| /************************************************************************** |
| * |
| * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA. |
| * Copyright 2016 Intel Corporation |
| * All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the |
| * "Software"), to deal in the Software without restriction, including |
| * without limitation the rights to use, copy, modify, merge, publish, |
| * distribute, sub license, and/or sell copies of the Software, and to |
| * permit persons to whom the Software is furnished to do so, subject to |
| * the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the |
| * next paragraph) shall be included in all copies or substantial portions |
| * of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, |
| * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
| * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE |
| * USE OR OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * |
| **************************************************************************/ |
| |
| /* |
| * Generic simple memory manager implementation. Intended to be used as a base |
| * class implementation for more advanced memory managers. |
| * |
| * Note that the algorithm used is quite simple and there might be substantial |
| * performance gains if a smarter free list is implemented. Currently it is |
| * just an unordered stack of free regions. This could easily be improved if |
| * an RB-tree is used instead. At least if we expect heavy fragmentation. |
| * |
| * Aligned allocations can also see improvement. |
| * |
| * Authors: |
| * Thomas Hellström <thomas-at-tungstengraphics-dot-com> |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/interval_tree_generic.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/stacktrace.h> |
| |
| #include <drm/drm_mm.h> |
| |
| /** |
| * DOC: Overview |
| * |
| * drm_mm provides a simple range allocator. The drivers are free to use the |
| * resource allocator from the linux core if it suits them, the upside of drm_mm |
| * is that it's in the DRM core. Which means that it's easier to extend for |
| * some of the crazier special purpose needs of gpus. |
| * |
| * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node. |
| * Drivers are free to embed either of them into their own suitable |
| * datastructures. drm_mm itself will not do any memory allocations of its own, |
| * so if drivers choose not to embed nodes they need to still allocate them |
| * themselves. |
| * |
| * The range allocator also supports reservation of preallocated blocks. This is |
| * useful for taking over initial mode setting configurations from the firmware, |
| * where an object needs to be created which exactly matches the firmware's |
| * scanout target. As long as the range is still free it can be inserted anytime |
| * after the allocator is initialized, which helps with avoiding looped |
| * dependencies in the driver load sequence. |
| * |
| * drm_mm maintains a stack of most recently freed holes, which of all |
| * simplistic datastructures seems to be a fairly decent approach to clustering |
| * allocations and avoiding too much fragmentation. This means free space |
| * searches are O(num_holes). Given that all the fancy features drm_mm supports |
| * something better would be fairly complex and since gfx thrashing is a fairly |
| * steep cliff not a real concern. Removing a node again is O(1). |
| * |
| * drm_mm supports a few features: Alignment and range restrictions can be |
| * supplied. Furthermore every &drm_mm_node has a color value (which is just an |
| * opaque unsigned long) which in conjunction with a driver callback can be used |
| * to implement sophisticated placement restrictions. The i915 DRM driver uses |
| * this to implement guard pages between incompatible caching domains in the |
| * graphics TT. |
| * |
| * Two behaviors are supported for searching and allocating: bottom-up and |
