blob: 51a6b911bb2ee256514237a819bdb12e15d7e7af [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*
*/
#ifndef HABANALABSP_H_
#define HABANALABSP_H_
#include "../include/common/cpucp_if.h"
#include "../include/common/qman_if.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <uapi/misc/habanalabs.h>
#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>
#include <linux/bitfield.h>
#include <linux/genalloc.h>
#include <linux/sched/signal.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/coresight.h>
#define HL_NAME "habanalabs"
/* Use upper bits of mmap offset to store habana driver specific information.
* bits[63:61] - Encode mmap type
* bits[45:0] - mmap offset value
*
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
* defines are w.r.t to PAGE_SIZE
*/
#define HL_MMAP_TYPE_SHIFT (61 - PAGE_SHIFT)
#define HL_MMAP_TYPE_MASK (0x7ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_MASK (0x1FFFFFFFFFFFull >> PAGE_SHIFT)
#define HL_MMAP_OFFSET_VALUE_GET(off) (off & HL_MMAP_OFFSET_VALUE_MASK)
#define HL_PENDING_RESET_PER_SEC 10
#define HL_PENDING_RESET_MAX_TRIALS 60 /* 10 minutes */
#define HL_PENDING_RESET_LONG_SEC 60
#define HL_HARD_RESET_MAX_TIMEOUT 120
#define HL_DEVICE_TIMEOUT_USEC 1000000 /* 1 s */
#define HL_HEARTBEAT_PER_USEC 5000000 /* 5 s */
#define HL_PLL_LOW_JOB_FREQ_USEC 5000000 /* 5 s */
#define HL_CPUCP_INFO_TIMEOUT_USEC 10000000 /* 10s */
#define HL_CPUCP_EEPROM_TIMEOUT_USEC 10000000 /* 10s */
#define HL_PCI_ELBI_TIMEOUT_MSEC 10 /* 10ms */
#define HL_SIM_MAX_TIMEOUT_US 10000000 /* 10s */
#define HL_IDLE_BUSY_TS_ARR_SIZE 4096
/* Memory */
#define MEM_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/* MMU */
#define MMU_HASH_TABLE_BITS 7 /* 1 << 7 buckets */
/**
* enum hl_mmu_page_table_locaion - mmu page table location
* @MMU_DR_PGT: page-table is located on device DRAM.
* @MMU_HR_PGT: page-table is located on host memory.
* @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
*/
enum hl_mmu_page_table_location {
MMU_DR_PGT = 0, /* device-dram-resident MMU PGT */
MMU_HR_PGT, /* host resident MMU PGT */
MMU_NUM_PGT_LOCATIONS /* num of PGT locations */
};
/*
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
*/
#define HL_RSVD_SOBS 2
#define HL_RSVD_MONS 1
/*
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
*/
#define HL_COLLECTIVE_RSVD_MSTR_MONS 2
#define HL_MAX_SOB_VAL (1 << 15)
#define IS_POWER_OF_2(n) (n != 0 && ((n & (n - 1)) == 0))
#define IS_MAX_PENDING_CS_VALID(n) (IS_POWER_OF_2(n) && (n > 1))
#define HL_PCI_NUM_BARS 6
#define HL_MAX_DCORES 4
#define HL_MAX_SOBS_PER_MONITOR 8
/**
* struct hl_gen_wait_properties - properties for generating a wait CB
* @data: command buffer
* @q_idx: queue id is used to extract fence register address
* @size: offset in command buffer
* @sob_base: SOB base to use in this wait CB
* @sob_val: SOB value to wait for
* @mon_id: monitor to use in this wait CB
* @sob_mask: each bit represents a SOB offset from sob_base to be used
*/
struct hl_gen_wait_properties {
void *data;
u32 q_idx;
u32 size;
u16 sob_base;
u16 sob_val;
u16 mon_id;
u8 sob_mask;
};
/**
* struct pgt_info - MMU hop page info.
* @node: hash linked-list node for the pgts shadow hash of pgts.
* @phys_addr: physical address of the pgt.
* @shadow_addr: shadow hop in the host.
* @ctx: pointer to the owner ctx.
* @num_of_ptes: indicates how many ptes are used in the pgt.
*
* The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
* is needed during mapping, a new page is allocated and this structure holds
* its essential information. During unmapping, if no valid PTEs remained in the
* page, it is freed with its pgt_info structure.
*/
struct pgt_info {
struct hlist_node node;
u64 phys_addr;
u64 shadow_addr;
struct hl_ctx *ctx;
int num_of_ptes;
};
struct hl_device;
struct hl_fpriv;
/**
* enum hl_pci_match_mode - pci match mode per region
* @PCI_ADDRESS_MATCH_MODE: address match mode
* @PCI_BAR_MATCH_MODE: bar match mode
*/
enum hl_pci_match_mode {
PCI_ADDRESS_MATCH_MODE,
PCI_BAR_MATCH_MODE
};
/**
* enum hl_fw_component - F/W components to read version through registers.
* @FW_COMP_UBOOT: u-boot.
* @FW_COMP_PREBOOT: preboot.
*/
enum hl_fw_component {
FW_COMP_UBOOT,
FW_COMP_PREBOOT
};
/**
* enum hl_fw_types - F/W types to load
* @FW_TYPE_LINUX: Linux image for device CPU
* @FW_TYPE_BOOT_CPU: Boot image for device CPU
* @FW_TYPE_ALL_TYPES: Mask for all types
*/
enum hl_fw_types {
FW_TYPE_LINUX = 0x1,
FW_TYPE_BOOT_CPU = 0x2,
FW_TYPE_ALL_TYPES = (FW_TYPE_LINUX | FW_TYPE_BOOT_CPU)
};
/**
* enum hl_queue_type - Supported QUEUE types.
* @QUEUE_TYPE_NA: queue is not available.
* @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
* host.
* @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
* memories and/or operates the compute engines.
* @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
* @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
* notifications are sent by H/W.
*/
enum hl_queue_type {
QUEUE_TYPE_NA,
QUEUE_TYPE_EXT,
QUEUE_TYPE_INT,
QUEUE_TYPE_CPU,
QUEUE_TYPE_HW
};
enum hl_cs_type {
CS_TYPE_DEFAULT,
CS_TYPE_SIGNAL,
CS_TYPE_WAIT,
CS_TYPE_COLLECTIVE_WAIT
};
/*
* struct hl_inbound_pci_region - inbound region descriptor
* @mode: pci match mode for this region
* @addr: region target address
* @size: region size in bytes
* @offset_in_bar: offset within bar (address match mode)
* @bar: bar id
*/
struct hl_inbound_pci_region {
enum hl_pci_match_mode mode;
u64 addr;
u64 size;
u64 offset_in_bar;
u8 bar;
};
/*
* struct hl_outbound_pci_region - outbound region descriptor
* @addr: region target address
* @size: region size in bytes
*/
struct hl_outbound_pci_region {
u64 addr;
u64 size;
};
/*
* enum queue_cb_alloc_flags - Indicates queue support for CBs that
* allocated by Kernel or by User
* @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
* @CB_ALLOC_USER: support only CBs that allocated by User
*/
enum queue_cb_alloc_flags {
CB_ALLOC_KERNEL = 0x1,
CB_ALLOC_USER = 0x2
};
/*
* struct hl_hw_sob - H/W SOB info.
* @hdev: habanalabs device structure.
* @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
* @sob_id: id of this SOB.
* @q_idx: the H/W queue that uses this SOB.
*/
struct hl_hw_sob {
struct hl_device *hdev;
struct kref kref;
u32 sob_id;
u32 q_idx;
};
enum hl_collective_mode {
HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
HL_COLLECTIVE_MASTER = 0x1,
HL_COLLECTIVE_SLAVE = 0x2
};
/**
* struct hw_queue_properties - queue information.
* @type: queue type.
* @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
* that allocated by the Kernel driver and therefore,
* a CB handle can be provided for jobs on this queue.
* Otherwise, a CB address must be provided.
* @collective_mode: collective mode of current queue
* @driver_only: true if only the driver is allowed to send a job to this queue,
* false otherwise.
* @supports_sync_stream: True if queue supports sync stream
*/
struct hw_queue_properties {
enum hl_queue_type type;
enum queue_cb_alloc_flags cb_alloc_flags;
enum hl_collective_mode collective_mode;
u8 driver_only;
u8 supports_sync_stream;
};
/**
* enum vm_type_t - virtual memory mapping request information.
* @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
* @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
*/
enum vm_type_t {
VM_TYPE_USERPTR = 0x1,
VM_TYPE_PHYS_PACK = 0x2
};
/**
* enum hl_device_hw_state - H/W device state. use this to understand whether
* to do reset before hw_init or not
* @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
* @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
* hw_init
*/
enum hl_device_hw_state {
HL_DEVICE_HW_STATE_CLEAN = 0,
HL_DEVICE_HW_STATE_DIRTY
};
#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
/**
* struct hl_mmu_properties - ASIC specific MMU address translation properties.
