| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2000-2003 Silicon Graphics, Inc. |
| * All Rights Reserved. |
| */ |
| #include "xfs.h" |
| #include "xfs_fs.h" |
| #include "xfs_format.h" |
| #include "xfs_log_format.h" |
| #include "xfs_shared.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_bit.h" |
| #include "xfs_mount.h" |
| #include "xfs_defer.h" |
| #include "xfs_inode.h" |
| #include "xfs_bmap.h" |
| #include "xfs_quota.h" |
| #include "xfs_trans.h" |
| #include "xfs_buf_item.h" |
| #include "xfs_trans_space.h" |
| #include "xfs_trans_priv.h" |
| #include "xfs_qm.h" |
| #include "xfs_trace.h" |
| #include "xfs_log.h" |
| #include "xfs_bmap_btree.h" |
| |
| /* |
| * Lock order: |
| * |
| * ip->i_lock |
| * qi->qi_tree_lock |
| * dquot->q_qlock (xfs_dqlock() and friends) |
| * dquot->q_flush (xfs_dqflock() and friends) |
| * qi->qi_lru_lock |
| * |
| * If two dquots need to be locked the order is user before group/project, |
| * otherwise by the lowest id first, see xfs_dqlock2. |
| */ |
| |
| struct kmem_zone *xfs_qm_dqtrxzone; |
| static struct kmem_zone *xfs_qm_dqzone; |
| |
| static struct lock_class_key xfs_dquot_group_class; |
| static struct lock_class_key xfs_dquot_project_class; |
| |
| /* |
| * This is called to free all the memory associated with a dquot |
| */ |
| void |
| xfs_qm_dqdestroy( |
| xfs_dquot_t *dqp) |
| { |
| ASSERT(list_empty(&dqp->q_lru)); |
| |
| kmem_free(dqp->q_logitem.qli_item.li_lv_shadow); |
| mutex_destroy(&dqp->q_qlock); |
| |
| XFS_STATS_DEC(dqp->q_mount, xs_qm_dquot); |
| kmem_zone_free(xfs_qm_dqzone, dqp); |
| } |
| |
| /* |
| * If default limits are in force, push them into the dquot now. |
| * We overwrite the dquot limits only if they are zero and this |
| * is not the root dquot. |
| */ |
| void |
| xfs_qm_adjust_dqlimits( |
| struct xfs_mount *mp, |
| struct xfs_dquot *dq) |
| { |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| struct xfs_disk_dquot *d = &dq->q_core; |
| struct xfs_def_quota *defq; |
| int prealloc = 0; |
| |
| ASSERT(d->d_id); |
| defq = xfs_get_defquota(dq, q); |
| |
| if (defq->bsoftlimit && !d->d_blk_softlimit) { |
| d->d_blk_softlimit = cpu_to_be64(defq->bsoftlimit); |
| prealloc = 1; |
| } |
| if (defq->bhardlimit && !d->d_blk_hardlimit) { |
| d->d_blk_hardlimit = cpu_to_be64(defq->bhardlimit); |
| prealloc = 1; |
| } |
| if (defq->isoftlimit && !d->d_ino_softlimit) |
| d->d_ino_softlimit = cpu_to_be64(defq->isoftlimit); |
| if (defq->ihardlimit && !d->d_ino_hardlimit) |
| d->d_ino_hardlimit = cpu_to_be64(defq->ihardlimit); |
| if (defq->rtbsoftlimit && !d->d_rtb_softlimit) |
| d->d_rtb_softlimit = cpu_to_be64(defq->rtbsoftlimit); |
| if (defq->rtbhardlimit && !d->d_rtb_hardlimit) |
| d->d_rtb_hardlimit = cpu_to_be64(defq->rtbhardlimit); |
| |
| if (prealloc) |
| xfs_dquot_set_prealloc_limits(dq); |
| } |
| |
| /* |
| * Check the limits and timers of a dquot and start or reset timers |
| * if necessary. |
| * This gets called even when quota enforcement is OFF, which makes our |
| * life a little less complicated. (We just don't reject any quota |
| * reservations in that case, when enforcement is off). |
| * We also return 0 as the values of the timers in Q_GETQUOTA calls, when |
| * enforcement's off. |
| * In contrast, warnings are a little different in that they don't |
| * 'automatically' get started when limits get exceeded. They do |
| * get reset to zero, however, when we find the count to be under |
| * the soft limit (they are only ever set non-zero via userspace). |
| */ |
| void |
| xfs_qm_adjust_dqtimers( |
| xfs_mount_t *mp, |
| xfs_disk_dquot_t *d) |
| { |
| ASSERT(d->d_id); |
| |
| #ifdef DEBUG |
| if (d->d_blk_hardlimit) |
| ASSERT(be64_to_cpu(d->d_blk_softlimit) <= |
| be64_to_cpu(d->d_blk_hardlimit)); |
| if (d->d_ino_hardlimit) |
| ASSERT(be64_to_cpu(d->d_ino_softlimit) <= |
| be64_to_cpu(d->d_ino_hardlimit)); |
| if (d->d_rtb_hardlimit) |
| ASSERT(be64_to_cpu(d->d_rtb_softlimit) <= |
| be64_to_cpu(d->d_rtb_hardlimit)); |
| #endif |
| |
| if (!d->d_btimer) { |
| if ((d->d_blk_softlimit && |
| (be64_to_cpu(d->d_bcount) > |
| be64_to_cpu(d->d_blk_softlimit))) || |
| (d->d_blk_hardlimit && |
| (be64_to_cpu(d->d_bcount) > |
| be64_to_cpu(d->d_blk_hardlimit)))) { |
| d->d_btimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_btimelimit); |
