blob: eb27c7fbfebd7cfcda1e12163862d6ed58fcb843 [file] [log] [blame]
/*
* Copyright(c) 2015 - 2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* This file contains all of the code that is specific to the HFI chip
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include "hfi.h"
#include "trace.h"
#include "mad.h"
#include "pio.h"
#include "sdma.h"
#include "eprom.h"
#include "efivar.h"
#include "platform.h"
#include "aspm.h"
#include "affinity.h"
#include "debugfs.h"
#define NUM_IB_PORTS 1
uint kdeth_qp;
module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
uint num_vls = HFI1_MAX_VLS_SUPPORTED;
module_param(num_vls, uint, S_IRUGO);
MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
/*
* Default time to aggregate two 10K packets from the idle state
* (timer not running). The timer starts at the end of the first packet,
* so only the time for one 10K packet and header plus a bit extra is needed.
* 10 * 1024 + 64 header byte = 10304 byte
* 10304 byte / 12.5 GB/s = 824.32ns
*/
uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
module_param(rcv_intr_timeout, uint, S_IRUGO);
MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
uint rcv_intr_count = 16; /* same as qib */
module_param(rcv_intr_count, uint, S_IRUGO);
MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
ushort link_crc_mask = SUPPORTED_CRCS;
module_param(link_crc_mask, ushort, S_IRUGO);
MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
uint loopback;
module_param_named(loopback, loopback, uint, S_IRUGO);
MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
/* Other driver tunables */
uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
static ushort crc_14b_sideband = 1;
static uint use_flr = 1;
uint quick_linkup; /* skip LNI */
struct flag_table {
u64 flag; /* the flag */
char *str; /* description string */
u16 extra; /* extra information */
u16 unused0;
u32 unused1;
};
/* str must be a string constant */
#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
#define FLAG_ENTRY0(str, flag) {flag, str, 0}
/* Send Error Consequences */
#define SEC_WRITE_DROPPED 0x1
#define SEC_PACKET_DROPPED 0x2
#define SEC_SC_HALTED 0x4 /* per-context only */
#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
#define DEFAULT_KRCVQS 2
#define MIN_KERNEL_KCTXTS 2
#define FIRST_KERNEL_KCTXT 1
/*
* RSM instance allocation
* 0 - Verbs
* 1 - User Fecn Handling
* 2 - Vnic
*/
#define RSM_INS_VERBS 0
#define RSM_INS_FECN 1
#define RSM_INS_VNIC 2
/* Bit offset into the GUID which carries HFI id information */
#define GUID_HFI_INDEX_SHIFT 39
/* extract the emulation revision */
#define emulator_rev(dd) ((dd)->irev >> 8)
/* parallel and serial emulation versions are 3 and 4 respectively */
#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
/* RSM fields for Verbs */
/* packet type */
#define IB_PACKET_TYPE 2ull
#define QW_SHIFT 6ull
/* QPN[7..1] */
#define QPN_WIDTH 7ull
/* LRH.BTH: QW 0, OFFSET 48 - for match */
#define LRH_BTH_QW 0ull
#define LRH_BTH_BIT_OFFSET 48ull
#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
#define LRH_BTH_SELECT
#define LRH_BTH_MASK 3ull
#define LRH_BTH_VALUE 2ull
/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
#define LRH_SC_QW 0ull
#define LRH_SC_BIT_OFFSET 56ull
#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
#define LRH_SC_MASK 128ull
#define LRH_SC_VALUE 0ull
/* SC[n..0] QW 0, OFFSET 60 - for select */
#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
/* QPN[m+n:1] QW 1, OFFSET 1 */
#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
/* RSM fields for Vnic */
/* L2_TYPE: QW 0, OFFSET 61 - for match */
#define L2_TYPE_QW 0ull
#define L2_TYPE_BIT_OFFSET 61ull
#define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off))
#define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
#define L2_TYPE_MASK 3ull
#define L2_16B_VALUE 2ull
/* L4_TYPE QW 1, OFFSET 0 - for match */
#define L4_TYPE_QW 1ull
#define L4_TYPE_BIT_OFFSET 0ull
#define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off))
#define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
#define L4_16B_TYPE_MASK 0xFFull
#define L4_16B_ETH_VALUE 0x78ull
/* 16B VESWID - for select */
#define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull))
/* 16B ENTROPY - for select */
#define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull))
/* defines to build power on SC2VL table */
#define SC2VL_VAL( \
num, \
sc0, sc0val, \
sc1, sc1val, \
sc2, sc2val, \
sc3, sc3val, \
sc4, sc4val, \
sc5, sc5val, \
sc6, sc6val, \
sc7, sc7val) \
( \
((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
)
#define DC_SC_VL_VAL( \
range, \
e0, e0val, \
e1, e1val, \
e2, e2val, \
e3, e3val, \
e4, e4val, \
e5, e5val, \
e6, e6val, \
e7, e7val, \
e8, e8val, \
e9, e9val, \
e10, e10val, \
e11, e11val, \
e12, e12val, \
e13, e13val, \
e14, e14val, \
e15, e15val) \
( \
((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
)
/* all CceStatus sub-block freeze bits */
#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
| CCE_STATUS_RXE_FROZE_SMASK \
| CCE_STATUS_TXE_FROZE_SMASK \
| CCE_STATUS_TXE_PIO_FROZE_SMASK)
/* all CceStatus sub-block TXE pause bits */
#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
| CCE_STATUS_TXE_PAUSED_SMASK \
| CCE_STATUS_SDMA_PAUSED_SMASK)
/* all CceStatus sub-block RXE pause bits */
#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
/*
* CCE Error flags.
*/
static struct flag_table cce_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
/*31*/ FLAG_ENTRY0("LATriggered",
CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
/*41-63 reserved*/
};
/*
* Misc Error flags
*/
#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
static struct flag_table misc_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
};
/*
* TXE PIO Error flags and consequences
*/
static struct flag_table pio_err_status_flags[] = {
/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
SEC_WRITE_DROPPED,
SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
/* 2*/ FLAG_ENTRY("PioCsrParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
/* 5*/ FLAG_ENTRY("PioPccFifoParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
/* 6*/ FLAG_ENTRY("PioPecFifoParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
/*10*/ FLAG_ENTRY("PioSmPktResetParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
0,
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
0,
SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
/*17*/ FLAG_ENTRY("PioInitSmIn",
0,
SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
0,
SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
/*21*/ FLAG_ENTRY("PioWriteDataParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
/*22*/ FLAG_ENTRY("PioStateMachine",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
/*26*/ FLAG_ENTRY("PioVlfSopParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
/*27*/ FLAG_ENTRY("PioVlFifoParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
/*29*/ FLAG_ENTRY("PioPpmcSopLen",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
/*30-31 reserved*/
/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
SEC_SPC_FREEZE,
SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
/*36-63 reserved*/
};
/* TXE PIO errors that cause an SPC freeze */
#define ALL_PIO_FREEZE_ERR \
(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
/*
* TXE SDMA Error flags
*/
static struct flag_table sdma_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
/*04-63 reserved*/
};
/* TXE SDMA errors that cause an SPC freeze */
#define ALL_SDMA_FREEZE_ERR \
(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
#define PORT_DISCARD_EGRESS_ERRS \
(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
/*
* TXE Egress Error flags
*/
#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
static struct flag_table egress_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
/* 2 reserved */
/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
/* 6 reserved */
/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
SEES(TX_PIO_LAUNCH_INTF_PARITY)),
/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
/* 9-10 reserved */
/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
SEES(TX_SDMA0_DISALLOWED_PACKET)),
/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
SEES(TX_SDMA1_DISALLOWED_PACKET)),
/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
SEES(TX_SDMA2_DISALLOWED_PACKET)),
/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
SEES(TX_SDMA3_DISALLOWED_PACKET)),
/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
SEES(TX_SDMA4_DISALLOWED_PACKET)),
/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
SEES(TX_SDMA5_DISALLOWED_PACKET)),
/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
SEES(TX_SDMA6_DISALLOWED_PACKET)),
/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
SEES(TX_SDMA7_DISALLOWED_PACKET)),
/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
SEES(TX_SDMA8_DISALLOWED_PACKET)),
/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
SEES(TX_SDMA9_DISALLOWED_PACKET)),
/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
SEES(TX_SDMA10_DISALLOWED_PACKET)),
/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
SEES(TX_SDMA11_DISALLOWED_PACKET)),
/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
SEES(TX_SDMA12_DISALLOWED_PACKET)),
/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
SEES(TX_SDMA13_DISALLOWED_PACKET)),
/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
SEES(TX_SDMA14_DISALLOWED_PACKET)),
/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
SEES(TX_SDMA15_DISALLOWED_PACKET)),
/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
};
/*
* TXE Egress Error Info flags
*/
#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
static struct flag_table egress_err_info_flags[] = {
/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
};
/* TXE Egress errors that cause an SPC freeze */
#define ALL_TXE_EGRESS_FREEZE_ERR \
(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
| SEES(TX_LAUNCH_CSR_PARITY) \
| SEES(TX_SBRD_CTL_CSR_PARITY) \
| SEES(TX_CONFIG_PARITY) \
| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
| SEES(TX_CREDIT_RETURN_PARITY))
/*
* TXE Send error flags
*/
#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
static struct flag_table send_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
};
/*
* TXE Send Context Error flags and consequences
*/
static struct flag_table sc_err_status_flags[] = {
/* 0*/ FLAG_ENTRY("InconsistentSop",
SEC_PACKET_DROPPED | SEC_SC_HALTED,
SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
/* 1*/ FLAG_ENTRY("DisallowedPacket",
SEC_PACKET_DROPPED | SEC_SC_HALTED,
SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
SEC_WRITE_DROPPED | SEC_SC_HALTED,
SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
/* 3*/ FLAG_ENTRY("WriteOverflow",
SEC_WRITE_DROPPED | SEC_SC_HALTED,
SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
SEC_WRITE_DROPPED | SEC_SC_HALTED,
SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
/* 5-63 reserved*/
};
/*
* RXE Receive Error flags
*/
#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
static struct flag_table rxe_err_status_flags[] = {
/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
RXES(RBUF_BLOCK_LIST_READ_UNC)),
/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
RXES(RBUF_BLOCK_LIST_READ_COR)),
/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
RXES(RBUF_CSR_QENT_CNT_PARITY)),
/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
RXES(RBUF_CSR_QVLD_BIT_PARITY)),
/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
RXES(RBUF_FL_INITDONE_PARITY)),
/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
RXES(LOOKUP_DES_PART1_UNC_COR)),
/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
RXES(LOOKUP_DES_PART2_PARITY)),
/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
};
/* RXE errors that will trigger an SPC freeze */
#define ALL_RXE_FREEZE_ERR \
(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
#define RXE_FREEZE_ABORT_MASK \
(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
/*
* DCC Error Flags
*/
#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
static struct flag_table dcc_err_flags[] = {
FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
};
/*
* LCB error flags
*/
#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
static struct flag_table lcb_err_flags[] = {
/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
LCBE(ALL_LNS_FAILED_REINIT_TEST)),
/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
LCBE(REDUNDANT_FLIT_PARITY_ERR))
};
/*
* DC8051 Error Flags
*/
#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
static struct flag_table dc8051_err_flags[] = {
FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
};
/*
* DC8051 Information Error flags
*
* Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
*/
static struct flag_table dc8051_info_err_flags[] = {
FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
FLAG_ENTRY0("Serdes internal loopback failure",
FAILED_SERDES_INTERNAL_LOOPBACK),
FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT),
FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT),
FLAG_ENTRY0("External Device Request Timeout",
EXTERNAL_DEVICE_REQ_TIMEOUT),
};
/*
* DC8051 Information Host Information flags
*
* Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
*/
static struct flag_table dc8051_info_host_msg_flags[] = {
FLAG_ENTRY0("Host request done", 0x0001),
FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
FLAG_ENTRY0("BC SMA message", 0x0004),
FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
FLAG_ENTRY0("External device config request", 0x0020),
FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
FLAG_ENTRY0("LinkUp achieved", 0x0080),
FLAG_ENTRY0("Link going down", 0x0100),
FLAG_ENTRY0("Link width downgraded", 0x0200),
};
static u32 encoded_size(u32 size);
static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
u8 *continuous);
static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
static void read_vc_remote_link_width(struct hfi1_devdata *dd,
u8 *remote_tx_rate, u16 *link_widths);
static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
u8 *flag_bits, u16 *link_widths);
static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
u8 *device_rev);
static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
u8 *tx_polarity_inversion,
u8 *rx_polarity_inversion, u8 *max_rate);
static void handle_sdma_eng_err(struct hfi1_devdata *dd,
unsigned int context, u64 err_status);
static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
static void handle_dcc_err(struct hfi1_devdata *dd,
unsigned int context, u64 err_status);
static void handle_lcb_err(struct hfi1_devdata *dd,
unsigned int context, u64 err_status);
static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
static void set_partition_keys(struct hfi1_pportdata *ppd);
static const char *link_state_name(u32 state);
static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
u32 state);
static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
u64 *out_data);
static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
static int thermal_init(struct hfi1_devdata *dd);
static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
int msecs);
static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
int msecs);
static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
static void handle_temp_err(struct hfi1_devdata *dd);
static void dc_shutdown(struct hfi1_devdata *dd);
static void dc_start(struct hfi1_devdata *dd);
static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
unsigned int *np);
static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
/*
* Error interrupt table entry. This is used as input to the interrupt
* "clear down" routine used for all second tier error interrupt register.
* Second tier interrupt registers have a single bit representing them
* in the top-level CceIntStatus.
