| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * AMD SVM-SEV support |
| * |
| * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| */ |
| |
| #include <linux/kvm_types.h> |
| #include <linux/kvm_host.h> |
| #include <linux/kernel.h> |
| #include <linux/highmem.h> |
| #include <linux/psp-sev.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/processor.h> |
| #include <linux/trace_events.h> |
| #include <asm/fpu/internal.h> |
| |
| #include <asm/trapnr.h> |
| |
| #include "x86.h" |
| #include "svm.h" |
| #include "svm_ops.h" |
| #include "cpuid.h" |
| #include "trace.h" |
| |
| #define __ex(x) __kvm_handle_fault_on_reboot(x) |
| |
| static u8 sev_enc_bit; |
| static int sev_flush_asids(void); |
| static DECLARE_RWSEM(sev_deactivate_lock); |
| static DEFINE_MUTEX(sev_bitmap_lock); |
| unsigned int max_sev_asid; |
| static unsigned int min_sev_asid; |
| static unsigned long sev_me_mask; |
| static unsigned long *sev_asid_bitmap; |
| static unsigned long *sev_reclaim_asid_bitmap; |
| |
| struct enc_region { |
| struct list_head list; |
| unsigned long npages; |
| struct page **pages; |
| unsigned long uaddr; |
| unsigned long size; |
| }; |
| |
| static int sev_flush_asids(void) |
| { |
| int ret, error = 0; |
| |
| /* |
| * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, |
| * so it must be guarded. |
| */ |
| down_write(&sev_deactivate_lock); |
| |
| wbinvd_on_all_cpus(); |
| ret = sev_guest_df_flush(&error); |
| |
| up_write(&sev_deactivate_lock); |
| |
| if (ret) |
| pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); |
| |
| return ret; |
| } |
| |
| static inline bool is_mirroring_enc_context(struct kvm *kvm) |
| { |
| return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; |
| } |
| |
| /* Must be called with the sev_bitmap_lock held */ |
| static bool __sev_recycle_asids(int min_asid, int max_asid) |
| { |
| int pos; |
| |
| /* Check if there are any ASIDs to reclaim before performing a flush */ |
| pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid); |
| if (pos >= max_asid) |
| return false; |
| |
| if (sev_flush_asids()) |
| return false; |
| |
| /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ |
| bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, |
| max_sev_asid); |
| bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); |
| |
| return true; |
| } |
| |
| static int sev_asid_new(bool es_active) |
| { |
| int pos, min_asid, max_asid; |
| bool retry = true; |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| /* |
| * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. |
| * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. |
| */ |
| min_asid = es_active ? 0 : min_sev_asid - 1; |
| max_asid = es_active ? min_sev_asid - 1 : max_sev_asid; |
| again: |
| pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); |
| if (pos >= max_asid) { |
| if (retry && __sev_recycle_asids(min_asid, max_asid)) { |
| retry = false; |
| goto again; |
| } |
| mutex_unlock(&sev_bitmap_lock); |
| return -EBUSY; |
| } |
| |
| __set_bit(pos, sev_asid_bitmap); |
| |
| mutex_unlock(&sev_bitmap_lock); |
| |
| return pos + 1; |
| } |
| |
| static int sev_get_asid(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return sev->asid; |
| } |
| |
| static void sev_asid_free(int asid) |
| { |
| struct svm_cpu_data *sd; |
| int cpu, pos; |
| |
| mutex_lock(&sev_bitmap_lock); |
| |
| pos = asid - 1; |
| __set_bit(pos, sev_reclaim_asid_bitmap); |
| |
| for_each_possible_cpu(cpu) { |
| sd = per_cpu(svm_data, cpu); |
| sd->sev_vmcbs[pos] = NULL; |
| } |
| |
| mutex_unlock(&sev_bitmap_lock); |
| } |
| |
| static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) |
| { |
| struct sev_data_decommission *decommission; |
| struct sev_data_deactivate *data; |
| |
| if (!handle) |
| return; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return; |
| |
| /* deactivate handle */ |
| data->handle = handle; |
| |
| /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ |
| down_read(&sev_deactivate_lock); |
| sev_guest_deactivate(data, NULL); |
| up_read(&sev_deactivate_lock); |
| |
| kfree(data); |
| |
| decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); |
| if (!decommission) |
| return; |
| |
| /* decommission handle */ |
| decommission->handle = handle; |
| sev_guest_decommission(decommission, NULL); |
| |
| kfree(decommission); |
| } |
| |
| static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| bool es_active = argp->id == KVM_SEV_ES_INIT; |
| int asid, ret; |
| |
| if (kvm->created_vcpus) |
| return -EINVAL; |
| |
| ret = -EBUSY; |
| if (unlikely(sev->active)) |
| return ret; |
| |
| asid = sev_asid_new(es_active); |
| if (asid < 0) |
| return ret; |
| |
| ret = sev_platform_init(&argp->error); |
| if (ret) |
| goto e_free; |
| |
| sev->active = true; |
| sev->es_active = es_active; |
| sev->asid = asid; |
| INIT_LIST_HEAD(&sev->regions_list); |
| |
| return 0; |
| |
| e_free: |
| sev_asid_free(asid); |
| return ret; |
| } |
| |
| static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) |
| { |
| struct sev_data_activate *data; |
| int asid = sev_get_asid(kvm); |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| /* activate ASID on the given handle */ |
| data->handle = handle; |
| data->asid = asid; |
| ret = sev_guest_activate(data, error); |
| kfree(data); |
| |
| return ret; |
| } |
| |
| static int __sev_issue_cmd(int fd, int id, void *data, int *error) |
| { |
| struct fd f; |
| int ret; |
| |
| f = fdget(fd); |
| if (!f.file) |
| return -EBADF; |
| |
| ret = sev_issue_cmd_external_user(f.file, id, data, error); |
| |
| fdput(f); |
| return ret; |
| } |
| |
| static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| return __sev_issue_cmd(sev->fd, id, data, error); |
| } |
| |
| static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_start *start; |
| struct kvm_sev_launch_start params; |
| void *dh_blob, *session_blob; |
| int *error = &argp->error; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); |
| if (!start) |
| return -ENOMEM; |
| |
| dh_blob = NULL; |
| if (params.dh_uaddr) { |
| dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); |
| if (IS_ERR(dh_blob)) { |
| ret = PTR_ERR(dh_blob); |
| goto e_free; |
| } |
| |
| start->dh_cert_address = __sme_set(__pa(dh_blob)); |
| start->dh_cert_len = params.dh_len; |
| } |
| |
| session_blob = NULL; |
| if (params.session_uaddr) { |
| session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); |
| if (IS_ERR(session_blob)) { |
| ret = PTR_ERR(session_blob); |
| goto e_free_dh; |
| } |
| |
| start->session_address = __sme_set(__pa(session_blob)); |
| start->session_len = params.session_len; |
| } |
| |
| start->handle = params.handle; |
| start->policy = params.policy; |
| |
| /* create memory encryption context */ |
| ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); |
| if (ret) |
| goto e_free_session; |
| |
| /* Bind ASID to this guest */ |
| ret = sev_bind_asid(kvm, start->handle, error); |
| if (ret) |
| goto e_free_session; |
| |
| /* return handle to userspace */ |
| params.handle = start->handle; |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { |
| sev_unbind_asid(kvm, start->handle); |
| ret = -EFAULT; |
| goto e_free_session; |
| } |
| |
| sev->handle = start->handle; |
| sev->fd = argp->sev_fd; |
| |
| e_free_session: |
| kfree(session_blob); |
| e_free_dh: |
| kfree(dh_blob); |
| e_free: |
| kfree(start); |
| return ret; |
| } |
| |
| static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, |
| unsigned long ulen, unsigned long *n, |
| int write) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| unsigned long npages, size; |
| int npinned; |