| } else { |
| d->d_bwarns = 0; |
| } |
| } else { |
| if ((!d->d_blk_softlimit || |
| (be64_to_cpu(d->d_bcount) <= |
| be64_to_cpu(d->d_blk_softlimit))) && |
| (!d->d_blk_hardlimit || |
| (be64_to_cpu(d->d_bcount) <= |
| be64_to_cpu(d->d_blk_hardlimit)))) { |
| d->d_btimer = 0; |
| } |
| } |
| |
| if (!d->d_itimer) { |
| if ((d->d_ino_softlimit && |
| (be64_to_cpu(d->d_icount) > |
| be64_to_cpu(d->d_ino_softlimit))) || |
| (d->d_ino_hardlimit && |
| (be64_to_cpu(d->d_icount) > |
| be64_to_cpu(d->d_ino_hardlimit)))) { |
| d->d_itimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_itimelimit); |
| } else { |
| d->d_iwarns = 0; |
| } |
| } else { |
| if ((!d->d_ino_softlimit || |
| (be64_to_cpu(d->d_icount) <= |
| be64_to_cpu(d->d_ino_softlimit))) && |
| (!d->d_ino_hardlimit || |
| (be64_to_cpu(d->d_icount) <= |
| be64_to_cpu(d->d_ino_hardlimit)))) { |
| d->d_itimer = 0; |
| } |
| } |
| |
| if (!d->d_rtbtimer) { |
| if ((d->d_rtb_softlimit && |
| (be64_to_cpu(d->d_rtbcount) > |
| be64_to_cpu(d->d_rtb_softlimit))) || |
| (d->d_rtb_hardlimit && |
| (be64_to_cpu(d->d_rtbcount) > |
| be64_to_cpu(d->d_rtb_hardlimit)))) { |
| d->d_rtbtimer = cpu_to_be32(get_seconds() + |
| mp->m_quotainfo->qi_rtbtimelimit); |
| } else { |
| d->d_rtbwarns = 0; |
| } |
| } else { |
| if ((!d->d_rtb_softlimit || |
| (be64_to_cpu(d->d_rtbcount) <= |
| be64_to_cpu(d->d_rtb_softlimit))) && |
| (!d->d_rtb_hardlimit || |
| (be64_to_cpu(d->d_rtbcount) <= |
| be64_to_cpu(d->d_rtb_hardlimit)))) { |
| d->d_rtbtimer = 0; |
| } |
| } |
| } |
| |
| /* |
| * initialize a buffer full of dquots and log the whole thing |
| */ |
| STATIC void |
| xfs_qm_init_dquot_blk( |
| xfs_trans_t *tp, |
| xfs_mount_t *mp, |
| xfs_dqid_t id, |
| uint type, |
| xfs_buf_t *bp) |
| { |
| struct xfs_quotainfo *q = mp->m_quotainfo; |
| xfs_dqblk_t *d; |
| xfs_dqid_t curid; |
| int i; |
| |
| ASSERT(tp); |
| ASSERT(xfs_buf_islocked(bp)); |
| |
| d = bp->b_addr; |
| |
| /* |
| * ID of the first dquot in the block - id's are zero based. |
| */ |
| curid = id - (id % q->qi_dqperchunk); |
| memset(d, 0, BBTOB(q->qi_dqchunklen)); |
| for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++) { |
| d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC); |
| d->dd_diskdq.d_version = XFS_DQUOT_VERSION; |
| d->dd_diskdq.d_id = cpu_to_be32(curid); |
| d->dd_diskdq.d_flags = type; |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid); |
| xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| } |
| |
| xfs_trans_dquot_buf(tp, bp, |
| (type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF : |
| ((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF : |
| XFS_BLF_GDQUOT_BUF))); |
| xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1); |
| } |
| |
| /* |
| * Initialize the dynamic speculative preallocation thresholds. The lo/hi |
| * watermarks correspond to the soft and hard limits by default. If a soft limit |
| * is not specified, we use 95% of the hard limit. |
| */ |
| void |
| xfs_dquot_set_prealloc_limits(struct xfs_dquot *dqp) |
| { |
| uint64_t space; |
| |
| dqp->q_prealloc_hi_wmark = be64_to_cpu(dqp->q_core.d_blk_hardlimit); |
| dqp->q_prealloc_lo_wmark = be64_to_cpu(dqp->q_core.d_blk_softlimit); |
| if (!dqp->q_prealloc_lo_wmark) { |
| dqp->q_prealloc_lo_wmark = dqp->q_prealloc_hi_wmark; |
| do_div(dqp->q_prealloc_lo_wmark, 100); |
| dqp->q_prealloc_lo_wmark *= 95; |
| } |
| |
| space = dqp->q_prealloc_hi_wmark; |
| |
| do_div(space, 100); |
| dqp->q_low_space[XFS_QLOWSP_1_PCNT] = space; |
| dqp->q_low_space[XFS_QLOWSP_3_PCNT] = space * 3; |
| dqp->q_low_space[XFS_QLOWSP_5_PCNT] = space * 5; |
| } |
| |
| /* |
| * Ensure that the given in-core dquot has a buffer on disk backing it, and |
| * return the buffer locked and held. This is called when the bmapi finds a |
| * hole. |
| */ |
| STATIC int |
| xfs_dquot_disk_alloc( |
| struct xfs_trans **tpp, |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_bmbt_irec map; |
| struct xfs_trans *tp = *tpp; |
| struct xfs_mount *mp = tp->t_mountp; |
| struct xfs_buf *bp; |
| struct xfs_inode *quotip = xfs_quota_inode(mp, dqp->dq_flags); |
| int nmaps = 1; |
| int error; |
| |
| trace_xfs_dqalloc(dqp); |
| |
| xfs_ilock(quotip, XFS_ILOCK_EXCL); |
| if (!xfs_this_quota_on(dqp->q_mount, dqp->dq_flags)) { |
