blob: 312236a6b08550e9ad81471b690657b830241330 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* TLB flush routines for radix kernels.
*
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/mmu_context.h>
#include <linux/sched/mm.h>
#include <asm/ppc-opcode.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/trace.h>
#include <asm/cputhreads.h>
#include <asm/plpar_wrappers.h>
#include "internal.h"
#define RIC_FLUSH_TLB 0
#define RIC_FLUSH_PWC 1
#define RIC_FLUSH_ALL 2
/*
* tlbiel instruction for radix, set invalidation
* i.e., r=1 and is=01 or is=10 or is=11
*/
static __always_inline void tlbiel_radix_set_isa300(unsigned int set, unsigned int is,
unsigned int pid,
unsigned int ric, unsigned int prs)
{
unsigned long rb;
unsigned long rs;
rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
asm volatile(PPC_TLBIEL(%0, %1, %2, %3, 1)
: : "r"(rb), "r"(rs), "i"(ric), "i"(prs)
: "memory");
}
static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
{
unsigned int set;
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and the entire Page Walk Cache
* and partition table entries. Then flush the remaining sets of the
* TLB.
*/
if (early_cpu_has_feature(CPU_FTR_HVMODE)) {
/* MSR[HV] should flush partition scope translations first. */
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 0);
if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) {
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0,
RIC_FLUSH_TLB, 0);
}
}
/* Flush process scoped entries. */
tlbiel_radix_set_isa300(0, is, 0, RIC_FLUSH_ALL, 1);
if (!early_cpu_has_feature(CPU_FTR_ARCH_31)) {
for (set = 1; set < num_sets; set++)
tlbiel_radix_set_isa300(set, is, 0, RIC_FLUSH_TLB, 1);
}
ppc_after_tlbiel_barrier();
}
void radix__tlbiel_all(unsigned int action)
{
unsigned int is;
switch (action) {
case TLB_INVAL_SCOPE_GLOBAL:
is = 3;
break;
case TLB_INVAL_SCOPE_LPID:
is = 2;
break;
default:
BUG();
}
if (early_cpu_has_feature(CPU_FTR_ARCH_300))
tlbiel_all_isa300(POWER9_TLB_SETS_RADIX, is);
else
WARN(1, "%s called on pre-POWER9 CPU\n", __func__);
asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
}
static __always_inline void __tlbiel_pid(unsigned long pid, int set,
unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rb |= set << PPC_BITLSHIFT(51);
rs = ((unsigned long)pid) << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 1, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_pid(unsigned long pid, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(53); /* IS = 1 */
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 0, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_lpid(unsigned long lpid, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(52); /* IS = 2 */
rs = lpid;
prs = 0; /* partition scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = PPC_BIT(52); /* IS = 2 */
rs = lpid;
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
}
static __always_inline void __tlbiel_va(unsigned long va, unsigned long pid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 1, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_va(unsigned long va, unsigned long pid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = pid << PPC_BITLSHIFT(31);
prs = 1; /* process scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(0, 0, rb, rs, ric, prs, r);
}
static __always_inline void __tlbie_lpid_va(unsigned long va, unsigned long lpid,
unsigned long ap, unsigned long ric)
{
unsigned long rb,rs,prs,r;
rb = va & ~(PPC_BITMASK(52, 63));
rb |= ap << PPC_BITLSHIFT(58);
rs = lpid;
prs = 0; /* partition scoped */
r = 1; /* radix format */
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(rs) : "memory");
trace_tlbie(lpid, 0, rb, rs, ric, prs, r);
}
static inline void fixup_tlbie_va(unsigned long va, unsigned long pid,
unsigned long ap)
{
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_va(va, 0, ap, RIC_FLUSH_TLB);
}
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
}
}
static inline void fixup_tlbie_va_range(unsigned long va, unsigned long pid,
unsigned long ap)
{
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_pid(0, RIC_FLUSH_TLB);
}
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, ap, RIC_FLUSH_TLB);
}
}
static inline void fixup_tlbie_pid(unsigned long pid)
{
/*
* We can use any address for the invalidation, pick one which is
* probably unused as an optimisation.
*/
unsigned long va = ((1UL << 52) - 1);
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_pid(0, RIC_FLUSH_TLB);
}
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
}
}
static inline void fixup_tlbie_lpid_va(unsigned long va, unsigned long lpid,
unsigned long ap)
{
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, 0, ap, RIC_FLUSH_TLB);
}
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, lpid, ap, RIC_FLUSH_TLB);
}
}
static inline void fixup_tlbie_lpid(unsigned long lpid)
{
/*
* We can use any address for the invalidation, pick one which is
* probably unused as an optimisation.