| unsigned long locked, lock_limit; |
| struct page **pages; |
| unsigned long first, last; |
| int ret; |
| |
| lockdep_assert_held(&kvm->lock); |
| |
| if (ulen == 0 || uaddr + ulen < uaddr) |
| return ERR_PTR(-EINVAL); |
| |
| /* Calculate number of pages. */ |
| first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; |
| last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; |
| npages = (last - first + 1); |
| |
| locked = sev->pages_locked + npages; |
| lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; |
| if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { |
| pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| if (WARN_ON_ONCE(npages > INT_MAX)) |
| return ERR_PTR(-EINVAL); |
| |
| /* Avoid using vmalloc for smaller buffers. */ |
| size = npages * sizeof(struct page *); |
| if (size > PAGE_SIZE) |
| pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
| else |
| pages = kmalloc(size, GFP_KERNEL_ACCOUNT); |
| |
| if (!pages) |
| return ERR_PTR(-ENOMEM); |
| |
| /* Pin the user virtual address. */ |
| npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); |
| if (npinned != npages) { |
| pr_err("SEV: Failure locking %lu pages.\n", npages); |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| *n = npages; |
| sev->pages_locked = locked; |
| |
| return pages; |
| |
| err: |
| if (npinned > 0) |
| unpin_user_pages(pages, npinned); |
| |
| kvfree(pages); |
| return ERR_PTR(ret); |
| } |
| |
| static void sev_unpin_memory(struct kvm *kvm, struct page **pages, |
| unsigned long npages) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| |
| unpin_user_pages(pages, npages); |
| kvfree(pages); |
| sev->pages_locked -= npages; |
| } |
| |
| static void sev_clflush_pages(struct page *pages[], unsigned long npages) |
| { |
| uint8_t *page_virtual; |
| unsigned long i; |
| |
| if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || |
| pages == NULL) |
| return; |
| |
| for (i = 0; i < npages; i++) { |
| page_virtual = kmap_atomic(pages[i]); |
| clflush_cache_range(page_virtual, PAGE_SIZE); |
| kunmap_atomic(page_virtual); |
| } |
| } |
| |
| static unsigned long get_num_contig_pages(unsigned long idx, |
| struct page **inpages, unsigned long npages) |
| { |
| unsigned long paddr, next_paddr; |
| unsigned long i = idx + 1, pages = 1; |
| |
| /* find the number of contiguous pages starting from idx */ |
| paddr = __sme_page_pa(inpages[idx]); |
| while (i < npages) { |
| next_paddr = __sme_page_pa(inpages[i++]); |
| if ((paddr + PAGE_SIZE) == next_paddr) { |
| pages++; |
| paddr = next_paddr; |
| continue; |
| } |
| break; |
| } |
| |
| return pages; |
| } |
| |
| static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_launch_update_data params; |
| struct sev_data_launch_update_data *data; |
| struct page **inpages; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| vaddr = params.uaddr; |
| size = params.len; |
| vaddr_end = vaddr + size; |
| |
| /* Lock the user memory. */ |
| inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); |
| if (IS_ERR(inpages)) { |
| ret = PTR_ERR(inpages); |
| goto e_free; |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(inpages, npages); |
| |
| for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { |
| int offset, len; |
| |
| /* |
| * If the user buffer is not page-aligned, calculate the offset |
| * within the page. |
| */ |
| offset = vaddr & (PAGE_SIZE - 1); |
| |
| /* Calculate the number of pages that can be encrypted in one go. */ |
| pages = get_num_contig_pages(i, inpages, npages); |
| |
| len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); |
| |
| data->handle = sev->handle; |
| data->len = len; |
| data->address = __sme_page_pa(inpages[i]) + offset; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); |
| if (ret) |
| goto e_unpin; |
| |
| size -= len; |
| next_vaddr = vaddr + len; |
| } |
| |
| e_unpin: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < npages; i++) { |
| set_page_dirty_lock(inpages[i]); |
| mark_page_accessed(inpages[i]); |
| } |
| /* unlock the user pages */ |
| sev_unpin_memory(kvm, inpages, npages); |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_es_sync_vmsa(struct vcpu_svm *svm) |
| { |
| struct vmcb_save_area *save = &svm->vmcb->save; |
| |
| /* Check some debug related fields before encrypting the VMSA */ |
| if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) |
| return -EINVAL; |
| |
| /* Sync registgers */ |
| save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; |
| save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; |
| save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; |
| save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; |
| save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; |
| save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; |
| save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; |
| save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; |
| #ifdef CONFIG_X86_64 |
| save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; |
| save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; |
| save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; |
| save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; |
| save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; |
| save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; |
| save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; |
| save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; |
| #endif |
| save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; |
| |
| /* Sync some non-GPR registers before encrypting */ |
| save->xcr0 = svm->vcpu.arch.xcr0; |
| save->pkru = svm->vcpu.arch.pkru; |
| save->xss = svm->vcpu.arch.ia32_xss; |
| |
| /* |
| * SEV-ES will use a VMSA that is pointed to by the VMCB, not |
| * the traditional VMSA that is part of the VMCB. Copy the |
| * traditional VMSA as it has been built so far (in prep |
| * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. |
| */ |
| memcpy(svm->vmsa, save, sizeof(*save)); |
| |
| return 0; |
| } |
| |
| static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_update_vmsa *vmsa; |
| struct kvm_vcpu *vcpu; |
| int i, ret; |
| |
| if (!sev_es_guest(kvm)) |
| return -ENOTTY; |
| |
| vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL); |
| if (!vmsa) |
| return -ENOMEM; |
| |
| kvm_for_each_vcpu(i, vcpu, kvm) { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* Perform some pre-encryption checks against the VMSA */ |
| ret = sev_es_sync_vmsa(svm); |
| if (ret) |
| goto e_free; |
| |
| /* |
| * The LAUNCH_UPDATE_VMSA command will perform in-place |
| * encryption of the VMSA memory content (i.e it will write |
| * the same memory region with the guest's key), so invalidate |
| * it first. |
| */ |
| clflush_cache_range(svm->vmsa, PAGE_SIZE); |
| |
| vmsa->handle = sev->handle; |
| vmsa->address = __sme_pa(svm->vmsa); |
| vmsa->len = PAGE_SIZE; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa, |
| &argp->error); |
| if (ret) |
| goto e_free; |
| |
| svm->vcpu.arch.guest_state_protected = true; |
| } |
| |
| e_free: |
| kfree(vmsa); |
| return ret; |
| } |
| |
| static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| void __user *measure = (void __user *)(uintptr_t)argp->data; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_measure *data; |
| struct kvm_sev_launch_measure params; |
| void __user *p = NULL; |
| void *blob = NULL; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, measure, sizeof(params))) |
| return -EFAULT; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| /* User wants to query the blob length */ |
| if (!params.len) |
| goto cmd; |
| |