*/
struct err_reg_info {
u32 status; /* status CSR offset */
u32 clear; /* clear CSR offset */
u32 mask; /* mask CSR offset */
void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
const char *desc;
};
#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
/*
* Helpers for building HFI and DC error interrupt table entries. Different
* helpers are needed because of inconsistent register names.
*/
#define EE(reg, handler, desc) \
{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
handler, desc }
#define DC_EE1(reg, handler, desc) \
{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
#define DC_EE2(reg, handler, desc) \
{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
/*
* Table of the "misc" grouping of error interrupts. Each entry refers to
* another register containing more information.
*/
static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
/* 3*/ { 0, 0, 0, NULL }, /* reserved */
/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
/* the rest are reserved */
};
/*
* Index into the Various section of the interrupt sources
* corresponding to the Critical Temperature interrupt.
*/
#define TCRIT_INT_SOURCE 4
/*
* SDMA error interrupt entry - refers to another register containing more
* information.
*/
static const struct err_reg_info sdma_eng_err =
EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
static const struct err_reg_info various_err[NUM_VARIOUS] = {
/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
/* rest are reserved */
};
/*
* The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
* register can not be derived from the MTU value because 10K is not
* a power of 2. Therefore, we need a constant. Everything else can
* be calculated.
*/
#define DCC_CFG_PORT_MTU_CAP_10240 7
/*
* Table of the DC grouping of error interrupts. Each entry refers to
* another register containing more information.
*/
static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
/* the rest are reserved */
};
struct cntr_entry {
/*
* counter name
*/
char *name;
/*
* csr to read for name (if applicable)
*/
u64 csr;
/*
* offset into dd or ppd to store the counter's value
*/
int offset;
/*
* flags
*/
u8 flags;
/*
* accessor for stat element, context either dd or ppd
*/
u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
int mode, u64 data);
};
#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
#define CNTR_ELEM(name, csr, offset, flags, accessor) \
{ \
name, \
csr, \
offset, \
flags, \
accessor \
}
/* 32bit RXE */
#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + RCV_COUNTER_ARRAY32), \
0, flags | CNTR_32BIT, \
port_access_u32_csr)
#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + RCV_COUNTER_ARRAY32), \
0, flags | CNTR_32BIT, \
dev_access_u32_csr)
/* 64bit RXE */
#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + RCV_COUNTER_ARRAY64), \
0, flags, \
port_access_u64_csr)
#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + RCV_COUNTER_ARRAY64), \
0, flags, \
dev_access_u64_csr)
#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
#define OVR_ELM(ctx) \
CNTR_ELEM("RcvHdrOvr" #ctx, \
(RCV_HDR_OVFL_CNT + ctx * 0x100), \
0, CNTR_NORMAL, port_access_u64_csr)
/* 32bit TXE */
#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + SEND_COUNTER_ARRAY32), \
0, flags | CNTR_32BIT, \
port_access_u32_csr)
/* 64bit TXE */
#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + SEND_COUNTER_ARRAY64), \
0, flags, \
port_access_u64_csr)
# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name,\
counter * 8 + SEND_COUNTER_ARRAY64, \
0, \
flags, \
dev_access_u64_csr)
/* CCE */
#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + CCE_COUNTER_ARRAY32), \
0, flags | CNTR_32BIT, \
dev_access_u32_csr)
#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
CNTR_ELEM(#name, \
(counter * 8 + CCE_INT_COUNTER_ARRAY32), \
0, flags | CNTR_32BIT, \
dev_access_u32_csr)
/* DC */
#define DC_PERF_CNTR(name, counter, flags) \
CNTR_ELEM(#name, \
counter, \
0, \
flags, \
dev_access_u64_csr)
#define DC_PERF_CNTR_LCB(name, counter, flags) \
CNTR_ELEM(#name, \
counter, \
0, \
flags, \
dc_access_lcb_cntr)
/* ibp counters */
#define SW_IBP_CNTR(name, cntr) \
CNTR_ELEM(#name, \
0, \
0, \
CNTR_SYNTH, \
access_ibp_##cntr)
/**
* hfi_addr_from_offset - return addr for readq/writeq
* @dd - the dd device
* @offset - the offset of the CSR within bar0
*
* This routine selects the appropriate base address
* based on the indicated offset.
*/
static inline void __iomem *hfi1_addr_from_offset(
const struct hfi1_devdata *dd,
u32 offset)
{
if (offset >= dd->base2_start)
return dd->kregbase2 + (offset - dd->base2_start);
return dd->kregbase1 + offset;
}
/**
* read_csr - read CSR at the indicated offset
* @dd - the dd device
* @offset - the offset of the CSR within bar0
*
* Return: the value read or all FF's if there
* is no mapping
*/
u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
{
if (dd->flags & HFI1_PRESENT)
return readq(hfi1_addr_from_offset(dd, offset));
return -1;
}
/**
* write_csr - write CSR at the indicated offset
* @dd - the dd device
* @offset - the offset of the CSR within bar0
* @value - value to write
*/
void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
{
if (dd->flags & HFI1_PRESENT) {
void __iomem *base = hfi1_addr_from_offset(dd, offset);
/* avoid write to RcvArray */
if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
return;
writeq(value, base);
}
}
/**
* get_csr_addr - return te iomem address for offset
* @dd - the dd device
* @offset - the offset of the CSR within bar0
*
* Return: The iomem address to use in subsequent
* writeq/readq operations.
*/
void __iomem *get_csr_addr(
const struct hfi1_devdata *dd,
u32 offset)
{
if (dd->flags & HFI1_PRESENT)
return hfi1_addr_from_offset(dd, offset);
return NULL;
}
static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
int mode, u64 value)
{
u64 ret;
if (mode == CNTR_MODE_R) {
ret = read_csr(dd, csr);
} else if (mode == CNTR_MODE_W) {
write_csr(dd, csr, value);
ret = value;
} else {
dd_dev_err(dd, "Invalid cntr register access mode");
return 0;
}
hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
return ret;
}
/* Dev Access */
static u64 dev_access_u32_csr(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
u64 csr = entry->csr;
if (entry->flags & CNTR_SDMA) {
if (vl == CNTR_INVALID_VL)
return 0;
csr += 0x100 * vl;
} else {
if (vl != CNTR_INVALID_VL)
return 0;
}
return read_write_csr(dd, csr, mode, data);
}
static u64 access_sde_err_cnt(const struct cntr_entry *entry,
void *context, int idx, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
if (dd->per_sdma && idx < dd->num_sdma)
return dd->per_sdma[idx].err_cnt;
return 0;
}
static u64 access_sde_int_cnt(const struct cntr_entry *entry,
void *context, int idx, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
if (dd->per_sdma && idx < dd->num_sdma)
return dd->per_sdma[idx].sdma_int_cnt;
return 0;
}
static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
void *context, int idx, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
if (dd->per_sdma && idx < dd->num_sdma)
return dd->per_sdma[idx].idle_int_cnt;
return 0;
}
static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
void *context, int idx, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
if (dd->per_sdma && idx < dd->num_sdma)
return dd->per_sdma[idx].progress_int_cnt;
return 0;
}
static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
u64 val = 0;
u64 csr = entry->csr;
if (entry->flags & CNTR_VL) {
if (vl == CNTR_INVALID_VL)
return 0;
csr += 8 * vl;
} else {
if (vl != CNTR_INVALID_VL)
return 0;
}
val = read_write_csr(dd, csr, mode, data);
return val;
}
static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
u32 csr = entry->csr;
int ret = 0;
if (vl != CNTR_INVALID_VL)
return 0;
if (mode == CNTR_MODE_R)
ret = read_lcb_csr(dd, csr, &data);
else if (mode == CNTR_MODE_W)
ret = write_lcb_csr(dd, csr, data);
if (ret) {
dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
return 0;
}
hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
return data;
}
/* Port Access */
static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_csr(ppd->dd, entry->csr, mode, data);
}
static u64 port_access_u64_csr(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = context;
u64 val;
u64 csr = entry->csr;
if (entry->flags & CNTR_VL) {
if (vl == CNTR_INVALID_VL)
return 0;
csr += 8 * vl;
} else {
if (vl != CNTR_INVALID_VL)
return 0;
}
val = read_write_csr(ppd->dd, csr, mode, data);
return val;
}
/* Software defined */
static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
u64 data)
{
u64 ret;
if (mode == CNTR_MODE_R) {
ret = *cntr;
} else if (mode == CNTR_MODE_W) {
*cntr = data;
ret = data;
} else {
dd_dev_err(dd, "Invalid cntr sw access mode");
return 0;
}
hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
return ret;
}
static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
}
static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
}
static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
}
static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
u64 zero = 0;
u64 *counter;
if (vl == CNTR_INVALID_VL)
counter = &ppd->port_xmit_discards;
else if (vl >= 0 && vl < C_VL_COUNT)
counter = &ppd->port_xmit_discards_vl[vl];
else
counter = &zero;
return read_write_sw(ppd->dd, counter, mode, data);
}
static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_pportdata *ppd = context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
mode, data);
}
static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_pportdata *ppd = context;
if (vl != CNTR_INVALID_VL)
return 0;
return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
mode, data);
}
u64 get_all_cpu_total(u64 __percpu *cntr)
{
int cpu;
u64 counter = 0;
for_each_possible_cpu(cpu)
counter += *per_cpu_ptr(cntr, cpu);
return counter;
}
static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
u64 __percpu *cntr,
int vl, int mode, u64 data)
{
u64 ret = 0;
if (vl != CNTR_INVALID_VL)
return 0;
if (mode == CNTR_MODE_R) {
ret = get_all_cpu_total(cntr) - *z_val;
} else if (mode == CNTR_MODE_W) {
/* A write can only zero the counter */
if (data == 0)
*z_val = get_all_cpu_total(cntr);
else
dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
} else {
dd_dev_err(dd, "Invalid cntr sw cpu access mode");
return 0;
}
return ret;
}
static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
mode, data);
}
static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
mode, data);
}
static u64 access_sw_pio_wait(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return dd->verbs_dev.n_piowait;
}
static u64 access_sw_pio_drain(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->verbs_dev.n_piodrain;
}
static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return dd->verbs_dev.n_txwait;
}
static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return dd->verbs_dev.n_kmem_wait;
}
static u64 access_sw_send_schedule(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
mode, data);
}
/* Software counters for the error status bits within MISC_ERR_STATUS */
static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[12];
}
static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[11];
}
static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[10];
}
static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[9];
}
static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[8];
}
static u64 access_misc_efuse_read_bad_addr_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[7];
}
static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[6];
}
static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[5];
}
static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[4];
}
static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[3];
}
static u64 access_misc_csr_write_bad_addr_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[2];
}
static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[1];
}
static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->misc_err_status_cnt[0];
}
/*
* Software counter for the aggregate of
* individual CceErrStatus counters
*/
static u64 access_sw_cce_err_status_aggregated_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_cce_err_status_aggregate;
}
/*
* Software counters corresponding to each of the
* error status bits within CceErrStatus
*/
static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[40];
}
static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[39];
}
static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[38];
}
static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[37];
}
static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[36];
}
static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[35];
}
static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[34];
}
static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[33];
}
static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[32];
}
static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[31];
}
static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[30];
}
static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[29];
}
static u64 access_pcic_transmit_back_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[28];
}
static u64 access_pcic_transmit_front_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[27];
}
static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[26];
}
static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[25];
}
static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[24];
}
static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[23];
}
static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[22];
}
static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[21];
}
static u64 access_pcic_n_post_dat_q_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[20];
}
static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[19];
}
static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[18];
}
static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[17];
}
static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[16];
}
static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[15];
}
static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[14];
}
static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[13];
}
static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[12];
}
static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[11];
}
static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[10];
}
static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[9];
}
static u64 access_cce_cli2_async_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[8];
}
static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[7];
}
static u64 access_cce_cli0_async_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[6];
}
static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[5];
}
static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[4];
}
static u64 access_cce_trgt_async_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[3];
}
static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[2];
}
static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[1];
}
static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->cce_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within RcvErrStatus
*/
static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[63];
}
static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[62];
}
static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[61];
}
static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[60];
}
static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[59];
}
static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[58];
}
static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[57];
}
static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[56];
}
static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[55];
}
static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[54];
}
static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[53];
}
static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[52];
}
static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[51];
}
static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[50];
}
static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[49];
}
static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[48];
}
static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[47];
}
static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[46];
}
static u64 access_rx_hq_intr_csr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[45];
}
static u64 access_rx_lookup_csr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[44];
}
static u64 access_rx_lookup_rcv_array_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[43];
}
static u64 access_rx_lookup_rcv_array_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[42];
}
static u64 access_rx_lookup_des_part2_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[41];
}
static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[40];
}
static u64 access_rx_lookup_des_part1_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[39];
}
static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[38];
}
static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[37];
}
static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[36];
}
static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[35];
}
static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[34];
}
static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[33];
}
static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[32];
}
static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[31];
}
static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[30];
}
static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[29];
}
static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[28];
}
static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[27];
}
static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[26];
}
static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[25];
}
static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[24];
}
static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[23];
}
static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[22];
}
static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[21];
}
static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[20];
}
static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[19];
}
static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[18];
}
static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[17];
}
static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[16];
}
static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[15];
}
static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[14];
}
static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[13];
}
static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[12];
}
static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[11];
}
static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[10];
}
static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[9];
}
static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[8];
}
static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[7];
}
static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[6];
}
static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[5];
}
static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[4];
}
static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[3];
}
static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[2];
}
static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[1];
}
static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->rcv_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendPioErrStatus
*/
static u64 access_pio_pec_sop_head_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[35];
}
static u64 access_pio_pcc_sop_head_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[34];
}
static u64 access_pio_last_returned_cnt_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[33];
}
static u64 access_pio_current_free_cnt_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[32];
}
static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[31];
}
static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[30];
}
static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[29];
}
static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[28];
}
static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[27];
}
static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[26];
}
static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[25];
}
static u64 access_pio_block_qw_count_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[24];
}
static u64 access_pio_write_qw_valid_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[23];
}
static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[22];
}
static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[21];
}
static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[20];
}
static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[19];
}
static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[18];
}
static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[17];
}
static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[16];
}