*/
unsigned long va = ((1UL << 52) - 1);
if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_lpid(0, RIC_FLUSH_TLB);
}
if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, lpid, mmu_get_ap(MMU_PAGE_64K), RIC_FLUSH_TLB);
}
}
/*
* We use 128 set in radix mode and 256 set in hpt mode.
*/
static __always_inline void _tlbiel_pid(unsigned long pid, unsigned long ric)
{
int set;
asm volatile("ptesync": : :"memory");
/*
* Flush the first set of the TLB, and if we're doing a RIC_FLUSH_ALL,
* also flush the entire Page Walk Cache.
*/
__tlbiel_pid(pid, 0, ric);
/* For PWC, only one flush is needed */
if (ric == RIC_FLUSH_PWC) {
ppc_after_tlbiel_barrier();
return;
}
if (!cpu_has_feature(CPU_FTR_ARCH_31)) {
/* For the remaining sets, just flush the TLB */
for (set = 1; set < POWER9_TLB_SETS_RADIX ; set++)
__tlbiel_pid(pid, set, RIC_FLUSH_TLB);
}
ppc_after_tlbiel_barrier();
asm volatile(PPC_RADIX_INVALIDATE_ERAT_USER "; isync" : : :"memory");
}
static inline void _tlbie_pid(unsigned long pid, unsigned long ric)
{
asm volatile("ptesync": : :"memory");
/*
* Workaround the fact that the "ric" argument to __tlbie_pid
* must be a compile-time contraint to match the "i" constraint
* in the asm statement.
*/
switch (ric) {
case RIC_FLUSH_TLB:
__tlbie_pid(pid, RIC_FLUSH_TLB);
fixup_tlbie_pid(pid);
break;
case RIC_FLUSH_PWC:
__tlbie_pid(pid, RIC_FLUSH_PWC);
break;
case RIC_FLUSH_ALL:
default:
__tlbie_pid(pid, RIC_FLUSH_ALL);
fixup_tlbie_pid(pid);
}
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
struct tlbiel_pid {
unsigned long pid;
unsigned long ric;
};
static void do_tlbiel_pid(void *info)
{
struct tlbiel_pid *t = info;
if (t->ric == RIC_FLUSH_TLB)
_tlbiel_pid(t->pid, RIC_FLUSH_TLB);
else if (t->ric == RIC_FLUSH_PWC)
_tlbiel_pid(t->pid, RIC_FLUSH_PWC);
else
_tlbiel_pid(t->pid, RIC_FLUSH_ALL);
}
static inline void _tlbiel_pid_multicast(struct mm_struct *mm,
unsigned long pid, unsigned long ric)
{
struct cpumask *cpus = mm_cpumask(mm);
struct tlbiel_pid t = { .pid = pid, .ric = ric };
on_each_cpu_mask(cpus, do_tlbiel_pid, &t, 1);
/*
* Always want the CPU translations to be invalidated with tlbiel in
* these paths, so while coprocessors must use tlbie, we can not
* optimise away the tlbiel component.
*/
if (atomic_read(&mm->context.copros) > 0)
_tlbie_pid(pid, RIC_FLUSH_ALL);
}
static inline void _tlbie_lpid(unsigned long lpid, unsigned long ric)
{
asm volatile("ptesync": : :"memory");
/*
* Workaround the fact that the "ric" argument to __tlbie_pid
* must be a compile-time contraint to match the "i" constraint
* in the asm statement.
*/
switch (ric) {
case RIC_FLUSH_TLB:
__tlbie_lpid(lpid, RIC_FLUSH_TLB);
fixup_tlbie_lpid(lpid);
break;
case RIC_FLUSH_PWC:
__tlbie_lpid(lpid, RIC_FLUSH_PWC);
break;
case RIC_FLUSH_ALL:
default:
__tlbie_lpid(lpid, RIC_FLUSH_ALL);
fixup_tlbie_lpid(lpid);
}
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static __always_inline void _tlbie_lpid_guest(unsigned long lpid, unsigned long ric)
{
/*
* Workaround the fact that the "ric" argument to __tlbie_pid
* must be a compile-time contraint to match the "i" constraint
* in the asm statement.