| p = (void __user *)(uintptr_t)params.uaddr; |
| if (p) { |
| if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| |
| ret = -ENOMEM; |
| blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); |
| if (!blob) |
| goto e_free; |
| |
| data->address = __psp_pa(blob); |
| data->len = params.len; |
| } |
| |
| cmd: |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); |
| |
| /* |
| * If we query the session length, FW responded with expected data. |
| */ |
| if (!params.len) |
| goto done; |
| |
| if (ret) |
| goto e_free_blob; |
| |
| if (blob) { |
| if (copy_to_user(p, blob, params.len)) |
| ret = -EFAULT; |
| } |
| |
| done: |
| params.len = data->len; |
| if (copy_to_user(measure, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free_blob: |
| kfree(blob); |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_finish *data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); |
| |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct kvm_sev_guest_status params; |
| struct sev_data_guest_status *data; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); |
| if (ret) |
| goto e_free; |
| |
| params.policy = data->policy; |
| params.state = data->state; |
| params.handle = data->handle; |
| |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, |
| unsigned long dst, int size, |
| int *error, bool enc) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_dbg *data; |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| data->dst_addr = dst; |
| data->src_addr = src; |
| data->len = size; |
| |
| ret = sev_issue_cmd(kvm, |
| enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, |
| data, error); |
| kfree(data); |
| return ret; |
| } |
| |
| static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, |
| unsigned long dst_paddr, int sz, int *err) |
| { |
| int offset; |
| |
| /* |
| * Its safe to read more than we are asked, caller should ensure that |
| * destination has enough space. |
| */ |
| offset = src_paddr & 15; |
| src_paddr = round_down(src_paddr, 16); |
| sz = round_up(sz + offset, 16); |
| |
| return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); |
| } |
| |
| static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, |
| unsigned long __user dst_uaddr, |
| unsigned long dst_paddr, |
| int size, int *err) |
| { |
| struct page *tpage = NULL; |
| int ret, offset; |
| |
| /* if inputs are not 16-byte then use intermediate buffer */ |
| if (!IS_ALIGNED(dst_paddr, 16) || |
| !IS_ALIGNED(paddr, 16) || |
| !IS_ALIGNED(size, 16)) { |
| tpage = (void *)alloc_page(GFP_KERNEL); |
| if (!tpage) |
| return -ENOMEM; |
| |
| dst_paddr = __sme_page_pa(tpage); |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); |
| if (ret) |
| goto e_free; |
| |
| if (tpage) { |
| offset = paddr & 15; |
| if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, |
| page_address(tpage) + offset, size)) |
| ret = -EFAULT; |
| } |
| |
| e_free: |
| if (tpage) |
| __free_page(tpage); |
| |
| return ret; |
| } |
| |
| static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, |
| unsigned long __user vaddr, |
| unsigned long dst_paddr, |
| unsigned long __user dst_vaddr, |
| int size, int *error) |
| { |
| struct page *src_tpage = NULL; |
| struct page *dst_tpage = NULL; |
| int ret, len = size; |
| |
| /* If source buffer is not aligned then use an intermediate buffer */ |
| if (!IS_ALIGNED(vaddr, 16)) { |
| src_tpage = alloc_page(GFP_KERNEL); |
| if (!src_tpage) |
| return -ENOMEM; |
| |
| if (copy_from_user(page_address(src_tpage), |
| (void __user *)(uintptr_t)vaddr, size)) { |
| __free_page(src_tpage); |
| return -EFAULT; |
| } |
| |
| paddr = __sme_page_pa(src_tpage); |
| } |
| |
| /* |
| * If destination buffer or length is not aligned then do read-modify-write: |
| * - decrypt destination in an intermediate buffer |
| * - copy the source buffer in an intermediate buffer |
| * - use the intermediate buffer as source buffer |
| */ |
| if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { |
| int dst_offset; |
| |
| dst_tpage = alloc_page(GFP_KERNEL); |
| if (!dst_tpage) { |
| ret = -ENOMEM; |
| goto e_free; |
| } |
| |
| ret = __sev_dbg_decrypt(kvm, dst_paddr, |
| __sme_page_pa(dst_tpage), size, error); |
| if (ret) |
| goto e_free; |
| |
| /* |
| * If source is kernel buffer then use memcpy() otherwise |
| * copy_from_user(). |
| */ |
| dst_offset = dst_paddr & 15; |
| |
| if (src_tpage) |
| memcpy(page_address(dst_tpage) + dst_offset, |
| page_address(src_tpage), size); |
| else { |
| if (copy_from_user(page_address(dst_tpage) + dst_offset, |
| (void __user *)(uintptr_t)vaddr, size)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| } |
| |
| paddr = __sme_page_pa(dst_tpage); |
| dst_paddr = round_down(dst_paddr, 16); |
| len = round_up(size, 16); |
| } |
| |
| ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); |
| |
| e_free: |
| if (src_tpage) |
| __free_page(src_tpage); |
| if (dst_tpage) |
| __free_page(dst_tpage); |
| return ret; |
| } |
| |
| static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) |
| { |
| unsigned long vaddr, vaddr_end, next_vaddr; |
| unsigned long dst_vaddr; |
| struct page **src_p, **dst_p; |
| struct kvm_sev_dbg debug; |
| unsigned long n; |
| unsigned int size; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) |
| return -EFAULT; |
| |
| if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) |
| return -EINVAL; |
| if (!debug.dst_uaddr) |
| return -EINVAL; |
| |
| vaddr = debug.src_uaddr; |
| size = debug.len; |
| vaddr_end = vaddr + size; |
| dst_vaddr = debug.dst_uaddr; |
| |
| for (; vaddr < vaddr_end; vaddr = next_vaddr) { |
| int len, s_off, d_off; |
| |
| /* lock userspace source and destination page */ |
| src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); |
| if (IS_ERR(src_p)) |
| return PTR_ERR(src_p); |
| |
| dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); |
| if (IS_ERR(dst_p)) { |
| sev_unpin_memory(kvm, src_p, n); |
| return PTR_ERR(dst_p); |
| } |
| |
| /* |
| * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify |
| * the pages; flush the destination too so that future accesses do not |
| * see stale data. |
| */ |
| sev_clflush_pages(src_p, 1); |
| sev_clflush_pages(dst_p, 1); |
| |
| /* |
| * Since user buffer may not be page aligned, calculate the |
| * offset within the page. |
| */ |
| s_off = vaddr & ~PAGE_MASK; |
| d_off = dst_vaddr & ~PAGE_MASK; |
| len = min_t(size_t, (PAGE_SIZE - s_off), size); |
| |
| if (dec) |
| ret = __sev_dbg_decrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| dst_vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| len, &argp->error); |
| else |
| ret = __sev_dbg_encrypt_user(kvm, |
| __sme_page_pa(src_p[0]) + s_off, |
| vaddr, |
| __sme_page_pa(dst_p[0]) + d_off, |
| dst_vaddr, |
| len, &argp->error); |
| |
| sev_unpin_memory(kvm, src_p, n); |
| sev_unpin_memory(kvm, dst_p, n); |
| |
| if (ret) |
| goto err; |
| |
| next_vaddr = vaddr + len; |
| dst_vaddr = dst_vaddr + len; |
| size -= len; |
| } |
| err: |
| return ret; |
| } |
| |
| static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_launch_secret *data; |
| struct kvm_sev_launch_secret params; |
| struct page **pages; |
| void *blob, *hdr; |
| unsigned long n, i; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); |
| if (IS_ERR(pages)) |
| return PTR_ERR(pages); |
| |
| /* |
| * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in |
| * place; the cache may contain the data that was written unencrypted. |
| */ |
| sev_clflush_pages(pages, n); |
| |
| /* |
| * The secret must be copied into contiguous memory region, lets verify |
| * that userspace memory pages are contiguous before we issue command. |
| */ |
