| /* |
| * Hardware performance events for the Alpha. |
| * |
| * We implement HW counts on the EV67 and subsequent CPUs only. |
| * |
| * (C) 2010 Michael J. Cree |
| * |
| * Somewhat based on the Sparc code, and to a lesser extent the PowerPC and |
| * ARM code, which are copyright by their respective authors. |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/kprobes.h> |
| #include <linux/kernel.h> |
| #include <linux/kdebug.h> |
| #include <linux/mutex.h> |
| |
| #include <asm/hwrpb.h> |
| #include <asm/atomic.h> |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/pal.h> |
| #include <asm/wrperfmon.h> |
| #include <asm/hw_irq.h> |
| |
| |
| /* The maximum number of PMCs on any Alpha CPU whatsoever. */ |
| #define MAX_HWEVENTS 3 |
| #define PMC_NO_INDEX -1 |
| |
| /* For tracking PMCs and the hw events they monitor on each CPU. */ |
| struct cpu_hw_events { |
| int enabled; |
| /* Number of events scheduled; also number entries valid in arrays below. */ |
| int n_events; |
| /* Number events added since last hw_perf_disable(). */ |
| int n_added; |
| /* Events currently scheduled. */ |
| struct perf_event *event[MAX_HWEVENTS]; |
| /* Event type of each scheduled event. */ |
| unsigned long evtype[MAX_HWEVENTS]; |
| /* Current index of each scheduled event; if not yet determined |
| * contains PMC_NO_INDEX. |
| */ |
| int current_idx[MAX_HWEVENTS]; |
| /* The active PMCs' config for easy use with wrperfmon(). */ |
| unsigned long config; |
| /* The active counters' indices for easy use with wrperfmon(). */ |
| unsigned long idx_mask; |
| }; |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| |
| |
| |
| /* |
| * A structure to hold the description of the PMCs available on a particular |
| * type of Alpha CPU. |
| */ |
| struct alpha_pmu_t { |
| /* Mapping of the perf system hw event types to indigenous event types */ |
| const int *event_map; |
| /* The number of entries in the event_map */ |
| int max_events; |
| /* The number of PMCs on this Alpha */ |
| int num_pmcs; |
| /* |
| * All PMC counters reside in the IBOX register PCTR. This is the |
| * LSB of the counter. |
| */ |
| int pmc_count_shift[MAX_HWEVENTS]; |
| /* |
| * The mask that isolates the PMC bits when the LSB of the counter |
| * is shifted to bit 0. |
| */ |
| unsigned long pmc_count_mask[MAX_HWEVENTS]; |
| /* The maximum period the PMC can count. */ |
| unsigned long pmc_max_period[MAX_HWEVENTS]; |
| /* |
| * The maximum value that may be written to the counter due to |
| * hardware restrictions is pmc_max_period - pmc_left. |
| */ |
| long pmc_left[3]; |
| /* Subroutine for allocation of PMCs. Enforces constraints. */ |
| int (*check_constraints)(struct perf_event **, unsigned long *, int); |
| }; |
| |
| /* |
| * The Alpha CPU PMU description currently in operation. This is set during |
| * the boot process to the specific CPU of the machine. |
| */ |
| static const struct alpha_pmu_t *alpha_pmu; |
| |
| |
| #define HW_OP_UNSUPPORTED -1 |
| |
| /* |
| * The hardware description of the EV67, EV68, EV69, EV7 and EV79 PMUs |
| * follow. Since they are identical we refer to them collectively as the |
| * EV67 henceforth. |
| */ |
| |
| /* |
| * EV67 PMC event types |
| * |
| * There is no one-to-one mapping of the possible hw event types to the |
| * actual codes that are used to program the PMCs hence we introduce our |
| * own hw event type identifiers. |
| */ |