*/
switch (ric) {
case RIC_FLUSH_TLB:
__tlbie_lpid_guest(lpid, RIC_FLUSH_TLB);
break;
case RIC_FLUSH_PWC:
__tlbie_lpid_guest(lpid, RIC_FLUSH_PWC);
break;
case RIC_FLUSH_ALL:
default:
__tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
}
fixup_tlbie_lpid(lpid);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void __tlbiel_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize)
{
unsigned long addr;
unsigned long ap = mmu_get_ap(psize);
for (addr = start; addr < end; addr += page_size)
__tlbiel_va(addr, pid, ap, RIC_FLUSH_TLB);
}
static __always_inline void _tlbiel_va(unsigned long va, unsigned long pid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbiel_va(va, pid, ap, ric);
ppc_after_tlbiel_barrier();
}
static inline void _tlbiel_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize, bool also_pwc)
{
asm volatile("ptesync": : :"memory");
if (also_pwc)
__tlbiel_pid(pid, 0, RIC_FLUSH_PWC);
__tlbiel_va_range(start, end, pid, page_size, psize);
ppc_after_tlbiel_barrier();
}
static inline void __tlbie_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize)
{
unsigned long addr;
unsigned long ap = mmu_get_ap(psize);
for (addr = start; addr < end; addr += page_size)
__tlbie_va(addr, pid, ap, RIC_FLUSH_TLB);
fixup_tlbie_va_range(addr - page_size, pid, ap);
}
static __always_inline void _tlbie_va(unsigned long va, unsigned long pid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbie_va(va, pid, ap, ric);
fixup_tlbie_va(va, pid, ap);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
struct tlbiel_va {
unsigned long pid;
unsigned long va;
unsigned long psize;
unsigned long ric;
};
static void do_tlbiel_va(void *info)
{
struct tlbiel_va *t = info;
if (t->ric == RIC_FLUSH_TLB)
_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_TLB);
else if (t->ric == RIC_FLUSH_PWC)
_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_PWC);
else
_tlbiel_va(t->va, t->pid, t->psize, RIC_FLUSH_ALL);
}
static inline void _tlbiel_va_multicast(struct mm_struct *mm,
unsigned long va, unsigned long pid,
unsigned long psize, unsigned long ric)
{
struct cpumask *cpus = mm_cpumask(mm);
struct tlbiel_va t = { .va = va, .pid = pid, .psize = psize, .ric = ric };
on_each_cpu_mask(cpus, do_tlbiel_va, &t, 1);
if (atomic_read(&mm->context.copros) > 0)
_tlbie_va(va, pid, psize, RIC_FLUSH_TLB);
}
struct tlbiel_va_range {
unsigned long pid;
unsigned long start;
unsigned long end;
unsigned long page_size;
unsigned long psize;
bool also_pwc;
};
static void do_tlbiel_va_range(void *info)
{
struct tlbiel_va_range *t = info;
_tlbiel_va_range(t->start, t->end, t->pid, t->page_size,
t->psize, t->also_pwc);
}
static __always_inline void _tlbie_lpid_va(unsigned long va, unsigned long lpid,
unsigned long psize, unsigned long ric)
{
unsigned long ap = mmu_get_ap(psize);
asm volatile("ptesync": : :"memory");
__tlbie_lpid_va(va, lpid, ap, ric);
fixup_tlbie_lpid_va(va, lpid, ap);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbie_va_range(unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize, bool also_pwc)
{
asm volatile("ptesync": : :"memory");
if (also_pwc)
__tlbie_pid(pid, RIC_FLUSH_PWC);
__tlbie_va_range(start, end, pid, page_size, psize);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}
static inline void _tlbiel_va_range_multicast(struct mm_struct *mm,
unsigned long start, unsigned long end,
unsigned long pid, unsigned long page_size,
unsigned long psize, bool also_pwc)
{
struct cpumask *cpus = mm_cpumask(mm);
struct tlbiel_va_range t = { .start = start, .end = end,
.pid = pid, .page_size = page_size,
.psize = psize, .also_pwc = also_pwc };
on_each_cpu_mask(cpus, do_tlbiel_va_range, &t, 1);
if (atomic_read(&mm->context.copros) > 0)
_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
}
/*
* Base TLB flushing operations:
*
* - flush_tlb_mm(mm) flushes the specified mm context TLB's
* - flush_tlb_page(vma, vmaddr) flushes one page
* - flush_tlb_range(vma, start, end) flushes a range of pages