static u64 access_pio_credit_ret_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[15];
}
static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[14];
}
static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[13];
}
static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[12];
}
static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[11];
}
static u64 access_pio_sm_pkt_reset_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[10];
}
static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[9];
}
static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[8];
}
static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[7];
}
static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[6];
}
static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[5];
}
static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[4];
}
static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[3];
}
static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[2];
}
static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[1];
}
static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_pio_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendDmaErrStatus
*/
static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_dma_err_status_cnt[3];
}
static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_dma_err_status_cnt[2];
}
static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_dma_err_status_cnt[1];
}
static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_dma_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendEgressErrStatus
*/
static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[63];
}
static u64 access_tx_read_sdma_memory_csr_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[62];
}
static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[61];
}
static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[60];
}
static u64 access_tx_read_sdma_memory_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[59];
}
static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[58];
}
static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[57];
}
static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[56];
}
static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[55];
}
static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[54];
}
static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[53];
}
static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[52];
}
static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[51];
}
static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[50];
}
static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[49];
}
static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[48];
}
static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[47];
}
static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[46];
}
static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[45];
}
static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[44];
}
static u64 access_tx_read_sdma_memory_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[43];
}
static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[42];
}
static u64 access_tx_credit_return_partiy_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[41];
}
static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[40];
}
static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[39];
}
static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[38];
}
static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[37];
}
static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[36];
}
static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[35];
}
static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[34];
}
static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[33];
}
static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[32];
}
static u64 access_tx_sdma15_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[31];
}
static u64 access_tx_sdma14_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[30];
}
static u64 access_tx_sdma13_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[29];
}
static u64 access_tx_sdma12_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[28];
}
static u64 access_tx_sdma11_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[27];
}
static u64 access_tx_sdma10_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[26];
}
static u64 access_tx_sdma9_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[25];
}
static u64 access_tx_sdma8_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[24];
}
static u64 access_tx_sdma7_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[23];
}
static u64 access_tx_sdma6_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[22];
}
static u64 access_tx_sdma5_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[21];
}
static u64 access_tx_sdma4_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[20];
}
static u64 access_tx_sdma3_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[19];
}
static u64 access_tx_sdma2_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[18];
}
static u64 access_tx_sdma1_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[17];
}
static u64 access_tx_sdma0_disallowed_packet_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[16];
}
static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[15];
}
static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[14];
}
static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[13];
}
static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[12];
}
static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[11];
}
static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[10];
}
static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[9];
}
static u64 access_tx_sdma_launch_intf_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[8];
}
static u64 access_tx_pio_launch_intf_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[7];
}
static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[6];
}
static u64 access_tx_incorrect_link_state_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[5];
}
static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[4];
}
static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[3];
}
static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[2];
}
static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[1];
}
static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_egress_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendErrStatus
*/
static u64 access_send_csr_write_bad_addr_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_err_status_cnt[2];
}
static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_err_status_cnt[1];
}
static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->send_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendCtxtErrStatus
*/
static u64 access_pio_write_out_of_bounds_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_ctxt_err_status_cnt[4];
}
static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_ctxt_err_status_cnt[3];
}
static u64 access_pio_write_crosses_boundary_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_ctxt_err_status_cnt[2];
}
static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_ctxt_err_status_cnt[1];
}
static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_ctxt_err_status_cnt[0];
}
/*
* Software counters corresponding to each of the
* error status bits within SendDmaEngErrStatus
*/
static u64 access_sdma_header_request_fifo_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[23];
}
static u64 access_sdma_header_storage_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[22];
}
static u64 access_sdma_packet_tracking_cor_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[21];
}
static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[20];
}
static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[19];
}
static u64 access_sdma_header_request_fifo_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[18];
}
static u64 access_sdma_header_storage_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[17];
}
static u64 access_sdma_packet_tracking_unc_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[16];
}
static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[15];
}
static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[14];
}
static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[13];
}
static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[12];
}
static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[11];
}
static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[10];
}
static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[9];
}
static u64 access_sdma_packet_desc_overflow_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[8];
}
static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
void *context, int vl,
int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[7];
}
static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[6];
}
static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[5];
}
static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[4];
}
static u64 access_sdma_tail_out_of_bounds_err_cnt(
const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[3];
}
static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[2];
}
static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[1];
}
static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
return dd->sw_send_dma_eng_err_status_cnt[0];
}
static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
void *context, int vl, int mode,
u64 data)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
u64 val = 0;
u64 csr = entry->csr;
val = read_write_csr(dd, csr, mode, data);
if (mode == CNTR_MODE_R) {
val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
} else if (mode == CNTR_MODE_W) {
dd->sw_rcv_bypass_packet_errors = 0;
} else {
dd_dev_err(dd, "Invalid cntr register access mode");
return 0;
}
return val;
}
#define def_access_sw_cpu(cntr) \
static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
void *context, int vl, int mode, u64 data) \
{ \
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
ppd->ibport_data.rvp.cntr, vl, \
mode, data); \
}
def_access_sw_cpu(rc_acks);
def_access_sw_cpu(rc_qacks);
def_access_sw_cpu(rc_delayed_comp);
#define def_access_ibp_counter(cntr) \
static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
void *context, int vl, int mode, u64 data) \
{ \
struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
\
if (vl != CNTR_INVALID_VL) \
return 0; \
\
return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
mode, data); \
}
def_access_ibp_counter(loop_pkts);
def_access_ibp_counter(rc_resends);
def_access_ibp_counter(rnr_naks);
def_access_ibp_counter(other_naks);
def_access_ibp_counter(rc_timeouts);
def_access_ibp_counter(pkt_drops);
def_access_ibp_counter(dmawait);
def_access_ibp_counter(rc_seqnak);
def_access_ibp_counter(rc_dupreq);
def_access_ibp_counter(rdma_seq);
def_access_ibp_counter(unaligned);
def_access_ibp_counter(seq_naks);
static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
CNTR_NORMAL),
[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
CNTR_NORMAL),
[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
RCV_TID_FLOW_GEN_MISMATCH_CNT,
CNTR_NORMAL),
[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
CNTR_NORMAL),
[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
CNTR_NORMAL),
[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
CNTR_NORMAL),
[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
CNTR_NORMAL),
[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
CNTR_NORMAL),
[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
CNTR_NORMAL),
[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
CNTR_NORMAL),
[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
CNTR_SYNTH),
[C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
access_dc_rcv_err_cnt),
[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
CNTR_SYNTH),
[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
CNTR_SYNTH),
[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
CNTR_SYNTH),
[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
CNTR_SYNTH),
[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
CNTR_SYNTH),
[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
CNTR_SYNTH),
[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
CNTR_SYNTH),
[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
CNTR_SYNTH),
[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
CNTR_SYNTH),
[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
CNTR_SYNTH),
[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
CNTR_SYNTH),
[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
CNTR_SYNTH),
[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
CNTR_SYNTH),
[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
CNTR_SYNTH | CNTR_VL),
[C_DC_TOTAL_CRC] =
DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
CNTR_SYNTH),
[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
CNTR_SYNTH),
[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
CNTR_SYNTH),
[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
CNTR_SYNTH),
[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
CNTR_SYNTH),
[C_DC_CRC_MULT_LN] =
DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
CNTR_SYNTH),
[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
CNTR_SYNTH),
[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
CNTR_SYNTH),
[C_DC_SEQ_CRC_CNT] =
DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
CNTR_SYNTH),
[C_DC_ESC0_ONLY_CNT] =
DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
CNTR_SYNTH),
[C_DC_ESC0_PLUS1_CNT] =
DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
CNTR_SYNTH),
[C_DC_ESC0_PLUS2_CNT] =
DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
CNTR_SYNTH),
[C_DC_REINIT_FROM_PEER_CNT] =
DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
CNTR_SYNTH),
[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
CNTR_SYNTH),
[C_DC_MISC_FLG_CNT] =
DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
CNTR_SYNTH),
[C_DC_PRF_GOOD_LTP_CNT] =
DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
[C_DC_PRF_ACCEPTED_LTP_CNT] =
DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
CNTR_SYNTH),
[C_DC_PRF_RX_FLIT_CNT] =
DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
[C_DC_PRF_TX_FLIT_CNT] =
DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
[C_DC_PRF_CLK_CNTR] =
DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
CNTR_SYNTH),
[C_DC_PG_STS_TX_SBE_CNT] =
DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
[C_DC_PG_STS_TX_MBE_CNT] =
DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
CNTR_SYNTH),
[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
access_sw_cpu_intr),
[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
access_sw_cpu_rcv_limit),
[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
access_sw_vtx_wait),
[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
access_sw_pio_wait),
[C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
access_sw_pio_drain),
[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
access_sw_kmem_wait),
[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
access_sw_send_schedule),
[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
SEND_DMA_DESC_FETCHED_CNT, 0,
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
dev_access_u32_csr),
[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
access_sde_int_cnt),
[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
access_sde_err_cnt),
[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
access_sde_idle_int_cnt),
[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
access_sde_progress_int_cnt),
/* MISC_ERR_STATUS */
[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
CNTR_NORMAL,
access_misc_pll_lock_fail_err_cnt),
[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
CNTR_NORMAL,
access_misc_mbist_fail_err_cnt),
[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
CNTR_NORMAL,
access_misc_invalid_eep_cmd_err_cnt),
[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
CNTR_NORMAL,
access_misc_efuse_done_parity_err_cnt),
[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
CNTR_NORMAL,
access_misc_efuse_write_err_cnt),
[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
0, CNTR_NORMAL,
access_misc_efuse_read_bad_addr_err_cnt),
[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
CNTR_NORMAL,
access_misc_efuse_csr_parity_err_cnt),
[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
CNTR_NORMAL,
access_misc_fw_auth_failed_err_cnt),
[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
CNTR_NORMAL,
access_misc_key_mismatch_err_cnt),
[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
CNTR_NORMAL,
access_misc_sbus_write_failed_err_cnt),
[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
CNTR_NORMAL,
access_misc_csr_write_bad_addr_err_cnt),
[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
CNTR_NORMAL,
access_misc_csr_read_bad_addr_err_cnt),
[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
CNTR_NORMAL,
access_misc_csr_parity_err_cnt),
/* CceErrStatus */
[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
CNTR_NORMAL,
access_sw_cce_err_status_aggregated_cnt),
[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
CNTR_NORMAL,
access_cce_msix_csr_parity_err_cnt),
[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
CNTR_NORMAL,
access_cce_int_map_unc_err_cnt),
[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
CNTR_NORMAL,
access_cce_int_map_cor_err_cnt),
[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
CNTR_NORMAL,
access_cce_msix_table_unc_err_cnt),
[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
CNTR_NORMAL,
access_cce_msix_table_cor_err_cnt),
[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
0, CNTR_NORMAL,
access_cce_rxdma_conv_fifo_parity_err_cnt),
[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
0, CNTR_NORMAL,
access_cce_rcpl_async_fifo_parity_err_cnt),
[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
CNTR_NORMAL,
access_cce_seg_write_bad_addr_err_cnt),
[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
CNTR_NORMAL,
access_cce_seg_read_bad_addr_err_cnt),
[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
CNTR_NORMAL,
access_la_triggered_cnt),
[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
CNTR_NORMAL,
access_cce_trgt_cpl_timeout_err_cnt),
[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
CNTR_NORMAL,
access_pcic_receive_parity_err_cnt),
[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
CNTR_NORMAL,
access_pcic_transmit_back_parity_err_cnt),
[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
0, CNTR_NORMAL,
access_pcic_transmit_front_parity_err_cnt),
[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_cpl_dat_q_unc_err_cnt),
[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_cpl_hd_q_unc_err_cnt),
[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_post_dat_q_unc_err_cnt),
[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_post_hd_q_unc_err_cnt),
[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_retry_sot_mem_unc_err_cnt),
[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
CNTR_NORMAL,
access_pcic_retry_mem_unc_err),
[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
CNTR_NORMAL,
access_pcic_n_post_dat_q_parity_err_cnt),
[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
CNTR_NORMAL,
access_pcic_n_post_h_q_parity_err_cnt),
[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_cpl_dat_q_cor_err_cnt),
[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_cpl_hd_q_cor_err_cnt),
[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_post_dat_q_cor_err_cnt),
[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_post_hd_q_cor_err_cnt),
[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_retry_sot_mem_cor_err_cnt),
[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
CNTR_NORMAL,
access_pcic_retry_mem_cor_err_cnt),
[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
"CceCli1AsyncFifoDbgParityError", 0, 0,
CNTR_NORMAL,
access_cce_cli1_async_fifo_dbg_parity_err_cnt),
[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
"CceCli1AsyncFifoRxdmaParityError", 0, 0,
CNTR_NORMAL,
access_cce_cli1_async_fifo_rxdma_parity_err_cnt
),
[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
CNTR_NORMAL,
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
CNTR_NORMAL,
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
0, CNTR_NORMAL,
access_cce_cli2_async_fifo_parity_err_cnt),
[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
CNTR_NORMAL,
access_cce_csr_cfg_bus_parity_err_cnt),
[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
0, CNTR_NORMAL,
access_cce_cli0_async_fifo_parity_err_cnt),
[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
CNTR_NORMAL,
access_cce_rspd_data_parity_err_cnt),
[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
CNTR_NORMAL,
access_cce_trgt_access_err_cnt),
[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
0, CNTR_NORMAL,
access_cce_trgt_async_fifo_parity_err_cnt),
[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
CNTR_NORMAL,
access_cce_csr_write_bad_addr_err_cnt),
[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
CNTR_NORMAL,
access_cce_csr_read_bad_addr_err_cnt),
[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
CNTR_NORMAL,
access_ccs_csr_parity_err_cnt),