| /* |
| * Return if this type of quotas is turned off while we didn't |
| * have an inode lock |
| */ |
| xfs_iunlock(quotip, XFS_ILOCK_EXCL); |
| return -ESRCH; |
| } |
| |
| /* Create the block mapping. */ |
| xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL); |
| error = xfs_bmapi_write(tp, quotip, dqp->q_fileoffset, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA, 0, &map, |
| &nmaps); |
| if (error) |
| return error; |
| ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB); |
| ASSERT(nmaps == 1); |
| ASSERT((map.br_startblock != DELAYSTARTBLOCK) && |
| (map.br_startblock != HOLESTARTBLOCK)); |
| |
| /* |
| * Keep track of the blkno to save a lookup later |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| /* now we can just get the buffer (there's nothing to read yet) */ |
| bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0); |
| if (!bp) |
| return -ENOMEM; |
| bp->b_ops = &xfs_dquot_buf_ops; |
| |
| /* |
| * Make a chunk of dquots out of this buffer and log |
| * the entire thing. |
| */ |
| xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id), |
| dqp->dq_flags & XFS_DQ_ALLTYPES, bp); |
| xfs_buf_set_ref(bp, XFS_DQUOT_REF); |
| |
| /* |
| * Hold the buffer and join it to the dfops so that we'll still own |
| * the buffer when we return to the caller. The buffer disposal on |
| * error must be paid attention to very carefully, as it has been |
| * broken since commit efa092f3d4c6 "[XFS] Fixes a bug in the quota |
| * code when allocating a new dquot record" in 2005, and the later |
| * conversion to xfs_defer_ops in commit 310a75a3c6c747 failed to keep |
| * the buffer locked across the _defer_finish call. We can now do |
| * this correctly with xfs_defer_bjoin. |
| * |
| * Above, we allocated a disk block for the dquot information and used |
| * get_buf to initialize the dquot. If the _defer_finish fails, the old |
| * transaction is gone but the new buffer is not joined or held to any |
| * transaction, so we must _buf_relse it. |
| * |
| * If everything succeeds, the caller of this function is returned a |
| * buffer that is locked and held to the transaction. The caller |
| * is responsible for unlocking any buffer passed back, either |
| * manually or by committing the transaction. On error, the buffer is |
| * released and not passed back. |
| */ |
| xfs_trans_bhold(tp, bp); |
| error = xfs_defer_finish(tpp); |
| if (error) { |
| xfs_trans_bhold_release(*tpp, bp); |
| xfs_trans_brelse(*tpp, bp); |
| return error; |
| } |
| *bpp = bp; |
| return 0; |
| } |
| |
| /* |
| * Read in the in-core dquot's on-disk metadata and return the buffer. |
| * Returns ENOENT to signal a hole. |
| */ |
| STATIC int |
| xfs_dquot_disk_read( |
| struct xfs_mount *mp, |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_bmbt_irec map; |
| struct xfs_buf *bp; |
| struct xfs_inode *quotip = xfs_quota_inode(mp, dqp->dq_flags); |
| uint lock_mode; |
| int nmaps = 1; |
| int error; |
| |
| lock_mode = xfs_ilock_data_map_shared(quotip); |
| if (!xfs_this_quota_on(mp, dqp->dq_flags)) { |
| /* |
| * Return if this type of quotas is turned off while we |
| * didn't have the quota inode lock. |
| */ |
| xfs_iunlock(quotip, lock_mode); |
| return -ESRCH; |
| } |
| |
| /* |
| * Find the block map; no allocations yet |
| */ |
| error = xfs_bmapi_read(quotip, dqp->q_fileoffset, |
| XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0); |
| xfs_iunlock(quotip, lock_mode); |
| if (error) |
| return error; |
| |
| ASSERT(nmaps == 1); |
| ASSERT(map.br_blockcount >= 1); |
| ASSERT(map.br_startblock != DELAYSTARTBLOCK); |
| if (map.br_startblock == HOLESTARTBLOCK) |
| return -ENOENT; |
| |
| trace_xfs_dqtobp_read(dqp); |
| |
| /* |
| * store the blkno etc so that we don't have to do the |
| * mapping all the time |
| */ |
| dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock); |
| |
| error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0, &bp, |
| &xfs_dquot_buf_ops); |
| if (error) { |
| ASSERT(bp == NULL); |
| return error; |
| } |
| |
| ASSERT(xfs_buf_islocked(bp)); |
| xfs_buf_set_ref(bp, XFS_DQUOT_REF); |
| *bpp = bp; |
| |
| return 0; |
| } |
| |
| /* Allocate and initialize everything we need for an incore dquot. */ |
| STATIC struct xfs_dquot * |