* - flush_tlb_kernel_range(start, end) flushes kernel pages
*
* - local_* variants of page and mm only apply to the current
* processor
*/
void radix__local_flush_tlb_mm(struct mm_struct *mm)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_pid(pid, RIC_FLUSH_TLB);
preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_tlb_mm);
#ifndef CONFIG_SMP
void radix__local_flush_all_mm(struct mm_struct *mm)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_pid(pid, RIC_FLUSH_ALL);
preempt_enable();
}
EXPORT_SYMBOL(radix__local_flush_all_mm);
static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
{
radix__local_flush_all_mm(mm);
}
#endif /* CONFIG_SMP */
void radix__local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
int psize)
{
unsigned long pid;
preempt_disable();
pid = mm->context.id;
if (pid != MMU_NO_CONTEXT)
_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
preempt_enable();
}
void radix__local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
#ifdef CONFIG_HUGETLB_PAGE
/* need the return fix for nohash.c */
if (is_vm_hugetlb_page(vma))
return radix__local_flush_hugetlb_page(vma, vmaddr);
#endif
radix__local_flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
}
EXPORT_SYMBOL(radix__local_flush_tlb_page);
static bool mm_needs_flush_escalation(struct mm_struct *mm)
{
/*
* P9 nest MMU has issues with the page walk cache
* caching PTEs and not flushing them properly when
* RIC = 0 for a PID/LPID invalidate
*/
if (atomic_read(&mm->context.copros) > 0)
return true;
return false;
}
/*
* If always_flush is true, then flush even if this CPU can't be removed
* from mm_cpumask.
*/
void exit_lazy_flush_tlb(struct mm_struct *mm, bool always_flush)
{
unsigned long pid = mm->context.id;
int cpu = smp_processor_id();
/*
* A kthread could have done a mmget_not_zero() after the flushing CPU
* checked mm_cpumask, and be in the process of kthread_use_mm when
* interrupted here. In that case, current->mm will be set to mm,
* because kthread_use_mm() setting ->mm and switching to the mm is
* done with interrupts off.
*/
if (current->mm == mm)
goto out;
if (current->active_mm == mm) {
WARN_ON_ONCE(current->mm != NULL);
/* Is a kernel thread and is using mm as the lazy tlb */
mmgrab(&init_mm);
current->active_mm = &init_mm;
switch_mm_irqs_off(mm, &init_mm, current);
mmdrop(mm);
}
/*
* This IPI may be initiated from any source including those not
* running the mm, so there may be a racing IPI that comes after
* this one which finds the cpumask already clear. Check and avoid
* underflowing the active_cpus count in that case. The race should
* not otherwise be a problem, but the TLB must be flushed because
* that's what the caller expects.
*/
if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
atomic_dec(&mm->context.active_cpus);
cpumask_clear_cpu(cpu, mm_cpumask(mm));
always_flush = true;
}
out:
if (always_flush)
_tlbiel_pid(pid, RIC_FLUSH_ALL);
}
#ifdef CONFIG_SMP
static void do_exit_flush_lazy_tlb(void *arg)
{
struct mm_struct *mm = arg;
exit_lazy_flush_tlb(mm, true);
}
static void exit_flush_lazy_tlbs(struct mm_struct *mm)
{
/*
* Would be nice if this was async so it could be run in
* parallel with our local flush, but generic code does not
* give a good API for it. Could extend the generic code or
* make a special powerpc IPI for flushing TLBs.
* For now it's not too performance critical.
*/
smp_call_function_many(mm_cpumask(mm), do_exit_flush_lazy_tlb,
(void *)mm, 1);
}
#else /* CONFIG_SMP */
static inline void exit_flush_lazy_tlbs(struct mm_struct *mm) { }
#endif /* CONFIG_SMP */
static DEFINE_PER_CPU(unsigned int, mm_cpumask_trim_clock);
/*
* Interval between flushes at which we send out IPIs to check whether the
* mm_cpumask can be trimmed for the case where it's not a single-threaded
* process flushing its own mm. The intent is to reduce the cost of later
* flushes. Don't want this to be so low that it adds noticable cost to TLB
* flushing, or so high that it doesn't help reduce global TLBIEs.