/* RcvErrStatus */
[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_csr_parity_err_cnt),
[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
CNTR_NORMAL,
access_rx_csr_write_bad_addr_err_cnt),
[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
CNTR_NORMAL,
access_rx_csr_read_bad_addr_err_cnt),
[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_csr_unc_err_cnt),
[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_dq_fsm_encoding_err_cnt),
[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_eq_fsm_encoding_err_cnt),
[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_csr_parity_err_cnt),
[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_data_cor_err_cnt),
[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_data_unc_err_cnt),
[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_data_fifo_rd_cor_err_cnt),
[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_data_fifo_rd_unc_err_cnt),
[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_hdr_fifo_rd_cor_err_cnt),
[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_hdr_fifo_rd_unc_err_cnt),
[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_desc_part2_cor_err_cnt),
[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_desc_part2_unc_err_cnt),
[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_desc_part1_cor_err_cnt),
[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_desc_part1_unc_err_cnt),
[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
CNTR_NORMAL,
access_rx_hq_intr_fsm_err_cnt),
[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_hq_intr_csr_parity_err_cnt),
[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_lookup_csr_parity_err_cnt),
[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
CNTR_NORMAL,
access_rx_lookup_rcv_array_cor_err_cnt),
[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
CNTR_NORMAL,
access_rx_lookup_rcv_array_unc_err_cnt),
[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
0, CNTR_NORMAL,
access_rx_lookup_des_part2_parity_err_cnt),
[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
0, CNTR_NORMAL,
access_rx_lookup_des_part1_unc_cor_err_cnt),
[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
CNTR_NORMAL,
access_rx_lookup_des_part1_unc_err_cnt),
[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_next_free_buf_cor_err_cnt),
[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_next_free_buf_unc_err_cnt),
[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
"RxRbufFlInitWrAddrParityErr", 0, 0,
CNTR_NORMAL,
access_rbuf_fl_init_wr_addr_parity_err_cnt),
[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_fl_initdone_parity_err_cnt),
[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_fl_write_addr_parity_err_cnt),
[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_fl_rd_addr_parity_err_cnt),
[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_empty_err_cnt),
[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_full_err_cnt),
[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
CNTR_NORMAL,
access_rbuf_bad_lookup_err_cnt),
[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
CNTR_NORMAL,
access_rbuf_ctx_id_parity_err_cnt),
[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
CNTR_NORMAL,
access_rbuf_csr_qeopdw_parity_err_cnt),
[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
"RxRbufCsrQNumOfPktParityErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
"RxRbufCsrQTlPtrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
0, 0, CNTR_NORMAL,
access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
"RxRbufCsrQHeadBufNumParityErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_block_list_read_cor_err_cnt),
[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
0, CNTR_NORMAL,
access_rx_rbuf_block_list_read_unc_err_cnt),
[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_lookup_des_cor_err_cnt),
[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_lookup_des_unc_err_cnt),
[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
"RxRbufLookupDesRegUncCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_lookup_des_reg_unc_err_cnt),
[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_free_list_cor_err_cnt),
[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rbuf_free_list_unc_err_cnt),
[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_fsm_encoding_err_cnt),
[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_flag_cor_err_cnt),
[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_flag_unc_err_cnt),
[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
CNTR_NORMAL,
access_rx_dc_sop_eop_parity_err_cnt),
[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_csr_parity_err_cnt),
[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_qp_map_table_cor_err_cnt),
[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_qp_map_table_unc_err_cnt),
[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_data_cor_err_cnt),
[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_data_unc_err_cnt),
[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_hdr_cor_err_cnt),
[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
CNTR_NORMAL,
access_rx_rcv_hdr_unc_err_cnt),
[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
CNTR_NORMAL,
access_rx_dc_intf_parity_err_cnt),
[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
CNTR_NORMAL,
access_rx_dma_csr_cor_err_cnt),
/* SendPioErrStatus */
[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
CNTR_NORMAL,
access_pio_pec_sop_head_parity_err_cnt),
[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
CNTR_NORMAL,
access_pio_pcc_sop_head_parity_err_cnt),
[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
0, 0, CNTR_NORMAL,
access_pio_last_returned_cnt_parity_err_cnt),
[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
0, CNTR_NORMAL,
access_pio_current_free_cnt_parity_err_cnt),
[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
CNTR_NORMAL,
access_pio_reserved_31_err_cnt),
[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
CNTR_NORMAL,
access_pio_reserved_30_err_cnt),
[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
CNTR_NORMAL,
access_pio_ppmc_sop_len_err_cnt),
[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
CNTR_NORMAL,
access_pio_ppmc_bqc_mem_parity_err_cnt),
[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
CNTR_NORMAL,
access_pio_vl_fifo_parity_err_cnt),
[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
CNTR_NORMAL,
access_pio_vlf_sop_parity_err_cnt),
[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
CNTR_NORMAL,
access_pio_vlf_v1_len_parity_err_cnt),
[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
CNTR_NORMAL,
access_pio_block_qw_count_parity_err_cnt),
[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
CNTR_NORMAL,
access_pio_write_qw_valid_parity_err_cnt),
[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
CNTR_NORMAL,
access_pio_state_machine_err_cnt),
[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
CNTR_NORMAL,
access_pio_write_data_parity_err_cnt),
[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
CNTR_NORMAL,
access_pio_host_addr_mem_cor_err_cnt),
[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
CNTR_NORMAL,
access_pio_host_addr_mem_unc_err_cnt),
[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
CNTR_NORMAL,
access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
CNTR_NORMAL,
access_pio_init_sm_in_err_cnt),
[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
CNTR_NORMAL,
access_pio_ppmc_pbl_fifo_err_cnt),
[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
0, CNTR_NORMAL,
access_pio_credit_ret_fifo_parity_err_cnt),
[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
CNTR_NORMAL,
access_pio_v1_len_mem_bank1_cor_err_cnt),
[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
CNTR_NORMAL,
access_pio_v1_len_mem_bank0_cor_err_cnt),
[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
CNTR_NORMAL,
access_pio_v1_len_mem_bank1_unc_err_cnt),
[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
CNTR_NORMAL,
access_pio_v1_len_mem_bank0_unc_err_cnt),
[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
CNTR_NORMAL,
access_pio_sm_pkt_reset_parity_err_cnt),
[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
CNTR_NORMAL,
access_pio_pkt_evict_fifo_parity_err_cnt),
[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
"PioSbrdctrlCrrelFifoParityErr", 0, 0,
CNTR_NORMAL,
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
CNTR_NORMAL,
access_pio_sbrdctl_crrel_parity_err_cnt),
[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
CNTR_NORMAL,
access_pio_pec_fifo_parity_err_cnt),
[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
CNTR_NORMAL,
access_pio_pcc_fifo_parity_err_cnt),
[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
CNTR_NORMAL,
access_pio_sb_mem_fifo1_err_cnt),
[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
CNTR_NORMAL,
access_pio_sb_mem_fifo0_err_cnt),
[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
CNTR_NORMAL,
access_pio_csr_parity_err_cnt),
[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
CNTR_NORMAL,
access_pio_write_addr_parity_err_cnt),
[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
CNTR_NORMAL,
access_pio_write_bad_ctxt_err_cnt),
/* SendDmaErrStatus */
[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
0, CNTR_NORMAL,
access_sdma_pcie_req_tracking_cor_err_cnt),
[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
0, CNTR_NORMAL,
access_sdma_pcie_req_tracking_unc_err_cnt),
[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
CNTR_NORMAL,
access_sdma_csr_parity_err_cnt),
[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
CNTR_NORMAL,
access_sdma_rpy_tag_err_cnt),
/* SendEgressErrStatus */
[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
CNTR_NORMAL,
access_tx_read_pio_memory_csr_unc_err_cnt),
[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
0, CNTR_NORMAL,
access_tx_read_sdma_memory_csr_err_cnt),
[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
CNTR_NORMAL,
access_tx_egress_fifo_cor_err_cnt),
[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
CNTR_NORMAL,
access_tx_read_pio_memory_cor_err_cnt),
[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
CNTR_NORMAL,
access_tx_read_sdma_memory_cor_err_cnt),
[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
CNTR_NORMAL,
access_tx_sb_hdr_cor_err_cnt),
[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
CNTR_NORMAL,
access_tx_credit_overrun_err_cnt),
[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo8_cor_err_cnt),
[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo7_cor_err_cnt),
[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo6_cor_err_cnt),
[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo5_cor_err_cnt),
[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo4_cor_err_cnt),
[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo3_cor_err_cnt),
[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo2_cor_err_cnt),
[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo1_cor_err_cnt),
[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_fifo0_cor_err_cnt),
[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
CNTR_NORMAL,
access_tx_credit_return_vl_err_cnt),
[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
CNTR_NORMAL,
access_tx_hcrc_insertion_err_cnt),
[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
CNTR_NORMAL,
access_tx_egress_fifo_unc_err_cnt),
[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
CNTR_NORMAL,
access_tx_read_pio_memory_unc_err_cnt),
[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
CNTR_NORMAL,
access_tx_read_sdma_memory_unc_err_cnt),
[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
CNTR_NORMAL,
access_tx_sb_hdr_unc_err_cnt),
[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
CNTR_NORMAL,
access_tx_credit_return_partiy_err_cnt),
[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo8_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo7_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo6_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo5_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo4_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo3_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo2_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo1_unc_or_parity_err_cnt),
[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
0, 0, CNTR_NORMAL,
access_tx_launch_fifo0_unc_or_parity_err_cnt),
[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma15_disallowed_packet_err_cnt),
[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma14_disallowed_packet_err_cnt),
[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma13_disallowed_packet_err_cnt),
[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma12_disallowed_packet_err_cnt),
[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma11_disallowed_packet_err_cnt),
[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma10_disallowed_packet_err_cnt),
[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma9_disallowed_packet_err_cnt),
[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma8_disallowed_packet_err_cnt),
[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma7_disallowed_packet_err_cnt),
[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma6_disallowed_packet_err_cnt),
[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma5_disallowed_packet_err_cnt),
[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma4_disallowed_packet_err_cnt),
[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma3_disallowed_packet_err_cnt),
[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma2_disallowed_packet_err_cnt),
[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma1_disallowed_packet_err_cnt),
[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
0, 0, CNTR_NORMAL,
access_tx_sdma0_disallowed_packet_err_cnt),
[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
CNTR_NORMAL,
access_tx_config_parity_err_cnt),
[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
CNTR_NORMAL,
access_tx_sbrd_ctl_csr_parity_err_cnt),
[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
CNTR_NORMAL,
access_tx_launch_csr_parity_err_cnt),
[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
CNTR_NORMAL,
access_tx_illegal_vl_err_cnt),
[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
"TxSbrdCtlStateMachineParityErr", 0, 0,
CNTR_NORMAL,
access_tx_sbrd_ctl_state_machine_parity_err_cnt),
[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
CNTR_NORMAL,
access_egress_reserved_10_err_cnt),
[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
CNTR_NORMAL,
access_egress_reserved_9_err_cnt),
[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
0, 0, CNTR_NORMAL,
access_tx_sdma_launch_intf_parity_err_cnt),
[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
CNTR_NORMAL,
access_tx_pio_launch_intf_parity_err_cnt),
[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
CNTR_NORMAL,
access_egress_reserved_6_err_cnt),
[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
CNTR_NORMAL,
access_tx_incorrect_link_state_err_cnt),
[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
CNTR_NORMAL,
access_tx_linkdown_err_cnt),
[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
"EgressFifoUnderrunOrParityErr", 0, 0,
CNTR_NORMAL,
access_tx_egress_fifi_underrun_or_parity_err_cnt),
[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
CNTR_NORMAL,
access_egress_reserved_2_err_cnt),
[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
CNTR_NORMAL,
access_tx_pkt_integrity_mem_unc_err_cnt),
[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
CNTR_NORMAL,
access_tx_pkt_integrity_mem_cor_err_cnt),
/* SendErrStatus */
[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
CNTR_NORMAL,
access_send_csr_write_bad_addr_err_cnt),
[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
CNTR_NORMAL,
access_send_csr_read_bad_addr_err_cnt),
[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
CNTR_NORMAL,
access_send_csr_parity_cnt),
/* SendCtxtErrStatus */
[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
CNTR_NORMAL,
access_pio_write_out_of_bounds_err_cnt),
[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
CNTR_NORMAL,
access_pio_write_overflow_err_cnt),
[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
0, 0, CNTR_NORMAL,
access_pio_write_crosses_boundary_err_cnt),
[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
CNTR_NORMAL,
access_pio_disallowed_packet_err_cnt),
[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
CNTR_NORMAL,
access_pio_inconsistent_sop_err_cnt),
/* SendDmaEngErrStatus */
[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
0, 0, CNTR_NORMAL,
access_sdma_header_request_fifo_cor_err_cnt),
[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
CNTR_NORMAL,
access_sdma_header_storage_cor_err_cnt),
[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
CNTR_NORMAL,
access_sdma_packet_tracking_cor_err_cnt),
[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
CNTR_NORMAL,
access_sdma_assembly_cor_err_cnt),
[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
CNTR_NORMAL,
access_sdma_desc_table_cor_err_cnt),
[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
0, 0, CNTR_NORMAL,
access_sdma_header_request_fifo_unc_err_cnt),
[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
CNTR_NORMAL,
access_sdma_header_storage_unc_err_cnt),
[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
CNTR_NORMAL,
access_sdma_packet_tracking_unc_err_cnt),
[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
CNTR_NORMAL,
access_sdma_assembly_unc_err_cnt),
[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
CNTR_NORMAL,
access_sdma_desc_table_unc_err_cnt),
[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
CNTR_NORMAL,
access_sdma_timeout_err_cnt),
[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
CNTR_NORMAL,
access_sdma_header_length_err_cnt),
[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
CNTR_NORMAL,
access_sdma_header_address_err_cnt),
[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
CNTR_NORMAL,
access_sdma_header_select_err_cnt),
[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
CNTR_NORMAL,
access_sdma_reserved_9_err_cnt),
[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
CNTR_NORMAL,
access_sdma_packet_desc_overflow_err_cnt),
[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
CNTR_NORMAL,
access_sdma_length_mismatch_err_cnt),
[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
CNTR_NORMAL,
access_sdma_halt_err_cnt),
[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
CNTR_NORMAL,
access_sdma_mem_read_err_cnt),
[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
CNTR_NORMAL,
access_sdma_first_desc_err_cnt),
[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
CNTR_NORMAL,
access_sdma_tail_out_of_bounds_err_cnt),
[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
CNTR_NORMAL,
access_sdma_too_long_err_cnt),
[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
CNTR_NORMAL,
access_sdma_gen_mismatch_err_cnt),
[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
CNTR_NORMAL,
access_sdma_wrong_dw_err_cnt),
};
static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
CNTR_NORMAL),
[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
CNTR_NORMAL),
[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
CNTR_NORMAL),
[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
CNTR_NORMAL),
[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
CNTR_NORMAL),
[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
CNTR_NORMAL),
[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
CNTR_NORMAL),
[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
CNTR_SYNTH | CNTR_VL),
[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
CNTR_SYNTH | CNTR_VL),
[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
CNTR_SYNTH | CNTR_VL),
[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
access_sw_link_dn_cnt),
[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
access_sw_link_up_cnt),
[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
access_sw_unknown_frame_cnt),
[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
access_sw_xmit_discards),
[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
access_sw_xmit_discards),
[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
access_xmit_constraint_errs),
[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
access_rcv_constraint_errs),
[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
access_sw_cpu_rc_acks),
[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
access_sw_cpu_rc_qacks),
[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
access_sw_cpu_rc_delayed_comp),
[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
};
/* ======================================================================== */
/* return true if this is chip revision revision a */
int is_ax(struct hfi1_devdata *dd)
{
u8 chip_rev_minor =
dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
& CCE_REVISION_CHIP_REV_MINOR_MASK;
return (chip_rev_minor & 0xf0) == 0;
}
/* return true if this is chip revision revision b */
int is_bx(struct hfi1_devdata *dd)
{
u8 chip_rev_minor =
dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
& CCE_REVISION_CHIP_REV_MINOR_MASK;
return (chip_rev_minor & 0xF0) == 0x10;
}
/*
* Append string s to buffer buf. Arguments curp and len are the current
* position and remaining length, respectively.