| enum ev67_pmc_event_type { |
| EV67_CYCLES = 1, |
| EV67_INSTRUCTIONS, |
| EV67_BCACHEMISS, |
| EV67_MBOXREPLAY, |
| EV67_LAST_ET |
| }; |
| #define EV67_NUM_EVENT_TYPES (EV67_LAST_ET-EV67_CYCLES) |
| |
| |
| /* Mapping of the hw event types to the perf tool interface */ |
| static const int ev67_perfmon_event_map[] = { |
| [PERF_COUNT_HW_CPU_CYCLES] = EV67_CYCLES, |
| [PERF_COUNT_HW_INSTRUCTIONS] = EV67_INSTRUCTIONS, |
| [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, |
| [PERF_COUNT_HW_CACHE_MISSES] = EV67_BCACHEMISS, |
| }; |
| |
| struct ev67_mapping_t { |
| int config; |
| int idx; |
| }; |
| |
| /* |
| * The mapping used for one event only - these must be in same order as enum |
| * ev67_pmc_event_type definition. |
| */ |
| static const struct ev67_mapping_t ev67_mapping[] = { |
| {EV67_PCTR_INSTR_CYCLES, 1}, /* EV67_CYCLES, */ |
| {EV67_PCTR_INSTR_CYCLES, 0}, /* EV67_INSTRUCTIONS */ |
| {EV67_PCTR_INSTR_BCACHEMISS, 1}, /* EV67_BCACHEMISS */ |
| {EV67_PCTR_CYCLES_MBOX, 1} /* EV67_MBOXREPLAY */ |
| }; |
| |
| |
| /* |
| * Check that a group of events can be simultaneously scheduled on to the |
| * EV67 PMU. Also allocate counter indices and config. |
| */ |
| static int ev67_check_constraints(struct perf_event **event, |
| unsigned long *evtype, int n_ev) |
| { |
| int idx0; |
| unsigned long config; |
| |
| idx0 = ev67_mapping[evtype[0]-1].idx; |
| config = ev67_mapping[evtype[0]-1].config; |
| if (n_ev == 1) |
| goto success; |
| |
| BUG_ON(n_ev != 2); |
| |
| if (evtype[0] == EV67_MBOXREPLAY || evtype[1] == EV67_MBOXREPLAY) { |
| /* MBOX replay traps must be on PMC 1 */ |
| idx0 = (evtype[0] == EV67_MBOXREPLAY) ? 1 : 0; |
| /* Only cycles can accompany MBOX replay traps */ |
| if (evtype[idx0] == EV67_CYCLES) { |
| config = EV67_PCTR_CYCLES_MBOX; |
| goto success; |
| } |
| } |
| |
| if (evtype[0] == EV67_BCACHEMISS || evtype[1] == EV67_BCACHEMISS) { |
| /* Bcache misses must be on PMC 1 */ |
| idx0 = (evtype[0] == EV67_BCACHEMISS) ? 1 : 0; |
| /* Only instructions can accompany Bcache misses */ |
| if (evtype[idx0] == EV67_INSTRUCTIONS) { |
| config = EV67_PCTR_INSTR_BCACHEMISS; |
| goto success; |
| } |
| } |
| |
| if (evtype[0] == EV67_INSTRUCTIONS || evtype[1] == EV67_INSTRUCTIONS) { |
| /* Instructions must be on PMC 0 */ |
| idx0 = (evtype[0] == EV67_INSTRUCTIONS) ? 0 : 1; |
| /* By this point only cycles can accompany instructions */ |
| if (evtype[idx0^1] == EV67_CYCLES) { |
| config = EV67_PCTR_INSTR_CYCLES; |
| goto success; |
| } |
| } |
| |
| /* Otherwise, darn it, there is a conflict. */ |
| return -1; |
| |
| success: |
| event[0]->hw.idx = idx0; |
| event[0]->hw.config_base = config; |
| if (n_ev == 2) { |
| event[1]->hw.idx = idx0 ^ 1; |
| event[1]->hw.config_base = config; |
| } |
| return 0; |
| } |
| |
| |
| static const struct alpha_pmu_t ev67_pmu = { |
| .event_map = ev67_perfmon_event_map, |
| .max_events = ARRAY_SIZE(ev67_perfmon_event_map), |
| .num_pmcs = 2, |
| .pmc_count_shift = {EV67_PCTR_0_COUNT_SHIFT, EV67_PCTR_1_COUNT_SHIFT, 0}, |
| .pmc_count_mask = {EV67_PCTR_0_COUNT_MASK, EV67_PCTR_1_COUNT_MASK, 0}, |
| .pmc_max_period = {(1UL<<20) - 1, (1UL<<20) - 1, 0}, |
| .pmc_left = {16, 4, 0}, |
| .check_constraints = ev67_check_constraints |
| }; |
| |
| |
| |
| /* |
| * Helper routines to ensure that we read/write only the correct PMC bits |
| * when calling the wrperfmon PALcall. |
| */ |