*/
static unsigned long tlb_mm_cpumask_trim_timer = 1073;
static bool tick_and_test_trim_clock(void)
{
if (__this_cpu_inc_return(mm_cpumask_trim_clock) ==
tlb_mm_cpumask_trim_timer) {
__this_cpu_write(mm_cpumask_trim_clock, 0);
return true;
}
return false;
}
enum tlb_flush_type {
FLUSH_TYPE_NONE,
FLUSH_TYPE_LOCAL,
FLUSH_TYPE_GLOBAL,
};
static enum tlb_flush_type flush_type_needed(struct mm_struct *mm, bool fullmm)
{
int active_cpus = atomic_read(&mm->context.active_cpus);
int cpu = smp_processor_id();
if (active_cpus == 0)
return FLUSH_TYPE_NONE;
if (active_cpus == 1 && cpumask_test_cpu(cpu, mm_cpumask(mm))) {
if (current->mm != mm) {
/*
* Asynchronous flush sources may trim down to nothing
* if the process is not running, so occasionally try
* to trim.
*/
if (tick_and_test_trim_clock()) {
exit_lazy_flush_tlb(mm, true);
return FLUSH_TYPE_NONE;
}
}
return FLUSH_TYPE_LOCAL;
}
/* Coprocessors require TLBIE to invalidate nMMU. */
if (atomic_read(&mm->context.copros) > 0)
return FLUSH_TYPE_GLOBAL;
/*
* In the fullmm case there's no point doing the exit_flush_lazy_tlbs
* because the mm is being taken down anyway, and a TLBIE tends to
* be faster than an IPI+TLBIEL.
*/
if (fullmm)
return FLUSH_TYPE_GLOBAL;
/*
* If we are running the only thread of a single-threaded process,
* then we should almost always be able to trim off the rest of the
* CPU mask (except in the case of use_mm() races), so always try
* trimming the mask.
*/
if (atomic_read(&mm->mm_users) <= 1 && current->mm == mm) {
exit_flush_lazy_tlbs(mm);
/*
* use_mm() race could prevent IPIs from being able to clear
* the cpumask here, however those users are established
* after our first check (and so after the PTEs are removed),
* and the TLB still gets flushed by the IPI, so this CPU
* will only require a local flush.
*/
return FLUSH_TYPE_LOCAL;
}
/*
* Occasionally try to trim down the cpumask. It's possible this can
* bring the mask to zero, which results in no flush.
*/
if (tick_and_test_trim_clock()) {
exit_flush_lazy_tlbs(mm);
if (current->mm == mm)
return FLUSH_TYPE_LOCAL;
if (cpumask_test_cpu(cpu, mm_cpumask(mm)))
exit_lazy_flush_tlb(mm, true);
return FLUSH_TYPE_NONE;
}
return FLUSH_TYPE_GLOBAL;
}
#ifdef CONFIG_SMP
void radix__flush_tlb_mm(struct mm_struct *mm)
{
unsigned long pid;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
/*
* Order loads of mm_cpumask (in flush_type_needed) vs previous
* stores to clear ptes before the invalidate. See barrier in
* switch_mm_irqs_off
*/
smp_mb();
type = flush_type_needed(mm, false);
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_pid(pid, RIC_FLUSH_TLB);
} else if (type == FLUSH_TYPE_GLOBAL) {
if (!mmu_has_feature(MMU_FTR_GTSE)) {
unsigned long tgt = H_RPTI_TARGET_CMMU;
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB,
H_RPTI_PAGE_ALL, 0, -1UL);
} else if (cputlb_use_tlbie()) {
if (mm_needs_flush_escalation(mm))
_tlbie_pid(pid, RIC_FLUSH_ALL);
else
_tlbie_pid(pid, RIC_FLUSH_TLB);
} else {
_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB);
}
}
preempt_enable();
}
EXPORT_SYMBOL(radix__flush_tlb_mm);
static void __flush_all_mm(struct mm_struct *mm, bool fullmm)
{
unsigned long pid;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
type = flush_type_needed(mm, fullmm);
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_pid(pid, RIC_FLUSH_ALL);
} else if (type == FLUSH_TYPE_GLOBAL) {
if (!mmu_has_feature(MMU_FTR_GTSE)) {
unsigned long tgt = H_RPTI_TARGET_CMMU;
unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
H_RPTI_TYPE_PRT;
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, type,