| if (get_num_contig_pages(0, pages, n) != n) { |
| ret = -EINVAL; |
| goto e_unpin_memory; |
| } |
| |
| ret = -ENOMEM; |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| goto e_unpin_memory; |
| |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| data->guest_address = __sme_page_pa(pages[0]) + offset; |
| data->guest_len = params.guest_len; |
| |
| blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); |
| if (IS_ERR(blob)) { |
| ret = PTR_ERR(blob); |
| goto e_free; |
| } |
| |
| data->trans_address = __psp_pa(blob); |
| data->trans_len = params.trans_len; |
| |
| hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); |
| if (IS_ERR(hdr)) { |
| ret = PTR_ERR(hdr); |
| goto e_free_blob; |
| } |
| data->hdr_address = __psp_pa(hdr); |
| data->hdr_len = params.hdr_len; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); |
| |
| kfree(hdr); |
| |
| e_free_blob: |
| kfree(blob); |
| e_free: |
| kfree(data); |
| e_unpin_memory: |
| /* content of memory is updated, mark pages dirty */ |
| for (i = 0; i < n; i++) { |
| set_page_dirty_lock(pages[i]); |
| mark_page_accessed(pages[i]); |
| } |
| sev_unpin_memory(kvm, pages, n); |
| return ret; |
| } |
| |
| static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| void __user *report = (void __user *)(uintptr_t)argp->data; |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_attestation_report *data; |
| struct kvm_sev_attestation_report params; |
| void __user *p; |
| void *blob = NULL; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) |
| return -EFAULT; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| /* User wants to query the blob length */ |
| if (!params.len) |
| goto cmd; |
| |
| p = (void __user *)(uintptr_t)params.uaddr; |
| if (p) { |
| if (params.len > SEV_FW_BLOB_MAX_SIZE) { |
| ret = -EINVAL; |
| goto e_free; |
| } |
| |
| ret = -ENOMEM; |
| blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); |
| if (!blob) |
| goto e_free; |
| |
| data->address = __psp_pa(blob); |
| data->len = params.len; |
| memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce)); |
| } |
| cmd: |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error); |
| /* |
| * If we query the session length, FW responded with expected data. |
| */ |
| if (!params.len) |
| goto done; |
| |
| if (ret) |
| goto e_free_blob; |
| |
| if (blob) { |
| if (copy_to_user(p, blob, params.len)) |
| ret = -EFAULT; |
| } |
| |
| done: |
| params.len = data->len; |
| if (copy_to_user(report, ¶ms, sizeof(params))) |
| ret = -EFAULT; |
| e_free_blob: |
| kfree(blob); |
| e_free: |
| kfree(data); |
| return ret; |
| } |
| |
| /* Userspace wants to query session length. */ |
| static int |
| __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, |
| struct kvm_sev_send_start *params) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_start *data; |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (data == NULL) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, data, &argp->error); |
| if (ret < 0) |
| goto out; |
| |
| params->session_len = data->session_len; |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, params, |
| sizeof(struct kvm_sev_send_start))) |
| ret = -EFAULT; |
| |
| out: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_start *data; |
| struct kvm_sev_send_start params; |
| void *amd_certs, *session_data; |
| void *pdh_cert, *plat_certs; |
| int ret; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, |
| sizeof(struct kvm_sev_send_start))) |
| return -EFAULT; |
| |
| /* if session_len is zero, userspace wants to query the session length */ |
| if (!params.session_len) |
| return __sev_send_start_query_session_length(kvm, argp, |
| ¶ms); |
| |
| /* some sanity checks */ |
| if (!params.pdh_cert_uaddr || !params.pdh_cert_len || |
| !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) |
| return -EINVAL; |
| |
| /* allocate the memory to hold the session data blob */ |
| session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); |
| if (!session_data) |
| return -ENOMEM; |
| |
| /* copy the certificate blobs from userspace */ |
| pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, |
| params.pdh_cert_len); |
| if (IS_ERR(pdh_cert)) { |
| ret = PTR_ERR(pdh_cert); |
| goto e_free_session; |
| } |
| |
| plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, |
| params.plat_certs_len); |
| if (IS_ERR(plat_certs)) { |
| ret = PTR_ERR(plat_certs); |
| goto e_free_pdh; |
| } |
| |
| amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, |
| params.amd_certs_len); |
| if (IS_ERR(amd_certs)) { |
| ret = PTR_ERR(amd_certs); |
| goto e_free_plat_cert; |
| } |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (data == NULL) { |
| ret = -ENOMEM; |
| goto e_free_amd_cert; |
| } |
| |
| /* populate the FW SEND_START field with system physical address */ |
| data->pdh_cert_address = __psp_pa(pdh_cert); |
| data->pdh_cert_len = params.pdh_cert_len; |
| data->plat_certs_address = __psp_pa(plat_certs); |
| data->plat_certs_len = params.plat_certs_len; |
| data->amd_certs_address = __psp_pa(amd_certs); |
| data->amd_certs_len = params.amd_certs_len; |
| data->session_address = __psp_pa(session_data); |
| data->session_len = params.session_len; |
| data->handle = sev->handle; |
| |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, data, &argp->error); |
| |
| if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, |
| session_data, params.session_len)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| |
| params.policy = data->policy; |
| params.session_len = data->session_len; |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, |
| sizeof(struct kvm_sev_send_start))) |
| ret = -EFAULT; |
| |
| e_free: |
| kfree(data); |
| e_free_amd_cert: |
| kfree(amd_certs); |
| e_free_plat_cert: |
| kfree(plat_certs); |
| e_free_pdh: |
| kfree(pdh_cert); |
| e_free_session: |
| kfree(session_data); |
| return ret; |
| } |
| |
| /* Userspace wants to query either header or trans length. */ |
| static int |
| __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, |
| struct kvm_sev_send_update_data *params) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_update_data *data; |
| int ret; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); |
| if (!data) |
| return -ENOMEM; |
| |
| data->handle = sev->handle; |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, data, &argp->error); |
| if (ret < 0) |
| goto out; |
| |
| params->hdr_len = data->hdr_len; |
| params->trans_len = data->trans_len; |
| |
| if (copy_to_user((void __user *)(uintptr_t)argp->data, params, |
| sizeof(struct kvm_sev_send_update_data))) |
| ret = -EFAULT; |
| |
| out: |
| kfree(data); |
| return ret; |
| } |
| |
| static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct sev_data_send_update_data *data; |
| struct kvm_sev_send_update_data params; |
| void *hdr, *trans_data; |
| struct page **guest_page; |
| unsigned long n; |
| int ret, offset; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, |
| sizeof(struct kvm_sev_send_update_data))) |
| return -EFAULT; |
| |
| /* userspace wants to query either header or trans length */ |
| if (!params.trans_len || !params.hdr_len) |
| return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); |
| |
| if (!params.trans_uaddr || !params.guest_uaddr || |
| !params.guest_len || !params.hdr_uaddr) |
| return -EINVAL; |
| |
| /* Check if we are crossing the page boundary */ |
| offset = params.guest_uaddr & (PAGE_SIZE - 1); |
| if ((params.guest_len + offset > PAGE_SIZE)) |
| return -EINVAL; |
| |
| /* Pin guest memory */ |
| guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, |
| PAGE_SIZE, &n, 0); |
| if (!guest_page) |