| * top-down. The default is bottom-up. Top-down allocation can be used if the |
| * memory area has different restrictions, or just to reduce fragmentation. |
| * |
| * Finally iteration helpers to walk all nodes and all holes are provided as are |
| * some basic allocator dumpers for debugging. |
| * |
| * Note that this range allocator is not thread-safe, drivers need to protect |
| * modifications with their own locking. The idea behind this is that for a full |
| * memory manager additional data needs to be protected anyway, hence internal |
| * locking would be fully redundant. |
| */ |
| |
| #ifdef CONFIG_DRM_DEBUG_MM |
| #include <linux/stackdepot.h> |
| |
| #define STACKDEPTH 32 |
| #define BUFSZ 4096 |
| |
| static noinline void save_stack(struct drm_mm_node *node) |
| { |
| unsigned long entries[STACKDEPTH]; |
| unsigned int n; |
| |
| n = stack_trace_save(entries, ARRAY_SIZE(entries), 1); |
| |
| /* May be called under spinlock, so avoid sleeping */ |
| node->stack = stack_depot_save(entries, n, GFP_NOWAIT); |
| } |
| |
| static void show_leaks(struct drm_mm *mm) |
| { |
| struct drm_mm_node *node; |
| unsigned long *entries; |
| unsigned int nr_entries; |
| char *buf; |
| |
| buf = kmalloc(BUFSZ, GFP_KERNEL); |
| if (!buf) |
| return; |
| |
| list_for_each_entry(node, drm_mm_nodes(mm), node_list) { |
| if (!node->stack) { |
| DRM_ERROR("node [%08llx + %08llx]: unknown owner\n", |
| node->start, node->size); |
| continue; |
| } |
| |
| nr_entries = stack_depot_fetch(node->stack, &entries); |
| stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0); |
| DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s", |
| node->start, node->size, buf); |
| } |
| |
| kfree(buf); |
| } |
| |
| #undef STACKDEPTH |
| #undef BUFSZ |
| #else |
| static void save_stack(struct drm_mm_node *node) { } |
| static void show_leaks(struct drm_mm *mm) { } |
| #endif |
| |
| #define START(node) ((node)->start) |
| #define LAST(node) ((node)->start + (node)->size - 1) |
| |
| INTERVAL_TREE_DEFINE(struct drm_mm_node, rb, |
| u64, __subtree_last, |
| START, LAST, static inline, drm_mm_interval_tree) |
| |
| struct drm_mm_node * |
| __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last) |
| { |
| return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree, |
| start, last) ?: (struct drm_mm_node *)&mm->head_node; |
| } |
| EXPORT_SYMBOL(__drm_mm_interval_first); |
| |
| static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node, |
| struct drm_mm_node *node) |
| { |
| struct drm_mm *mm = hole_node->mm; |
| struct rb_node **link, *rb; |
| struct drm_mm_node *parent; |
| bool leftmost; |
| |
| node->__subtree_last = LAST(node); |
| |
| if (drm_mm_node_allocated(hole_node)) { |
| rb = &hole_node->rb; |
| while (rb) { |
| parent = rb_entry(rb, struct drm_mm_node, rb); |
| if (parent->__subtree_last >= node->__subtree_last) |
| break; |
| |
| parent->__subtree_last = node->__subtree_last; |
| rb = rb_parent(rb); |
| } |
| |
| rb = &hole_node->rb; |
| link = &hole_node->rb.rb_right; |
| leftmost = false; |
| } else { |
| rb = NULL; |
| link = &mm->interval_tree.rb_root.rb_node; |
| leftmost = true; |
| } |
| |
| while (*link) { |
| rb = *link; |
| parent = rb_entry(rb, struct drm_mm_node, rb); |
| if (parent->__subtree_last < node->__subtree_last) |
| parent->__subtree_last = node->__subtree_last; |
| if (node->start < parent->start) { |
| link = &parent->rb.rb_left; |
| } else { |
| link = &parent->rb.rb_right; |
| leftmost = false; |
| } |
| } |
| |
| rb_link_node(&node->rb, rb, link); |
| rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost, |
| &drm_mm_interval_tree_augment); |
| } |
| |
| #define RB_INSERT(root, member, expr) do { \ |
| struct rb_node **link = &root.rb_node, *rb = NULL; \ |
| u64 x = expr(node); \ |
| while (*link) { \ |
| rb = *link; \ |
| if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \ |
| link = &rb->rb_left; \ |