| static inline void alpha_write_pmc(int idx, unsigned long val) |
| { |
| val &= alpha_pmu->pmc_count_mask[idx]; |
| val <<= alpha_pmu->pmc_count_shift[idx]; |
| val |= (1<<idx); |
| wrperfmon(PERFMON_CMD_WRITE, val); |
| } |
| |
| static inline unsigned long alpha_read_pmc(int idx) |
| { |
| unsigned long val; |
| |
| val = wrperfmon(PERFMON_CMD_READ, 0); |
| val >>= alpha_pmu->pmc_count_shift[idx]; |
| val &= alpha_pmu->pmc_count_mask[idx]; |
| return val; |
| } |
| |
| /* Set a new period to sample over */ |
| static int alpha_perf_event_set_period(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx) |
| { |
| long left = local64_read(&hwc->period_left); |
| long period = hwc->sample_period; |
| int ret = 0; |
| |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| /* |
| * Hardware restrictions require that the counters must not be |
| * written with values that are too close to the maximum period. |
| */ |
| if (unlikely(left < alpha_pmu->pmc_left[idx])) |
| left = alpha_pmu->pmc_left[idx]; |
| |
| if (left > (long)alpha_pmu->pmc_max_period[idx]) |
| left = alpha_pmu->pmc_max_period[idx]; |
| |
| local64_set(&hwc->prev_count, (unsigned long)(-left)); |
| |
| alpha_write_pmc(idx, (unsigned long)(-left)); |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Calculates the count (the 'delta') since the last time the PMC was read. |
| * |
| * As the PMCs' full period can easily be exceeded within the perf system |
| * sampling period we cannot use any high order bits as a guard bit in the |
| * PMCs to detect overflow as is done by other architectures. The code here |
| * calculates the delta on the basis that there is no overflow when ovf is |
| * zero. The value passed via ovf by the interrupt handler corrects for |
| * overflow. |
| * |
| * This can be racey on rare occasions -- a call to this routine can occur |
| * with an overflowed counter just before the PMI service routine is called. |
| * The check for delta negative hopefully always rectifies this situation. |
| */ |
| static unsigned long alpha_perf_event_update(struct perf_event *event, |
| struct hw_perf_event *hwc, int idx, long ovf) |
| { |
| long prev_raw_count, new_raw_count; |
| long delta; |
| |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| new_raw_count = alpha_read_pmc(idx); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| delta = (new_raw_count - (prev_raw_count & alpha_pmu->pmc_count_mask[idx])) + ovf; |
| |
| /* It is possible on very rare occasions that the PMC has overflowed |
| * but the interrupt is yet to come. Detect and fix this situation. |
| */ |
| if (unlikely(delta < 0)) { |
| delta += alpha_pmu->pmc_max_period[idx] + 1; |
| } |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| |
| /* |
| * Collect all HW events into the array event[]. |
| */ |
| static int collect_events(struct perf_event *group, int max_count, |
| struct perf_event *event[], unsigned long *evtype, |
| int *current_idx) |
| { |
| struct perf_event *pe; |
| int n = 0; |
| |
| if (!is_software_event(group)) { |
| if (n >= max_count) |
| return -1; |
| event[n] = group; |
| evtype[n] = group->hw.event_base; |
| current_idx[n++] = PMC_NO_INDEX; |
| } |
| list_for_each_entry(pe, &group->sibling_list, group_entry) { |
| if (!is_software_event(pe) && pe->state != PERF_EVENT_STATE_OFF) { |
| if (n >= max_count) |
| return -1; |
| event[n] = pe; |
| evtype[n] = pe->hw.event_base; |