| xfs_dquot_alloc( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type) |
| { |
| struct xfs_dquot *dqp; |
| |
| dqp = kmem_zone_zalloc(xfs_qm_dqzone, 0); |
| |
| dqp->dq_flags = type; |
| dqp->q_core.d_id = cpu_to_be32(id); |
| dqp->q_mount = mp; |
| INIT_LIST_HEAD(&dqp->q_lru); |
| mutex_init(&dqp->q_qlock); |
| init_waitqueue_head(&dqp->q_pinwait); |
| dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk; |
| /* |
| * Offset of dquot in the (fixed sized) dquot chunk. |
| */ |
| dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) * |
| sizeof(xfs_dqblk_t); |
| |
| /* |
| * Because we want to use a counting completion, complete |
| * the flush completion once to allow a single access to |
| * the flush completion without blocking. |
| */ |
| init_completion(&dqp->q_flush); |
| complete(&dqp->q_flush); |
| |
| /* |
| * Make sure group quotas have a different lock class than user |
| * quotas. |
| */ |
| switch (type) { |
| case XFS_DQ_USER: |
| /* uses the default lock class */ |
| break; |
| case XFS_DQ_GROUP: |
| lockdep_set_class(&dqp->q_qlock, &xfs_dquot_group_class); |
| break; |
| case XFS_DQ_PROJ: |
| lockdep_set_class(&dqp->q_qlock, &xfs_dquot_project_class); |
| break; |
| default: |
| ASSERT(0); |
| break; |
| } |
| |
| xfs_qm_dquot_logitem_init(dqp); |
| |
| XFS_STATS_INC(mp, xs_qm_dquot); |
| return dqp; |
| } |
| |
| /* Copy the in-core quota fields in from the on-disk buffer. */ |
| STATIC void |
| xfs_dquot_from_disk( |
| struct xfs_dquot *dqp, |
| struct xfs_buf *bp) |
| { |
| struct xfs_disk_dquot *ddqp = bp->b_addr + dqp->q_bufoffset; |
| |
| /* copy everything from disk dquot to the incore dquot */ |
| memcpy(&dqp->q_core, ddqp, sizeof(xfs_disk_dquot_t)); |
| |
| /* |
| * Reservation counters are defined as reservation plus current usage |
| * to avoid having to add every time. |
| */ |
| dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount); |
| dqp->q_res_icount = be64_to_cpu(ddqp->d_icount); |
| dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount); |
| |
| /* initialize the dquot speculative prealloc thresholds */ |
| xfs_dquot_set_prealloc_limits(dqp); |
| } |
| |
| /* Allocate and initialize the dquot buffer for this in-core dquot. */ |
| static int |
| xfs_qm_dqread_alloc( |
| struct xfs_mount *mp, |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_trans *tp; |
| int error; |
| |
| error = xfs_trans_alloc(mp, &M_RES(mp)->tr_qm_dqalloc, |
| XFS_QM_DQALLOC_SPACE_RES(mp), 0, 0, &tp); |
| if (error) |
| goto err; |
| |
| error = xfs_dquot_disk_alloc(&tp, dqp, bpp); |
| if (error) |
| goto err_cancel; |
| |
| error = xfs_trans_commit(tp); |
| if (error) { |
| /* |
| * Buffer was held to the transaction, so we have to unlock it |
| * manually here because we're not passing it back. |
| */ |
| xfs_buf_relse(*bpp); |
| *bpp = NULL; |
| goto err; |
| } |
| return 0; |
| |
| err_cancel: |
| xfs_trans_cancel(tp); |
| err: |
| return error; |
| } |
| |
| /* |
| * Read in the ondisk dquot using dqtobp() then copy it to an incore version, |
| * and release the buffer immediately. If @can_alloc is true, fill any |
| * holes in the on-disk metadata. |
| */ |
| static int |
| xfs_qm_dqread( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type, |
| bool can_alloc, |
| struct xfs_dquot **dqpp) |
| { |
| struct xfs_dquot *dqp; |
| struct xfs_buf *bp; |
| int error; |
| |
| dqp = xfs_dquot_alloc(mp, id, type); |
| trace_xfs_dqread(dqp); |
| |
| /* Try to read the buffer, allocating if necessary. */ |
| error = xfs_dquot_disk_read(mp, dqp, &bp); |
| if (error == -ENOENT && can_alloc) |
| error = xfs_qm_dqread_alloc(mp, dqp, &bp); |
| if (error) |
| goto err; |
| |
| /* |
| * At this point we should have a clean locked buffer. Copy the data |
| * to the incore dquot and release the buffer since the incore dquot |
| * has its own locking protocol so we needn't tie up the buffer any |
| * further. |
| */ |
| ASSERT(xfs_buf_islocked(bp)); |
| xfs_dquot_from_disk(dqp, bp); |
| |
| xfs_buf_relse(bp); |
| *dqpp = dqp; |
| return error; |
| |
| err: |
| trace_xfs_dqread_fail(dqp); |
| xfs_qm_dqdestroy(dqp); |
| *dqpp = NULL; |
| return error; |
| } |
| |
| /* |
| * Advance to the next id in the current chunk, or if at the |
| * end of the chunk, skip ahead to first id in next allocated chunk |