| else \ |
| link = &rb->rb_right; \ |
| } \ |
| rb_link_node(&node->member, rb, link); \ |
| rb_insert_color(&node->member, &root); \ |
| } while (0) |
| |
| #define HOLE_SIZE(NODE) ((NODE)->hole_size) |
| #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE)) |
| |
| static u64 rb_to_hole_size(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; |
| } |
| |
| static void insert_hole_size(struct rb_root_cached *root, |
| struct drm_mm_node *node) |
| { |
| struct rb_node **link = &root->rb_root.rb_node, *rb = NULL; |
| u64 x = node->hole_size; |
| bool first = true; |
| |
| while (*link) { |
| rb = *link; |
| if (x > rb_to_hole_size(rb)) { |
| link = &rb->rb_left; |
| } else { |
| link = &rb->rb_right; |
| first = false; |
| } |
| } |
| |
| rb_link_node(&node->rb_hole_size, rb, link); |
| rb_insert_color_cached(&node->rb_hole_size, root, first); |
| } |
| |
| static void add_hole(struct drm_mm_node *node) |
| { |
| struct drm_mm *mm = node->mm; |
| |
| node->hole_size = |
| __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node); |
| DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); |
| |
| insert_hole_size(&mm->holes_size, node); |
| RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR); |
| |
| list_add(&node->hole_stack, &mm->hole_stack); |
| } |
| |
| static void rm_hole(struct drm_mm_node *node) |
| { |
| DRM_MM_BUG_ON(!drm_mm_hole_follows(node)); |
| |
| list_del(&node->hole_stack); |
| rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size); |
| rb_erase(&node->rb_hole_addr, &node->mm->holes_addr); |
| node->hole_size = 0; |
| |
| DRM_MM_BUG_ON(drm_mm_hole_follows(node)); |
| } |
| |
| static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb) |
| { |
| return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size); |
| } |
| |
| static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb) |
| { |
| return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr); |
| } |
| |
| static inline u64 rb_hole_size(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size; |
| } |
| |
| static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size) |
| { |
| struct rb_node *rb = mm->holes_size.rb_root.rb_node; |
| struct drm_mm_node *best = NULL; |
| |
| do { |
| struct drm_mm_node *node = |
| rb_entry(rb, struct drm_mm_node, rb_hole_size); |
| |
| if (size <= node->hole_size) { |
| best = node; |
| rb = rb->rb_right; |
| } else { |
| rb = rb->rb_left; |
| } |
| } while (rb); |
| |
| return best; |
| } |
| |
| static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr) |
| { |
| struct rb_node *rb = mm->holes_addr.rb_node; |
| struct drm_mm_node *node = NULL; |
| |
| while (rb) { |
| u64 hole_start; |
| |
| node = rb_hole_addr_to_node(rb); |
| hole_start = __drm_mm_hole_node_start(node); |
| |
| if (addr < hole_start) |
| rb = node->rb_hole_addr.rb_left; |
| else if (addr > hole_start + node->hole_size) |
| rb = node->rb_hole_addr.rb_right; |
| else |
| break; |
| } |
| |
| return node; |
| } |
| |
| static struct drm_mm_node * |
| first_hole(struct drm_mm *mm, |
| u64 start, u64 end, u64 size, |
| enum drm_mm_insert_mode mode) |
| { |
| switch (mode) { |
| default: |
| case DRM_MM_INSERT_BEST: |
| return best_hole(mm, size); |
| |
| case DRM_MM_INSERT_LOW: |
| return find_hole(mm, start); |
| |
| case DRM_MM_INSERT_HIGH: |
| return find_hole(mm, end); |
| |
| case DRM_MM_INSERT_EVICT: |
| return list_first_entry_or_null(&mm->hole_stack, |
| struct drm_mm_node, |
| hole_stack); |
| } |
| } |
| |
| static struct drm_mm_node * |
| next_hole(struct drm_mm *mm, |
| struct drm_mm_node *node, |
| enum drm_mm_insert_mode mode) |
| { |
| switch (mode) { |
| default: |
| case DRM_MM_INSERT_BEST: |
| return rb_hole_size_to_node(rb_prev(&node->rb_hole_size)); |
| |
| case DRM_MM_INSERT_LOW: |
| return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr)); |
| |
| case DRM_MM_INSERT_HIGH: |