| return -EFAULT; |
| |
| /* allocate memory for header and transport buffer */ |
| ret = -ENOMEM; |
| hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); |
| if (!hdr) |
| goto e_unpin; |
| |
| trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); |
| if (!trans_data) |
| goto e_free_hdr; |
| |
| data = kzalloc(sizeof(*data), GFP_KERNEL); |
| if (!data) |
| goto e_free_trans_data; |
| |
| data->hdr_address = __psp_pa(hdr); |
| data->hdr_len = params.hdr_len; |
| data->trans_address = __psp_pa(trans_data); |
| data->trans_len = params.trans_len; |
| |
| /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ |
| data->guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + |
| offset; |
| data->guest_address |= sev_me_mask; |
| data->guest_len = params.guest_len; |
| data->handle = sev->handle; |
| |
| ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, data, &argp->error); |
| |
| if (ret) |
| goto e_free; |
| |
| /* copy transport buffer to user space */ |
| if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, |
| trans_data, params.trans_len)) { |
| ret = -EFAULT; |
| goto e_free; |
| } |
| |
| /* Copy packet header to userspace. */ |
| ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, |
| params.hdr_len); |
| |
| e_free: |
| kfree(data); |
| e_free_trans_data: |
| kfree(trans_data); |
| e_free_hdr: |
| kfree(hdr); |
| e_unpin: |
| sev_unpin_memory(kvm, guest_page, n); |
| |
| return ret; |
| } |
| |
| int svm_mem_enc_op(struct kvm *kvm, void __user *argp) |
| { |
| struct kvm_sev_cmd sev_cmd; |
| int r; |
| |
| if (!svm_sev_enabled() || !sev) |
| return -ENOTTY; |
| |
| if (!argp) |
| return 0; |
| |
| if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) |
| return -EFAULT; |
| |
| mutex_lock(&kvm->lock); |
| |
| /* enc_context_owner handles all memory enc operations */ |
| if (is_mirroring_enc_context(kvm)) { |
| r = -EINVAL; |
| goto out; |
| } |
| |
| switch (sev_cmd.id) { |
| case KVM_SEV_ES_INIT: |
| if (!sev_es) { |
| r = -ENOTTY; |
| goto out; |
| } |
| fallthrough; |
| case KVM_SEV_INIT: |
| r = sev_guest_init(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_START: |
| r = sev_launch_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_UPDATE_DATA: |
| r = sev_launch_update_data(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_UPDATE_VMSA: |
| r = sev_launch_update_vmsa(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_MEASURE: |
| r = sev_launch_measure(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_LAUNCH_FINISH: |
| r = sev_launch_finish(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_GUEST_STATUS: |
| r = sev_guest_status(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_DBG_DECRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, true); |
| break; |
| case KVM_SEV_DBG_ENCRYPT: |
| r = sev_dbg_crypt(kvm, &sev_cmd, false); |
| break; |
| case KVM_SEV_LAUNCH_SECRET: |
| r = sev_launch_secret(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_GET_ATTESTATION_REPORT: |
| r = sev_get_attestation_report(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_START: |
| r = sev_send_start(kvm, &sev_cmd); |
| break; |
| case KVM_SEV_SEND_UPDATE_DATA: |
| r = sev_send_update_data(kvm, &sev_cmd); |
| break; |
| default: |
| r = -EINVAL; |
| goto out; |
| } |
| |
| if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) |
| r = -EFAULT; |
| |
| out: |
| mutex_unlock(&kvm->lock); |
| return r; |
| } |
| |
| int svm_register_enc_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct enc_region *region; |
| int ret = 0; |
| |
| if (!sev_guest(kvm)) |
| return -ENOTTY; |
| |
| /* If kvm is mirroring encryption context it isn't responsible for it */ |
| if (is_mirroring_enc_context(kvm)) |
| return -EINVAL; |
| |
| if (range->addr > ULONG_MAX || range->size > ULONG_MAX) |
| return -EINVAL; |
| |
| region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); |
| if (!region) |
| return -ENOMEM; |
| |
| mutex_lock(&kvm->lock); |
| region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); |
| if (IS_ERR(region->pages)) { |
| ret = PTR_ERR(region->pages); |
| mutex_unlock(&kvm->lock); |
| goto e_free; |
| } |
| |
| region->uaddr = range->addr; |
| region->size = range->size; |
| |
| list_add_tail(®ion->list, &sev->regions_list); |
| mutex_unlock(&kvm->lock); |
| |
| /* |
| * The guest may change the memory encryption attribute from C=0 -> C=1 |
| * or vice versa for this memory range. Lets make sure caches are |
| * flushed to ensure that guest data gets written into memory with |
| * correct C-bit. |
| */ |
| sev_clflush_pages(region->pages, region->npages); |
| |
| return ret; |
| |
| e_free: |
| kfree(region); |
| return ret; |
| } |
| |
| static struct enc_region * |
| find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct enc_region *i; |
| |
| list_for_each_entry(i, head, list) { |
| if (i->uaddr == range->addr && |
| i->size == range->size) |
| return i; |
| } |
| |
| return NULL; |
| } |
| |
| static void __unregister_enc_region_locked(struct kvm *kvm, |
| struct enc_region *region) |
| { |
| sev_unpin_memory(kvm, region->pages, region->npages); |
| list_del(®ion->list); |
| kfree(region); |
| } |
| |
| int svm_unregister_enc_region(struct kvm *kvm, |
| struct kvm_enc_region *range) |
| { |
| struct enc_region *region; |
| int ret; |
| |
| /* If kvm is mirroring encryption context it isn't responsible for it */ |
| if (is_mirroring_enc_context(kvm)) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (!sev_guest(kvm)) { |
| ret = -ENOTTY; |
| goto failed; |
| } |
| |
| region = find_enc_region(kvm, range); |
| if (!region) { |
| ret = -EINVAL; |
| goto failed; |
| } |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| __unregister_enc_region_locked(kvm, region); |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| |
| failed: |
| mutex_unlock(&kvm->lock); |
| return ret; |
| } |
| |
| int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) |
| { |
| struct file *source_kvm_file; |
| struct kvm *source_kvm; |
| struct kvm_sev_info *mirror_sev; |
| unsigned int asid; |
| int ret; |
| |
| source_kvm_file = fget(source_fd); |
| if (!file_is_kvm(source_kvm_file)) { |
| ret = -EBADF; |
| goto e_source_put; |
| } |
| |
| source_kvm = source_kvm_file->private_data; |
| mutex_lock(&source_kvm->lock); |
| |
| if (!sev_guest(source_kvm)) { |
| ret = -EINVAL; |
| goto e_source_unlock; |
| } |
| |
| /* Mirrors of mirrors should work, but let's not get silly */ |
| if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { |
| ret = -EINVAL; |
| goto e_source_unlock; |
| } |
| |
| asid = to_kvm_svm(source_kvm)->sev_info.asid; |
| |
| /* |
| * The mirror kvm holds an enc_context_owner ref so its asid can't |
| * disappear until we're done with it |
| */ |
| kvm_get_kvm(source_kvm); |
| |
| fput(source_kvm_file); |
| mutex_unlock(&source_kvm->lock); |
| mutex_lock(&kvm->lock); |
| |
| if (sev_guest(kvm)) { |
| ret = -EINVAL; |
| goto e_mirror_unlock; |
| } |
| |
| /* Set enc_context_owner and copy its encryption context over */ |
| mirror_sev = &to_kvm_svm(kvm)->sev_info; |
| mirror_sev->enc_context_owner = source_kvm; |
| mirror_sev->asid = asid; |
| mirror_sev->active = true; |
| |
| mutex_unlock(&kvm->lock); |
| return 0; |
| |
| e_mirror_unlock: |
| mutex_unlock(&kvm->lock); |
| kvm_put_kvm(source_kvm); |
| return ret; |
| e_source_unlock: |
| mutex_unlock(&source_kvm->lock); |
| e_source_put: |
| fput(source_kvm_file); |
| return ret; |
| } |
| |
| void sev_vm_destroy(struct kvm *kvm) |
| { |
| struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; |
| struct list_head *head = &sev->regions_list; |
| struct list_head *pos, *q; |
| |
| if (!sev_guest(kvm)) |