| * using the SEEK_DATA interface. |
| */ |
| static int |
| xfs_dq_get_next_id( |
| struct xfs_mount *mp, |
| uint type, |
| xfs_dqid_t *id) |
| { |
| struct xfs_inode *quotip = xfs_quota_inode(mp, type); |
| xfs_dqid_t next_id = *id + 1; /* simple advance */ |
| uint lock_flags; |
| struct xfs_bmbt_irec got; |
| struct xfs_iext_cursor cur; |
| xfs_fsblock_t start; |
| int error = 0; |
| |
| /* If we'd wrap past the max ID, stop */ |
| if (next_id < *id) |
| return -ENOENT; |
| |
| /* If new ID is within the current chunk, advancing it sufficed */ |
| if (next_id % mp->m_quotainfo->qi_dqperchunk) { |
| *id = next_id; |
| return 0; |
| } |
| |
| /* Nope, next_id is now past the current chunk, so find the next one */ |
| start = (xfs_fsblock_t)next_id / mp->m_quotainfo->qi_dqperchunk; |
| |
| lock_flags = xfs_ilock_data_map_shared(quotip); |
| if (!(quotip->i_df.if_flags & XFS_IFEXTENTS)) { |
| error = xfs_iread_extents(NULL, quotip, XFS_DATA_FORK); |
| if (error) |
| return error; |
| } |
| |
| if (xfs_iext_lookup_extent(quotip, "ip->i_df, start, &cur, &got)) { |
| /* contiguous chunk, bump startoff for the id calculation */ |
| if (got.br_startoff < start) |
| got.br_startoff = start; |
| *id = got.br_startoff * mp->m_quotainfo->qi_dqperchunk; |
| } else { |
| error = -ENOENT; |
| } |
| |
| xfs_iunlock(quotip, lock_flags); |
| |
| return error; |
| } |
| |
| /* |
| * Look up the dquot in the in-core cache. If found, the dquot is returned |
| * locked and ready to go. |
| */ |
| static struct xfs_dquot * |
| xfs_qm_dqget_cache_lookup( |
| struct xfs_mount *mp, |
| struct xfs_quotainfo *qi, |
| struct radix_tree_root *tree, |
| xfs_dqid_t id) |
| { |
| struct xfs_dquot *dqp; |
| |
| restart: |
| mutex_lock(&qi->qi_tree_lock); |
| dqp = radix_tree_lookup(tree, id); |
| if (!dqp) { |
| mutex_unlock(&qi->qi_tree_lock); |
| XFS_STATS_INC(mp, xs_qm_dqcachemisses); |
| return NULL; |
| } |
| |
| xfs_dqlock(dqp); |
| if (dqp->dq_flags & XFS_DQ_FREEING) { |
| xfs_dqunlock(dqp); |
| mutex_unlock(&qi->qi_tree_lock); |
| trace_xfs_dqget_freeing(dqp); |
| delay(1); |
| goto restart; |
| } |
| |
| dqp->q_nrefs++; |
| mutex_unlock(&qi->qi_tree_lock); |
| |
| trace_xfs_dqget_hit(dqp); |
| XFS_STATS_INC(mp, xs_qm_dqcachehits); |
| return dqp; |
| } |
| |
| /* |
| * Try to insert a new dquot into the in-core cache. If an error occurs the |
| * caller should throw away the dquot and start over. Otherwise, the dquot |
| * is returned locked (and held by the cache) as if there had been a cache |
| * hit. |
| */ |
| static int |
| xfs_qm_dqget_cache_insert( |
| struct xfs_mount *mp, |
| struct xfs_quotainfo *qi, |
| struct radix_tree_root *tree, |
| xfs_dqid_t id, |
| struct xfs_dquot *dqp) |
| { |
| int error; |
| |
| mutex_lock(&qi->qi_tree_lock); |
| error = radix_tree_insert(tree, id, dqp); |
| if (unlikely(error)) { |
| /* Duplicate found! Caller must try again. */ |
| WARN_ON(error != -EEXIST); |
| mutex_unlock(&qi->qi_tree_lock); |
| trace_xfs_dqget_dup(dqp); |
| return error; |
| } |
| |
| /* Return a locked dquot to the caller, with a reference taken. */ |
| xfs_dqlock(dqp); |
| dqp->q_nrefs = 1; |
| |
| qi->qi_dquots++; |
| mutex_unlock(&qi->qi_tree_lock); |
| |
| return 0; |
| } |
| |
| /* Check our input parameters. */ |
| static int |
| xfs_qm_dqget_checks( |
| struct xfs_mount *mp, |
| uint type) |
| { |
| if (WARN_ON_ONCE(!XFS_IS_QUOTA_RUNNING(mp))) |
| return -ESRCH; |
| |
| switch (type) { |
| case XFS_DQ_USER: |
| if (!XFS_IS_UQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| case XFS_DQ_GROUP: |
| if (!XFS_IS_GQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| case XFS_DQ_PROJ: |
| if (!XFS_IS_PQUOTA_ON(mp)) |
| return -ESRCH; |
| return 0; |
| default: |
| WARN_ON_ONCE(0); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Given the file system, id, and type (UDQUOT/GDQUOT), return a a locked |
| * dquot, doing an allocation (if requested) as needed. |
| */ |
| int |
| xfs_qm_dqget( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type, |
| bool can_alloc, |
| struct xfs_dquot **O_dqpp) |
| { |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct radix_tree_root *tree = xfs_dquot_tree(qi, type); |
| struct xfs_dquot *dqp; |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| restart: |
| dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); |
| if (dqp) { |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); |
| if (error) |
| return error; |
| |
| error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); |
| if (error) { |
| /* |
| * Duplicate found. Just throw away the new dquot and start |
| * over. |
| */ |
| xfs_qm_dqdestroy(dqp); |
| XFS_STATS_INC(mp, xs_qm_dquot_dups); |
| goto restart; |
| } |
| |
| trace_xfs_dqget_miss(dqp); |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Given a dquot id and type, read and initialize a dquot from the on-disk |
| * metadata. This function is only for use during quota initialization so |
| * it ignores the dquot cache assuming that the dquot shrinker isn't set up. |
| * The caller is responsible for _qm_dqdestroy'ing the returned dquot. |
| */ |
| int |
| xfs_qm_dqget_uncached( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type, |
| struct xfs_dquot **dqpp) |
| { |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| return xfs_qm_dqread(mp, id, type, 0, dqpp); |
| } |
| |
| /* Return the quota id for a given inode and type. */ |
| xfs_dqid_t |
| xfs_qm_id_for_quotatype( |
| struct xfs_inode *ip, |
| uint type) |
| { |
| switch (type) { |
| case XFS_DQ_USER: |
| return ip->i_d.di_uid; |
| case XFS_DQ_GROUP: |
| return ip->i_d.di_gid; |
| case XFS_DQ_PROJ: |
| return xfs_get_projid(ip); |
| } |
| ASSERT(0); |
| return 0; |
| } |
| |
| /* |
| * Return the dquot for a given inode and type. If @can_alloc is true, then |
| * allocate blocks if needed. The inode's ILOCK must be held and it must not |
| * have already had an inode attached. |
| */ |
| int |
| xfs_qm_dqget_inode( |
| struct xfs_inode *ip, |
| uint type, |
| bool can_alloc, |
| struct xfs_dquot **O_dqpp) |
| { |
| struct xfs_mount *mp = ip->i_mount; |
| struct xfs_quotainfo *qi = mp->m_quotainfo; |
| struct radix_tree_root *tree = xfs_dquot_tree(qi, type); |
| struct xfs_dquot *dqp; |
| xfs_dqid_t id; |
| int error; |
| |
| error = xfs_qm_dqget_checks(mp, type); |
| if (error) |
| return error; |
| |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| ASSERT(xfs_inode_dquot(ip, type) == NULL); |
| |
| id = xfs_qm_id_for_quotatype(ip, type); |
| |
| restart: |
| dqp = xfs_qm_dqget_cache_lookup(mp, qi, tree, id); |
| if (dqp) { |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Dquot cache miss. We don't want to keep the inode lock across |
| * a (potential) disk read. Also we don't want to deal with the lock |
| * ordering between quotainode and this inode. OTOH, dropping the inode |
| * lock here means dealing with a chown that can happen before |
| * we re-acquire the lock. |
| */ |
| xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| error = xfs_qm_dqread(mp, id, type, can_alloc, &dqp); |
| xfs_ilock(ip, XFS_ILOCK_EXCL); |
| if (error) |
| return error; |
| |
| /* |
| * A dquot could be attached to this inode by now, since we had |
| * dropped the ilock. |
| */ |
| if (xfs_this_quota_on(mp, type)) { |
| struct xfs_dquot *dqp1; |
| |
| dqp1 = xfs_inode_dquot(ip, type); |
| if (dqp1) { |
| xfs_qm_dqdestroy(dqp); |
| dqp = dqp1; |
| xfs_dqlock(dqp); |
| goto dqret; |
| } |
| } else { |
| /* inode stays locked on return */ |
| xfs_qm_dqdestroy(dqp); |
| return -ESRCH; |
| } |
| |
| error = xfs_qm_dqget_cache_insert(mp, qi, tree, id, dqp); |
| if (error) { |
| /* |
| * Duplicate found. Just throw away the new dquot and start |
| * over. |
| */ |
| xfs_qm_dqdestroy(dqp); |
| XFS_STATS_INC(mp, xs_qm_dquot_dups); |
| goto restart; |
| } |
| |
| dqret: |
| ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| trace_xfs_dqget_miss(dqp); |
| *O_dqpp = dqp; |
| return 0; |
| } |
| |
| /* |
| * Starting at @id and progressing upwards, look for an initialized incore |
| * dquot, lock it, and return it. |
| */ |
| int |
| xfs_qm_dqget_next( |
| struct xfs_mount *mp, |
| xfs_dqid_t id, |
| uint type, |
| struct xfs_dquot **dqpp) |
| { |
| struct xfs_dquot *dqp; |
| int error = 0; |
| |
| *dqpp = NULL; |
| for (; !error; error = xfs_dq_get_next_id(mp, type, &id)) { |
| error = xfs_qm_dqget(mp, id, type, false, &dqp); |
| if (error == -ENOENT) |
| continue; |
| else if (error != 0) |
| break; |
| |
| if (!XFS_IS_DQUOT_UNINITIALIZED(dqp)) { |
| *dqpp = dqp; |
| return 0; |
| } |
| |