*
* return 0 on success, 1 on out of room
*/
static int append_str(char *buf, char **curp, int *lenp, const char *s)
{
char *p = *curp;
int len = *lenp;
int result = 0; /* success */
char c;
/* add a comma, if first in the buffer */
if (p != buf) {
if (len == 0) {
result = 1; /* out of room */
goto done;
}
*p++ = ',';
len--;
}
/* copy the string */
while ((c = *s++) != 0) {
if (len == 0) {
result = 1; /* out of room */
goto done;
}
*p++ = c;
len--;
}
done:
/* write return values */
*curp = p;
*lenp = len;
return result;
}
/*
* Using the given flag table, print a comma separated string into
* the buffer. End in '*' if the buffer is too short.
*/
static char *flag_string(char *buf, int buf_len, u64 flags,
struct flag_table *table, int table_size)
{
char extra[32];
char *p = buf;
int len = buf_len;
int no_room = 0;
int i;
/* make sure there is at least 2 so we can form "*" */
if (len < 2)
return "";
len--; /* leave room for a nul */
for (i = 0; i < table_size; i++) {
if (flags & table[i].flag) {
no_room = append_str(buf, &p, &len, table[i].str);
if (no_room)
break;
flags &= ~table[i].flag;
}
}
/* any undocumented bits left? */
if (!no_room && flags) {
snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
no_room = append_str(buf, &p, &len, extra);
}
/* add * if ran out of room */
if (no_room) {
/* may need to back up to add space for a '*' */
if (len == 0)
--p;
*p++ = '*';
}
/* add final nul - space already allocated above */
*p = 0;
return buf;
}
/* first 8 CCE error interrupt source names */
static const char * const cce_misc_names[] = {
"CceErrInt", /* 0 */
"RxeErrInt", /* 1 */
"MiscErrInt", /* 2 */
"Reserved3", /* 3 */
"PioErrInt", /* 4 */
"SDmaErrInt", /* 5 */
"EgressErrInt", /* 6 */
"TxeErrInt" /* 7 */
};
/*
* Return the miscellaneous error interrupt name.
*/
static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
{
if (source < ARRAY_SIZE(cce_misc_names))
strncpy(buf, cce_misc_names[source], bsize);
else
snprintf(buf, bsize, "Reserved%u",
source + IS_GENERAL_ERR_START);
return buf;
}
/*
* Return the SDMA engine error interrupt name.
*/
static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "SDmaEngErrInt%u", source);
return buf;
}
/*
* Return the send context error interrupt name.
*/
static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "SendCtxtErrInt%u", source);
return buf;
}
static const char * const various_names[] = {
"PbcInt",
"GpioAssertInt",
"Qsfp1Int",
"Qsfp2Int",
"TCritInt"
};
/*
* Return the various interrupt name.
*/
static char *is_various_name(char *buf, size_t bsize, unsigned int source)
{
if (source < ARRAY_SIZE(various_names))
strncpy(buf, various_names[source], bsize);
else
snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
return buf;
}
/*
* Return the DC interrupt name.
*/
static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
{
static const char * const dc_int_names[] = {
"common",
"lcb",
"8051",
"lbm" /* local block merge */
};
if (source < ARRAY_SIZE(dc_int_names))
snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
else
snprintf(buf, bsize, "DCInt%u", source);
return buf;
}
static const char * const sdma_int_names[] = {
"SDmaInt",
"SdmaIdleInt",
"SdmaProgressInt",
};
/*
* Return the SDMA engine interrupt name.
*/
static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
{
/* what interrupt */
unsigned int what = source / TXE_NUM_SDMA_ENGINES;
/* which engine */
unsigned int which = source % TXE_NUM_SDMA_ENGINES;
if (likely(what < 3))
snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
else
snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
return buf;
}
/*
* Return the receive available interrupt name.
*/
static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "RcvAvailInt%u", source);
return buf;
}
/*
* Return the receive urgent interrupt name.
*/
static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "RcvUrgentInt%u", source);
return buf;
}
/*
* Return the send credit interrupt name.
*/
static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "SendCreditInt%u", source);
return buf;
}
/*
* Return the reserved interrupt name.
*/
static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
{
snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
return buf;
}
static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
cce_err_status_flags,
ARRAY_SIZE(cce_err_status_flags));
}
static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
rxe_err_status_flags,
ARRAY_SIZE(rxe_err_status_flags));
}
static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, misc_err_status_flags,
ARRAY_SIZE(misc_err_status_flags));
}
static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
pio_err_status_flags,
ARRAY_SIZE(pio_err_status_flags));
}
static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
sdma_err_status_flags,
ARRAY_SIZE(sdma_err_status_flags));
}
static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
egress_err_status_flags,
ARRAY_SIZE(egress_err_status_flags));
}
static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
egress_err_info_flags,
ARRAY_SIZE(egress_err_info_flags));
}
static char *send_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
send_err_status_flags,
ARRAY_SIZE(send_err_status_flags));
}
static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
/*
* For most these errors, there is nothing that can be done except
* report or record it.
*/
dd_dev_info(dd, "CCE Error: %s\n",
cce_err_status_string(buf, sizeof(buf), reg));
if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
/* this error requires a manual drop into SPC freeze mode */
/* then a fix up */
start_freeze_handling(dd->pport, FREEZE_SELF);
}
for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i)) {
incr_cntr64(&dd->cce_err_status_cnt[i]);
/* maintain a counter over all cce_err_status errors */
incr_cntr64(&dd->sw_cce_err_status_aggregate);
}
}
}
/*
* Check counters for receive errors that do not have an interrupt
* associated with them.
*/
#define RCVERR_CHECK_TIME 10
static void update_rcverr_timer(unsigned long opaque)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
struct hfi1_pportdata *ppd = dd->pport;
u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
set_link_down_reason(
ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
queue_work(ppd->link_wq, &ppd->link_bounce_work);
}
dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
}
static int init_rcverr(struct hfi1_devdata *dd)
{
setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
/* Assume the hardware counter has been reset */
dd->rcv_ovfl_cnt = 0;
return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
}
static void free_rcverr(struct hfi1_devdata *dd)
{
if (dd->rcverr_timer.data)
del_timer_sync(&dd->rcverr_timer);
dd->rcverr_timer.data = 0;
}
static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
dd_dev_info(dd, "Receive Error: %s\n",
rxe_err_status_string(buf, sizeof(buf), reg));
if (reg & ALL_RXE_FREEZE_ERR) {
int flags = 0;
/*
* Freeze mode recovery is disabled for the errors
* in RXE_FREEZE_ABORT_MASK
*/
if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
flags = FREEZE_ABORT;
start_freeze_handling(dd->pport, flags);
}
for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->rcv_err_status_cnt[i]);
}
}
static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
dd_dev_info(dd, "Misc Error: %s",
misc_err_status_string(buf, sizeof(buf), reg));
for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->misc_err_status_cnt[i]);
}
}
static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
dd_dev_info(dd, "PIO Error: %s\n",
pio_err_status_string(buf, sizeof(buf), reg));
if (reg & ALL_PIO_FREEZE_ERR)
start_freeze_handling(dd->pport, 0);
for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->send_pio_err_status_cnt[i]);
}
}
static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
dd_dev_info(dd, "SDMA Error: %s\n",
sdma_err_status_string(buf, sizeof(buf), reg));
if (reg & ALL_SDMA_FREEZE_ERR)
start_freeze_handling(dd->pport, 0);
for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->send_dma_err_status_cnt[i]);
}
}
static inline void __count_port_discards(struct hfi1_pportdata *ppd)
{
incr_cntr64(&ppd->port_xmit_discards);
}
static void count_port_inactive(struct hfi1_devdata *dd)
{
__count_port_discards(dd->pport);
}
/*
* We have had a "disallowed packet" error during egress. Determine the
* integrity check which failed, and update relevant error counter, etc.
*
* Note that the SEND_EGRESS_ERR_INFO register has only a single
* bit of state per integrity check, and so we can miss the reason for an
* egress error if more than one packet fails the same integrity check
* since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
*/
static void handle_send_egress_err_info(struct hfi1_devdata *dd,
int vl)
{
struct hfi1_pportdata *ppd = dd->pport;
u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
char buf[96];
/* clear down all observed info as quickly as possible after read */
write_csr(dd, SEND_EGRESS_ERR_INFO, info);
dd_dev_info(dd,
"Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
info, egress_err_info_string(buf, sizeof(buf), info), src);
/* Eventually add other counters for each bit */
if (info & PORT_DISCARD_EGRESS_ERRS) {
int weight, i;
/*
* Count all applicable bits as individual errors and
* attribute them to the packet that triggered this handler.
* This may not be completely accurate due to limitations
* on the available hardware error information. There is
* a single information register and any number of error
* packets may have occurred and contributed to it before
* this routine is called. This means that:
* a) If multiple packets with the same error occur before
* this routine is called, earlier packets are missed.
* There is only a single bit for each error type.
* b) Errors may not be attributed to the correct VL.
* The driver is attributing all bits in the info register
* to the packet that triggered this call, but bits
* could be an accumulation of different packets with
* different VLs.
* c) A single error packet may have multiple counts attached
* to it. There is no way for the driver to know if
* multiple bits set in the info register are due to a
* single packet or multiple packets. The driver assumes
* multiple packets.
*/
weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
for (i = 0; i < weight; i++) {
__count_port_discards(ppd);
if (vl >= 0 && vl < TXE_NUM_DATA_VL)
incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
else if (vl == 15)
incr_cntr64(&ppd->port_xmit_discards_vl
[C_VL_15]);
}
}
}
/*
* Input value is a bit position within the SEND_EGRESS_ERR_STATUS
* register. Does it represent a 'port inactive' error?
*/
static inline int port_inactive_err(u64 posn)
{
return (posn >= SEES(TX_LINKDOWN) &&
posn <= SEES(TX_INCORRECT_LINK_STATE));
}
/*
* Input value is a bit position within the SEND_EGRESS_ERR_STATUS
* register. Does it represent a 'disallowed packet' error?
*/
static inline int disallowed_pkt_err(int posn)
{
return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
}
/*
* Input value is a bit position of one of the SDMA engine disallowed
* packet errors. Return which engine. Use of this must be guarded by
* disallowed_pkt_err().
*/
static inline int disallowed_pkt_engine(int posn)
{
return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
}
/*
* Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
* be done.