| return; |
| |
| /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ |
| if (is_mirroring_enc_context(kvm)) { |
| kvm_put_kvm(sev->enc_context_owner); |
| return; |
| } |
| |
| mutex_lock(&kvm->lock); |
| |
| /* |
| * Ensure that all guest tagged cache entries are flushed before |
| * releasing the pages back to the system for use. CLFLUSH will |
| * not do this, so issue a WBINVD. |
| */ |
| wbinvd_on_all_cpus(); |
| |
| /* |
| * if userspace was terminated before unregistering the memory regions |
| * then lets unpin all the registered memory. |
| */ |
| if (!list_empty(head)) { |
| list_for_each_safe(pos, q, head) { |
| __unregister_enc_region_locked(kvm, |
| list_entry(pos, struct enc_region, list)); |
| cond_resched(); |
| } |
| } |
| |
| mutex_unlock(&kvm->lock); |
| |
| sev_unbind_asid(kvm, sev->handle); |
| sev_asid_free(sev->asid); |
| } |
| |
| void __init sev_hardware_setup(void) |
| { |
| unsigned int eax, ebx, ecx, edx; |
| bool sev_es_supported = false; |
| bool sev_supported = false; |
| |
| /* Does the CPU support SEV? */ |
| if (!boot_cpu_has(X86_FEATURE_SEV)) |
| goto out; |
| |
| /* Retrieve SEV CPUID information */ |
| cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); |
| |
| /* Set encryption bit location for SEV-ES guests */ |
| sev_enc_bit = ebx & 0x3f; |
| |
| /* Maximum number of encrypted guests supported simultaneously */ |
| max_sev_asid = ecx; |
| |
| if (!svm_sev_enabled()) |
| goto out; |
| |
| /* Minimum ASID value that should be used for SEV guest */ |
| min_sev_asid = edx; |
| sev_me_mask = 1UL << (ebx & 0x3f); |
| |
| /* Initialize SEV ASID bitmaps */ |
| sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| if (!sev_asid_bitmap) |
| goto out; |
| |
| sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); |
| if (!sev_reclaim_asid_bitmap) |
| goto out; |
| |
| pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1); |
| sev_supported = true; |
| |
| /* SEV-ES support requested? */ |
| if (!sev_es) |
| goto out; |
| |
| /* Does the CPU support SEV-ES? */ |
| if (!boot_cpu_has(X86_FEATURE_SEV_ES)) |
| goto out; |
| |
| /* Has the system been allocated ASIDs for SEV-ES? */ |
| if (min_sev_asid == 1) |
| goto out; |
| |
| pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1); |
| sev_es_supported = true; |
| |
| out: |
| sev = sev_supported; |
| sev_es = sev_es_supported; |
| } |
| |
| void sev_hardware_teardown(void) |
| { |
| if (!svm_sev_enabled()) |
| return; |
| |
| bitmap_free(sev_asid_bitmap); |
| bitmap_free(sev_reclaim_asid_bitmap); |
| |
| sev_flush_asids(); |
| } |
| |
| /* |
| * Pages used by hardware to hold guest encrypted state must be flushed before |
| * returning them to the system. |
| */ |
| static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, |
| unsigned long len) |
| { |
| /* |
| * If hardware enforced cache coherency for encrypted mappings of the |
| * same physical page is supported, nothing to do. |
| */ |
| if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) |
| return; |
| |
| /* |
| * If the VM Page Flush MSR is supported, use it to flush the page |
| * (using the page virtual address and the guest ASID). |
| */ |
| if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { |
| struct kvm_sev_info *sev; |
| unsigned long va_start; |
| u64 start, stop; |
| |
| /* Align start and stop to page boundaries. */ |
| va_start = (unsigned long)va; |
| start = (u64)va_start & PAGE_MASK; |
| stop = PAGE_ALIGN((u64)va_start + len); |
| |
| if (start < stop) { |
| sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; |
| |
| while (start < stop) { |
| wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, |
| start | sev->asid); |
| |
| start += PAGE_SIZE; |
| } |
| |
| return; |
| } |
| |
| WARN(1, "Address overflow, using WBINVD\n"); |
| } |
| |
| /* |
| * Hardware should always have one of the above features, |
| * but if not, use WBINVD and issue a warning. |
| */ |
| WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); |
| wbinvd_on_all_cpus(); |
| } |
| |
| void sev_free_vcpu(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm; |
| |
| if (!sev_es_guest(vcpu->kvm)) |
| return; |
| |
| svm = to_svm(vcpu); |
| |
| if (vcpu->arch.guest_state_protected) |
| sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); |
| __free_page(virt_to_page(svm->vmsa)); |
| |
| if (svm->ghcb_sa_free) |
| kfree(svm->ghcb_sa); |
| } |
| |
| static void dump_ghcb(struct vcpu_svm *svm) |
| { |
| struct ghcb *ghcb = svm->ghcb; |
| unsigned int nbits; |
| |
| /* Re-use the dump_invalid_vmcb module parameter */ |
| if (!dump_invalid_vmcb) { |
| pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); |
| return; |
| } |
| |
| nbits = sizeof(ghcb->save.valid_bitmap) * 8; |
| |
| pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", |
| ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", |
| ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", |
| ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); |
| pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", |
| ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); |
| pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); |
| } |
| |
| static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct ghcb *ghcb = svm->ghcb; |
| |
| /* |
| * The GHCB protocol so far allows for the following data |
| * to be returned: |
| * GPRs RAX, RBX, RCX, RDX |
| * |
| * Copy their values, even if they may not have been written during the |
| * VM-Exit. It's the guest's responsibility to not consume random data. |
| */ |
| ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); |
| ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); |
| ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); |
| ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); |
| } |
| |
| static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| struct ghcb *ghcb = svm->ghcb; |
| u64 exit_code; |
| |
| /* |
| * The GHCB protocol so far allows for the following data |
| * to be supplied: |
| * GPRs RAX, RBX, RCX, RDX |
| * XCR0 |
| * CPL |
| * |
| * VMMCALL allows the guest to provide extra registers. KVM also |
| * expects RSI for hypercalls, so include that, too. |
| * |
| * Copy their values to the appropriate location if supplied. |
| */ |
| memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
| |
| vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); |
| vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); |
| vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); |
| vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); |
| vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); |
| |
| svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); |
| |
| if (ghcb_xcr0_is_valid(ghcb)) { |
| vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); |
| kvm_update_cpuid_runtime(vcpu); |
| } |
| |
| /* Copy the GHCB exit information into the VMCB fields */ |
| exit_code = ghcb_get_sw_exit_code(ghcb); |
| control->exit_code = lower_32_bits(exit_code); |
| control->exit_code_hi = upper_32_bits(exit_code); |
| control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); |
| control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); |
| |
| /* Clear the valid entries fields */ |
| memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); |
| } |
| |
| static int sev_es_validate_vmgexit(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu; |
| struct ghcb *ghcb; |
| u64 exit_code = 0; |
| |
| ghcb = svm->ghcb; |
| |
| /* Only GHCB Usage code 0 is supported */ |
| if (ghcb->ghcb_usage) |
| goto vmgexit_err; |
| |
| /* |
| * Retrieve the exit code now even though is may not be marked valid |