* @start_addr: virtual start address of the memory region.
* @end_addr: virtual end address of the memory region.
* @hop0_shift: shift of hop 0 mask.
* @hop1_shift: shift of hop 1 mask.
* @hop2_shift: shift of hop 2 mask.
* @hop3_shift: shift of hop 3 mask.
* @hop4_shift: shift of hop 4 mask.
* @hop5_shift: shift of hop 5 mask.
* @hop0_mask: mask to get the PTE address in hop 0.
* @hop1_mask: mask to get the PTE address in hop 1.
* @hop2_mask: mask to get the PTE address in hop 2.
* @hop3_mask: mask to get the PTE address in hop 3.
* @hop4_mask: mask to get the PTE address in hop 4.
* @hop5_mask: mask to get the PTE address in hop 5.
* @page_size: default page size used to allocate memory.
* @num_hops: The amount of hops supported by the translation table.
* @host_resident: Should the MMU page table reside in host memory or in the
* device DRAM.
*/
struct hl_mmu_properties {
u64 start_addr;
u64 end_addr;
u64 hop0_shift;
u64 hop1_shift;
u64 hop2_shift;
u64 hop3_shift;
u64 hop4_shift;
u64 hop5_shift;
u64 hop0_mask;
u64 hop1_mask;
u64 hop2_mask;
u64 hop3_mask;
u64 hop4_mask;
u64 hop5_mask;
u32 page_size;
u32 num_hops;
u8 host_resident;
};
/**
* struct asic_fixed_properties - ASIC specific immutable properties.
* @hw_queues_props: H/W queues properties.
* @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
* available sensors.
* @uboot_ver: F/W U-boot version.
* @preboot_ver: F/W Preboot version.
* @dmmu: DRAM MMU address translation properties.
* @pmmu: PCI (host) MMU address translation properties.
* @pmmu_huge: PCI (host) MMU address translation properties for memory
* allocated with huge pages.
* @sram_base_address: SRAM physical start address.
* @sram_end_address: SRAM physical end address.
* @sram_user_base_address - SRAM physical start address for user access.
* @dram_base_address: DRAM physical start address.
* @dram_end_address: DRAM physical end address.
* @dram_user_base_address: DRAM physical start address for user access.
* @dram_size: DRAM total size.
* @dram_pci_bar_size: size of PCI bar towards DRAM.
* @max_power_default: max power of the device after reset
* @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
* fault.
* @pcie_dbi_base_address: Base address of the PCIE_DBI block.
* @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
* @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
* @mmu_dram_default_page_addr: DRAM default page physical address.
* @cb_va_start_addr: virtual start address of command buffers which are mapped
* to the device's MMU.
* @cb_va_end_addr: virtual end address of command buffers which are mapped to
* the device's MMU.
* @mmu_pgt_size: MMU page tables total size.
* @mmu_pte_size: PTE size in MMU page tables.
* @mmu_hop_table_size: MMU hop table size.
* @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
* @dram_page_size: page size for MMU DRAM allocation.
* @cfg_size: configuration space size on SRAM.
* @sram_size: total size of SRAM.
* @max_asid: maximum number of open contexts (ASIDs).
* @num_of_events: number of possible internal H/W IRQs.
* @psoc_pci_pll_nr: PCI PLL NR value.
* @psoc_pci_pll_nf: PCI PLL NF value.
* @psoc_pci_pll_od: PCI PLL OD value.
* @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
* @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
* @high_pll: high PLL frequency used by the device.
* @cb_pool_cb_cnt: number of CBs in the CB pool.
* @cb_pool_cb_size: size of each CB in the CB pool.
* @max_pending_cs: maximum of concurrent pending command submissions
* @max_queues: maximum amount of queues in the system
* @fw_boot_cpu_security_map: bitmap representation of boot cpu security status
* reported by FW, bit description can be found in
* CPU_BOOT_DEV_STS*
* @fw_app_security_map: bitmap representation of application security status
* reported by FW, bit description can be found in
* CPU_BOOT_DEV_STS*
* @collective_first_sob: first sync object available for collective use
* @collective_first_mon: first monitor available for collective use
* @sync_stream_first_sob: first sync object available for sync stream use
* @sync_stream_first_mon: first monitor available for sync stream use
* @first_available_user_sob: first sob available for the user
* @first_available_user_mon: first monitor available for the user
* @first_available_user_msix_interrupt: first available msix interrupt
* reserved for the user
* @first_available_cq: first available CQ for the user.
* @tpc_enabled_mask: which TPCs are enabled.
* @completion_queues_count: number of completion queues.
* @fw_security_disabled: true if security measures are disabled in firmware,
* false otherwise
* @fw_security_status_valid: security status bits are valid and can be fetched
* from BOOT_DEV_STS0
* @dram_supports_virtual_memory: is there an MMU towards the DRAM
* @hard_reset_done_by_fw: true if firmware is handling hard reset flow
* @num_functional_hbms: number of functional HBMs in each DCORE.
*/
struct asic_fixed_properties {
struct hw_queue_properties *hw_queues_props;
struct cpucp_info cpucp_info;
char uboot_ver[VERSION_MAX_LEN];
char preboot_ver[VERSION_MAX_LEN];
struct hl_mmu_properties dmmu;
struct hl_mmu_properties pmmu;
struct hl_mmu_properties pmmu_huge;
u64 sram_base_address;
u64 sram_end_address;
u64 sram_user_base_address;
u64 dram_base_address;
u64 dram_end_address;
u64 dram_user_base_address;
u64 dram_size;
u64 dram_pci_bar_size;
u64 max_power_default;
u64 dram_size_for_default_page_mapping;
u64 pcie_dbi_base_address;
u64 pcie_aux_dbi_reg_addr;
u64 mmu_pgt_addr;
u64 mmu_dram_default_page_addr;
u64 cb_va_start_addr;
u64 cb_va_end_addr;
u32 mmu_pgt_size;
u32 mmu_pte_size;
u32 mmu_hop_table_size;
u32 mmu_hop0_tables_total_size;
u32 dram_page_size;
u32 cfg_size;
u32 sram_size;
u32 max_asid;
u32 num_of_events;
u32 psoc_pci_pll_nr;
u32 psoc_pci_pll_nf;
u32 psoc_pci_pll_od;
u32 psoc_pci_pll_div_factor;
u32 psoc_timestamp_frequency;
u32 high_pll;
u32 cb_pool_cb_cnt;
u32 cb_pool_cb_size;
u32 max_pending_cs;
u32 max_queues;
u32 fw_boot_cpu_security_map;
u32 fw_app_security_map;
u16 collective_first_sob;
u16 collective_first_mon;
u16 sync_stream_first_sob;
u16 sync_stream_first_mon;
u16 first_available_user_sob[HL_MAX_DCORES];
u16 first_available_user_mon[HL_MAX_DCORES];
u16 first_available_user_msix_interrupt;
u16 first_available_cq[HL_MAX_DCORES];
u8 tpc_enabled_mask;
u8 completion_queues_count;
u8 fw_security_disabled;
u8 fw_security_status_valid;
u8 dram_supports_virtual_memory;
u8 hard_reset_done_by_fw;
u8 num_functional_hbms;
};
/**
* struct hl_fence - software synchronization primitive
* @completion: fence is implemented using completion
* @refcount: refcount for this fence
* @cs_sequence: sequence of the corresponding command submission
* @error: mark this fence with error
* @timestamp: timestamp upon completion
*
*/
struct hl_fence {
struct completion completion;
struct kref refcount;
u64 cs_sequence;
int error;
ktime_t timestamp;
};
/**
* struct hl_cs_compl - command submission completion object.
* @base_fence: hl fence object.
* @lock: spinlock to protect fence.
* @hdev: habanalabs device structure.
* @hw_sob: the H/W SOB used in this signal/wait CS.
* @cs_seq: command submission sequence number.
* @type: type of the CS - signal/wait.
* @sob_val: the SOB value that is used in this signal/wait CS.
* @sob_group: the SOB group that is used in this collective wait CS.
*/
struct hl_cs_compl {
struct hl_fence base_fence;
spinlock_t lock;
struct hl_device *hdev;
struct hl_hw_sob *hw_sob;
u64 cs_seq;
enum hl_cs_type type;
u16 sob_val;
u16 sob_group;
};
/*
* Command Buffers
*/
/**
* struct hl_cb_mgr - describes a Command Buffer Manager.
* @cb_lock: protects cb_handles.
* @cb_handles: an idr to hold all command buffer handles.