| xfs_qm_dqput(dqp); |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Release a reference to the dquot (decrement ref-count) and unlock it. |
| * |
| * If there is a group quota attached to this dquot, carefully release that |
| * too without tripping over deadlocks'n'stuff. |
| */ |
| void |
| xfs_qm_dqput( |
| struct xfs_dquot *dqp) |
| { |
| ASSERT(dqp->q_nrefs > 0); |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| |
| trace_xfs_dqput(dqp); |
| |
| if (--dqp->q_nrefs == 0) { |
| struct xfs_quotainfo *qi = dqp->q_mount->m_quotainfo; |
| trace_xfs_dqput_free(dqp); |
| |
| if (list_lru_add(&qi->qi_lru, &dqp->q_lru)) |
| XFS_STATS_INC(dqp->q_mount, xs_qm_dquot_unused); |
| } |
| xfs_dqunlock(dqp); |
| } |
| |
| /* |
| * Release a dquot. Flush it if dirty, then dqput() it. |
| * dquot must not be locked. |
| */ |
| void |
| xfs_qm_dqrele( |
| xfs_dquot_t *dqp) |
| { |
| if (!dqp) |
| return; |
| |
| trace_xfs_dqrele(dqp); |
| |
| xfs_dqlock(dqp); |
| /* |
| * We don't care to flush it if the dquot is dirty here. |
| * That will create stutters that we want to avoid. |
| * Instead we do a delayed write when we try to reclaim |
| * a dirty dquot. Also xfs_sync will take part of the burden... |
| */ |
| xfs_qm_dqput(dqp); |
| } |
| |
| /* |
| * This is the dquot flushing I/O completion routine. It is called |
| * from interrupt level when the buffer containing the dquot is |
| * flushed to disk. It is responsible for removing the dquot logitem |
| * from the AIL if it has not been re-logged, and unlocking the dquot's |
| * flush lock. This behavior is very similar to that of inodes.. |
| */ |
| STATIC void |
| xfs_qm_dqflush_done( |
| struct xfs_buf *bp, |
| struct xfs_log_item *lip) |
| { |
| xfs_dq_logitem_t *qip = (struct xfs_dq_logitem *)lip; |
| xfs_dquot_t *dqp = qip->qli_dquot; |
| struct xfs_ail *ailp = lip->li_ailp; |
| |
| /* |
| * We only want to pull the item from the AIL if its |
| * location in the log has not changed since we started the flush. |
| * Thus, we only bother if the dquot's lsn has |
| * not changed. First we check the lsn outside the lock |
| * since it's cheaper, and then we recheck while |
| * holding the lock before removing the dquot from the AIL. |
| */ |
| if (test_bit(XFS_LI_IN_AIL, &lip->li_flags) && |
| ((lip->li_lsn == qip->qli_flush_lsn) || |
| test_bit(XFS_LI_FAILED, &lip->li_flags))) { |
| |
| /* xfs_trans_ail_delete() drops the AIL lock. */ |
| spin_lock(&ailp->ail_lock); |
| if (lip->li_lsn == qip->qli_flush_lsn) { |
| xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); |
| } else { |
| /* |
| * Clear the failed state since we are about to drop the |
| * flush lock |
| */ |
| xfs_clear_li_failed(lip); |
| spin_unlock(&ailp->ail_lock); |
| } |
| } |
| |
| /* |
| * Release the dq's flush lock since we're done with it. |
| */ |
| xfs_dqfunlock(dqp); |
| } |
| |
| /* |
| * Write a modified dquot to disk. |
| * The dquot must be locked and the flush lock too taken by caller. |
| * The flush lock will not be unlocked until the dquot reaches the disk, |
| * but the dquot is free to be unlocked and modified by the caller |
| * in the interim. Dquot is still locked on return. This behavior is |
| * identical to that of inodes. |
| */ |
| int |
| xfs_qm_dqflush( |
| struct xfs_dquot *dqp, |
| struct xfs_buf **bpp) |
| { |
| struct xfs_mount *mp = dqp->q_mount; |
| struct xfs_buf *bp; |
| struct xfs_dqblk *dqb; |
| struct xfs_disk_dquot *ddqp; |
| xfs_failaddr_t fa; |
| int error; |
| |
| ASSERT(XFS_DQ_IS_LOCKED(dqp)); |
| ASSERT(!completion_done(&dqp->q_flush)); |
| |
| trace_xfs_dqflush(dqp); |
| |
| *bpp = NULL; |
| |
| xfs_qm_dqunpin_wait(dqp); |
| |
| /* |
| * This may have been unpinned because the filesystem is shutting |
| * down forcibly. If that's the case we must not write this dquot |
| * to disk, because the log record didn't make it to disk. |
| * |
| * We also have to remove the log item from the AIL in this case, |
| * as we wait for an emptry AIL as part of the unmount process. |
| */ |
| if (XFS_FORCED_SHUTDOWN(mp)) { |
| struct xfs_log_item *lip = &dqp->q_logitem.qli_item; |
| dqp->dq_flags &= ~XFS_DQ_DIRTY; |
| |
| xfs_trans_ail_remove(lip, SHUTDOWN_CORRUPT_INCORE); |
| |
| error = -EIO; |
| goto out_unlock; |
| } |
| |
| /* |
| * Get the buffer containing the on-disk dquot |
