |
| */ |
| static void u32_delete_key_freepf_rcu(struct rcu_head *rcu) |
| { |
| struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu); |
| |
| u32_destroy_key(key->tp, key, true); |
| } |
| |
| static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key) |
| { |
| struct tc_u_knode __rcu **kp; |
| struct tc_u_knode *pkp; |
| struct tc_u_hnode *ht = rtnl_dereference(key->ht_up); |
| |
| if (ht) { |
| kp = &ht->ht[TC_U32_HASH(key->handle)]; |
| for (pkp = rtnl_dereference(*kp); pkp; |
| kp = &pkp->next, pkp = rtnl_dereference(*kp)) { |
| if (pkp == key) { |
| RCU_INIT_POINTER(*kp, key->next); |
| |
| call_rcu(&key->rcu, u32_delete_key_freepf_rcu); |
| return 0; |
| } |
| } |
| } |
| WARN_ON(1); |
| return 0; |
| } |
| |
| static void u32_clear_hnode(struct tc_u_hnode *ht) |
| { |
| struct tc_u_knode *n; |
| unsigned int h; |
| |
| for (h = 0; h <= ht->divisor; h++) { |
| while ((n = rtnl_dereference(ht->ht[h])) != NULL) { |
| RCU_INIT_POINTER(ht->ht[h], |
| rtnl_dereference(n->next)); |
| call_rcu(&n->rcu, u32_delete_key_freepf_rcu); |
| } |
| } |
| } |
| |
| static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) |
| { |
| struct tc_u_common *tp_c = tp->data; |
| struct tc_u_hnode __rcu **hn; |
| struct tc_u_hnode *phn; |
| |
| WARN_ON(ht->refcnt); |
| |
| u32_clear_hnode(ht); |
| |
| hn = &tp_c->hlist; |
| for (phn = rtnl_dereference(*hn); |
| phn; |
| hn = &phn->next, phn = rtnl_dereference(*hn)) { |
| if (phn == ht) { |
| RCU_INIT_POINTER(*hn, ht->next); |
| kfree_rcu(ht, rcu); |
| return 0; |
| } |
| } |
| |
| return -ENOENT; |
| } |
| |
| static void u32_destroy(struct tcf_proto *tp) |
| { |
| struct tc_u_common *tp_c = tp->data; |
| struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); |
| |
| WARN_ON(root_ht == NULL); |
| |
| if (root_ht && --root_ht->refcnt == 0) |
| u32_destroy_hnode(tp, root_ht); |
| |
| if (--tp_c->refcnt == 0) { |
| struct tc_u_hnode *ht; |
| |
| tp->q->u32_node = NULL; |
| |
| for (ht = rtnl_dereference(tp_c->hlist); |
| ht; |
| ht = rtnl_dereference(ht->next)) { |
| ht->refcnt--; |
| u32_clear_hnode(ht); |
| } |
| |
| while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) { |
| RCU_INIT_POINTER(tp_c->hlist, ht->next); |
| kfree_rcu(ht, rcu); |
| } |
| |
| kfree(tp_c); |
| } |
| |
| tp->data = NULL; |
| } |
| |
| static int u32_delete(struct tcf_proto *tp, unsigned long arg) |
| { |
| struct tc_u_hnode *ht = (struct tc_u_hnode *)arg; |
| struct tc_u_hnode *root_ht = rtnl_dereference(tp->root); |
| |
| if (ht == NULL) |
| return 0; |
| |
| if (TC_U32_KEY(ht->handle)) |
| return u32_delete_key(tp, (struct tc_u_knode *)ht); |
| |
| if (root_ht == ht) |
| return -EINVAL; |
| |
| if (ht->refcnt == 1) { |
| ht->refcnt--; |
| u32_destroy_hnode(tp, ht); |
| } else { |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| #define NR_U32_NODE (1<<12) |
| static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) |
| { |
| struct tc_u_knode *n; |
| unsigned long i; |
| unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!bitmap) |
| return handle | 0xFFF; |
| |
| for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]); |
| n; |
| n = rtnl_dereference(n->next)) |
| set_bit(TC_U32_NODE(n->handle), bitmap); |
| |