*/
struct hl_cb_mgr {
spinlock_t cb_lock;
struct idr cb_handles; /* protected by cb_lock */
};
/**
* struct hl_cb - describes a Command Buffer.
* @refcount: reference counter for usage of the CB.
* @hdev: pointer to device this CB belongs to.
* @ctx: pointer to the CB owner's context.
* @lock: spinlock to protect mmap flows.
* @debugfs_list: node in debugfs list of command buffers.
* @pool_list: node in pool list of command buffers.
* @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
* the device's MMU.
* @id: the CB's ID.
* @kernel_address: Holds the CB's kernel virtual address.
* @bus_address: Holds the CB's DMA address.
* @mmap_size: Holds the CB's size that was mmaped.
* @size: holds the CB's size.
* @cs_cnt: holds number of CS that this CB participates in.
* @mmap: true if the CB is currently mmaped to user.
* @is_pool: true if CB was acquired from the pool, false otherwise.
* @is_internal: internaly allocated
* @is_mmu_mapped: true if the CB is mapped to the device's MMU.
*/
struct hl_cb {
struct kref refcount;
struct hl_device *hdev;
struct hl_ctx *ctx;
spinlock_t lock;
struct list_head debugfs_list;
struct list_head pool_list;
struct list_head va_block_list;
u64 id;
void *kernel_address;
dma_addr_t bus_address;
u32 mmap_size;
u32 size;
atomic_t cs_cnt;
u8 mmap;
u8 is_pool;
u8 is_internal;
u8 is_mmu_mapped;
};
/*
* QUEUES
*/
struct hl_cs;
struct hl_cs_job;
/* Queue length of external and HW queues */
#define HL_QUEUE_LENGTH 4096
#define HL_QUEUE_SIZE_IN_BYTES (HL_QUEUE_LENGTH * HL_BD_SIZE)
#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
#endif
/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
#define HL_CQ_LENGTH HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES (HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
/* Must be power of 2 */
#define HL_EQ_LENGTH 64
#define HL_EQ_SIZE_IN_BYTES (HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
/* Host <-> CPU-CP shared memory size */
#define HL_CPU_ACCESSIBLE_MEM_SIZE SZ_2M
/**
* struct hl_sync_stream_properties -
* describes a H/W queue sync stream properties
* @hw_sob: array of the used H/W SOBs by this H/W queue.
* @next_sob_val: the next value to use for the currently used SOB.
* @base_sob_id: the base SOB id of the SOBs used by this queue.
* @base_mon_id: the base MON id of the MONs used by this queue.
* @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
* in order to sync with all slave queues.
* @collective_slave_mon_id: the MON id used by this slave queue in order to
* sync with its master queue.
* @collective_sob_id: current SOB id used by this collective slave queue
* to signal its collective master queue upon completion.
* @curr_sob_offset: the id offset to the currently used SOB from the
* HL_RSVD_SOBS that are being used by this queue.
*/
struct hl_sync_stream_properties {
struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
u16 next_sob_val;
u16 base_sob_id;
u16 base_mon_id;
u16 collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
u16 collective_slave_mon_id;
u16 collective_sob_id;
u8 curr_sob_offset;
};
/**
* struct hl_hw_queue - describes a H/W transport queue.
* @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
* @sync_stream_prop: sync stream queue properties
* @queue_type: type of queue.
* @collective_mode: collective mode of current queue
* @kernel_address: holds the queue's kernel virtual address.
* @bus_address: holds the queue's DMA address.
* @pi: holds the queue's pi value.
* @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
* @hw_queue_id: the id of the H/W queue.
* @cq_id: the id for the corresponding CQ for this H/W queue.
* @msi_vec: the IRQ number of the H/W queue.
* @int_queue_len: length of internal queue (number of entries).
* @valid: is the queue valid (we have array of 32 queues, not all of them
* exist).
* @supports_sync_stream: True if queue supports sync stream
*/
struct hl_hw_queue {
struct hl_cs_job **shadow_queue;
struct hl_sync_stream_properties sync_stream_prop;
enum hl_queue_type queue_type;
enum hl_collective_mode collective_mode;
void *kernel_address;
dma_addr_t bus_address;
u32 pi;
atomic_t ci;
u32 hw_queue_id;
u32 cq_id;
u32 msi_vec;
u16 int_queue_len;
u8 valid;
u8 supports_sync_stream;
};
/**
* struct hl_cq - describes a completion queue
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @cq_idx: completion queue index in array
* @hw_queue_id: the id of the matching H/W queue
* @ci: ci inside the queue
* @pi: pi inside the queue
* @free_slots_cnt: counter of free slots in queue
*/
struct hl_cq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 cq_idx;
u32 hw_queue_id;
u32 ci;
u32 pi;
atomic_t free_slots_cnt;
};
/**
* struct hl_eq - describes the event queue (single one per device)
* @hdev: pointer to the device structure
* @kernel_address: holds the queue's kernel virtual address
* @bus_address: holds the queue's DMA address
* @ci: ci inside the queue
*/
struct hl_eq {
struct hl_device *hdev;
void *kernel_address;
dma_addr_t bus_address;
u32 ci;
};
/*
* ASICs
*/
/**
* enum hl_asic_type - supported ASIC types.
* @ASIC_INVALID: Invalid ASIC type.
* @ASIC_GOYA: Goya device.
* @ASIC_GAUDI: Gaudi device.
*/
enum hl_asic_type {
ASIC_INVALID,
ASIC_GOYA,
ASIC_GAUDI
};
struct hl_cs_parser;
/**
* enum hl_pm_mng_profile - power management profile.
* @PM_AUTO: internal clock is set by the Linux driver.
* @PM_MANUAL: internal clock is set by the user.
* @PM_LAST: last power management type.
*/
enum hl_pm_mng_profile {
PM_AUTO = 1,
PM_MANUAL,
PM_LAST
};
/**
* enum hl_pll_frequency - PLL frequency.
* @PLL_HIGH: high frequency.
* @PLL_LOW: low frequency.
* @PLL_LAST: last frequency values that were configured by the user.
*/
enum hl_pll_frequency {
PLL_HIGH = 1,
PLL_LOW,
PLL_LAST
};
#define PLL_REF_CLK 50
enum div_select_defs {
DIV_SEL_REF_CLK = 0,
DIV_SEL_PLL_CLK = 1,
DIV_SEL_DIVIDED_REF = 2,
DIV_SEL_DIVIDED_PLL = 3,
};
/**
* struct hl_asic_funcs - ASIC specific functions that are can be called from
* common code.
* @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
* @early_fini: tears down what was done in early_init.
* @late_init: sets up late driver/hw state (post hw_init) - Optional.
* @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
* @sw_init: sets up driver state, does not configure H/W.
* @sw_fini: tears down driver state, does not configure H/W.
* @hw_init: sets up the H/W state.
* @hw_fini: tears down the H/W state.
* @halt_engines: halt engines, needed for reset sequence. This also disables
* interrupts from the device. Should be called before
* hw_fini and before CS rollback.
* @suspend: handles IP specific H/W or SW changes for suspend.
* @resume: handles IP specific H/W or SW changes for resume.
* @cb_mmap: maps a CB.
* @ring_doorbell: increment PI on a given QMAN.
* @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
* function because the PQs are located in different memory areas
* per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
* writing the PQE must match the destination memory area
* properties.
* @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
* dma_alloc_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @asic_dma_free_coherent: Free coherent DMA memory by calling
* dma_free_coherent(). This is ASIC function because
* its implementation is not trivial when the driver
* is loaded in simulation mode (not upstreamed).
* @scrub_device_mem: Scrub device memory given an address and size
* @get_int_queue_base: get the internal queue base address.
* @test_queues: run simple test on all queues for sanity check.
* @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
* size of allocation is HL_DMA_POOL_BLK_SIZE.
* @asic_dma_pool_free: free small DMA allocation from pool.
* @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
* @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
* @hl_dma_unmap_sg: DMA unmap scatter-gather list.
* @cs_parser: parse Command Submission.
* @asic_dma_map_sg: DMA map scatter-gather list.
* @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
* @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
* @update_eq_ci: update event queue CI.
* @context_switch: called upon ASID context switch.
* @restore_phase_topology: clear all SOBs amd MONs.
* @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
* @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
* @add_device_attr: add ASIC specific device attributes.
* @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
* @set_pll_profile: change PLL profile (manual/automatic).
* @get_events_stat: retrieve event queue entries histogram.
* @read_pte: read MMU page table entry from DRAM.
* @write_pte: write MMU page table entry to DRAM.
* @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
* (L1 only) or hard (L0 & L1) flush.
* @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
* ASID-VA-size mask.
* @send_heartbeat: send is-alive packet to CPU-CP and verify response.