H_RPTI_PAGE_ALL, 0, -1UL);
} else if (cputlb_use_tlbie())
_tlbie_pid(pid, RIC_FLUSH_ALL);
else
_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_ALL);
}
preempt_enable();
}
void radix__flush_all_mm(struct mm_struct *mm)
{
__flush_all_mm(mm, false);
}
EXPORT_SYMBOL(radix__flush_all_mm);
void radix__flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr,
int psize)
{
unsigned long pid;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
type = flush_type_needed(mm, false);
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
} else if (type == FLUSH_TYPE_GLOBAL) {
if (!mmu_has_feature(MMU_FTR_GTSE)) {
unsigned long tgt, pg_sizes, size;
tgt = H_RPTI_TARGET_CMMU;
pg_sizes = psize_to_rpti_pgsize(psize);
size = 1UL << mmu_psize_to_shift(psize);
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB,
pg_sizes, vmaddr,
vmaddr + size);
} else if (cputlb_use_tlbie())
_tlbie_va(vmaddr, pid, psize, RIC_FLUSH_TLB);
else
_tlbiel_va_multicast(mm, vmaddr, pid, psize, RIC_FLUSH_TLB);
}
preempt_enable();
}
void radix__flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
#ifdef CONFIG_HUGETLB_PAGE
if (is_vm_hugetlb_page(vma))
return radix__flush_hugetlb_page(vma, vmaddr);
#endif
radix__flush_tlb_page_psize(vma->vm_mm, vmaddr, mmu_virtual_psize);
}
EXPORT_SYMBOL(radix__flush_tlb_page);
#endif /* CONFIG_SMP */
static void do_tlbiel_kernel(void *info)
{
_tlbiel_pid(0, RIC_FLUSH_ALL);
}
static inline void _tlbiel_kernel_broadcast(void)
{
on_each_cpu(do_tlbiel_kernel, NULL, 1);
if (tlbie_capable) {
/*
* Coherent accelerators don't refcount kernel memory mappings,
* so have to always issue a tlbie for them. This is quite a
* slow path anyway.
*/
_tlbie_pid(0, RIC_FLUSH_ALL);
}
}
/*
* If kernel TLBIs ever become local rather than global, then
* drivers/misc/ocxl/link.c:ocxl_link_add_pe will need some work, as it
* assumes kernel TLBIs are global.
*/
void radix__flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
if (!mmu_has_feature(MMU_FTR_GTSE)) {
unsigned long tgt = H_RPTI_TARGET_CMMU | H_RPTI_TARGET_NMMU;
unsigned long type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
H_RPTI_TYPE_PRT;
pseries_rpt_invalidate(0, tgt, type, H_RPTI_PAGE_ALL,
start, end);
} else if (cputlb_use_tlbie())
_tlbie_pid(0, RIC_FLUSH_ALL);
else
_tlbiel_kernel_broadcast();
}
EXPORT_SYMBOL(radix__flush_tlb_kernel_range);
#define TLB_FLUSH_ALL -1UL
/*
* Number of pages above which we invalidate the entire PID rather than
* flush individual pages, for local and global flushes respectively.
*
* tlbie goes out to the interconnect and individual ops are more costly.
* It also does not iterate over sets like the local tlbiel variant when
* invalidating a full PID, so it has a far lower threshold to change from
* individual page flushes to full-pid flushes.
*/
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
static unsigned long tlb_local_single_page_flush_ceiling __read_mostly = POWER9_TLB_SETS_RADIX * 2;
static inline void __radix__flush_tlb_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
unsigned long pid;
unsigned int page_shift = mmu_psize_defs[mmu_virtual_psize].shift;
unsigned long page_size = 1UL << page_shift;
unsigned long nr_pages = (end - start) >> page_shift;
bool fullmm = (end == TLB_FLUSH_ALL);
bool flush_pid;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
type = flush_type_needed(mm, fullmm);
if (type == FLUSH_TYPE_NONE)
goto out;
if (fullmm)
flush_pid = true;
else if (type == FLUSH_TYPE_GLOBAL)
flush_pid = nr_pages > tlb_single_page_flush_ceiling;
else
flush_pid = nr_pages > tlb_local_single_page_flush_ceiling;