| current_idx[n++] = PMC_NO_INDEX; |
| } |
| } |
| return n; |
| } |
| |
| |
| |
| /* |
| * Check that a group of events can be simultaneously scheduled on to the PMU. |
| */ |
| static int alpha_check_constraints(struct perf_event **events, |
| unsigned long *evtypes, int n_ev) |
| { |
| |
| /* No HW events is possible from hw_perf_group_sched_in(). */ |
| if (n_ev == 0) |
| return 0; |
| |
| if (n_ev > alpha_pmu->num_pmcs) |
| return -1; |
| |
| return alpha_pmu->check_constraints(events, evtypes, n_ev); |
| } |
| |
| |
| /* |
| * If new events have been scheduled then update cpuc with the new |
| * configuration. This may involve shifting cycle counts from one PMC to |
| * another. |
| */ |
| static void maybe_change_configuration(struct cpu_hw_events *cpuc) |
| { |
| int j; |
| |
| if (cpuc->n_added == 0) |
| return; |
| |
| /* Find counters that are moving to another PMC and update */ |
| for (j = 0; j < cpuc->n_events; j++) { |
| struct perf_event *pe = cpuc->event[j]; |
| |
| if (cpuc->current_idx[j] != PMC_NO_INDEX && |
| cpuc->current_idx[j] != pe->hw.idx) { |
| alpha_perf_event_update(pe, &pe->hw, cpuc->current_idx[j], 0); |
| cpuc->current_idx[j] = PMC_NO_INDEX; |
| } |
| } |
| |
| /* Assign to counters all unassigned events. */ |
| cpuc->idx_mask = 0; |
| for (j = 0; j < cpuc->n_events; j++) { |
| struct perf_event *pe = cpuc->event[j]; |
| struct hw_perf_event *hwc = &pe->hw; |
| int idx = hwc->idx; |
| |
| if (cpuc->current_idx[j] == PMC_NO_INDEX) { |
| alpha_perf_event_set_period(pe, hwc, idx); |
| cpuc->current_idx[j] = idx; |
| } |
| |
| if (!(hwc->state & PERF_HES_STOPPED)) |
| cpuc->idx_mask |= (1<<cpuc->current_idx[j]); |
| } |
| cpuc->config = cpuc->event[0]->hw.config_base; |
| } |
| |
| |
| |
| /* Schedule perf HW event on to PMU. |
| * - this function is called from outside this module via the pmu struct |
| * returned from perf event initialisation. |
| */ |
| static int alpha_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| int n0; |
| int ret; |
| unsigned long flags; |
| |
| /* |
| * The Sparc code has the IRQ disable first followed by the perf |
| * disable, however this can lead to an overflowed counter with the |
| * PMI disabled on rare occasions. The alpha_perf_event_update() |
| * routine should detect this situation by noting a negative delta, |
| * nevertheless we disable the PMCs first to enable a potential |
| * final PMI to occur before we disable interrupts. |
| */ |
| perf_pmu_disable(event->pmu); |
| local_irq_save(flags); |
| |
| /* Default to error to be returned */ |
| ret = -EAGAIN; |
| |
| /* Insert event on to PMU and if successful modify ret to valid return */ |
| n0 = cpuc->n_events; |
| if (n0 < alpha_pmu->num_pmcs) { |
| cpuc->event[n0] = event; |
| cpuc->evtype[n0] = event->hw.event_base; |
| cpuc->current_idx[n0] = PMC_NO_INDEX; |
| |
| if (!alpha_check_constraints(cpuc->event, cpuc->evtype, n0+1)) { |
| cpuc->n_events++; |
| cpuc->n_added++; |
| ret = 0; |
| } |
| } |
| |
| hwc->state = PERF_HES_UPTODATE; |
| if (!(flags & PERF_EF_START)) |
| hwc->state |= PERF_HES_STOPPED; |
| |
| local_irq_restore(flags); |
| perf_pmu_enable(event->pmu); |
| |
| return ret; |
| } |
| |
| |
| |
| /* Disable performance monitoring unit |
| * - this function is called from outside this module via the pmu struct |
| * returned from perf event initialisation. |
| */ |