| return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr)); |
| |
| case DRM_MM_INSERT_EVICT: |
| node = list_next_entry(node, hole_stack); |
| return &node->hole_stack == &mm->hole_stack ? NULL : node; |
| } |
| } |
| |
| /** |
| * drm_mm_reserve_node - insert an pre-initialized node |
| * @mm: drm_mm allocator to insert @node into |
| * @node: drm_mm_node to insert |
| * |
| * This functions inserts an already set-up &drm_mm_node into the allocator, |
| * meaning that start, size and color must be set by the caller. All other |
| * fields must be cleared to 0. This is useful to initialize the allocator with |
| * preallocated objects which must be set-up before the range allocator can be |
| * set-up, e.g. when taking over a firmware framebuffer. |
| * |
| * Returns: |
| * 0 on success, -ENOSPC if there's no hole where @node is. |
| */ |
| int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node) |
| { |
| struct drm_mm_node *hole; |
| u64 hole_start, hole_end; |
| u64 adj_start, adj_end; |
| u64 end; |
| |
| end = node->start + node->size; |
| if (unlikely(end <= node->start)) |
| return -ENOSPC; |
| |
| /* Find the relevant hole to add our node to */ |
| hole = find_hole(mm, node->start); |
| if (!hole) |
| return -ENOSPC; |
| |
| adj_start = hole_start = __drm_mm_hole_node_start(hole); |
| adj_end = hole_end = hole_start + hole->hole_size; |
| |
| if (mm->color_adjust) |
| mm->color_adjust(hole, node->color, &adj_start, &adj_end); |
| |
| if (adj_start > node->start || adj_end < end) |
| return -ENOSPC; |
| |
| node->mm = mm; |
| |
| __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); |
| list_add(&node->node_list, &hole->node_list); |
| drm_mm_interval_tree_add_node(hole, node); |
| node->hole_size = 0; |
| |
| rm_hole(hole); |
| if (node->start > hole_start) |
| add_hole(hole); |
| if (end < hole_end) |
| add_hole(node); |
| |
| save_stack(node); |
| return 0; |
| } |
| EXPORT_SYMBOL(drm_mm_reserve_node); |
| |
| static u64 rb_to_hole_size_or_zero(struct rb_node *rb) |
| { |
| return rb ? rb_to_hole_size(rb) : 0; |
| } |
| |
| /** |
| * drm_mm_insert_node_in_range - ranged search for space and insert @node |
| * @mm: drm_mm to allocate from |
| * @node: preallocate node to insert |
| * @size: size of the allocation |
| * @alignment: alignment of the allocation |
| * @color: opaque tag value to use for this node |
| * @range_start: start of the allowed range for this node |
| * @range_end: end of the allowed range for this node |
| * @mode: fine-tune the allocation search and placement |
| * |
| * The preallocated @node must be cleared to 0. |
| * |
| * Returns: |
| * 0 on success, -ENOSPC if there's no suitable hole. |
| */ |
| int drm_mm_insert_node_in_range(struct drm_mm * const mm, |
| struct drm_mm_node * const node, |
| u64 size, u64 alignment, |
| unsigned long color, |
| u64 range_start, u64 range_end, |
| enum drm_mm_insert_mode mode) |
| { |
| struct drm_mm_node *hole; |
| u64 remainder_mask; |
| bool once; |
| |
| DRM_MM_BUG_ON(range_start > range_end); |
| |
| if (unlikely(size == 0 || range_end - range_start < size)) |
| return -ENOSPC; |
| |
| if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size) |
| return -ENOSPC; |
| |
| if (alignment <= 1) |
| alignment = 0; |
| |
| once = mode & DRM_MM_INSERT_ONCE; |
| mode &= ~DRM_MM_INSERT_ONCE; |
| |
| remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; |
| for (hole = first_hole(mm, range_start, range_end, size, mode); |
| hole; |
| hole = once ? NULL : next_hole(mm, hole, mode)) { |
| u64 hole_start = __drm_mm_hole_node_start(hole); |
| u64 hole_end = hole_start + hole->hole_size; |
| u64 adj_start, adj_end; |
| u64 col_start, col_end; |
| |
| if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end) |
| break; |
| |
| if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start) |
| break; |
| |
| col_start = hole_start; |
| col_end = hole_end; |
| if (mm->color_adjust) |