| i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800); |
| if (i >= NR_U32_NODE) |
| i = find_next_zero_bit(bitmap, NR_U32_NODE, 1); |
| |
| kfree(bitmap); |
| return handle | (i >= NR_U32_NODE ? 0xFFF : i); |
| } |
| |
| static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = { |
| [TCA_U32_CLASSID] = { .type = NLA_U32 }, |
| [TCA_U32_HASH] = { .type = NLA_U32 }, |
| [TCA_U32_LINK] = { .type = NLA_U32 }, |
| [TCA_U32_DIVISOR] = { .type = NLA_U32 }, |
| [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) }, |
| [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ }, |
| [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) }, |
| }; |
| |
| static int u32_set_parms(struct net *net, struct tcf_proto *tp, |
| unsigned long base, struct tc_u_hnode *ht, |
| struct tc_u_knode *n, struct nlattr **tb, |
| struct nlattr *est, bool ovr) |
| { |
| int err; |
| struct tcf_exts e; |
| |
| tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE); |
| err = tcf_exts_validate(net, tp, tb, est, &e, ovr); |
| if (err < 0) |
| return err; |
| |
| err = -EINVAL; |
| if (tb[TCA_U32_LINK]) { |
| u32 handle = nla_get_u32(tb[TCA_U32_LINK]); |
| struct tc_u_hnode *ht_down = NULL, *ht_old; |
| |
| if (TC_U32_KEY(handle)) |
| goto errout; |
| |
| if (handle) { |
| ht_down = u32_lookup_ht(ht->tp_c, handle); |
| |
| if (ht_down == NULL) |
| goto errout; |
| ht_down->refcnt++; |
| } |
| |
| ht_old = rtnl_dereference(n->ht_down); |
| rcu_assign_pointer(n->ht_down, ht_down); |
| |
| if (ht_old) |
| ht_old->refcnt--; |
| } |
| if (tb[TCA_U32_CLASSID]) { |
| n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]); |
| tcf_bind_filter(tp, &n->res, base); |
| } |
| |
| #ifdef CONFIG_NET_CLS_IND |
| if (tb[TCA_U32_INDEV]) { |
| int ret; |
| ret = tcf_change_indev(net, tb[TCA_U32_INDEV]); |
| if (ret < 0) |
| goto errout; |
| n->ifindex = ret; |
| } |
| #endif |
| tcf_exts_change(tp, &n->exts, &e); |
| |
| return 0; |
| errout: |
| tcf_exts_destroy(tp, &e); |
| return err; |
| } |
| |
| static void u32_replace_knode(struct tcf_proto *tp, |
| struct tc_u_common *tp_c, |
| struct tc_u_knode *n) |
| { |
| struct tc_u_knode __rcu **ins; |
| struct tc_u_knode *pins; |
| struct tc_u_hnode *ht; |
| |
| if (TC_U32_HTID(n->handle) == TC_U32_ROOT) |
| ht = rtnl_dereference(tp->root); |
| else |
| ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle)); |
| |
| ins = &ht->ht[TC_U32_HASH(n->handle)]; |
| |
| /* The node must always exist for it to be replaced if this is not the |
| * case then something went very wrong elsewhere. |
| */ |
| for (pins = rtnl_dereference(*ins); ; |
| ins = &pins->next, pins = rtnl_dereference(*ins)) |
| if (pins->handle == n->handle) |
| break; |
| |
| RCU_INIT_POINTER(n->next, pins->next); |
| rcu_assign_pointer(*ins, n); |
| } |
| |
| static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp, |
| struct tc_u_knode *n) |
| { |
| struct tc_u_knode *new; |
| struct tc_u32_sel *s = &n->sel; |
| |
| new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), |
| GFP_KERNEL); |
| |
| if (!new) |
| return NULL; |
| |
| RCU_INIT_POINTER(new->next, n->next); |
| new->handle = n->handle; |
| RCU_INIT_POINTER(new->ht_up, n->ht_up); |
| |
| #ifdef CONFIG_NET_CLS_IND |