*/
static int engine_to_vl(struct hfi1_devdata *dd, int engine)
{
struct sdma_vl_map *m;
int vl;
/* range check */
if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
return -1;
rcu_read_lock();
m = rcu_dereference(dd->sdma_map);
vl = m->engine_to_vl[engine];
rcu_read_unlock();
return vl;
}
/*
* Translate the send context (sofware index) into a VL. Return -1 if the
* translation cannot be done.
*/
static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
{
struct send_context_info *sci;
struct send_context *sc;
int i;
sci = &dd->send_contexts[sw_index];
/* there is no information for user (PSM) and ack contexts */
if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
return -1;
sc = sci->sc;
if (!sc)
return -1;
if (dd->vld[15].sc == sc)
return 15;
for (i = 0; i < num_vls; i++)
if (dd->vld[i].sc == sc)
return i;
return -1;
}
static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
u64 reg_copy = reg, handled = 0;
char buf[96];
int i = 0;
if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
start_freeze_handling(dd->pport, 0);
else if (is_ax(dd) &&
(reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
(dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
start_freeze_handling(dd->pport, 0);
while (reg_copy) {
int posn = fls64(reg_copy);
/* fls64() returns a 1-based offset, we want it zero based */
int shift = posn - 1;
u64 mask = 1ULL << shift;
if (port_inactive_err(shift)) {
count_port_inactive(dd);
handled |= mask;
} else if (disallowed_pkt_err(shift)) {
int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
handle_send_egress_err_info(dd, vl);
handled |= mask;
}
reg_copy &= ~mask;
}
reg &= ~handled;
if (reg)
dd_dev_info(dd, "Egress Error: %s\n",
egress_err_status_string(buf, sizeof(buf), reg));
for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->send_egress_err_status_cnt[i]);
}
}
static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
int i = 0;
dd_dev_info(dd, "Send Error: %s\n",
send_err_status_string(buf, sizeof(buf), reg));
for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
if (reg & (1ull << i))
incr_cntr64(&dd->send_err_status_cnt[i]);
}
}
/*
* The maximum number of times the error clear down will loop before
* blocking a repeating error. This value is arbitrary.
*/
#define MAX_CLEAR_COUNT 20
/*
* Clear and handle an error register. All error interrupts are funneled
* through here to have a central location to correctly handle single-
* or multi-shot errors.
*
* For non per-context registers, call this routine with a context value
* of 0 so the per-context offset is zero.
*
* If the handler loops too many times, assume that something is wrong
* and can't be fixed, so mask the error bits.
*/
static void interrupt_clear_down(struct hfi1_devdata *dd,
u32 context,
const struct err_reg_info *eri)
{
u64 reg;
u32 count;
/* read in a loop until no more errors are seen */
count = 0;
while (1) {
reg = read_kctxt_csr(dd, context, eri->status);
if (reg == 0)
break;
write_kctxt_csr(dd, context, eri->clear, reg);
if (likely(eri->handler))
eri->handler(dd, context, reg);
count++;
if (count > MAX_CLEAR_COUNT) {
u64 mask;
dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
eri->desc, reg);
/*
* Read-modify-write so any other masked bits
* remain masked.
*/
mask = read_kctxt_csr(dd, context, eri->mask);
mask &= ~reg;
write_kctxt_csr(dd, context, eri->mask, mask);
break;
}
}
}
/*
* CCE block "misc" interrupt. Source is < 16.
*/
static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
{
const struct err_reg_info *eri = &misc_errs[source];
if (eri->handler) {
interrupt_clear_down(dd, 0, eri);
} else {
dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
source);
}
}
static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags,
sc_err_status_flags,
ARRAY_SIZE(sc_err_status_flags));
}
/*
* Send context error interrupt. Source (hw_context) is < 160.
*
* All send context errors cause the send context to halt. The normal
* clear-down mechanism cannot be used because we cannot clear the
* error bits until several other long-running items are done first.
* This is OK because with the context halted, nothing else is going
* to happen on it anyway.
*/
static void is_sendctxt_err_int(struct hfi1_devdata *dd,
unsigned int hw_context)
{
struct send_context_info *sci;
struct send_context *sc;
char flags[96];
u64 status;
u32 sw_index;
int i = 0;
sw_index = dd->hw_to_sw[hw_context];
if (sw_index >= dd->num_send_contexts) {
dd_dev_err(dd,
"out of range sw index %u for send context %u\n",
sw_index, hw_context);
return;
}
sci = &dd->send_contexts[sw_index];
sc = sci->sc;
if (!sc) {
dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
sw_index, hw_context);
return;
}
/* tell the software that a halt has begun */
sc_stop(sc, SCF_HALTED);
status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
send_context_err_status_string(flags, sizeof(flags),
status));
if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
/*
* Automatically restart halted kernel contexts out of interrupt
* context. User contexts must ask the driver to restart the context.
*/
if (sc->type != SC_USER)
queue_work(dd->pport->hfi1_wq, &sc->halt_work);
/*
* Update the counters for the corresponding status bits.
* Note that these particular counters are aggregated over all
* 160 contexts.
*/
for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
if (status & (1ull << i))
incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
}
}
static void handle_sdma_eng_err(struct hfi1_devdata *dd,
unsigned int source, u64 status)
{
struct sdma_engine *sde;
int i = 0;
sde = &dd->per_sdma[source];
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
slashstrip(__FILE__), __LINE__, __func__);
dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
sde->this_idx, source, (unsigned long long)status);
#endif
sde->err_cnt++;
sdma_engine_error(sde, status);
/*
* Update the counters for the corresponding status bits.
* Note that these particular counters are aggregated over
* all 16 DMA engines.
*/
for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
if (status & (1ull << i))
incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
}
}
/*
* CCE block SDMA error interrupt. Source is < 16.
*/
static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
{
#ifdef CONFIG_SDMA_VERBOSITY
struct sdma_engine *sde = &dd->per_sdma[source];
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
slashstrip(__FILE__), __LINE__, __func__);
dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
source);
sdma_dumpstate(sde);
#endif
interrupt_clear_down(dd, source, &sdma_eng_err);
}
/*
* CCE block "various" interrupt. Source is < 8.
*/
static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
{
const struct err_reg_info *eri = &various_err[source];
/*
* TCritInt cannot go through interrupt_clear_down()
* because it is not a second tier interrupt. The handler
* should be called directly.
*/
if (source == TCRIT_INT_SOURCE)
handle_temp_err(dd);
else if (eri->handler)
interrupt_clear_down(dd, 0, eri);
else
dd_dev_info(dd,
"%s: Unimplemented/reserved interrupt %d\n",
__func__, source);
}
static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
{
/* src_ctx is always zero */
struct hfi1_pportdata *ppd = dd->pport;
unsigned long flags;
u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
if (reg & QSFP_HFI0_MODPRST_N) {
if (!qsfp_mod_present(ppd)) {
dd_dev_info(dd, "%s: QSFP module removed\n",
__func__);
ppd->driver_link_ready = 0;
/*
* Cable removed, reset all our information about the
* cache and cable capabilities
*/
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
/*
* We don't set cache_refresh_required here as we expect
* an interrupt when a cable is inserted
*/
ppd->qsfp_info.cache_valid = 0;
ppd->qsfp_info.reset_needed = 0;
ppd->qsfp_info.limiting_active = 0;
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
flags);
/* Invert the ModPresent pin now to detect plug-in */
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
ASIC_QSFP1_INVERT, qsfp_int_mgmt);
if ((ppd->offline_disabled_reason >
HFI1_ODR_MASK(
OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
(ppd->offline_disabled_reason ==
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
ppd->offline_disabled_reason =
HFI1_ODR_MASK(
OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
if (ppd->host_link_state == HLS_DN_POLL) {
/*
* The link is still in POLL. This means
* that the normal link down processing
* will not happen. We have to do it here
* before turning the DC off.
*/
queue_work(ppd->link_wq, &ppd->link_down_work);
}
} else {
dd_dev_info(dd, "%s: QSFP module inserted\n",
__func__);
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
ppd->qsfp_info.cache_valid = 0;
ppd->qsfp_info.cache_refresh_required = 1;
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
flags);
/*
* Stop inversion of ModPresent pin to detect
* removal of the cable
*/
qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
ASIC_QSFP1_INVERT, qsfp_int_mgmt);
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
}
}
if (reg & QSFP_HFI0_INT_N) {
dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
__func__);
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
ppd->qsfp_info.check_interrupt_flags = 1;
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
}
/* Schedule the QSFP work only if there is a cable attached. */
if (qsfp_mod_present(ppd))
queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
}
static int request_host_lcb_access(struct hfi1_devdata *dd)
{
int ret;
ret = do_8051_command(dd, HCMD_MISC,
(u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
LOAD_DATA_FIELD_ID_SHIFT, NULL);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd, "%s: command failed with error %d\n",
__func__, ret);
}
return ret == HCMD_SUCCESS ? 0 : -EBUSY;
}
static int request_8051_lcb_access(struct hfi1_devdata *dd)
{
int ret;
ret = do_8051_command(dd, HCMD_MISC,
(u64)HCMD_MISC_GRANT_LCB_ACCESS <<
LOAD_DATA_FIELD_ID_SHIFT, NULL);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd, "%s: command failed with error %d\n",
__func__, ret);
}
return ret == HCMD_SUCCESS ? 0 : -EBUSY;
}
/*
* Set the LCB selector - allow host access. The DCC selector always
* points to the host.
*/
static inline void set_host_lcb_access(struct hfi1_devdata *dd)
{
write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
}
/*
* Clear the LCB selector - allow 8051 access. The DCC selector always
* points to the host.
*/
static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
{
write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
}
/*
* Acquire LCB access from the 8051. If the host already has access,
* just increment a counter. Otherwise, inform the 8051 that the
* host is taking access.
*
* Returns:
* 0 on success
* -EBUSY if the 8051 has control and cannot be disturbed
* -errno if unable to acquire access from the 8051
*/
int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
{
struct hfi1_pportdata *ppd = dd->pport;
int ret = 0;
/*
* Use the host link state lock so the operation of this routine
* { link state check, selector change, count increment } can occur
* as a unit against a link state change. Otherwise there is a
* race between the state change and the count increment.
*/
if (sleep_ok) {
mutex_lock(&ppd->hls_lock);
} else {
while (!mutex_trylock(&ppd->hls_lock))
udelay(1);
}
/* this access is valid only when the link is up */
if (ppd->host_link_state & HLS_DOWN) {
dd_dev_info(dd, "%s: link state %s not up\n",
__func__, link_state_name(ppd->host_link_state));
ret = -EBUSY;
goto done;
}
if (dd->lcb_access_count == 0) {
ret = request_host_lcb_access(dd);
if (ret) {
dd_dev_err(dd,
"%s: unable to acquire LCB access, err %d\n",
__func__, ret);
goto done;
}
set_host_lcb_access(dd);
}
dd->lcb_access_count++;
done:
mutex_unlock(&ppd->hls_lock);
return ret;
}
/*
* Release LCB access by decrementing the use count. If the count is moving
* from 1 to 0, inform 8051 that it has control back.
*
* Returns:
* 0 on success
* -errno if unable to release access to the 8051
*/
int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
{
int ret = 0;
/*
* Use the host link state lock because the acquire needed it.
* Here, we only need to keep { selector change, count decrement }
* as a unit.
*/
if (sleep_ok) {
mutex_lock(&dd->pport->hls_lock);
} else {
while (!mutex_trylock(&dd->pport->hls_lock))
udelay(1);
}
if (dd->lcb_access_count == 0) {
dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
__func__);
goto done;
}
if (dd->lcb_access_count == 1) {
set_8051_lcb_access(dd);
ret = request_8051_lcb_access(dd);
if (ret) {
dd_dev_err(dd,
"%s: unable to release LCB access, err %d\n",
__func__, ret);
/* restore host access if the grant didn't work */
set_host_lcb_access(dd);
goto done;
}
}
dd->lcb_access_count--;
done:
mutex_unlock(&dd->pport->hls_lock);
return ret;
}
/*
* Initialize LCB access variables and state. Called during driver load,
* after most of the initialization is finished.
*
* The DC default is LCB access on for the host. The driver defaults to
* leaving access to the 8051. Assign access now - this constrains the call
* to this routine to be after all LCB set-up is done. In particular, after
* hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
*/
static void init_lcb_access(struct hfi1_devdata *dd)
{
dd->lcb_access_count = 0;
}
/*
* Write a response back to a 8051 request.
*/
static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
{
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
(u64)return_code <<
DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
(u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
}
/*
* Handle host requests from the 8051.
*/
static void handle_8051_request(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u64 reg;
u16 data = 0;
u8 type;
reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
return; /* no request */
/* zero out COMPLETED so the response is seen */
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
/* extract request details */
type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
switch (type) {
case HREQ_LOAD_CONFIG:
case HREQ_SAVE_CONFIG:
case HREQ_READ_CONFIG:
case HREQ_SET_TX_EQ_ABS:
case HREQ_SET_TX_EQ_REL:
case HREQ_ENABLE:
dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
type);
hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
break;
case HREQ_CONFIG_DONE:
hreq_response(dd, HREQ_SUCCESS, 0);
break;
case HREQ_INTERFACE_TEST:
hreq_response(dd, HREQ_SUCCESS, data);
break;
default:
dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
break;
}
}
/*
* Set up allocation unit vaulue.
*/
void set_up_vau(struct hfi1_devdata *dd, u8 vau)
{
u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
/* do not modify other values in the register */
reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
}
/*
* Set up initial VL15 credits of the remote. Assumes the rest of
* the CM credit registers are zero from a previous global or credit reset.
* Shared limit for VL15 will always be 0.