| mm->color_adjust(hole, color, &col_start, &col_end); |
| |
| adj_start = max(col_start, range_start); |
| adj_end = min(col_end, range_end); |
| |
| if (adj_end <= adj_start || adj_end - adj_start < size) |
| continue; |
| |
| if (mode == DRM_MM_INSERT_HIGH) |
| adj_start = adj_end - size; |
| |
| if (alignment) { |
| u64 rem; |
| |
| if (likely(remainder_mask)) |
| rem = adj_start & remainder_mask; |
| else |
| div64_u64_rem(adj_start, alignment, &rem); |
| if (rem) { |
| adj_start -= rem; |
| if (mode != DRM_MM_INSERT_HIGH) |
| adj_start += alignment; |
| |
| if (adj_start < max(col_start, range_start) || |
| min(col_end, range_end) - adj_start < size) |
| continue; |
| |
| if (adj_end <= adj_start || |
| adj_end - adj_start < size) |
| continue; |
| } |
| } |
| |
| node->mm = mm; |
| node->size = size; |
| node->start = adj_start; |
| node->color = color; |
| node->hole_size = 0; |
| |
| __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); |
| list_add(&node->node_list, &hole->node_list); |
| drm_mm_interval_tree_add_node(hole, node); |
| |
| rm_hole(hole); |
| if (adj_start > hole_start) |
| add_hole(hole); |
| if (adj_start + size < hole_end) |
| add_hole(node); |
| |
| save_stack(node); |
| return 0; |
| } |
| |
| return -ENOSPC; |
| } |
| EXPORT_SYMBOL(drm_mm_insert_node_in_range); |
| |
| static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node) |
| { |
| return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); |
| } |
| |
| /** |
| * drm_mm_remove_node - Remove a memory node from the allocator. |
| * @node: drm_mm_node to remove |
| * |
| * This just removes a node from its drm_mm allocator. The node does not need to |
| * be cleared again before it can be re-inserted into this or any other drm_mm |
| * allocator. It is a bug to call this function on a unallocated node. |
| */ |
| void drm_mm_remove_node(struct drm_mm_node *node) |
| { |
| struct drm_mm *mm = node->mm; |
| struct drm_mm_node *prev_node; |
| |
| DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); |
| DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); |
| |
| prev_node = list_prev_entry(node, node_list); |
| |
| if (drm_mm_hole_follows(node)) |
| rm_hole(node); |
| |
| drm_mm_interval_tree_remove(node, &mm->interval_tree); |
| list_del(&node->node_list); |
| |
| if (drm_mm_hole_follows(prev_node)) |
| rm_hole(prev_node); |
| add_hole(prev_node); |
| |
| clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags); |
| } |
| EXPORT_SYMBOL(drm_mm_remove_node); |
| |
| /** |
| * drm_mm_replace_node - move an allocation from @old to @new |
| * @old: drm_mm_node to remove from the allocator |
| * @new: drm_mm_node which should inherit @old's allocation |
| * |
| * This is useful for when drivers embed the drm_mm_node structure and hence |
| * can't move allocations by reassigning pointers. It's a combination of remove |
| * and insert with the guarantee that the allocation start will match. |
| */ |
| void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new) |
| { |
| struct drm_mm *mm = old->mm; |
| |
| DRM_MM_BUG_ON(!drm_mm_node_allocated(old)); |
| |
| *new = *old; |
| |
| __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags); |
| list_replace(&old->node_list, &new->node_list); |
| rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree); |
| |
| if (drm_mm_hole_follows(old)) { |
| list_replace(&old->hole_stack, &new->hole_stack); |
| rb_replace_node_cached(&old->rb_hole_size, |
| &new->rb_hole_size, |
| &mm->holes_size); |
| rb_replace_node(&old->rb_hole_addr, |
| &new->rb_hole_addr, |
| &mm->holes_addr); |
| } |
| |
| clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags); |
| } |
| EXPORT_SYMBOL(drm_mm_replace_node); |
| |
| /** |
| * DOC: lru scan roster |
| * |
| * Very often GPUs need to have continuous allocations for a given object. When |
| * evicting objects to make space for a new one it is therefore not most |