| */ |
| error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno, |
| mp->m_quotainfo->qi_dqchunklen, 0, &bp, |
| &xfs_dquot_buf_ops); |
| if (error) |
| goto out_unlock; |
| |
| /* |
| * Calculate the location of the dquot inside the buffer. |
| */ |
| dqb = bp->b_addr + dqp->q_bufoffset; |
| ddqp = &dqb->dd_diskdq; |
| |
| /* |
| * A simple sanity check in case we got a corrupted dquot. |
| */ |
| fa = xfs_dqblk_verify(mp, dqb, be32_to_cpu(ddqp->d_id), 0); |
| if (fa) { |
| xfs_alert(mp, "corrupt dquot ID 0x%x in memory at %pS", |
| be32_to_cpu(ddqp->d_id), fa); |
| xfs_buf_relse(bp); |
| xfs_dqfunlock(dqp); |
| xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| return -EIO; |
| } |
| |
| /* This is the only portion of data that needs to persist */ |
| memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t)); |
| |
| /* |
| * Clear the dirty field and remember the flush lsn for later use. |
| */ |
| dqp->dq_flags &= ~XFS_DQ_DIRTY; |
| |
| xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn, |
| &dqp->q_logitem.qli_item.li_lsn); |
| |
| /* |
| * copy the lsn into the on-disk dquot now while we have the in memory |
| * dquot here. This can't be done later in the write verifier as we |
| * can't get access to the log item at that point in time. |
| * |
| * We also calculate the CRC here so that the on-disk dquot in the |
| * buffer always has a valid CRC. This ensures there is no possibility |
| * of a dquot without an up-to-date CRC getting to disk. |
| */ |
| if (xfs_sb_version_hascrc(&mp->m_sb)) { |
| dqb->dd_lsn = cpu_to_be64(dqp->q_logitem.qli_item.li_lsn); |
| xfs_update_cksum((char *)dqb, sizeof(struct xfs_dqblk), |
| XFS_DQUOT_CRC_OFF); |
| } |
| |
| /* |
| * Attach an iodone routine so that we can remove this dquot from the |
| * AIL and release the flush lock once the dquot is synced to disk. |
| */ |
| xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done, |
| &dqp->q_logitem.qli_item); |
| |
| /* |
| * If the buffer is pinned then push on the log so we won't |
| * get stuck waiting in the write for too long. |
| */ |
| if (xfs_buf_ispinned(bp)) { |
| trace_xfs_dqflush_force(dqp); |
| xfs_log_force(mp, 0); |
| } |
| |
| trace_xfs_dqflush_done(dqp); |
| *bpp = bp; |
| return 0; |
| |
| out_unlock: |
| xfs_dqfunlock(dqp); |
| return -EIO; |
| } |
| |
| /* |
| * Lock two xfs_dquot structures. |
| * |
| * To avoid deadlocks we always lock the quota structure with |
| * the lowerd id first. |
| */ |
| void |
| xfs_dqlock2( |
| xfs_dquot_t *d1, |
| xfs_dquot_t *d2) |
| { |
| if (d1 && d2) { |
| ASSERT(d1 != d2); |
| if (be32_to_cpu(d1->q_core.d_id) > |
| be32_to_cpu(d2->q_core.d_id)) { |
| mutex_lock(&d2->q_qlock); |
| mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED); |
| } else { |
| mutex_lock(&d1->q_qlock); |
| mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED); |
| } |
| } else if (d1) { |
| mutex_lock(&d1->q_qlock); |
| } else if (d2) { |
| mutex_lock(&d2->q_qlock); |
| } |
| } |
| |
| int __init |
| xfs_qm_init(void) |
| { |
| xfs_qm_dqzone = |
| kmem_zone_init(sizeof(struct xfs_dquot), "xfs_dquot"); |
| if (!xfs_qm_dqzone) |
| goto out; |
| |
| xfs_qm_dqtrxzone = |
| kmem_zone_init(sizeof(struct xfs_dquot_acct), "xfs_dqtrx"); |
| if (!xfs_qm_dqtrxzone) |
| goto out_free_dqzone; |
| |
| return 0; |
| |
| out_free_dqzone: |
| kmem_zone_destroy(xfs_qm_dqzone); |
| out: |
| return -ENOMEM; |
| } |
| |
| void |
| xfs_qm_exit(void) |
| { |
| kmem_zone_destroy(xfs_qm_dqtrxzone); |
| kmem_zone_destroy(xfs_qm_dqzone); |
| } |
| |
| /* |
| * Iterate every dquot of a particular type. The caller must ensure that the |
| * particular quota type is active. iter_fn can return negative error codes, |
| * or -ECANCELED to indicate that it wants to stop iterating. |
| */ |
| int |
| xfs_qm_dqiterate( |
| struct xfs_mount *mp, |
| uint dqtype, |
| xfs_qm_dqiterate_fn iter_fn, |
| void *priv) |
| { |
| struct xfs_dquot *dq; |
| xfs_dqid_t id = 0; |
| int error; |
| |
| do { |
| error = xfs_qm_dqget_next(mp, id, dqtype, &dq); |
| if (error == -ENOENT) |
| return 0; |
| if (error) |
| return error; |
| |
| error = iter_fn(dq, dqtype, priv); |
| id = be32_to_cpu(dq->q_core.d_id); |
| xfs_qm_dqput(dq); |
| id++; |
| } while (error == 0 && id != 0); |
| |
| return error; |
| } |