* @set_clock_gating: enable/disable clock gating per engine according to
* clock gating mask in hdev
* @disable_clock_gating: disable clock gating completely
* @debug_coresight: perform certain actions on Coresight for debugging.
* @is_device_idle: return true if device is idle, false otherwise.
* @soft_reset_late_init: perform certain actions needed after soft reset.
* @hw_queues_lock: acquire H/W queues lock.
* @hw_queues_unlock: release H/W queues lock.
* @get_pci_id: retrieve PCI ID.
* @get_eeprom_data: retrieve EEPROM data from F/W.
* @send_cpu_message: send message to F/W. If the message is timedout, the
* driver will eventually reset the device. The timeout can
* be determined by the calling function or it can be 0 and
* then the timeout is the default timeout for the specific
* ASIC
* @get_hw_state: retrieve the H/W state
* @pci_bars_map: Map PCI BARs.
* @init_iatu: Initialize the iATU unit inside the PCI controller.
* @rreg: Read a register. Needed for simulator support.
* @wreg: Write a register. Needed for simulator support.
* @halt_coresight: stop the ETF and ETR traces.
* @ctx_init: context dependent initialization.
* @ctx_fini: context dependent cleanup.
* @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
* @read_device_fw_version: read the device's firmware versions that are
* contained in registers
* @load_firmware_to_device: load the firmware to the device's memory
* @load_boot_fit_to_device: load boot fit to device's memory
* @get_signal_cb_size: Get signal CB size.
* @get_wait_cb_size: Get wait CB size.
* @gen_signal_cb: Generate a signal CB.
* @gen_wait_cb: Generate a wait CB.
* @reset_sob: Reset a SOB.
* @reset_sob_group: Reset SOB group
* @set_dma_mask_from_fw: set the DMA mask in the driver according to the
* firmware configuration
* @get_device_time: Get the device time.
* @collective_wait_init_cs: Generate collective master/slave packets
* and place them in the relevant cs jobs
* @collective_wait_create_jobs: allocate collective wait cs jobs
* @scramble_addr: Routine to scramble the address prior of mapping it
* in the MMU.
* @descramble_addr: Routine to de-scramble the address prior of
* showing it to users.
* @ack_protection_bits_errors: ack and dump all security violations
* @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
* also returns the size of the block if caller supplies
* a valid pointer for it
* @hw_block_mmap: mmap a HW block with a given id.
* @enable_events_from_fw: send interrupt to firmware to notify them the
* driver is ready to receive asynchronous events. This
* function should be called during the first init and
* after every hard-reset of the device
*/
struct hl_asic_funcs {
int (*early_init)(struct hl_device *hdev);
int (*early_fini)(struct hl_device *hdev);
int (*late_init)(struct hl_device *hdev);
void (*late_fini)(struct hl_device *hdev);
int (*sw_init)(struct hl_device *hdev);
int (*sw_fini)(struct hl_device *hdev);
int (*hw_init)(struct hl_device *hdev);
void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
int (*suspend)(struct hl_device *hdev);
int (*resume)(struct hl_device *hdev);
int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size);
void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
struct hl_bd *bd);
void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
dma_addr_t *dma_handle, u16 *queue_len);
int (*test_queues)(struct hl_device *hdev);
void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
gfp_t mem_flags, dma_addr_t *dma_handle);
void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
dma_addr_t dma_addr);
void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
size_t size, dma_addr_t *dma_handle);
void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
size_t size, void *vaddr);
void (*hl_dma_unmap_sg)(struct hl_device *hdev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
int (*asic_dma_map_sg)(struct hl_device *hdev,
struct scatterlist *sgl, int nents,
enum dma_data_direction dir);
u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
struct sg_table *sgt);
void (*add_end_of_cb_packets)(struct hl_device *hdev,
void *kernel_address, u32 len,
u64 cq_addr, u32 cq_val, u32 msix_num,
bool eb);
void (*update_eq_ci)(struct hl_device *hdev, u32 val);
int (*context_switch)(struct hl_device *hdev, u32 asid);
void (*restore_phase_topology)(struct hl_device *hdev);
int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val);
int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val);
void (*add_device_attr)(struct hl_device *hdev,
struct attribute_group *dev_attr_grp);
void (*handle_eqe)(struct hl_device *hdev,
struct hl_eq_entry *eq_entry);
void (*set_pll_profile)(struct hl_device *hdev,
enum hl_pll_frequency freq);
void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
u32 *size);
u64 (*read_pte)(struct hl_device *hdev, u64 addr);
void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
u32 flags);
int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
u32 asid, u64 va, u64 size);
int (*send_heartbeat)(struct hl_device *hdev);
void (*set_clock_gating)(struct hl_device *hdev);
void (*disable_clock_gating)(struct hl_device *hdev);
int (*debug_coresight)(struct hl_device *hdev, void *data);
bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
u8 mask_len, struct seq_file *s);
int (*soft_reset_late_init)(struct hl_device *hdev);
void (*hw_queues_lock)(struct hl_device *hdev);
void (*hw_queues_unlock)(struct hl_device *hdev);
u32 (*get_pci_id)(struct hl_device *hdev);
int (*get_eeprom_data)(struct hl_device *hdev, void *data,
size_t max_size);
int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
u16 len, u32 timeout, u64 *result);
int (*pci_bars_map)(struct hl_device *hdev);
int (*init_iatu)(struct hl_device *hdev);
u32 (*rreg)(struct hl_device *hdev, u32 reg);
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
void (*halt_coresight)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
int (*read_device_fw_version)(struct hl_device *hdev,
enum hl_fw_component fwc);
int (*load_firmware_to_device)(struct hl_device *hdev);
int (*load_boot_fit_to_device)(struct hl_device *hdev);
u32 (*get_signal_cb_size)(struct hl_device *hdev);
u32 (*get_wait_cb_size)(struct hl_device *hdev);
u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
u32 size, bool eb);
u32 (*gen_wait_cb)(struct hl_device *hdev,
struct hl_gen_wait_properties *prop);
void (*reset_sob)(struct hl_device *hdev, void *data);
void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
void (*set_dma_mask_from_fw)(struct hl_device *hdev);
u64 (*get_device_time)(struct hl_device *hdev);
void (*collective_wait_init_cs)(struct hl_cs *cs);
int (*collective_wait_create_jobs)(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
u32 collective_engine_id);
u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
void (*ack_protection_bits_errors)(struct hl_device *hdev);
int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
u32 *block_size, u32 *block_id);
int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
u32 block_id, u32 block_size);
void (*enable_events_from_fw)(struct hl_device *hdev);
};
/*
* CONTEXTS
*/
#define HL_KERNEL_ASID_ID 0
/**
* enum hl_va_range_type - virtual address range type.
* @HL_VA_RANGE_TYPE_HOST: range type of host pages
* @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
* @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
*/
enum hl_va_range_type {
HL_VA_RANGE_TYPE_HOST,
HL_VA_RANGE_TYPE_HOST_HUGE,
HL_VA_RANGE_TYPE_DRAM,
HL_VA_RANGE_TYPE_MAX
};
/**
* struct hl_va_range - virtual addresses range.
* @lock: protects the virtual addresses list.
* @list: list of virtual addresses blocks available for mappings.
* @start_addr: range start address.
* @end_addr: range end address.
* @page_size: page size of this va range.
*/
struct hl_va_range {
struct mutex lock;
struct list_head list;
u64 start_addr;
u64 end_addr;
u32 page_size;
};
/**
* struct hl_cs_counters_atomic - command submission counters
* @out_of_mem_drop_cnt: dropped due to memory allocation issue
* @parsing_drop_cnt: dropped due to error in packet parsing
* @queue_full_drop_cnt: dropped due to queue full
* @device_in_reset_drop_cnt: dropped due to device in reset
* @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
* @validation_drop_cnt: dropped due to error in validation
*/
struct hl_cs_counters_atomic {
atomic64_t out_of_mem_drop_cnt;
atomic64_t parsing_drop_cnt;
atomic64_t queue_full_drop_cnt;
atomic64_t device_in_reset_drop_cnt;
atomic64_t max_cs_in_flight_drop_cnt;
atomic64_t validation_drop_cnt;
};
/**
* struct hl_pending_cb - pending command buffer structure
* @cb_node: cb node in pending cb list
* @cb: command buffer to send in next submission
* @cb_size: command buffer size
* @hw_queue_id: destination queue id
*/
struct hl_pending_cb {
struct list_head cb_node;
struct hl_cb *cb;
u32 cb_size;
u32 hw_queue_id;
};
/**
* struct hl_ctx - user/kernel context.
* @mem_hash: holds mapping from virtual address to virtual memory area
* descriptor (hl_vm_phys_pg_list or hl_userptr).