| * efficient when we simply start to select all objects from the tail of an LRU |
| * until there's a suitable hole: Especially for big objects or nodes that |
| * otherwise have special allocation constraints there's a good chance we evict |
| * lots of (smaller) objects unnecessarily. |
| * |
| * The DRM range allocator supports this use-case through the scanning |
| * interfaces. First a scan operation needs to be initialized with |
| * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds |
| * objects to the roster, probably by walking an LRU list, but this can be |
| * freely implemented. Eviction candiates are added using |
| * drm_mm_scan_add_block() until a suitable hole is found or there are no |
| * further evictable objects. Eviction roster metadata is tracked in &struct |
| * drm_mm_scan. |
| * |
| * The driver must walk through all objects again in exactly the reverse |
| * order to restore the allocator state. Note that while the allocator is used |
| * in the scan mode no other operation is allowed. |
| * |
| * Finally the driver evicts all objects selected (drm_mm_scan_remove_block() |
| * reported true) in the scan, and any overlapping nodes after color adjustment |
| * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and |
| * since freeing a node is also O(1) the overall complexity is |
| * O(scanned_objects). So like the free stack which needs to be walked before a |
| * scan operation even begins this is linear in the number of objects. It |
| * doesn't seem to hurt too badly. |
| */ |
| |
| /** |
| * drm_mm_scan_init_with_range - initialize range-restricted lru scanning |
| * @scan: scan state |
| * @mm: drm_mm to scan |
| * @size: size of the allocation |
| * @alignment: alignment of the allocation |
| * @color: opaque tag value to use for the allocation |
| * @start: start of the allowed range for the allocation |
| * @end: end of the allowed range for the allocation |
| * @mode: fine-tune the allocation search and placement |
| * |
| * This simply sets up the scanning routines with the parameters for the desired |
| * hole. |
| * |
| * Warning: |
| * As long as the scan list is non-empty, no other operations than |
| * adding/removing nodes to/from the scan list are allowed. |
| */ |
| void drm_mm_scan_init_with_range(struct drm_mm_scan *scan, |
| struct drm_mm *mm, |
| u64 size, |
| u64 alignment, |
| unsigned long color, |
| u64 start, |
| u64 end, |
| enum drm_mm_insert_mode mode) |
| { |
| DRM_MM_BUG_ON(start >= end); |
| DRM_MM_BUG_ON(!size || size > end - start); |
| DRM_MM_BUG_ON(mm->scan_active); |
| |
| scan->mm = mm; |
| |
| if (alignment <= 1) |
| alignment = 0; |
| |
| scan->color = color; |
| scan->alignment = alignment; |
| scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0; |
| scan->size = size; |
| scan->mode = mode; |
| |
| DRM_MM_BUG_ON(end <= start); |
| scan->range_start = start; |
| scan->range_end = end; |
| |
| scan->hit_start = U64_MAX; |
| scan->hit_end = 0; |
| } |
| EXPORT_SYMBOL(drm_mm_scan_init_with_range); |
| |
| /** |
| * drm_mm_scan_add_block - add a node to the scan list |
| * @scan: the active drm_mm scanner |
| * @node: drm_mm_node to add |
| * |
| * Add a node to the scan list that might be freed to make space for the desired |
| * hole. |
| * |
| * Returns: |
| * True if a hole has been found, false otherwise. |
| */ |
| bool drm_mm_scan_add_block(struct drm_mm_scan *scan, |
| struct drm_mm_node *node) |
| { |
| struct drm_mm *mm = scan->mm; |
| struct drm_mm_node *hole; |
| u64 hole_start, hole_end; |
| u64 col_start, col_end; |
| u64 adj_start, adj_end; |
| |
| DRM_MM_BUG_ON(node->mm != mm); |
| DRM_MM_BUG_ON(!drm_mm_node_allocated(node)); |
| DRM_MM_BUG_ON(drm_mm_node_scanned_block(node)); |
| __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); |
| mm->scan_active++; |
| |
| /* Remove this block from the node_list so that we enlarge the hole |
| * (distance between the end of our previous node and the start of |