| new->ifindex = n->ifindex; |
| #endif |
| new->fshift = n->fshift; |
| new->res = n->res; |
| RCU_INIT_POINTER(new->ht_down, n->ht_down); |
| |
| /* bump reference count as long as we hold pointer to structure */ |
| if (new->ht_down) |
| new->ht_down->refcnt++; |
| |
| #ifdef CONFIG_CLS_U32_PERF |
| /* Statistics may be incremented by readers during update |
| * so we must keep them in tact. When the node is later destroyed |
| * a special destroy call must be made to not free the pf memory. |
| */ |
| new->pf = n->pf; |
| #endif |
| |
| #ifdef CONFIG_CLS_U32_MARK |
| new->val = n->val; |
| new->mask = n->mask; |
| /* Similarly success statistics must be moved as pointers */ |
| new->pcpu_success = n->pcpu_success; |
| #endif |
| new->tp = tp; |
| memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); |
| |
| tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE); |
| |
| return new; |
| } |
| |
| static int u32_change(struct net *net, struct sk_buff *in_skb, |
| struct tcf_proto *tp, unsigned long base, u32 handle, |
| struct nlattr **tca, |
| unsigned long *arg, bool ovr) |
| { |
| struct tc_u_common *tp_c = tp->data; |
| struct tc_u_hnode *ht; |
| struct tc_u_knode *n; |
| struct tc_u32_sel *s; |
| struct nlattr *opt = tca[TCA_OPTIONS]; |
| struct nlattr *tb[TCA_U32_MAX + 1]; |
| u32 htid; |
| int err; |
| #ifdef CONFIG_CLS_U32_PERF |
| size_t size; |
| #endif |
| |
| if (opt == NULL) |
| return handle ? -EINVAL : 0; |
| |
| err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy); |
| if (err < 0) |
| return err; |
| |
| n = (struct tc_u_knode *)*arg; |
| if (n) { |
| struct tc_u_knode *new; |
| |
| if (TC_U32_KEY(n->handle) == 0) |
| return -EINVAL; |
| |
| new = u32_init_knode(tp, n); |
| if (!new) |
| return -ENOMEM; |
| |
| err = u32_set_parms(net, tp, base, |
| rtnl_dereference(n->ht_up), new, tb, |
| tca[TCA_RATE], ovr); |
| |
| if (err) { |
| u32_destroy_key(tp, new, false); |
| return err; |
| } |
| |
| u32_replace_knode(tp, tp_c, new); |
| call_rcu(&n->rcu, u32_delete_key_rcu); |
| return 0; |
| } |
| |
| if (tb[TCA_U32_DIVISOR]) { |
| unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]); |
| |
| if (--divisor > 0x100) |
| return -EINVAL; |
| if (TC_U32_KEY(handle)) |
| return -EINVAL; |
| if (handle == 0) { |
| handle = gen_new_htid(tp->data); |
| if (handle == 0) |
| return -ENOMEM; |
| } |
| ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL); |
| if (ht == NULL) |
| return -ENOBUFS; |
| ht->tp_c = tp_c; |
| ht->refcnt = 1; |
| ht->divisor = divisor; |
| ht->handle = handle; |
| ht->prio = tp->prio; |
| RCU_INIT_POINTER(ht->next, tp_c->hlist); |
| rcu_assign_pointer(tp_c->hlist, ht); |
| *arg = (unsigned long)ht; |
| return 0; |
| } |
| |
| if (tb[TCA_U32_HASH]) { |
| htid = nla_get_u32(tb[TCA_U32_HASH]); |
| if (TC_U32_HTID(htid) == TC_U32_ROOT) { |
| ht = rtnl_dereference(tp->root); |
| htid = ht->handle; |
| } else { |
| ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); |
| if (ht == NULL) |
| return -EINVAL; |
| } |
| } else { |
| ht = rtnl_dereference(tp->root); |
| htid = ht->handle; |
| } |
| |
| if (ht->divisor < TC_U32_HASH(htid)) |
| return -EINVAL; |
| |
| if (handle) { |
| if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) |