* @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
* @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
* @hdev: pointer to the device structure.
* @refcount: reference counter for the context. Context is released only when
* this hits 0l. It is incremented on CS and CS_WAIT.
* @cs_pending: array of hl fence objects representing pending CS.
* @va_range: holds available virtual addresses for host and dram mappings.
* @mem_hash_lock: protects the mem_hash.
* @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
* MMU hash or walking the PGT requires talking this lock.
* @debugfs_list: node in debugfs list of contexts.
* pending_cb_list: list of pending command buffers waiting to be sent upon
* next user command submission context.
* @cs_counters: context command submission counters.
* @cb_va_pool: device VA pool for command buffers which are mapped to the
* device's MMU.
* @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
* to user so user could inquire about CS. It is used as
* index to cs_pending array.
* @dram_default_hops: array that holds all hops addresses needed for default
* DRAM mapping.
* @pending_cb_lock: spinlock to protect pending cb list
* @cs_lock: spinlock to protect cs_sequence.
* @dram_phys_mem: amount of used physical DRAM memory by this context.
* @thread_ctx_switch_token: token to prevent multiple threads of the same
* context from running the context switch phase.
* Only a single thread should run it.
* @thread_pending_cb_token: token to prevent multiple threads from processing
* the pending CB list. Only a single thread should
* process the list since it is protected by a
* spinlock and we don't want to halt the entire
* command submission sequence.
* @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
* the context switch phase from moving to their
* execution phase before the context switch phase
* has finished.
* @asid: context's unique address space ID in the device's MMU.
* @handle: context's opaque handle for user
*/
struct hl_ctx {
DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
struct hl_fpriv *hpriv;
struct hl_device *hdev;
struct kref refcount;
struct hl_fence **cs_pending;
struct hl_va_range *va_range[HL_VA_RANGE_TYPE_MAX];
struct mutex mem_hash_lock;
struct mutex mmu_lock;
struct list_head debugfs_list;
struct list_head pending_cb_list;
struct hl_cs_counters_atomic cs_counters;
struct gen_pool *cb_va_pool;
u64 cs_sequence;
u64 *dram_default_hops;
spinlock_t pending_cb_lock;
spinlock_t cs_lock;
atomic64_t dram_phys_mem;
atomic_t thread_ctx_switch_token;
atomic_t thread_pending_cb_token;
u32 thread_ctx_switch_wait_token;
u32 asid;
u32 handle;
};
/**
* struct hl_ctx_mgr - for handling multiple contexts.
* @ctx_lock: protects ctx_handles.
* @ctx_handles: idr to hold all ctx handles.
*/
struct hl_ctx_mgr {
struct mutex ctx_lock;
struct idr ctx_handles;
};
/*
* COMMAND SUBMISSIONS
*/
/**
* struct hl_userptr - memory mapping chunk information
* @vm_type: type of the VM.
* @job_node: linked-list node for hanging the object on the Job's list.
* @pages: pointer to struct page array
* @npages: size of @pages array
* @sgt: pointer to the scatter-gather table that holds the pages.
* @dir: for DMA unmapping, the direction must be supplied, so save it.
* @debugfs_list: node in debugfs list of command submissions.
* @addr: user-space virtual address of the start of the memory area.
* @size: size of the memory area to pin & map.
* @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
*/
struct hl_userptr {
enum vm_type_t vm_type; /* must be first */
struct list_head job_node;
struct page **pages;
unsigned int npages;
struct sg_table *sgt;
enum dma_data_direction dir;
struct list_head debugfs_list;
u64 addr;
u32 size;
u8 dma_mapped;
};
/**
* struct hl_cs - command submission.
* @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
* @ctx: the context this CS belongs to.
* @job_list: list of the CS's jobs in the various queues.
* @job_lock: spinlock for the CS's jobs list. Needed for free_job.
* @refcount: reference counter for usage of the CS.
* @fence: pointer to the fence object of this CS.
* @signal_fence: pointer to the fence object of the signal CS (used by wait
* CS only).
* @finish_work: workqueue object to run when CS is completed by H/W.
* @work_tdr: delayed work node for TDR.
* @mirror_node : node in device mirror list of command submissions.
* @staged_cs_node: node in the staged cs list.
* @debugfs_list: node in debugfs list of command submissions.
* @sequence: the sequence number of this CS.
* @staged_sequence: the sequence of the staged submission this CS is part of,
* relevant only if staged_cs is set.
* @type: CS_TYPE_*.
* @submitted: true if CS was submitted to H/W.
* @completed: true if CS was completed by device.
* @timedout : true if CS was timedout.
* @tdr_active: true if TDR was activated for this CS (to prevent
* double TDR activation).
* @aborted: true if CS was aborted due to some device error.
* @timestamp: true if a timestmap must be captured upon completion.
* @staged_last: true if this is the last staged CS and needs completion.
* @staged_first: true if this is the first staged CS and we need to receive
* timeout for this CS.
* @staged_cs: true if this CS is part of a staged submission.
*/
struct hl_cs {
u16 *jobs_in_queue_cnt;
struct hl_ctx *ctx;
struct list_head job_list;
spinlock_t job_lock;
struct kref refcount;
struct hl_fence *fence;
struct hl_fence *signal_fence;
struct work_struct finish_work;
struct delayed_work work_tdr;
struct list_head mirror_node;
struct list_head staged_cs_node;
struct list_head debugfs_list;
u64 sequence;
u64 staged_sequence;
enum hl_cs_type type;
u8 submitted;
u8 completed;
u8 timedout;
u8 tdr_active;
u8 aborted;
u8 timestamp;
u8 staged_last;
u8 staged_first;
u8 staged_cs;
};
/**
* struct hl_cs_job - command submission job.
* @cs_node: the node to hang on the CS jobs list.
* @cs: the CS this job belongs to.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @finish_work: workqueue object to run when job is completed.
* @userptr_list: linked-list of userptr mappings that belong to this job and
* wait for completion.
* @debugfs_list: node in debugfs list of command submission jobs.
* @refcount: reference counter for usage of the CS job.
* @queue_type: the type of the H/W queue this job is submitted to.
* @id: the id of this job inside a CS.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @job_cb_size: the actual size of the CB that we put on the queue.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
*/
struct hl_cs_job {
struct list_head cs_node;
struct hl_cs *cs;
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct work_struct finish_work;
struct list_head userptr_list;
struct list_head debugfs_list;
struct kref refcount;
enum hl_queue_type queue_type;
u32 id;
u32 hw_queue_id;
u32 user_cb_size;
u32 job_cb_size;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
};
/**
* struct hl_cs_parser - command submission parser properties.
* @user_cb: the CB we got from the user.
* @patched_cb: in case of patching, this is internal CB which is submitted on
* the queue instead of the CB we got from the IOCTL.
* @job_userptr_list: linked-list of userptr mappings that belong to the related
* job and wait for completion.
* @cs_sequence: the sequence number of the related CS.
* @queue_type: the type of the H/W queue this job is submitted to.
* @ctx_id: the ID of the context the related CS belongs to.
* @hw_queue_id: the id of the H/W queue this job is submitted to.
* @user_cb_size: the actual size of the CB we got from the user.
* @patched_cb_size: the size of the CB after parsing.
* @job_id: the id of the related job inside the related CS.
* @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
* handle to a kernel-allocated CB object, false
* otherwise (SRAM/DRAM/host address).
* @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
* info is needed later, when adding the 2xMSG_PROT at the
* end of the JOB, to know which barriers to put in the
* MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
* have streams so the engine can't be busy by another
* stream.
* @completion: true if we need completion for this CS.
*/
struct hl_cs_parser {
struct hl_cb *user_cb;
struct hl_cb *patched_cb;
struct list_head *job_userptr_list;
u64 cs_sequence;
enum hl_queue_type queue_type;
u32 ctx_id;
u32 hw_queue_id;
u32 user_cb_size;
u32 patched_cb_size;
u8 job_id;
u8 is_kernel_allocated_cb;
u8 contains_dma_pkt;
u8 completion;
};
/*
* MEMORY STRUCTURE
*/
/**
* struct hl_vm_hash_node - hash element from virtual address to virtual
* memory area descriptor (hl_vm_phys_pg_list or
* hl_userptr).
* @node: node to hang on the hash table in context object.
* @vaddr: key virtual address.
* @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
*/
struct hl_vm_hash_node {
struct hlist_node node;
u64 vaddr;
void *ptr;
};
/**
* struct hl_vm_phys_pg_pack - physical page pack.
* @vm_type: describes the type of the virtual area descriptor.
* @pages: the physical page array.
* @npages: num physical pages in the pack.
* @total_size: total size of all the pages in this list.
* @mapping_cnt: number of shared mappings.
* @asid: the context related to this list.