| * or next), without poisoning the link so that we can restore it |
| * later in drm_mm_scan_remove_block(). |
| */ |
| hole = list_prev_entry(node, node_list); |
| DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node); |
| __list_del_entry(&node->node_list); |
| |
| hole_start = __drm_mm_hole_node_start(hole); |
| hole_end = __drm_mm_hole_node_end(hole); |
| |
| col_start = hole_start; |
| col_end = hole_end; |
| if (mm->color_adjust) |
| mm->color_adjust(hole, scan->color, &col_start, &col_end); |
| |
| adj_start = max(col_start, scan->range_start); |
| adj_end = min(col_end, scan->range_end); |
| if (adj_end <= adj_start || adj_end - adj_start < scan->size) |
| return false; |
| |
| if (scan->mode == DRM_MM_INSERT_HIGH) |
| adj_start = adj_end - scan->size; |
| |
| if (scan->alignment) { |
| u64 rem; |
| |
| if (likely(scan->remainder_mask)) |
| rem = adj_start & scan->remainder_mask; |
| else |
| div64_u64_rem(adj_start, scan->alignment, &rem); |
| if (rem) { |
| adj_start -= rem; |
| if (scan->mode != DRM_MM_INSERT_HIGH) |
| adj_start += scan->alignment; |
| if (adj_start < max(col_start, scan->range_start) || |
| min(col_end, scan->range_end) - adj_start < scan->size) |
| return false; |
| |
| if (adj_end <= adj_start || |
| adj_end - adj_start < scan->size) |
| return false; |
| } |
| } |
| |
| scan->hit_start = adj_start; |
| scan->hit_end = adj_start + scan->size; |
| |
| DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end); |
| DRM_MM_BUG_ON(scan->hit_start < hole_start); |
| DRM_MM_BUG_ON(scan->hit_end > hole_end); |
| |
| return true; |
| } |
| EXPORT_SYMBOL(drm_mm_scan_add_block); |
| |
| /** |
| * drm_mm_scan_remove_block - remove a node from the scan list |
| * @scan: the active drm_mm scanner |
| * @node: drm_mm_node to remove |
| * |
| * Nodes **must** be removed in exactly the reverse order from the scan list as |
| * they have been added (e.g. using list_add() as they are added and then |
| * list_for_each() over that eviction list to remove), otherwise the internal |
| * state of the memory manager will be corrupted. |
| * |
| * When the scan list is empty, the selected memory nodes can be freed. An |
| * immediately following drm_mm_insert_node_in_range_generic() or one of the |
| * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return |
| * the just freed block (because it's at the top of the free_stack list). |
| * |
| * Returns: |
| * True if this block should be evicted, false otherwise. Will always |
| * return false when no hole has been found. |
| */ |
| bool drm_mm_scan_remove_block(struct drm_mm_scan *scan, |
| struct drm_mm_node *node) |
| { |
| struct drm_mm_node *prev_node; |
| |
| DRM_MM_BUG_ON(node->mm != scan->mm); |
| DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node)); |
| __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags); |
| |
| DRM_MM_BUG_ON(!node->mm->scan_active); |
| node->mm->scan_active--; |
| |
| /* During drm_mm_scan_add_block() we decoupled this node leaving |
| * its pointers intact. Now that the caller is walking back along |
| * the eviction list we can restore this block into its rightful |
| * place on the full node_list. To confirm that the caller is walking |
| * backwards correctly we check that prev_node->next == node->next, |
| * i.e. both believe the same node should be on the other side of the |
| * hole. |
| */ |
| prev_node = list_prev_entry(node, node_list); |
| DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) != |
| list_next_entry(node, node_list)); |
| list_add(&node->node_list, &prev_node->node_list); |
| |
| return (node->start + node->size > scan->hit_start && |
| node->start < scan->hit_end); |
| } |
| EXPORT_SYMBOL(drm_mm_scan_remove_block); |
| |
| /** |
| * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole |
| * @scan: drm_mm scan with target hole |
| * |
| * After completing an eviction scan and removing the selected nodes, we may |