| return -EINVAL; |
| handle = htid | TC_U32_NODE(handle); |
| } else |
| handle = gen_new_kid(ht, htid); |
| |
| if (tb[TCA_U32_SEL] == NULL) |
| return -EINVAL; |
| |
| s = nla_data(tb[TCA_U32_SEL]); |
| |
| n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); |
| if (n == NULL) |
| return -ENOBUFS; |
| |
| #ifdef CONFIG_CLS_U32_PERF |
| size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64); |
| n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt)); |
| if (!n->pf) { |
| kfree(n); |
| return -ENOBUFS; |
| } |
| #endif |
| |
| memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); |
| RCU_INIT_POINTER(n->ht_up, ht); |
| n->handle = handle; |
| n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0; |
| tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE); |
| n->tp = tp; |
| |
| #ifdef CONFIG_CLS_U32_MARK |
| n->pcpu_success = alloc_percpu(u32); |
| if (!n->pcpu_success) { |
| err = -ENOMEM; |
| goto errout; |
| } |
| |
| if (tb[TCA_U32_MARK]) { |
| struct tc_u32_mark *mark; |
| |
| mark = nla_data(tb[TCA_U32_MARK]); |
| n->val = mark->val; |
| n->mask = mark->mask; |
| } |
| #endif |
| |
| err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr); |
| if (err == 0) { |
| struct tc_u_knode __rcu **ins; |
| struct tc_u_knode *pins; |
| |
| ins = &ht->ht[TC_U32_HASH(handle)]; |
| for (pins = rtnl_dereference(*ins); pins; |
| ins = &pins->next, pins = rtnl_dereference(*ins)) |
| if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle)) |
| break; |
| |
| RCU_INIT_POINTER(n->next, pins); |
| rcu_assign_pointer(*ins, n); |
| |
| *arg = (unsigned long)n; |
| return 0; |
| } |
| |
| #ifdef CONFIG_CLS_U32_MARK |
| free_percpu(n->pcpu_success); |
| #endif |
| |
| errout: |
| #ifdef CONFIG_CLS_U32_PERF |
| free_percpu(n->pf); |
| #endif |
| kfree(n); |
| return err; |
| } |
| |
| static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) |
| { |
| struct tc_u_common *tp_c = tp->data; |
| struct tc_u_hnode *ht; |
| struct tc_u_knode *n; |
| unsigned int h; |
| |
| if (arg->stop) |
| return; |
| |
| for (ht = rtnl_dereference(tp_c->hlist); |
| ht; |
| ht = rtnl_dereference(ht->next)) { |
| if (ht->prio != tp->prio) |
| continue; |
| if (arg->count >= arg->skip) { |
| if (arg->fn(tp, (unsigned long)ht, arg) < 0) { |
| arg->stop = 1; |
| return; |
| } |
| } |
| arg->count++; |
| for (h = 0; h <= ht->divisor; h++) { |
| for (n = rtnl_dereference(ht->ht[h]); |
| n; |
| n = rtnl_dereference(n->next)) { |
| if (arg->count < arg->skip) { |
| arg->count++; |
| continue; |
| } |
| if (arg->fn(tp, (unsigned long)n, arg) < 0) { |
| arg->stop = 1; |
| return; |
| } |
| arg->count++; |
| } |
| } |
| } |
| } |
| |
| static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh, |
| struct sk_buff *skb, struct tcmsg *t) |
| { |
| struct tc_u_knode *n = (struct tc_u_knode *)fh; |
| struct tc_u_hnode *ht_up, *ht_down; |
| struct nlattr *nest; |
| |
| if (n == NULL) |
| return skb->len; |
| |
| t->tcm_handle = n->handle; |
| |
| nest = nla_nest_start(skb, TCA_OPTIONS); |
| if (nest == NULL) |
| goto nla_put_failure; |
| |
| if (TC_U32_KEY(n->handle) == 0) { |
| struct tc_u_hnode *ht = (struct tc_u_hnode *)fh; |
| u32 divisor = ht->divisor + 1; |
| |