| static void alpha_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| unsigned long flags; |
| int j; |
| |
| perf_pmu_disable(event->pmu); |
| local_irq_save(flags); |
| |
| for (j = 0; j < cpuc->n_events; j++) { |
| if (event == cpuc->event[j]) { |
| int idx = cpuc->current_idx[j]; |
| |
| /* Shift remaining entries down into the existing |
| * slot. |
| */ |
| while (++j < cpuc->n_events) { |
| cpuc->event[j - 1] = cpuc->event[j]; |
| cpuc->evtype[j - 1] = cpuc->evtype[j]; |
| cpuc->current_idx[j - 1] = |
| cpuc->current_idx[j]; |
| } |
| |
| /* Absorb the final count and turn off the event. */ |
| alpha_perf_event_update(event, hwc, idx, 0); |
| perf_event_update_userpage(event); |
| |
| cpuc->idx_mask &= ~(1UL<<idx); |
| cpuc->n_events--; |
| break; |
| } |
| } |
| |
| local_irq_restore(flags); |
| perf_pmu_enable(event->pmu); |
| } |
| |
| |
| static void alpha_pmu_read(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| alpha_perf_event_update(event, hwc, hwc->idx, 0); |
| } |
| |
| |
| static void alpha_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (!(hwc->state & PERF_HES_STOPPED)) { |
| cpuc->idx_mask &= !(1UL<<hwc->idx); |
| hwc->state |= PERF_HES_STOPPED; |
| } |
| |
| if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { |
| alpha_perf_event_update(event, hwc, hwc->idx, 0); |
| hwc->state |= PERF_HES_UPTODATE; |
| } |
| |
| if (cpuc->enabled) |
| wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); |
| } |
| |
| |
| static void alpha_pmu_start(struct perf_event *event, int flags) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) { |
| WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| alpha_perf_event_set_period(event, hwc, hwc->idx); |
| } |
| |
| hwc->state = 0; |
| |
| cpuc->idx_mask |= 1UL<<hwc->idx; |
| if (cpuc->enabled) |
| wrperfmon(PERFMON_CMD_ENABLE, (1UL<<hwc->idx)); |
| } |
| |
| |
| /* |
| * Check that CPU performance counters are supported. |
| * - currently support EV67 and later CPUs. |
| * - actually some later revisions of the EV6 have the same PMC model as the |
| * EV67 but we don't do suffiently deep CPU detection to detect them. |
| * Bad luck to the very few people who might have one, I guess. |
| */ |
| static int supported_cpu(void) |
| { |
| struct percpu_struct *cpu; |
| unsigned long cputype; |
| |
| /* Get cpu type from HW */ |
| cpu = (struct percpu_struct *)((char *)hwrpb + hwrpb->processor_offset); |
| cputype = cpu->type & 0xffffffff; |
| /* Include all of EV67, EV68, EV7, EV79 and EV69 as supported. */ |
| return (cputype >= EV67_CPU) && (cputype <= EV69_CPU); |
| } |
| |
| |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| /* Nothing to be done! */ |
| return; |
| } |
| |
| |
| |
| static int __hw_perf_event_init(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_event *evts[MAX_HWEVENTS]; |
| unsigned long evtypes[MAX_HWEVENTS]; |
| int idx_rubbish_bin[MAX_HWEVENTS]; |
| int ev; |
| int n; |
| |
| /* We only support a limited range of HARDWARE event types with one |
| * only programmable via a RAW event type. |
| */ |
| if (attr->type == PERF_TYPE_HARDWARE) { |
| if (attr->config >= alpha_pmu->max_events) |
| return -EINVAL; |
| ev = alpha_pmu->event_map[attr->config]; |
| } else if (attr->type == PERF_TYPE_HW_CACHE) { |
| return -EOPNOTSUPP; |
| } else if (attr->type == PERF_TYPE_RAW) { |
| ev = attr->config & 0xff; |
| } else { |
| return -EOPNOTSUPP; |
| } |
| |
| if (ev < 0) { |
| return ev; |