| * need to remove a few more nodes from either side of the target hole if |
| * mm.color_adjust is being used. |
| * |
| * Returns: |
| * A node to evict, or NULL if there are no overlapping nodes. |
| */ |
| struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan) |
| { |
| struct drm_mm *mm = scan->mm; |
| struct drm_mm_node *hole; |
| u64 hole_start, hole_end; |
| |
| DRM_MM_BUG_ON(list_empty(&mm->hole_stack)); |
| |
| if (!mm->color_adjust) |
| return NULL; |
| |
| /* |
| * The hole found during scanning should ideally be the first element |
| * in the hole_stack list, but due to side-effects in the driver it |
| * may not be. |
| */ |
| list_for_each_entry(hole, &mm->hole_stack, hole_stack) { |
| hole_start = __drm_mm_hole_node_start(hole); |
| hole_end = hole_start + hole->hole_size; |
| |
| if (hole_start <= scan->hit_start && |
| hole_end >= scan->hit_end) |
| break; |
| } |
| |
| /* We should only be called after we found the hole previously */ |
| DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack); |
| if (unlikely(&hole->hole_stack == &mm->hole_stack)) |
| return NULL; |
| |
| DRM_MM_BUG_ON(hole_start > scan->hit_start); |
| DRM_MM_BUG_ON(hole_end < scan->hit_end); |
| |
| mm->color_adjust(hole, scan->color, &hole_start, &hole_end); |
| if (hole_start > scan->hit_start) |
| return hole; |
| if (hole_end < scan->hit_end) |
| return list_next_entry(hole, node_list); |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(drm_mm_scan_color_evict); |
| |
| /** |
| * drm_mm_init - initialize a drm-mm allocator |
| * @mm: the drm_mm structure to initialize |
| * @start: start of the range managed by @mm |
| * @size: end of the range managed by @mm |
| * |
| * Note that @mm must be cleared to 0 before calling this function. |
| */ |
| void drm_mm_init(struct drm_mm *mm, u64 start, u64 size) |
| { |
| DRM_MM_BUG_ON(start + size <= start); |
| |
| mm->color_adjust = NULL; |
| |
| INIT_LIST_HEAD(&mm->hole_stack); |
| mm->interval_tree = RB_ROOT_CACHED; |
| mm->holes_size = RB_ROOT_CACHED; |
| mm->holes_addr = RB_ROOT; |
| |
| /* Clever trick to avoid a special case in the free hole tracking. */ |
| INIT_LIST_HEAD(&mm->head_node.node_list); |
| mm->head_node.flags = 0; |
| mm->head_node.mm = mm; |
| mm->head_node.start = start + size; |
| mm->head_node.size = -size; |
| add_hole(&mm->head_node); |
| |
| mm->scan_active = 0; |
| } |
| EXPORT_SYMBOL(drm_mm_init); |
| |
| /** |
| * drm_mm_takedown - clean up a drm_mm allocator |
| * @mm: drm_mm allocator to clean up |
| * |
| * Note that it is a bug to call this function on an allocator which is not |
| * clean. |
| */ |
| void drm_mm_takedown(struct drm_mm *mm) |
| { |
| if (WARN(!drm_mm_clean(mm), |
| "Memory manager not clean during takedown.\n")) |
| show_leaks(mm); |
| } |
| EXPORT_SYMBOL(drm_mm_takedown); |
| |
| static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry) |
| { |
| u64 start, size; |
| |
| size = entry->hole_size; |
| if (size) { |
| start = drm_mm_hole_node_start(entry); |
| drm_printf(p, "%#018llx-%#018llx: %llu: free\n", |
| start, start + size, size); |
| } |
| |
| return size; |
| } |
| /** |
| * drm_mm_print - print allocator state |
| * @mm: drm_mm allocator to print |
| * @p: DRM printer to use |
| */ |
| void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p) |
| { |
| const struct drm_mm_node *entry; |
| u64 total_used = 0, total_free = 0, total = 0; |
| |
| total_free += drm_mm_dump_hole(p, &mm->head_node); |
| |
| drm_mm_for_each_node(entry, mm) { |
| drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start, |
| entry->start + entry->size, entry->size); |
| total_used += entry->size; |
| total_free += drm_mm_dump_hole(p, entry); |
| } |
| total = total_free + total_used; |
| |
| drm_printf(p, "total: %llu, used %llu free %llu\n", total, |
| total_used, total_free); |
| } |
| EXPORT_SYMBOL(drm_mm_print); |