* @page_size: size of each page in the pack.
* @flags: HL_MEM_* flags related to this list.
* @handle: the provided handle related to this list.
* @offset: offset from the first page.
* @contiguous: is contiguous physical memory.
* @created_from_userptr: is product of host virtual address.
*/
struct hl_vm_phys_pg_pack {
enum vm_type_t vm_type; /* must be first */
u64 *pages;
u64 npages;
u64 total_size;
atomic_t mapping_cnt;
u32 asid;
u32 page_size;
u32 flags;
u32 handle;
u32 offset;
u8 contiguous;
u8 created_from_userptr;
};
/**
* struct hl_vm_va_block - virtual range block information.
* @node: node to hang on the virtual range list in context object.
* @start: virtual range start address.
* @end: virtual range end address.
* @size: virtual range size.
*/
struct hl_vm_va_block {
struct list_head node;
u64 start;
u64 end;
u64 size;
};
/**
* struct hl_vm - virtual memory manager for MMU.
* @dram_pg_pool: pool for DRAM physical pages of 2MB.
* @dram_pg_pool_refcount: reference counter for the pool usage.
* @idr_lock: protects the phys_pg_list_handles.
* @phys_pg_pack_handles: idr to hold all device allocations handles.
* @init_done: whether initialization was done. We need this because VM
* initialization might be skipped during device initialization.
*/
struct hl_vm {
struct gen_pool *dram_pg_pool;
struct kref dram_pg_pool_refcount;
spinlock_t idr_lock;
struct idr phys_pg_pack_handles;
u8 init_done;
};
/*
* DEBUG, PROFILING STRUCTURE
*/
/**
* struct hl_debug_params - Coresight debug parameters.
* @input: pointer to component specific input parameters.
* @output: pointer to component specific output parameters.
* @output_size: size of output buffer.
* @reg_idx: relevant register ID.
* @op: component operation to execute.
* @enable: true if to enable component debugging, false otherwise.
*/
struct hl_debug_params {
void *input;
void *output;
u32 output_size;
u32 reg_idx;
u32 op;
bool enable;
};
/*
* FILE PRIVATE STRUCTURE
*/
/**
* struct hl_fpriv - process information stored in FD private data.
* @hdev: habanalabs device structure.
* @filp: pointer to the given file structure.
* @taskpid: current process ID.
* @ctx: current executing context. TODO: remove for multiple ctx per process
* @ctx_mgr: context manager to handle multiple context for this FD.
* @cb_mgr: command buffer manager to handle multiple buffers for this FD.
* @debugfs_list: list of relevant ASIC debugfs.
* @dev_node: node in the device list of file private data
* @refcount: number of related contexts.
* @restore_phase_mutex: lock for context switch and restore phase.
* @is_control: true for control device, false otherwise
*/
struct hl_fpriv {
struct hl_device *hdev;
struct file *filp;
struct pid *taskpid;
struct hl_ctx *ctx;
struct hl_ctx_mgr ctx_mgr;
struct hl_cb_mgr cb_mgr;
struct list_head debugfs_list;
struct list_head dev_node;
struct kref refcount;
struct mutex restore_phase_mutex;
u8 is_control;
};
/*
* DebugFS
*/
/**
* struct hl_info_list - debugfs file ops.
* @name: file name.
* @show: function to output information.
* @write: function to write to the file.
*/
struct hl_info_list {
const char *name;
int (*show)(struct seq_file *s, void *data);
ssize_t (*write)(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos);
};
/**
* struct hl_debugfs_entry - debugfs dentry wrapper.
* @info_ent: dentry realted ops.
* @dev_entry: ASIC specific debugfs manager.
*/
struct hl_debugfs_entry {
const struct hl_info_list *info_ent;
struct hl_dbg_device_entry *dev_entry;
};
/**
* struct hl_dbg_device_entry - ASIC specific debugfs manager.
* @root: root dentry.
* @hdev: habanalabs device structure.
* @entry_arr: array of available hl_debugfs_entry.
* @file_list: list of available debugfs files.
* @file_mutex: protects file_list.
* @cb_list: list of available CBs.
* @cb_spinlock: protects cb_list.
* @cs_list: list of available CSs.
* @cs_spinlock: protects cs_list.
* @cs_job_list: list of available CB jobs.
* @cs_job_spinlock: protects cs_job_list.
* @userptr_list: list of available userptrs (virtual memory chunk descriptor).
* @userptr_spinlock: protects userptr_list.
* @ctx_mem_hash_list: list of available contexts with MMU mappings.
* @ctx_mem_hash_spinlock: protects cb_list.
* @addr: next address to read/write from/to in read/write32.
* @mmu_addr: next virtual address to translate to physical address in mmu_show.
* @mmu_asid: ASID to use while translating in mmu_show.
* @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
* @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
* @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
*/
struct hl_dbg_device_entry {
struct dentry *root;
struct hl_device *hdev;
struct hl_debugfs_entry *entry_arr;
struct list_head file_list;
struct mutex file_mutex;
struct list_head cb_list;
spinlock_t cb_spinlock;
struct list_head cs_list;
spinlock_t cs_spinlock;
struct list_head cs_job_list;
spinlock_t cs_job_spinlock;
struct list_head userptr_list;
spinlock_t userptr_spinlock;
struct list_head ctx_mem_hash_list;
spinlock_t ctx_mem_hash_spinlock;
u64 addr;
u64 mmu_addr;
u32 mmu_asid;
u8 i2c_bus;
u8 i2c_addr;
u8 i2c_reg;
};
/*
* DEVICES
*/
#define HL_STR_MAX 32
#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_NEEDS_RESET + 1)
/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
* x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
*/
#define HL_MAX_MINORS 256
/*
* Registers read & write functions.
*/
u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n", \
hdev->asic_funcs->rreg(hdev, (reg)))
#define WREG32_P(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= (mask); \
tmp_ |= ((val) & ~(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
#define RMWREG32(reg, val, mask) \
do { \
u32 tmp_ = RREG32(reg); \
tmp_ &= ~(mask); \
tmp_ |= ((val) << __ffs(mask)); \
WREG32(reg, tmp_); \
} while (0)
#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, offset, field, val) \
WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
~REG_FIELD_MASK(reg, field)) | \
(val) << REG_FIELD_SHIFT(reg, field))
/* Timeout should be longer when working with simulator but cap the
* increased timeout to some maximum
*/
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = RREG32(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = RREG32(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
/*
* address in this macro points always to a memory location in the
* host's (server's) memory. That location is updated asynchronously
* either by the direct access of the device or by another core.
*
* To work both in LE and BE architectures, we need to distinguish between the
* two states (device or another core updates the memory location). Therefore,
* if mem_written_by_device is true, the host memory being polled will be
* updated directly by the device. If false, the host memory being polled will
* be updated by host CPU. Required so host knows whether or not the memory
* might need to be byte-swapped before returning value to caller.
*/
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
mem_written_by_device) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
/* Verify we read updates done by other cores or by device */ \
mb(); \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = *((u32 *)(addr)); \
if (mem_written_by_device) \
(val) = le32_to_cpu(*(__le32 *) &(val)); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
timeout_us) \
({ \
ktime_t __timeout; \
if (hdev->pdev) \
__timeout = ktime_add_us(ktime_get(), timeout_us); \
else \
__timeout = ktime_add_us(ktime_get(),\
min((u64)(timeout_us * 10), \
(u64) HL_SIM_MAX_TIMEOUT_US)); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = readl(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
(val) = readl(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
struct hwmon_chip_info;
/**
* struct hl_device_reset_work - reset workqueue task wrapper.
* @wq: work queue for device reset procedure.
* @reset_work: reset work to be done.
* @hdev: habanalabs device structure.
*/
struct hl_device_reset_work {
struct workqueue_struct *wq;
struct delayed_work reset_work;
struct hl_device *hdev;
};
/**
* struct hl_device_idle_busy_ts - used for calculating device utilization rate.
* @idle_to_busy_ts: timestamp where device changed from idle to busy.
* @busy_to_idle_ts: timestamp where device changed from busy to idle.
*/
struct hl_device_idle_busy_ts {
ktime_t idle_to_busy_ts;
ktime_t busy_to_idle_ts;
};
/**
* struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
* information.
* @virt_addr: the virtual address of the hop.
* @phys-addr: the physical address of the hop (used by the device-mmu).
* @shadow_addr: The shadow of the hop used by the driver for walking the hops.
*/
struct hr_mmu_hop_addrs {
u64 virt_addr;
u64 phys_addr;
u64 shadow_addr;
};
/**
* struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
* @mmu_shadow_hop0: shadow array of hop0 tables.