*/
void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
{
u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
/* set initial values for total and shared credit limit */
reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
/*
* Set total limit to be equal to VL15 credits.
* Leave shared limit at 0.
*/
reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
<< SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
}
/*
* Zero all credit details from the previous connection and
* reset the CM manager's internal counters.
*/
void reset_link_credits(struct hfi1_devdata *dd)
{
int i;
/* remove all previous VL credit limits */
for (i = 0; i < TXE_NUM_DATA_VL; i++)
write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
write_csr(dd, SEND_CM_CREDIT_VL15, 0);
write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
/* reset the CM block */
pio_send_control(dd, PSC_CM_RESET);
/* reset cached value */
dd->vl15buf_cached = 0;
}
/* convert a vCU to a CU */
static u32 vcu_to_cu(u8 vcu)
{
return 1 << vcu;
}
/* convert a CU to a vCU */
static u8 cu_to_vcu(u32 cu)
{
return ilog2(cu);
}
/* convert a vAU to an AU */
static u32 vau_to_au(u8 vau)
{
return 8 * (1 << vau);
}
static void set_linkup_defaults(struct hfi1_pportdata *ppd)
{
ppd->sm_trap_qp = 0x0;
ppd->sa_qp = 0x1;
}
/*
* Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
*/
static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
{
u64 reg;
/* clear lcb run: LCB_CFG_RUN.EN = 0 */
write_csr(dd, DC_LCB_CFG_RUN, 0);
/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
reg = read_csr(dd, DCC_CFG_RESET);
write_csr(dd, DCC_CFG_RESET, reg |
(1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
(1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
if (!abort) {
udelay(1); /* must hold for the longer of 16cclks or 20ns */
write_csr(dd, DCC_CFG_RESET, reg);
write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
}
}
/*
* This routine should be called after the link has been transitioned to
* OFFLINE (OFFLINE state has the side effect of putting the SerDes into
* reset).
*
* The expectation is that the caller of this routine would have taken
* care of properly transitioning the link into the correct state.
* NOTE: the caller needs to acquire the dd->dc8051_lock lock
* before calling this function.
*/
static void _dc_shutdown(struct hfi1_devdata *dd)
{
lockdep_assert_held(&dd->dc8051_lock);
if (dd->dc_shutdown)
return;
dd->dc_shutdown = 1;
/* Shutdown the LCB */
lcb_shutdown(dd, 1);
/*
* Going to OFFLINE would have causes the 8051 to put the
* SerDes into reset already. Just need to shut down the 8051,
* itself.
*/
write_csr(dd, DC_DC8051_CFG_RST, 0x1);
}
static void dc_shutdown(struct hfi1_devdata *dd)
{
mutex_lock(&dd->dc8051_lock);
_dc_shutdown(dd);
mutex_unlock(&dd->dc8051_lock);
}
/*
* Calling this after the DC has been brought out of reset should not
* do any damage.
* NOTE: the caller needs to acquire the dd->dc8051_lock lock
* before calling this function.
*/
static void _dc_start(struct hfi1_devdata *dd)
{
lockdep_assert_held(&dd->dc8051_lock);
if (!dd->dc_shutdown)
return;
/* Take the 8051 out of reset */
write_csr(dd, DC_DC8051_CFG_RST, 0ull);
/* Wait until 8051 is ready */
if (wait_fm_ready(dd, TIMEOUT_8051_START))
dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
__func__);
/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
write_csr(dd, DCC_CFG_RESET, 0x10);
/* lcb_shutdown() with abort=1 does not restore these */
write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
dd->dc_shutdown = 0;
}
static void dc_start(struct hfi1_devdata *dd)
{
mutex_lock(&dd->dc8051_lock);
_dc_start(dd);
mutex_unlock(&dd->dc8051_lock);
}
/*
* These LCB adjustments are for the Aurora SerDes core in the FPGA.
*/
static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
{
u64 rx_radr, tx_radr;
u32 version;
if (dd->icode != ICODE_FPGA_EMULATION)
return;
/*
* These LCB defaults on emulator _s are good, nothing to do here:
* LCB_CFG_TX_FIFOS_RADR
* LCB_CFG_RX_FIFOS_RADR
* LCB_CFG_LN_DCLK
* LCB_CFG_IGNORE_LOST_RCLK
*/
if (is_emulator_s(dd))
return;
/* else this is _p */
version = emulator_rev(dd);
if (!is_ax(dd))
version = 0x2d; /* all B0 use 0x2d or higher settings */
if (version <= 0x12) {
/* release 0x12 and below */
/*
* LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
* LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
* LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
*/
rx_radr =
0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
/*
* LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
* LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
*/
tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
} else if (version <= 0x18) {
/* release 0x13 up to 0x18 */
/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
rx_radr =
0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
} else if (version == 0x19) {
/* release 0x19 */
/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
rx_radr =
0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
| 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
} else if (version == 0x1a) {
/* release 0x1a */
/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
rx_radr =
0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
| 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
} else {
/* release 0x1b and higher */
/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
rx_radr =
0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
| 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
| 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
}
write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
}
/*
* Handle a SMA idle message
*
* This is a work-queue function outside of the interrupt.
*/
void handle_sma_message(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
sma_message_work);
struct hfi1_devdata *dd = ppd->dd;
u64 msg;
int ret;
/*
* msg is bytes 1-4 of the 40-bit idle message - the command code
* is stripped off
*/
ret = read_idle_sma(dd, &msg);
if (ret)
return;
dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
/*
* React to the SMA message. Byte[1] (0 for us) is the command.
*/
switch (msg & 0xff) {
case SMA_IDLE_ARM:
/*
* See OPAv1 table 9-14 - HFI and External Switch Ports Key
* State Transitions
*
* Only expected in INIT or ARMED, discard otherwise.
*/
if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
ppd->neighbor_normal = 1;
break;
case SMA_IDLE_ACTIVE:
/*
* See OPAv1 table 9-14 - HFI and External Switch Ports Key
* State Transitions
*
* Can activate the node. Discard otherwise.
*/
if (ppd->host_link_state == HLS_UP_ARMED &&
ppd->is_active_optimize_enabled) {
ppd->neighbor_normal = 1;
ret = set_link_state(ppd, HLS_UP_ACTIVE);
if (ret)
dd_dev_err(
dd,
"%s: received Active SMA idle message, couldn't set link to Active\n",
__func__);
}
break;
default:
dd_dev_err(dd,
"%s: received unexpected SMA idle message 0x%llx\n",
__func__, msg);
break;
}
}
static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
{
u64 rcvctrl;
unsigned long flags;
spin_lock_irqsave(&dd->rcvctrl_lock, flags);
rcvctrl = read_csr(dd, RCV_CTRL);
rcvctrl |= add;
rcvctrl &= ~clear;
write_csr(dd, RCV_CTRL, rcvctrl);
spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
}
static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
{
adjust_rcvctrl(dd, add, 0);
}
static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
{
adjust_rcvctrl(dd, 0, clear);
}
/*
* Called from all interrupt handlers to start handling an SPC freeze.
*/
void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
{
struct hfi1_devdata *dd = ppd->dd;
struct send_context *sc;
int i;
if (flags & FREEZE_SELF)
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
/* enter frozen mode */
dd->flags |= HFI1_FROZEN;
/* notify all SDMA engines that they are going into a freeze */
sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
/* do halt pre-handling on all enabled send contexts */
for (i = 0; i < dd->num_send_contexts; i++) {
sc = dd->send_contexts[i].sc;
if (sc && (sc->flags & SCF_ENABLED))
sc_stop(sc, SCF_FROZEN | SCF_HALTED);
}
/* Send context are frozen. Notify user space */
hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
if (flags & FREEZE_ABORT) {
dd_dev_err(dd,
"Aborted freeze recovery. Please REBOOT system\n");
return;
}
/* queue non-interrupt handler */
queue_work(ppd->hfi1_wq, &ppd->freeze_work);
}
/*
* Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
* depending on the "freeze" parameter.
*
* No need to return an error if it times out, our only option
* is to proceed anyway.
*/
static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
{
unsigned long timeout;
u64 reg;
timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
while (1) {
reg = read_csr(dd, CCE_STATUS);
if (freeze) {
/* waiting until all indicators are set */
if ((reg & ALL_FROZE) == ALL_FROZE)
return; /* all done */
} else {
/* waiting until all indicators are clear */
if ((reg & ALL_FROZE) == 0)
return; /* all done */
}
if (time_after(jiffies, timeout)) {
dd_dev_err(dd,
"Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
freeze ? "" : "un", reg & ALL_FROZE,
freeze ? ALL_FROZE : 0ull);
return;
}
usleep_range(80, 120);
}
}
/*
* Do all freeze handling for the RXE block.
*/
static void rxe_freeze(struct hfi1_devdata *dd)
{
int i;
struct hfi1_ctxtdata *rcd;
/* disable port */
clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
/* disable all receive contexts */
for (i = 0; i < dd->num_rcv_contexts; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
hfi1_rcd_put(rcd);
}
}
/*
* Unfreeze handling for the RXE block - kernel contexts only.
* This will also enable the port. User contexts will do unfreeze
* handling on a per-context basis as they call into the driver.
*
*/
static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
{
u32 rcvmask;
u16 i;
struct hfi1_ctxtdata *rcd;
/* enable all kernel contexts */
for (i = 0; i < dd->num_rcv_contexts; i++) {
rcd = hfi1_rcd_get_by_index(dd, i);
/* Ensure all non-user contexts(including vnic) are enabled */
if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
hfi1_rcd_put(rcd);
continue;
}
rcvmask = HFI1_RCVCTRL_CTXT_ENB;
/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
hfi1_rcvctrl(dd, rcvmask, rcd);
hfi1_rcd_put(rcd);
}
/* enable port */
add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
}
/*
* Non-interrupt SPC freeze handling.
*
* This is a work-queue function outside of the triggering interrupt.
*/
void handle_freeze(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
freeze_work);
struct hfi1_devdata *dd = ppd->dd;
/* wait for freeze indicators on all affected blocks */
wait_for_freeze_status(dd, 1);
/* SPC is now frozen */
/* do send PIO freeze steps */
pio_freeze(dd);
/* do send DMA freeze steps */
sdma_freeze(dd);
/* do send egress freeze steps - nothing to do */
/* do receive freeze steps */
rxe_freeze(dd);
/*
* Unfreeze the hardware - clear the freeze, wait for each
* block's frozen bit to clear, then clear the frozen flag.
*/
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
wait_for_freeze_status(dd, 0);
if (is_ax(dd)) {
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
wait_for_freeze_status(dd, 1);
write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
wait_for_freeze_status(dd, 0);
}
/* do send PIO unfreeze steps for kernel contexts */
pio_kernel_unfreeze(dd);
/* do send DMA unfreeze steps */
sdma_unfreeze(dd);
/* do send egress unfreeze steps - nothing to do */
/* do receive unfreeze steps for kernel contexts */
rxe_kernel_unfreeze(dd);
/*
* The unfreeze procedure touches global device registers when
* it disables and re-enables RXE. Mark the device unfrozen
* after all that is done so other parts of the driver waiting
* for the device to unfreeze don't do things out of order.
*
* The above implies that the meaning of HFI1_FROZEN flag is
* "Device has gone into freeze mode and freeze mode handling
* is still in progress."
*
* The flag will be removed when freeze mode processing has
* completed.
*/
dd->flags &= ~HFI1_FROZEN;
wake_up(&dd->event_queue);
/* no longer frozen */
}
/*
* Handle a link up interrupt from the 8051.
*
* This is a work-queue function outside of the interrupt.
*/
void handle_link_up(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
link_up_work);
struct hfi1_devdata *dd = ppd->dd;
set_link_state(ppd, HLS_UP_INIT);
/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
read_ltp_rtt(dd);
/*
* OPA specifies that certain counters are cleared on a transition
* to link up, so do that.
*/
clear_linkup_counters(dd);
/*
* And (re)set link up default values.
*/
set_linkup_defaults(ppd);
/*
* Set VL15 credits. Use cached value from verify cap interrupt.
* In case of quick linkup or simulator, vl15 value will be set by
* handle_linkup_change. VerifyCap interrupt handler will not be
* called in those scenarios.
*/
if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
set_up_vl15(dd, dd->vl15buf_cached);
/* enforce link speed enabled */
if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
/* oops - current speed is not enabled, bounce */
dd_dev_err(dd,
"Link speed active 0x%x is outside enabled 0x%x, downing link\n",
ppd->link_speed_active, ppd->link_speed_enabled);
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
OPA_LINKDOWN_REASON_SPEED_POLICY);
set_link_state(ppd, HLS_DN_OFFLINE);
start_link(ppd);
}
}
/*
* Several pieces of LNI information were cached for SMA in ppd.
* Reset these on link down
*/
static void reset_neighbor_info(struct hfi1_pportdata *ppd)
{
ppd->neighbor_guid = 0;
ppd->neighbor_port_number = 0;
ppd->neighbor_type = 0;
ppd->neighbor_fm_security = 0;
}
static const char * const link_down_reason_strs[] = {
[OPA_LINKDOWN_REASON_NONE] = "None",
[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
"Excessive buffer overrun",
[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
"Local media not installed",
[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
"End to end not installed",
[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
};
/* return the neighbor link down reason string */
static const char *link_down_reason_str(u8 reason)
{
const char *str = NULL;
if (reason < ARRAY_SIZE(link_down_reason_strs))
str = link_down_reason_strs[reason];
if (!str)
str = "(invalid)";
return str;
}
/*
* Handle a link down interrupt from the 8051.
*
* This is a work-queue function outside of the interrupt.