| } |
| |
| /* The EV67 does not support mode exclusion */ |
| if (attr->exclude_kernel || attr->exclude_user |
| || attr->exclude_hv || attr->exclude_idle) { |
| return -EPERM; |
| } |
| |
| /* |
| * We place the event type in event_base here and leave calculation |
| * of the codes to programme the PMU for alpha_pmu_enable() because |
| * it is only then we will know what HW events are actually |
| * scheduled on to the PMU. At that point the code to programme the |
| * PMU is put into config_base and the PMC to use is placed into |
| * idx. We initialise idx (below) to PMC_NO_INDEX to indicate that |
| * it is yet to be determined. |
| */ |
| hwc->event_base = ev; |
| |
| /* Collect events in a group together suitable for calling |
| * alpha_check_constraints() to verify that the group as a whole can |
| * be scheduled on to the PMU. |
| */ |
| n = 0; |
| if (event->group_leader != event) { |
| n = collect_events(event->group_leader, |
| alpha_pmu->num_pmcs - 1, |
| evts, evtypes, idx_rubbish_bin); |
| if (n < 0) |
| return -EINVAL; |
| } |
| evtypes[n] = hwc->event_base; |
| evts[n] = event; |
| |
| if (alpha_check_constraints(evts, evtypes, n + 1)) |
| return -EINVAL; |
| |
| /* Indicate that PMU config and idx are yet to be determined. */ |
| hwc->config_base = 0; |
| hwc->idx = PMC_NO_INDEX; |
| |
| event->destroy = hw_perf_event_destroy; |
| |
| /* |
| * Most architectures reserve the PMU for their use at this point. |
| * As there is no existing mechanism to arbitrate usage and there |
| * appears to be no other user of the Alpha PMU we just assume |
| * that we can just use it, hence a NO-OP here. |
| * |
| * Maybe an alpha_reserve_pmu() routine should be implemented but is |
| * anything else ever going to use it? |
| */ |
| |
| if (!hwc->sample_period) { |
| hwc->sample_period = alpha_pmu->pmc_max_period[0]; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Main entry point to initialise a HW performance event. |
| */ |
| static int alpha_pmu_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| switch (event->attr.type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HARDWARE: |
| case PERF_TYPE_HW_CACHE: |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| |
| if (!alpha_pmu) |
| return -ENODEV; |
| |
| /* Do the real initialisation work. */ |
| err = __hw_perf_event_init(event); |
| |
| return err; |
| } |
| |
| /* |
| * Main entry point - enable HW performance counters. |
| */ |
| static void alpha_pmu_enable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| if (cpuc->n_events > 0) { |
| /* Update cpuc with information from any new scheduled events. */ |
| maybe_change_configuration(cpuc); |
| |
| /* Start counting the desired events. */ |
| wrperfmon(PERFMON_CMD_LOGGING_OPTIONS, EV67_PCTR_MODE_AGGREGATE); |
| wrperfmon(PERFMON_CMD_DESIRED_EVENTS, cpuc->config); |
| wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); |
| } |
| } |
| |
| |
| /* |
| * Main entry point - disable HW performance counters. |
| */ |
| |
| static void alpha_pmu_disable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->enabled = 0; |
| cpuc->n_added = 0; |
| |
| wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = alpha_pmu_enable, |
| .pmu_disable = alpha_pmu_disable, |
| .event_init = alpha_pmu_event_init, |
| .add = alpha_pmu_add, |
| .del = alpha_pmu_del, |
| .start = alpha_pmu_start, |
| .stop = alpha_pmu_stop, |