*/
struct hl_mmu_hr_priv {
struct gen_pool *mmu_pgt_pool;
struct hr_mmu_hop_addrs *mmu_shadow_hop0;
};
/**
* struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
* page-table internal information.
* @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
* @mmu_shadow_hop0: shadow array of hop0 tables.
*/
struct hl_mmu_dr_priv {
struct gen_pool *mmu_pgt_pool;
void *mmu_shadow_hop0;
};
/**
* struct hl_mmu_priv - used for holding per-device mmu internal information.
* @dr: information on the device-resident MMU, when exists.
* @hr: information on the host-resident MMU, when exists.
*/
struct hl_mmu_priv {
struct hl_mmu_dr_priv dr;
struct hl_mmu_hr_priv hr;
};
/**
* struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
* that was created in order to translate a virtual address to a
* physical one.
* @hop_addr: The address of the hop.
* @hop_pte_addr: The address of the hop entry.
* @hop_pte_val: The value in the hop entry.
*/
struct hl_mmu_per_hop_info {
u64 hop_addr;
u64 hop_pte_addr;
u64 hop_pte_val;
};
/**
* struct hl_mmu_hop_info - A structure describing the TLB hops and their
* hop-entries that were created in order to translate a virtual address to a
* physical one.
* @scrambled_vaddr: The value of the virtual address after scrambling. This
* address replaces the original virtual-address when mapped
* in the MMU tables.
* @unscrambled_paddr: The un-scrambled physical address.
* @hop_info: Array holding the per-hop information used for the translation.
* @used_hops: The number of hops used for the translation.
* @range_type: virtual address range type.
*/
struct hl_mmu_hop_info {
u64 scrambled_vaddr;
u64 unscrambled_paddr;
struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
u32 used_hops;
enum hl_va_range_type range_type;
};
/**
* struct hl_mmu_funcs - Device related MMU functions.
* @init: initialize the MMU module.
* @fini: release the MMU module.
* @ctx_init: Initialize a context for using the MMU module.
* @ctx_fini: disable a ctx from using the mmu module.
* @map: maps a virtual address to physical address for a context.
* @unmap: unmap a virtual address of a context.
* @flush: flush all writes from all cores to reach device MMU.
* @swap_out: marks all mapping of the given context as swapped out.
* @swap_in: marks all mapping of the given context as swapped in.
* @get_tlb_info: returns the list of hops and hop-entries used that were
* created in order to translate the giver virtual address to a
* physical one.
*/
struct hl_mmu_funcs {
int (*init)(struct hl_device *hdev);
void (*fini)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*map)(struct hl_ctx *ctx,
u64 virt_addr, u64 phys_addr, u32 page_size,
bool is_dram_addr);
int (*unmap)(struct hl_ctx *ctx,
u64 virt_addr, bool is_dram_addr);
void (*flush)(struct hl_ctx *ctx);
void (*swap_out)(struct hl_ctx *ctx);
void (*swap_in)(struct hl_ctx *ctx);
int (*get_tlb_info)(struct hl_ctx *ctx,
u64 virt_addr, struct hl_mmu_hop_info *hops);
};
/**
* struct hl_device - habanalabs device structure.
* @pdev: pointer to PCI device, can be NULL in case of simulator device.
* @pcie_bar_phys: array of available PCIe bars physical addresses.
* (required only for PCI address match mode)
* @pcie_bar: array of available PCIe bars virtual addresses.
* @rmmio: configuration area address on SRAM.
* @cdev: related char device.
* @cdev_ctrl: char device for control operations only (INFO IOCTL)
* @dev: related kernel basic device structure.
* @dev_ctrl: related kernel device structure for the control device
* @work_freq: delayed work to lower device frequency if possible.
* @work_heartbeat: delayed work for CPU-CP is-alive check.
* @device_reset_work: delayed work which performs hard reset
* @asic_name: ASIC specific name.
* @asic_type: ASIC specific type.
* @completion_queue: array of hl_cq.
* @cq_wq: work queues of completion queues for executing work in process
* context.
* @eq_wq: work queue of event queue for executing work in process context.
* @kernel_ctx: Kernel driver context structure.
* @kernel_queues: array of hl_hw_queue.
* @cs_mirror_list: CS mirror list for TDR.
* @cs_mirror_lock: protects cs_mirror_list.
* @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
* @event_queue: event queue for IRQ from CPU-CP.
* @dma_pool: DMA pool for small allocations.
* @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
* @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
* @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
* @asid_bitmap: holds used/available ASIDs.
* @asid_mutex: protects asid_bitmap.
* @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
* @debug_lock: protects critical section of setting debug mode for device
* @asic_prop: ASIC specific immutable properties.
* @asic_funcs: ASIC specific functions.
* @asic_specific: ASIC specific information to use only from ASIC files.
* @vm: virtual memory manager for MMU.
* @hwmon_dev: H/W monitor device.
* @pm_mng_profile: current power management profile.
* @hl_chip_info: ASIC's sensors information.
* @device_status_description: device status description.
* @hl_debugfs: device's debugfs manager.
* @cb_pool: list of preallocated CBs.
* @cb_pool_lock: protects the CB pool.
* @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
* @internal_cb_pool_dma_addr: internal command buffer pool dma address.
* @internal_cb_pool: internal command buffer memory pool.
* @internal_cb_va_base: internal cb pool mmu virtual address base
* @fpriv_list: list of file private data structures. Each structure is created
* when a user opens the device
* @fpriv_list_lock: protects the fpriv_list
* @compute_ctx: current compute context executing.
* @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
* and vice-versa
* @aggregated_cs_counters: aggregated cs counters among all contexts
* @mmu_priv: device-specific MMU data.
* @mmu_func: device-related MMU functions.
* @dram_used_mem: current DRAM memory consumption.
* @timeout_jiffies: device CS timeout value.
* @max_power: the max power of the device, as configured by the sysadmin. This
* value is saved so in case of hard-reset, the driver will restore
* this value and update the F/W after the re-initialization
* @clock_gating_mask: is clock gating enabled. bitmask that represents the
* different engines. See debugfs-driver-habanalabs for
* details.
* @in_reset: is device in reset flow.
* @curr_pll_profile: current PLL profile.
* @card_type: Various ASICs have several card types. This indicates the card
* type of the current device.
* @cs_active_cnt: number of active command submissions on this device (active
* means already in H/W queues)
* @major: habanalabs kernel driver major.
* @high_pll: high PLL profile frequency.
* @soft_reset_cnt: number of soft reset since the driver was loaded.
* @hard_reset_cnt: number of hard reset since the driver was loaded.
* @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
* @clk_throttling_reason: bitmask represents the current clk throttling reasons
* @id: device minor.
* @id_control: minor of the control device
* @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
* addresses.
* @disabled: is device disabled.
* @late_init_done: is late init stage was done during initialization.
* @hwmon_initialized: is H/W monitor sensors was initialized.
* @hard_reset_pending: is there a hard reset work pending.
* @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
* @reset_on_lockup: true if a reset should be done in case of stuck CS, false
* otherwise.
* @dram_default_page_mapping: is DRAM default page mapping enabled.
* @memory_scrub: true to perform device memory scrub in various locations,
* such as context-switch, context close, page free, etc.
* @pmmu_huge_range: is a different virtual addresses range used for PMMU with
* huge pages.
* @init_done: is the initialization of the device done.
* @device_cpu_disabled: is the device CPU disabled (due to timeouts)
* @dma_mask: the dma mask that was set for this device
* @in_debug: is device under debug. This, together with fpriv_list, enforces
* that only a single user is configuring the debug infrastructure.
* @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
* only to POWER9 machines.
* @cdev_sysfs_created: were char devices and sysfs nodes created.
* @stop_on_err: true if engines should stop on error.
* @supports_sync_stream: is sync stream supported.
* @sync_stream_queue_idx: helper index for sync stream queues initialization.
* @collective_mon_idx: helper index for collective initialization
* @supports_coresight: is CoreSight supported.
* @supports_soft_reset: is soft reset supported.
* @supports_cb_mapping: is mapping a CB to the device's MMU supported.
* @needs_reset: true if reset_on_lockup is false and device should be reset
* due to lockup.