if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) {
unsigned long tgt = H_RPTI_TARGET_CMMU;
unsigned long pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize);
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
pg_sizes |= psize_to_rpti_pgsize(MMU_PAGE_2M);
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, H_RPTI_TYPE_TLB, pg_sizes,
start, end);
} else if (flush_pid) {
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_pid(pid, RIC_FLUSH_TLB);
} else {
if (cputlb_use_tlbie()) {
if (mm_needs_flush_escalation(mm))
_tlbie_pid(pid, RIC_FLUSH_ALL);
else
_tlbie_pid(pid, RIC_FLUSH_TLB);
} else {
_tlbiel_pid_multicast(mm, pid, RIC_FLUSH_TLB);
}
}
} else {
bool hflush = false;
unsigned long hstart, hend;
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
hstart = (start + PMD_SIZE - 1) & PMD_MASK;
hend = end & PMD_MASK;
if (hstart < hend)
hflush = true;
}
if (type == FLUSH_TYPE_LOCAL) {
asm volatile("ptesync": : :"memory");
__tlbiel_va_range(start, end, pid, page_size, mmu_virtual_psize);
if (hflush)
__tlbiel_va_range(hstart, hend, pid,
PMD_SIZE, MMU_PAGE_2M);
ppc_after_tlbiel_barrier();
} else if (cputlb_use_tlbie()) {
asm volatile("ptesync": : :"memory");
__tlbie_va_range(start, end, pid, page_size, mmu_virtual_psize);
if (hflush)
__tlbie_va_range(hstart, hend, pid,
PMD_SIZE, MMU_PAGE_2M);
asm volatile("eieio; tlbsync; ptesync": : :"memory");
} else {
_tlbiel_va_range_multicast(mm,
start, end, pid, page_size, mmu_virtual_psize, false);
if (hflush)
_tlbiel_va_range_multicast(mm,
hstart, hend, pid, PMD_SIZE, MMU_PAGE_2M, false);
}
}
out:
preempt_enable();
}
void radix__flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
unsigned long end)
{
#ifdef CONFIG_HUGETLB_PAGE
if (is_vm_hugetlb_page(vma))
return radix__flush_hugetlb_tlb_range(vma, start, end);
#endif
__radix__flush_tlb_range(vma->vm_mm, start, end);
}
EXPORT_SYMBOL(radix__flush_tlb_range);
static int radix_get_mmu_psize(int page_size)
{
int psize;
if (page_size == (1UL << mmu_psize_defs[mmu_virtual_psize].shift))
psize = mmu_virtual_psize;
else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_2M].shift))
psize = MMU_PAGE_2M;
else if (page_size == (1UL << mmu_psize_defs[MMU_PAGE_1G].shift))
psize = MMU_PAGE_1G;
else
return -1;
return psize;
}
/*
* Flush partition scoped LPID address translation for all CPUs.
*/
void radix__flush_tlb_lpid_page(unsigned int lpid,
unsigned long addr,
unsigned long page_size)
{
int psize = radix_get_mmu_psize(page_size);
_tlbie_lpid_va(addr, lpid, psize, RIC_FLUSH_TLB);
}
EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid_page);
/*
* Flush partition scoped PWC from LPID for all CPUs.
*/
void radix__flush_pwc_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_PWC);
}
EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/
void radix__flush_all_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__flush_all_lpid);
/*
* Flush process scoped translations from LPID (=LPIDR)
*/
void radix__flush_all_lpid_guest(unsigned int lpid)
{
_tlbie_lpid_guest(lpid, RIC_FLUSH_ALL);
}
static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize);
void radix__tlb_flush(struct mmu_gather *tlb)
{
int psize = 0;
struct mm_struct *mm = tlb->mm;
int page_size = tlb->page_size;
unsigned long start = tlb->start;
unsigned long end = tlb->end;
/*
* if page size is not something we understand, do a full mm flush
*
* A "fullmm" flush must always do a flush_all_mm (RIC=2) flush
* that flushes the process table entry cache upon process teardown.
* See the comment for radix in arch_exit_mmap().