| .read = alpha_pmu_read, |
| }; |
| |
| |
| /* |
| * Main entry point - don't know when this is called but it |
| * obviously dumps debug info. |
| */ |
| void perf_event_print_debug(void) |
| { |
| unsigned long flags; |
| unsigned long pcr; |
| int pcr0, pcr1; |
| int cpu; |
| |
| if (!supported_cpu()) |
| return; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| |
| pcr = wrperfmon(PERFMON_CMD_READ, 0); |
| pcr0 = (pcr >> alpha_pmu->pmc_count_shift[0]) & alpha_pmu->pmc_count_mask[0]; |
| pcr1 = (pcr >> alpha_pmu->pmc_count_shift[1]) & alpha_pmu->pmc_count_mask[1]; |
| |
| pr_info("CPU#%d: PCTR0[%06x] PCTR1[%06x]\n", cpu, pcr0, pcr1); |
| |
| local_irq_restore(flags); |
| } |
| |
| |
| /* |
| * Performance Monitoring Interrupt Service Routine called when a PMC |
| * overflows. The PMC that overflowed is passed in la_ptr. |
| */ |
| static void alpha_perf_event_irq_handler(unsigned long la_ptr, |
| struct pt_regs *regs) |
| { |
| struct cpu_hw_events *cpuc; |
| struct perf_sample_data data; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int idx, j; |
| |
| __get_cpu_var(irq_pmi_count)++; |
| cpuc = &__get_cpu_var(cpu_hw_events); |
| |
| /* Completely counting through the PMC's period to trigger a new PMC |
| * overflow interrupt while in this interrupt routine is utterly |
| * disastrous! The EV6 and EV67 counters are sufficiently large to |
| * prevent this but to be really sure disable the PMCs. |
| */ |
| wrperfmon(PERFMON_CMD_DISABLE, cpuc->idx_mask); |
| |
| /* la_ptr is the counter that overflowed. */ |
| if (unlikely(la_ptr >= alpha_pmu->num_pmcs)) { |
| /* This should never occur! */ |
| irq_err_count++; |
| pr_warning("PMI: silly index %ld\n", la_ptr); |
| wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); |
| return; |
| } |
| |
| idx = la_ptr; |
| |
| perf_sample_data_init(&data, 0); |
| for (j = 0; j < cpuc->n_events; j++) { |
| if (cpuc->current_idx[j] == idx) |
| break; |
| } |
| |
| if (unlikely(j == cpuc->n_events)) { |
| /* This can occur if the event is disabled right on a PMC overflow. */ |
| wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); |
| return; |
| } |
| |
| event = cpuc->event[j]; |
| |
| if (unlikely(!event)) { |
| /* This should never occur! */ |
| irq_err_count++; |
| pr_warning("PMI: No event at index %d!\n", idx); |
| wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); |
| return; |
| } |
| |
| hwc = &event->hw; |
| alpha_perf_event_update(event, hwc, idx, alpha_pmu->pmc_max_period[idx]+1); |
| data.period = event->hw.last_period; |
| |
| if (alpha_perf_event_set_period(event, hwc, idx)) { |
| if (perf_event_overflow(event, 1, &data, regs)) { |
| /* Interrupts coming too quickly; "throttle" the |
| * counter, i.e., disable it for a little while. |
| */ |
| cpuc->idx_mask &= ~(1UL<<idx); |
| } |
| } |
| wrperfmon(PERFMON_CMD_ENABLE, cpuc->idx_mask); |
| |
| return; |
| } |
| |
| |
| |
| /* |
| * Init call to initialise performance events at kernel startup. |
| */ |
| void __init init_hw_perf_events(void) |
| { |
| pr_info("Performance events: "); |
| |
| if (!supported_cpu()) { |
| pr_cont("No support for your CPU.\n"); |
| return; |
| } |
| |
| pr_cont("Supported CPU type!\n"); |
| |
| /* Override performance counter IRQ vector */ |
| |
| perf_irq = alpha_perf_event_irq_handler; |
| |
| /* And set up PMU specification */ |
| alpha_pmu = &ev67_pmu; |
| |
| perf_pmu_register(&pmu); |
| } |
| |