* @process_kill_trial_cnt: number of trials reset thread tried killing
* user processes
* @device_fini_pending: true if device_fini was called and might be
* waiting for the reset thread to finish
* @supports_staged_submission: true if staged submissions are supported
*/
struct hl_device {
struct pci_dev *pdev;
u64 pcie_bar_phys[HL_PCI_NUM_BARS];
void __iomem *pcie_bar[HL_PCI_NUM_BARS];
void __iomem *rmmio;
struct cdev cdev;
struct cdev cdev_ctrl;
struct device *dev;
struct device *dev_ctrl;
struct delayed_work work_freq;
struct delayed_work work_heartbeat;
struct hl_device_reset_work device_reset_work;
char asic_name[HL_STR_MAX];
char status[HL_DEV_STS_MAX][HL_STR_MAX];
enum hl_asic_type asic_type;
struct hl_cq *completion_queue;
struct workqueue_struct **cq_wq;
struct workqueue_struct *eq_wq;
struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues;
struct list_head cs_mirror_list;
spinlock_t cs_mirror_lock;
struct hl_cb_mgr kernel_cb_mgr;
struct hl_eq event_queue;
struct dma_pool *dma_pool;
void *cpu_accessible_dma_mem;
dma_addr_t cpu_accessible_dma_address;
struct gen_pool *cpu_accessible_dma_pool;
unsigned long *asid_bitmap;
struct mutex asid_mutex;
struct mutex send_cpu_message_lock;
struct mutex debug_lock;
struct asic_fixed_properties asic_prop;
const struct hl_asic_funcs *asic_funcs;
void *asic_specific;
struct hl_vm vm;
struct device *hwmon_dev;
enum hl_pm_mng_profile pm_mng_profile;
struct hwmon_chip_info *hl_chip_info;
struct hl_dbg_device_entry hl_debugfs;
struct list_head cb_pool;
spinlock_t cb_pool_lock;
void *internal_cb_pool_virt_addr;
dma_addr_t internal_cb_pool_dma_addr;
struct gen_pool *internal_cb_pool;
u64 internal_cb_va_base;
struct list_head fpriv_list;
struct mutex fpriv_list_lock;
struct hl_ctx *compute_ctx;
struct hl_device_idle_busy_ts *idle_busy_ts_arr;
struct hl_cs_counters_atomic aggregated_cs_counters;
struct hl_mmu_priv mmu_priv;
struct hl_mmu_funcs mmu_func[MMU_NUM_PGT_LOCATIONS];
atomic64_t dram_used_mem;
u64 timeout_jiffies;
u64 max_power;
u64 clock_gating_mask;
atomic_t in_reset;
enum hl_pll_frequency curr_pll_profile;
enum cpucp_card_types card_type;
int cs_active_cnt;
u32 major;
u32 high_pll;
u32 soft_reset_cnt;
u32 hard_reset_cnt;
u32 idle_busy_ts_idx;
u32 clk_throttling_reason;
u16 id;
u16 id_control;
u16 cpu_pci_msb_addr;
u8 disabled;
u8 late_init_done;
u8 hwmon_initialized;
u8 hard_reset_pending;
u8 heartbeat;
u8 reset_on_lockup;
u8 dram_default_page_mapping;
u8 memory_scrub;
u8 pmmu_huge_range;
u8 init_done;
u8 device_cpu_disabled;
u8 dma_mask;
u8 in_debug;
u8 power9_64bit_dma_enable;
u8 cdev_sysfs_created;
u8 stop_on_err;
u8 supports_sync_stream;
u8 sync_stream_queue_idx;
u8 collective_mon_idx;
u8 supports_coresight;
u8 supports_soft_reset;
u8 supports_cb_mapping;
u8 needs_reset;
u8 process_kill_trial_cnt;
u8 device_fini_pending;
u8 supports_staged_submission;
/* Parameters for bring-up */
u64 nic_ports_mask;
u64 fw_loading;
u8 mmu_enable;
u8 mmu_huge_page_opt;
u8 cpu_enable;
u8 reset_pcilink;
u8 cpu_queues_enable;
u8 pldm;
u8 axi_drain;
u8 sram_scrambler_enable;
u8 dram_scrambler_enable;
u8 hard_reset_on_fw_events;
u8 bmc_enable;
u8 rl_enable;
u8 reset_on_preboot_fail;
u8 reset_upon_device_release;
};
/*
* IOCTLs
*/
/**
* typedef hl_ioctl_t - typedef for ioctl function in the driver
* @hpriv: pointer to the FD's private data, which contains state of
* user process
* @data: pointer to the input/output arguments structure of the IOCTL
*
* Return: 0 for success, negative value for error
*/
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
/**
* struct hl_ioctl_desc - describes an IOCTL entry of the driver.
* @cmd: the IOCTL code as created by the kernel macros.
* @func: pointer to the driver's function that should be called for this IOCTL.
*/
struct hl_ioctl_desc {
unsigned int cmd;
hl_ioctl_t *func;
};
/*
* Kernel module functions that can be accessed by entire module
*/
/**
* hl_mem_area_inside_range() - Checks whether address+size are inside a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area is inside the valid range, false otherwise.
*/
static inline bool hl_mem_area_inside_range(u64 address, u64 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(end_address <= range_end_address) &&
(end_address > address))
return true;
return false;
}
/**
* hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
* @address: The start address of the area we want to validate.
* @size: The size in bytes of the area we want to validate.
* @range_start_address: The start address of the valid range.
* @range_end_address: The end address of the valid range.
*
* Return: true if the area overlaps part or all of the valid range,
* false otherwise.
*/
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
u64 range_start_address, u64 range_end_address)
{
u64 end_address = address + size;
if ((address >= range_start_address) &&
(address < range_end_address))
return true;
if ((end_address >= range_start_address) &&
(end_address < range_end_address))
return true;
if ((address < range_start_address) &&
(end_address >= range_end_address))
return true;
return false;
}
int hl_device_open(struct inode *inode, struct file *filp);
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
bool hl_device_operational(struct hl_device *hdev,
enum hl_device_status *status);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
enum hl_asic_type asic_type, int minor);
void destroy_hdev(struct hl_device *hdev);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
u32 cb_size, u64 cb_ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
#define hl_queue_inc_ptr(p) hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi) ((pi) & (HL_QUEUE_LENGTH - 1))
int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);
int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);
int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, bool hard_reset,
bool from_hard_reset_thread);
void hl_hpriv_get(struct hl_fpriv *hpriv);
void hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);
int hl_build_hwmon_channel_info(struct hl_device *hdev,
struct cpucp_sensor *sensors_arr);
int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);
int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
bool map_cb, u64 *handle);
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle);
void hl_cb_put(struct hl_cb *cb);
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
bool internal_cb);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);
int hl_cb_va_pool_init(struct hl_ctx *ctx);
void hl_cb_va_pool_fini(struct hl_ctx *ctx);
void hl_cs_rollback_all(struct hl_device *hdev);
void hl_pending_cb_list_flush(struct hl_ctx *ctx);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
void hl_sob_reset_error(struct kref *ref);
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
void hl_fence_put(struct hl_fence *fence);
void hl_fence_get(struct hl_fence *fence);
void cs_get(struct hl_cs *cs);
bool cs_needs_completion(struct hl_cs *cs);
bool cs_needs_timeout(struct hl_cs *cs);
bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);
int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);
int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_va_range_type type, u32 size, u32 alignment);
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
u64 start_addr, u64 size);
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr *userptr);
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
struct list_head *userptr_list,
struct hl_userptr **userptr);
int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size, bool flush_pte);
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
bool flush_pte);
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size);
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);
int hl_mmu_if_set_funcs(struct hl_device *hdev);
void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops);
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
void __iomem *dst, u32 src_offset, u32 size);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
u16 len, u32 timeout, u64 *result);
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
size_t irq_arr_size);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_cpucp_info_get(struct hl_device *hdev,
u32 cpu_security_boot_status_reg,
u32 boot_err0_reg);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
struct hl_info_pci_counters *counters);
int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
u64 *total_energy);
int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u16 pll_index,
u16 *pll_freq_arr);
int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout);
int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
u32 timeout);
int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
bool is_wc[3]);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
struct hl_inbound_pci_region *pci_region);
int hl_pci_set_outbound_region(struct hl_device *hdev,
struct hl_outbound_pci_region *pci_region);
int hl_pci_init(struct hl_device *hdev);
void hl_pci_fini(struct hl_device *hdev);
long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
int hl_get_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_set_temperature(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
int hl_get_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_current(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_fan_speed(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
int hl_get_pwm_info(struct hl_device *hdev,
int sensor_index, u32 attr, long *value);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
long value);
u64 hl_get_max_power(struct hl_device *hdev);
void hl_set_max_power(struct hl_device *hdev);
int hl_set_voltage(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
int hl_set_current(struct hl_device *hdev,
int sensor_index, u32 attr, long value);
#ifdef CONFIG_DEBUG_FS
void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
#else
static inline void __init hl_debugfs_init(void)
{
}
static inline void hl_debugfs_fini(void)
{
}
static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}
static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}
static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}
static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}
static inline void hl_debugfs_add_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_remove_job(struct hl_device *hdev,
struct hl_cs_job *job)
{
}
static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
}
static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
struct hl_ctx *ctx)
{
}
#endif
/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
#endif /* HABANALABSP_H_ */