*/
if (tlb->fullmm || tlb->need_flush_all) {
__flush_all_mm(mm, true);
} else if ( (psize = radix_get_mmu_psize(page_size)) == -1) {
if (!tlb->freed_tables)
radix__flush_tlb_mm(mm);
else
radix__flush_all_mm(mm);
} else {
if (!tlb->freed_tables)
radix__flush_tlb_range_psize(mm, start, end, psize);
else
radix__flush_tlb_pwc_range_psize(mm, start, end, psize);
}
}
static __always_inline void __radix__flush_tlb_range_psize(struct mm_struct *mm,
unsigned long start, unsigned long end,
int psize, bool also_pwc)
{
unsigned long pid;
unsigned int page_shift = mmu_psize_defs[psize].shift;
unsigned long page_size = 1UL << page_shift;
unsigned long nr_pages = (end - start) >> page_shift;
bool fullmm = (end == TLB_FLUSH_ALL);
bool flush_pid;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
fullmm = (end == TLB_FLUSH_ALL);
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
type = flush_type_needed(mm, fullmm);
if (type == FLUSH_TYPE_NONE)
goto out;
if (fullmm)
flush_pid = true;
else if (type == FLUSH_TYPE_GLOBAL)
flush_pid = nr_pages > tlb_single_page_flush_ceiling;
else
flush_pid = nr_pages > tlb_local_single_page_flush_ceiling;
if (!mmu_has_feature(MMU_FTR_GTSE) && type == FLUSH_TYPE_GLOBAL) {
unsigned long tgt = H_RPTI_TARGET_CMMU;
unsigned long type = H_RPTI_TYPE_TLB;
unsigned long pg_sizes = psize_to_rpti_pgsize(psize);
if (also_pwc)
type |= H_RPTI_TYPE_PWC;
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, type, pg_sizes, start, end);
} else if (flush_pid) {
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_pid(pid, also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
} else {
if (cputlb_use_tlbie()) {
if (mm_needs_flush_escalation(mm))
also_pwc = true;
_tlbie_pid(pid,
also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
} else {
_tlbiel_pid_multicast(mm, pid,
also_pwc ? RIC_FLUSH_ALL : RIC_FLUSH_TLB);
}
}
} else {
if (type == FLUSH_TYPE_LOCAL)
_tlbiel_va_range(start, end, pid, page_size, psize, also_pwc);
else if (cputlb_use_tlbie())
_tlbie_va_range(start, end, pid, page_size, psize, also_pwc);
else
_tlbiel_va_range_multicast(mm,
start, end, pid, page_size, psize, also_pwc);
}
out:
preempt_enable();
}
void radix__flush_tlb_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize)
{
return __radix__flush_tlb_range_psize(mm, start, end, psize, false);
}
static void radix__flush_tlb_pwc_range_psize(struct mm_struct *mm, unsigned long start,
unsigned long end, int psize)
{
__radix__flush_tlb_range_psize(mm, start, end, psize, true);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void radix__flush_tlb_collapsed_pmd(struct mm_struct *mm, unsigned long addr)
{
unsigned long pid, end;
enum tlb_flush_type type;
pid = mm->context.id;
if (unlikely(pid == MMU_NO_CONTEXT))
return;
/* 4k page size, just blow the world */
if (PAGE_SIZE == 0x1000) {
radix__flush_all_mm(mm);
return;
}
end = addr + HPAGE_PMD_SIZE;
/* Otherwise first do the PWC, then iterate the pages. */
preempt_disable();
smp_mb(); /* see radix__flush_tlb_mm */
type = flush_type_needed(mm, false);
if (type == FLUSH_TYPE_LOCAL) {
_tlbiel_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
} else if (type == FLUSH_TYPE_GLOBAL) {
if (!mmu_has_feature(MMU_FTR_GTSE)) {
unsigned long tgt, type, pg_sizes;
tgt = H_RPTI_TARGET_CMMU;
type = H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC |
H_RPTI_TYPE_PRT;
pg_sizes = psize_to_rpti_pgsize(mmu_virtual_psize);
if (atomic_read(&mm->context.copros) > 0)
tgt |= H_RPTI_TARGET_NMMU;
pseries_rpt_invalidate(pid, tgt, type, pg_sizes,
addr, end);
} else if (cputlb_use_tlbie())
_tlbie_va_range(addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
else
_tlbiel_va_range_multicast(mm,
addr, end, pid, PAGE_SIZE, mmu_virtual_psize, true);
}
preempt_enable();
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
void radix__flush_pmd_tlb_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
radix__flush_tlb_range_psize(vma->vm_mm, start, end, MMU_PAGE_2M);
}
EXPORT_SYMBOL(radix__flush_pmd_tlb_range);
void radix__flush_tlb_all(void)
{
unsigned long rb,prs,r,rs;
unsigned long ric = RIC_FLUSH_ALL;
rb = 0x3 << PPC_BITLSHIFT(53); /* IS = 3 */
prs = 0; /* partition scoped */
r = 1; /* radix format */
rs = 1 & ((1UL << 32) - 1); /* any LPID value to flush guest mappings */
asm volatile("ptesync": : :"memory");
/*
* now flush guest entries by passing PRS = 1 and LPID != 0
*/
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(1), "i"(ric), "r"(rs) : "memory");
/*
* now flush host entires by passing PRS = 0 and LPID == 0
*/
asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
: : "r"(rb), "i"(r), "i"(prs), "i"(ric), "r"(0) : "memory");
asm volatile("eieio; tlbsync; ptesync": : :"memory");
}