| if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor)) |
| goto nla_put_failure; |
| } else { |
| #ifdef CONFIG_CLS_U32_PERF |
| struct tc_u32_pcnt *gpf; |
| int cpu; |
| #endif |
| |
| if (nla_put(skb, TCA_U32_SEL, |
| sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), |
| &n->sel)) |
| goto nla_put_failure; |
| |
| ht_up = rtnl_dereference(n->ht_up); |
| if (ht_up) { |
| u32 htid = n->handle & 0xFFFFF000; |
| if (nla_put_u32(skb, TCA_U32_HASH, htid)) |
| goto nla_put_failure; |
| } |
| if (n->res.classid && |
| nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid)) |
| goto nla_put_failure; |
| |
| ht_down = rtnl_dereference(n->ht_down); |
| if (ht_down && |
| nla_put_u32(skb, TCA_U32_LINK, ht_down->handle)) |
| goto nla_put_failure; |
| |
| #ifdef CONFIG_CLS_U32_MARK |
| if ((n->val || n->mask)) { |
| struct tc_u32_mark mark = {.val = n->val, |
| .mask = n->mask, |
| .success = 0}; |
| int cpum; |
| |
| for_each_possible_cpu(cpum) { |
| __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum); |
| |
| mark.success += cnt; |
| } |
| |
| if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark)) |
| goto nla_put_failure; |
| } |
| #endif |
| |
| if (tcf_exts_dump(skb, &n->exts) < 0) |
| goto nla_put_failure; |
| |
| #ifdef CONFIG_NET_CLS_IND |
| if (n->ifindex) { |
| struct net_device *dev; |
| dev = __dev_get_by_index(net, n->ifindex); |
| if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name)) |
| goto nla_put_failure; |
| } |
| #endif |
| #ifdef CONFIG_CLS_U32_PERF |
| gpf = kzalloc(sizeof(struct tc_u32_pcnt) + |
| n->sel.nkeys * sizeof(u64), |
| GFP_KERNEL); |
| if (!gpf) |
| goto nla_put_failure; |
| |
| for_each_possible_cpu(cpu) { |
| int i; |
| struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu); |
| |
| gpf->rcnt += pf->rcnt; |
| gpf->rhit += pf->rhit; |
| for (i = 0; i < n->sel.nkeys; i++) |
| gpf->kcnts[i] += pf->kcnts[i]; |
| } |
| |
| if (nla_put(skb, TCA_U32_PCNT, |
| sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), |
| gpf)) { |
| kfree(gpf); |
| goto nla_put_failure; |
| } |
| kfree(gpf); |
| #endif |
| } |
| |
| nla_nest_end(skb, nest); |
| |
| if (TC_U32_KEY(n->handle)) |
| if (tcf_exts_dump_stats(skb, &n->exts) < 0) |
| goto nla_put_failure; |
| return skb->len; |
| |
| nla_put_failure: |
| nla_nest_cancel(skb, nest); |
| return -1; |
| } |
| |
| static struct tcf_proto_ops cls_u32_ops __read_mostly = { |
| .kind = "u32", |
| .classify = u32_classify, |
| .init = u32_init, |
| .destroy = u32_destroy, |
| .get = u32_get, |
| .put = u32_put, |
| .change = u32_change, |
| .delete = u32_delete, |
| .walk = u32_walk, |
| .dump = u32_dump, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init init_u32(void) |
| { |
| pr_info("u32 classifier\n"); |
| #ifdef CONFIG_CLS_U32_PERF |
| pr_info(" Performance counters on\n"); |
| #endif |
| #ifdef CONFIG_NET_CLS_IND |
| pr_info(" input device check on\n"); |
| #endif |
| #ifdef CONFIG_NET_CLS_ACT |
| pr_info(" Actions configured\n"); |
| #endif |
| return register_tcf_proto_ops(&cls_u32_ops); |
| } |
| |
| static void __exit exit_u32(void) |
| { |
| unregister_tcf_proto_ops(&cls_u32_ops); |
| } |
| |
| module_init(init_u32) |
| module_exit(exit_u32) |
| MODULE_LICENSE("GPL"); |