| * as it could help with debugging. |
| */ |
| exit_code = ghcb_get_sw_exit_code(ghcb); |
| |
| if (!ghcb_sw_exit_code_is_valid(ghcb) || |
| !ghcb_sw_exit_info_1_is_valid(ghcb) || |
| !ghcb_sw_exit_info_2_is_valid(ghcb)) |
| goto vmgexit_err; |
| |
| switch (ghcb_get_sw_exit_code(ghcb)) { |
| case SVM_EXIT_READ_DR7: |
| break; |
| case SVM_EXIT_WRITE_DR7: |
| if (!ghcb_rax_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_RDTSC: |
| break; |
| case SVM_EXIT_RDPMC: |
| if (!ghcb_rcx_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_CPUID: |
| if (!ghcb_rax_is_valid(ghcb) || |
| !ghcb_rcx_is_valid(ghcb)) |
| goto vmgexit_err; |
| if (ghcb_get_rax(ghcb) == 0xd) |
| if (!ghcb_xcr0_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_INVD: |
| break; |
| case SVM_EXIT_IOIO: |
| if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { |
| if (!ghcb_sw_scratch_is_valid(ghcb)) |
| goto vmgexit_err; |
| } else { |
| if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) |
| if (!ghcb_rax_is_valid(ghcb)) |
| goto vmgexit_err; |
| } |
| break; |
| case SVM_EXIT_MSR: |
| if (!ghcb_rcx_is_valid(ghcb)) |
| goto vmgexit_err; |
| if (ghcb_get_sw_exit_info_1(ghcb)) { |
| if (!ghcb_rax_is_valid(ghcb) || |
| !ghcb_rdx_is_valid(ghcb)) |
| goto vmgexit_err; |
| } |
| break; |
| case SVM_EXIT_VMMCALL: |
| if (!ghcb_rax_is_valid(ghcb) || |
| !ghcb_cpl_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_RDTSCP: |
| break; |
| case SVM_EXIT_WBINVD: |
| break; |
| case SVM_EXIT_MONITOR: |
| if (!ghcb_rax_is_valid(ghcb) || |
| !ghcb_rcx_is_valid(ghcb) || |
| !ghcb_rdx_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_EXIT_MWAIT: |
| if (!ghcb_rax_is_valid(ghcb) || |
| !ghcb_rcx_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_MMIO_READ: |
| case SVM_VMGEXIT_MMIO_WRITE: |
| if (!ghcb_sw_scratch_is_valid(ghcb)) |
| goto vmgexit_err; |
| break; |
| case SVM_VMGEXIT_NMI_COMPLETE: |
| case SVM_VMGEXIT_AP_HLT_LOOP: |
| case SVM_VMGEXIT_AP_JUMP_TABLE: |
| case SVM_VMGEXIT_UNSUPPORTED_EVENT: |
| break; |
| default: |
| goto vmgexit_err; |
| } |
| |
| return 0; |
| |
| vmgexit_err: |
| vcpu = &svm->vcpu; |
| |
| if (ghcb->ghcb_usage) { |
| vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", |
| ghcb->ghcb_usage); |
| } else { |
| vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", |
| exit_code); |
| dump_ghcb(svm); |
| } |
| |
| vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; |
| vcpu->run->internal.ndata = 2; |
| vcpu->run->internal.data[0] = exit_code; |
| vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; |
| |
| return -EINVAL; |
| } |
| |
| static void pre_sev_es_run(struct vcpu_svm *svm) |
| { |
| if (!svm->ghcb) |
| return; |
| |
| if (svm->ghcb_sa_free) { |
| /* |
| * The scratch area lives outside the GHCB, so there is a |
| * buffer that, depending on the operation performed, may |
| * need to be synced, then freed. |
| */ |
| if (svm->ghcb_sa_sync) { |
| kvm_write_guest(svm->vcpu.kvm, |
| ghcb_get_sw_scratch(svm->ghcb), |
| svm->ghcb_sa, svm->ghcb_sa_len); |
| svm->ghcb_sa_sync = false; |
| } |
| |
| kfree(svm->ghcb_sa); |
| svm->ghcb_sa = NULL; |
| svm->ghcb_sa_free = false; |
| } |
| |
| trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); |
| |
| sev_es_sync_to_ghcb(svm); |
| |
| kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); |
| svm->ghcb = NULL; |
| } |
| |
| void pre_sev_run(struct vcpu_svm *svm, int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| int asid = sev_get_asid(svm->vcpu.kvm); |
| |
| /* Perform any SEV-ES pre-run actions */ |
| pre_sev_es_run(svm); |
| |
| /* Assign the asid allocated with this SEV guest */ |
| svm->asid = asid; |
| |
| /* |
| * Flush guest TLB: |
| * |
| * 1) when different VMCB for the same ASID is to be run on the same host CPU. |
| * 2) or this VMCB was executed on different host CPU in previous VMRUNs. |
| */ |
| if (sd->sev_vmcbs[asid] == svm->vmcb && |
| svm->vcpu.arch.last_vmentry_cpu == cpu) |
| return; |
| |
| sd->sev_vmcbs[asid] = svm->vmcb; |
| svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; |
| vmcb_mark_dirty(svm->vmcb, VMCB_ASID); |
| } |
| |
| #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) |
| static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct ghcb *ghcb = svm->ghcb; |
| u64 ghcb_scratch_beg, ghcb_scratch_end; |
| u64 scratch_gpa_beg, scratch_gpa_end; |
| void *scratch_va; |
| |
| scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); |
| if (!scratch_gpa_beg) { |
| pr_err("vmgexit: scratch gpa not provided\n"); |
| return false; |
| } |
| |
| scratch_gpa_end = scratch_gpa_beg + len; |
| if (scratch_gpa_end < scratch_gpa_beg) { |
| pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", |
| len, scratch_gpa_beg); |
| return false; |
| } |
| |
| if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { |
| /* Scratch area begins within GHCB */ |
| ghcb_scratch_beg = control->ghcb_gpa + |
| offsetof(struct ghcb, shared_buffer); |
| ghcb_scratch_end = control->ghcb_gpa + |
| offsetof(struct ghcb, reserved_1); |
| |
| /* |
| * If the scratch area begins within the GHCB, it must be |
| * completely contained in the GHCB shared buffer area. |
| */ |
| if (scratch_gpa_beg < ghcb_scratch_beg || |
| scratch_gpa_end > ghcb_scratch_end) { |
| pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", |
| scratch_gpa_beg, scratch_gpa_end); |
| return false; |
| } |
| |
| scratch_va = (void *)svm->ghcb; |
| scratch_va += (scratch_gpa_beg - control->ghcb_gpa); |
| } else { |
| /* |
| * The guest memory must be read into a kernel buffer, so |
| * limit the size |
| */ |
| if (len > GHCB_SCRATCH_AREA_LIMIT) { |
| pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", |
| len, GHCB_SCRATCH_AREA_LIMIT); |
| return false; |
| } |
| scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); |
| if (!scratch_va) |
| return false; |
| |
| if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { |
| /* Unable to copy scratch area from guest */ |
| pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); |
| |
| kfree(scratch_va); |
| return false; |
| } |
| |
| /* |
| * The scratch area is outside the GHCB. The operation will |
| * dictate whether the buffer needs to be synced before running |
| * the vCPU next time (i.e. a read was requested so the data |
| * must be written back to the guest memory). |
| */ |
| svm->ghcb_sa_sync = sync; |
| svm->ghcb_sa_free = true; |
| } |
| |
| svm->ghcb_sa = scratch_va; |
| svm->ghcb_sa_len = len; |
| |
| return true; |
| } |
| |
| static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, |
| unsigned int pos) |
| { |
| svm->vmcb->control.ghcb_gpa &= ~(mask << pos); |
| svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; |
| } |
| |
| static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) |
| { |
| return (svm->vmcb->control.ghcb_gpa >> pos) & mask; |
| } |
| |
| static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) |
| { |
| svm->vmcb->control.ghcb_gpa = value; |
| } |
| |
| static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) |
| { |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| u64 ghcb_info; |
| int ret = 1; |
| |
| ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; |
| |
| trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, |
| control->ghcb_gpa); |
| |
| switch (ghcb_info) { |
| case GHCB_MSR_SEV_INFO_REQ: |
| set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, |
| GHCB_VERSION_MIN, |
| sev_enc_bit)); |
| break; |
| case GHCB_MSR_CPUID_REQ: { |
| u64 cpuid_fn, cpuid_reg, cpuid_value; |
| |
| cpuid_fn = get_ghcb_msr_bits(svm, |
| GHCB_MSR_CPUID_FUNC_MASK, |
| GHCB_MSR_CPUID_FUNC_POS); |
| |
| /* Initialize the registers needed by the CPUID intercept */ |
| vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; |
| vcpu->arch.regs[VCPU_REGS_RCX] = 0; |
| |
| ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); |
| if (!ret) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| cpuid_reg = get_ghcb_msr_bits(svm, |
| GHCB_MSR_CPUID_REG_MASK, |
| GHCB_MSR_CPUID_REG_POS); |
| if (cpuid_reg == 0) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; |
| else if (cpuid_reg == 1) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; |
| else if (cpuid_reg == 2) |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; |
| else |
| cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; |
| |
| set_ghcb_msr_bits(svm, cpuid_value, |
| GHCB_MSR_CPUID_VALUE_MASK, |
| GHCB_MSR_CPUID_VALUE_POS); |
| |
| set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, |
| GHCB_MSR_INFO_MASK, |
| GHCB_MSR_INFO_POS); |
| break; |
| } |
| case GHCB_MSR_TERM_REQ: { |
| u64 reason_set, reason_code; |
| |
| reason_set = get_ghcb_msr_bits(svm, |
| GHCB_MSR_TERM_REASON_SET_MASK, |
| GHCB_MSR_TERM_REASON_SET_POS); |
| reason_code = get_ghcb_msr_bits(svm, |
| GHCB_MSR_TERM_REASON_MASK, |
| GHCB_MSR_TERM_REASON_POS); |
| pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", |
| reason_set, reason_code); |
| fallthrough; |
| } |
| default: |
| ret = -EINVAL; |
| } |
| |
| trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, |
| control->ghcb_gpa, ret); |
| |
| return ret; |
| } |
| |
| int sev_handle_vmgexit(struct kvm_vcpu *vcpu) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| struct vmcb_control_area *control = &svm->vmcb->control; |
| u64 ghcb_gpa, exit_code; |
| struct ghcb *ghcb; |
| int ret; |
| |
| /* Validate the GHCB */ |
| ghcb_gpa = control->ghcb_gpa; |
| if (ghcb_gpa & GHCB_MSR_INFO_MASK) |
| return sev_handle_vmgexit_msr_protocol(svm); |
| |
| if (!ghcb_gpa) { |
| vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); |
| return -EINVAL; |
| } |
| |
| if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { |
| /* Unable to map GHCB from guest */ |
| vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", |
| ghcb_gpa); |
| return -EINVAL; |
| } |
| |
| svm->ghcb = svm->ghcb_map.hva; |
| ghcb = svm->ghcb_map.hva; |
| |
| trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); |
| |
| exit_code = ghcb_get_sw_exit_code(ghcb); |
| |
| ret = sev_es_validate_vmgexit(svm); |
| if (ret) |
| return ret; |
| |
| sev_es_sync_from_ghcb(svm); |
| ghcb_set_sw_exit_info_1(ghcb, 0); |
| ghcb_set_sw_exit_info_2(ghcb, 0); |
| |
| ret = -EINVAL; |
| switch (exit_code) { |
| case SVM_VMGEXIT_MMIO_READ: |
| if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) |
| break; |
| |
| ret = kvm_sev_es_mmio_read(vcpu, |
| control->exit_info_1, |
| control->exit_info_2, |
| svm->ghcb_sa); |
| break; |
| case SVM_VMGEXIT_MMIO_WRITE: |
| if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) |
| break; |
| |
| ret = kvm_sev_es_mmio_write(vcpu, |
| control->exit_info_1, |
| control->exit_info_2, |
| svm->ghcb_sa); |
| break; |
| case SVM_VMGEXIT_NMI_COMPLETE: |
| ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); |
| break; |
| case SVM_VMGEXIT_AP_HLT_LOOP: |
| ret = kvm_emulate_ap_reset_hold(vcpu); |
| break; |
| case SVM_VMGEXIT_AP_JUMP_TABLE: { |
| struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; |
| |
| switch (control->exit_info_1) { |
| case 0: |
| /* Set AP jump table address */ |
| sev->ap_jump_table = control->exit_info_2; |
| break; |
| case 1: |
| /* Get AP jump table address */ |
| ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); |
| break; |
| default: |
| pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", |
| control->exit_info_1); |
| ghcb_set_sw_exit_info_1(ghcb, 1); |
| ghcb_set_sw_exit_info_2(ghcb, |
| X86_TRAP_UD | |
| SVM_EVTINJ_TYPE_EXEPT | |
| SVM_EVTINJ_VALID); |
| } |
| |
| ret = 1; |
| break; |
| } |
| case SVM_VMGEXIT_UNSUPPORTED_EVENT: |
| vcpu_unimpl(vcpu, |
| "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", |
| control->exit_info_1, control->exit_info_2); |
| break; |
| default: |
| ret = svm_invoke_exit_handler(vcpu, exit_code); |
| } |
| |
| return ret; |
| } |
| |
| int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) |
| { |
| if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) |
| return -EINVAL; |
| |
| return kvm_sev_es_string_io(&svm->vcpu, size, port, |
| svm->ghcb_sa, svm->ghcb_sa_len, in); |
| } |
| |
| void sev_es_init_vmcb(struct vcpu_svm *svm) |
| { |
| struct kvm_vcpu *vcpu = &svm->vcpu; |
| |
| svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; |
| svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; |
| |
| /* |
| * An SEV-ES guest requires a VMSA area that is a separate from the |
| * VMCB page. Do not include the encryption mask on the VMSA physical |
| * address since hardware will access it using the guest key. |
| */ |
| svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); |
| |
| /* Can't intercept CR register access, HV can't modify CR registers */ |
| svm_clr_intercept(svm, INTERCEPT_CR0_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR4_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR8_READ); |
| svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); |
| svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); |
| svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); |
| |
| svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); |
| |
| /* Track EFER/CR register changes */ |
| svm_set_intercept(svm, TRAP_EFER_WRITE); |
| svm_set_intercept(svm, TRAP_CR0_WRITE); |
| svm_set_intercept(svm, TRAP_CR4_WRITE); |
| svm_set_intercept(svm, TRAP_CR8_WRITE); |
| |
| /* No support for enable_vmware_backdoor */ |
| clr_exception_intercept(svm, GP_VECTOR); |
| |
| /* Can't intercept XSETBV, HV can't modify XCR0 directly */ |
| svm_clr_intercept(svm, INTERCEPT_XSETBV); |
| |
| /* Clear intercepts on selected MSRs */ |
| set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); |
| set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); |
| } |
| |
| void sev_es_create_vcpu(struct vcpu_svm *svm) |
| { |
| /* |
| * Set the GHCB MSR value as per the GHCB specification when creating |
| * a vCPU for an SEV-ES guest. |
| */ |
| set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, |
| GHCB_VERSION_MIN, |
| sev_enc_bit)); |
| } |
| |
| void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) |
| { |
| struct svm_cpu_data *sd = per_cpu(svm_data, cpu); |
| struct vmcb_save_area *hostsa; |
| |
| /* |
| * As an SEV-ES guest, hardware will restore the host state on VMEXIT, |
| * of which one step is to perform a VMLOAD. Since hardware does not |
| * perform a VMSAVE on VMRUN, the host savearea must be updated. |
| */ |
| vmsave(__sme_page_pa(sd->save_area)); |
| |
| /* XCR0 is restored on VMEXIT, save the current host value */ |
| hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); |
| hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| |
| /* PKRU is restored on VMEXIT, save the curent host value */ |
| hostsa->pkru = read_pkru(); |
| |
| /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ |
| hostsa->xss = host_xss; |
| } |
| |
| void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
| { |
| struct vcpu_svm *svm = to_svm(vcpu); |
| |
| /* First SIPI: Use the values as initially set by the VMM */ |
| if (!svm->received_first_sipi) { |
| svm->received_first_sipi = true; |
| return; |
| } |
| |
| /* |
| * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where |
| * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a |
| * non-zero value. |
| */ |
| if (!svm->ghcb) |
| return; |
| |
| ghcb_set_sw_exit_info_2(svm->ghcb, 1); |
| } |