*/
void handle_link_down(struct work_struct *work)
{
u8 lcl_reason, neigh_reason = 0;
u8 link_down_reason;
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
link_down_work);
int was_up;
static const char ldr_str[] = "Link down reason: ";
if ((ppd->host_link_state &
(HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
ppd->port_type == PORT_TYPE_FIXED)
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
/* Go offline first, then deal with reading/writing through 8051 */
was_up = !!(ppd->host_link_state & HLS_UP);
set_link_state(ppd, HLS_DN_OFFLINE);
xchg(&ppd->is_link_down_queued, 0);
if (was_up) {
lcl_reason = 0;
/* link down reason is only valid if the link was up */
read_link_down_reason(ppd->dd, &link_down_reason);
switch (link_down_reason) {
case LDR_LINK_TRANSFER_ACTIVE_LOW:
/* the link went down, no idle message reason */
dd_dev_info(ppd->dd, "%sUnexpected link down\n",
ldr_str);
break;
case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
/*
* The neighbor reason is only valid if an idle message
* was received for it.
*/
read_planned_down_reason_code(ppd->dd, &neigh_reason);
dd_dev_info(ppd->dd,
"%sNeighbor link down message %d, %s\n",
ldr_str, neigh_reason,
link_down_reason_str(neigh_reason));
break;
case LDR_RECEIVED_HOST_OFFLINE_REQ:
dd_dev_info(ppd->dd,
"%sHost requested link to go offline\n",
ldr_str);
break;
default:
dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
ldr_str, link_down_reason);
break;
}
/*
* If no reason, assume peer-initiated but missed
* LinkGoingDown idle flits.
*/
if (neigh_reason == 0)
lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
} else {
/* went down while polling or going up */
lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
}
set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
/* inform the SMA when the link transitions from up to down */
if (was_up && ppd->local_link_down_reason.sma == 0 &&
ppd->neigh_link_down_reason.sma == 0) {
ppd->local_link_down_reason.sma =
ppd->local_link_down_reason.latest;
ppd->neigh_link_down_reason.sma =
ppd->neigh_link_down_reason.latest;
}
reset_neighbor_info(ppd);
/* disable the port */
clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
/*
* If there is no cable attached, turn the DC off. Otherwise,
* start the link bring up.
*/
if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
dc_shutdown(ppd->dd);
else
start_link(ppd);
}
void handle_link_bounce(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
link_bounce_work);
/*
* Only do something if the link is currently up.
*/
if (ppd->host_link_state & HLS_UP) {
set_link_state(ppd, HLS_DN_OFFLINE);
start_link(ppd);
} else {
dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
__func__, link_state_name(ppd->host_link_state));
}
}
/*
* Mask conversion: Capability exchange to Port LTP. The capability
* exchange has an implicit 16b CRC that is mandatory.
*/
static int cap_to_port_ltp(int cap)
{
int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
if (cap & CAP_CRC_14B)
port_ltp |= PORT_LTP_CRC_MODE_14;
if (cap & CAP_CRC_48B)
port_ltp |= PORT_LTP_CRC_MODE_48;
if (cap & CAP_CRC_12B_16B_PER_LANE)
port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
return port_ltp;
}
/*
* Convert an OPA Port LTP mask to capability mask
*/
int port_ltp_to_cap(int port_ltp)
{
int cap_mask = 0;
if (port_ltp & PORT_LTP_CRC_MODE_14)
cap_mask |= CAP_CRC_14B;
if (port_ltp & PORT_LTP_CRC_MODE_48)
cap_mask |= CAP_CRC_48B;
if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
cap_mask |= CAP_CRC_12B_16B_PER_LANE;
return cap_mask;
}
/*
* Convert a single DC LCB CRC mode to an OPA Port LTP mask.
*/
static int lcb_to_port_ltp(int lcb_crc)
{
int port_ltp = 0;
if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
else if (lcb_crc == LCB_CRC_48B)
port_ltp = PORT_LTP_CRC_MODE_48;
else if (lcb_crc == LCB_CRC_14B)
port_ltp = PORT_LTP_CRC_MODE_14;
else
port_ltp = PORT_LTP_CRC_MODE_16;
return port_ltp;
}
/*
* Our neighbor has indicated that we are allowed to act as a fabric
* manager, so place the full management partition key in the second
* (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
* that we should already have the limited management partition key in
* array element 1, and also that the port is not yet up when
* add_full_mgmt_pkey() is invoked.
*/
static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
/* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
__func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
ppd->pkeys[2] = FULL_MGMT_P_KEY;
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
hfi1_event_pkey_change(ppd->dd, ppd->port);
}
static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
{
if (ppd->pkeys[2] != 0) {
ppd->pkeys[2] = 0;
(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
hfi1_event_pkey_change(ppd->dd, ppd->port);
}
}
/*
* Convert the given link width to the OPA link width bitmask.
*/
static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
{
switch (width) {
case 0:
/*
* Simulator and quick linkup do not set the width.
* Just set it to 4x without complaint.
*/
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
return OPA_LINK_WIDTH_4X;
return 0; /* no lanes up */
case 1: return OPA_LINK_WIDTH_1X;
case 2: return OPA_LINK_WIDTH_2X;
case 3: return OPA_LINK_WIDTH_3X;
default:
dd_dev_info(dd, "%s: invalid width %d, using 4\n",
__func__, width);
/* fall through */
case 4: return OPA_LINK_WIDTH_4X;
}
}
/*
* Do a population count on the bottom nibble.
*/
static const u8 bit_counts[16] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
};
static inline u8 nibble_to_count(u8 nibble)
{
return bit_counts[nibble & 0xf];
}
/*
* Read the active lane information from the 8051 registers and return
* their widths.
*
* Active lane information is found in these 8051 registers:
* enable_lane_tx
* enable_lane_rx
*/
static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
u16 *rx_width)
{
u16 tx, rx;
u8 enable_lane_rx;
u8 enable_lane_tx;
u8 tx_polarity_inversion;
u8 rx_polarity_inversion;
u8 max_rate;
/* read the active lanes */
read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
&rx_polarity_inversion, &max_rate);
read_local_lni(dd, &enable_lane_rx);
/* convert to counts */
tx = nibble_to_count(enable_lane_tx);
rx = nibble_to_count(enable_lane_rx);
/*
* Set link_speed_active here, overriding what was set in
* handle_verify_cap(). The ASIC 8051 firmware does not correctly
* set the max_rate field in handle_verify_cap until v0.19.
*/
if ((dd->icode == ICODE_RTL_SILICON) &&
(dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
/* max_rate: 0 = 12.5G, 1 = 25G */
switch (max_rate) {
case 0:
dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
break;
default:
dd_dev_err(dd,
"%s: unexpected max rate %d, using 25Gb\n",
__func__, (int)max_rate);
/* fall through */
case 1:
dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
break;
}
}
dd_dev_info(dd,
"Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
enable_lane_tx, tx, enable_lane_rx, rx);
*tx_width = link_width_to_bits(dd, tx);
*rx_width = link_width_to_bits(dd, rx);
}
/*
* Read verify_cap_local_fm_link_width[1] to obtain the link widths.
* Valid after the end of VerifyCap and during LinkUp. Does not change
* after link up. I.e. look elsewhere for downgrade information.
*
* Bits are:
* + bits [7:4] contain the number of active transmitters
* + bits [3:0] contain the number of active receivers
* These are numbers 1 through 4 and can be different values if the
* link is asymmetric.
*
* verify_cap_local_fm_link_width[0] retains its original value.
*/
static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
u16 *rx_width)
{
u16 widths, tx, rx;
u8 misc_bits, local_flags;
u16 active_tx, active_rx;
read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
tx = widths >> 12;
rx = (widths >> 8) & 0xf;
*tx_width = link_width_to_bits(dd, tx);
*rx_width = link_width_to_bits(dd, rx);
/* print the active widths */
get_link_widths(dd, &active_tx, &active_rx);
}
/*
* Set ppd->link_width_active and ppd->link_width_downgrade_active using
* hardware information when the link first comes up.
*
* The link width is not available until after VerifyCap.AllFramesReceived
* (the trigger for handle_verify_cap), so this is outside that routine
* and should be called when the 8051 signals linkup.
*/
void get_linkup_link_widths(struct hfi1_pportdata *ppd)
{
u16 tx_width, rx_width;
/* get end-of-LNI link widths */
get_linkup_widths(ppd->dd, &tx_width, &rx_width);
/* use tx_width as the link is supposed to be symmetric on link up */
ppd->link_width_active = tx_width;
/* link width downgrade active (LWD.A) starts out matching LW.A */
ppd->link_width_downgrade_tx_active = ppd->link_width_active;
ppd->link_width_downgrade_rx_active = ppd->link_width_active;
/* per OPA spec, on link up LWD.E resets to LWD.S */
ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
/* cache the active egress rate (units {10^6 bits/sec]) */
ppd->current_egress_rate = active_egress_rate(ppd);
}
/*
* Handle a verify capabilities interrupt from the 8051.
*
* This is a work-queue function outside of the interrupt.
*/
void handle_verify_cap(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
link_vc_work);
struct hfi1_devdata *dd = ppd->dd;
u64 reg;
u8 power_management;
u8 continuous;
u8 vcu;
u8 vau;
u8 z;
u16 vl15buf;
u16 link_widths;
u16 crc_mask;
u16 crc_val;
u16 device_id;
u16 active_tx, active_rx;
u8 partner_supported_crc;
u8 remote_tx_rate;
u8 device_rev;
set_link_state(ppd, HLS_VERIFY_CAP);
lcb_shutdown(dd, 0);
adjust_lcb_for_fpga_serdes(dd);
read_vc_remote_phy(dd, &power_management, &continuous);
read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
&partner_supported_crc);
read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
read_remote_device_id(dd, &device_id, &device_rev);
/*
* And the 'MgmtAllowed' information, which is exchanged during
* LNI, is also be available at this point.
*/
read_mgmt_allowed(dd, &ppd->mgmt_allowed);
/* print the active widths */
get_link_widths(dd, &active_tx, &active_rx);
dd_dev_info(dd,
"Peer PHY: power management 0x%x, continuous updates 0x%x\n",
(int)power_management, (int)continuous);
dd_dev_info(dd,
"Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
(int)vau, (int)z, (int)vcu, (int)vl15buf,
(int)partner_supported_crc);
dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
(u32)remote_tx_rate, (u32)link_widths);
dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
(u32)device_id, (u32)device_rev);
/*
* The peer vAU value just read is the peer receiver value. HFI does
* not support a transmit vAU of 0 (AU == 8). We advertised that
* with Z=1 in the fabric capabilities sent to the peer. The peer
* will see our Z=1, and, if it advertised a vAU of 0, will move its
* receive to vAU of 1 (AU == 16). Do the same here. We do not care
* about the peer Z value - our sent vAU is 3 (hardwired) and is not
* subject to the Z value exception.
*/
if (vau == 0)
vau = 1;
set_up_vau(dd, vau);
/*
* Set VL15 credits to 0 in global credit register. Cache remote VL15
* credits value and wait for link-up interrupt ot set it.
*/
set_up_vl15(dd, 0);
dd->vl15buf_cached = vl15buf;
/* set up the LCB CRC mode */
crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
/* order is important: use the lowest bit in common */
if (crc_mask & CAP_CRC_14B)
crc_val = LCB_CRC_14B;
else if (crc_mask & CAP_CRC_48B)
crc_val = LCB_CRC_48B;
else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
crc_val = LCB_CRC_12B_16B_PER_LANE;
else
crc_val = LCB_CRC_16B;
dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
write_csr(dd, DC_LCB_CFG_CRC_MODE,
(u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
/* set (14b only) or clear sideband credit */
reg = read_csr(dd, SEND_CM_CTRL);
if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
write_csr(dd, SEND_CM_CTRL,
reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
} else {
write_csr(dd, SEND_CM_CTRL,
reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
}
ppd->link_speed_active = 0; /* invalid value */
if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
switch (remote_tx_rate) {
case 0:
ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
break;
case 1:
ppd->link_speed_active = OPA_LINK_SPEED_25G;
break;
}
} else {
/* actual rate is highest bit of the ANDed rates */
u8 rate = remote_tx_rate & ppd->local_tx_rate;
if (rate & 2)
ppd->link_speed_active = OPA_LINK_SPEED_25G;
else if (rate & 1)
ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
}
if (ppd->link_speed_active == 0) {
dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
__func__, (int)remote_tx_rate);
ppd->link_speed_active = OPA_LINK_SPEED_25G;
}
/*
* Cache the values of the supported, enabled, and active
* LTP CRC modes to return in 'portinfo' queries. But the bit
* flags that are returned in the portinfo query differ from
* what's in the link_crc_mask, crc_sizes, and crc_val
* variables. Convert these here.
*/
ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
/* supported crc modes */
ppd->port_ltp_crc_mode |=
cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
/* enabled crc modes */
ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
/* active crc mode */
/* set up the remote credit return table */
assign_remote_cm_au_table(dd, vcu);
/*
* The LCB is reset on entry to handle_verify_cap(), so this must
* be applied on every link up.
*
* Adjust LCB error kill enable to kill the link if
* these RBUF errors are seen:
* REPLAY_BUF_MBE_SMASK
* FLIT_INPUT_BUF_MBE_SMASK
*/
if (is_ax(dd)) { /* fixed in B0 */
reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
}
/* pull LCB fifos out of reset - all fifo clocks must be stable */
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
/* give 8051 access to the LCB CSRs */
write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
set_8051_lcb_access(dd);
if (ppd->mgmt_allowed)
add_full_mgmt_pkey(ppd);
/* tell the 8051 to go to LinkUp */
set_link_state(ppd, HLS_GOING_UP);
}
/*
* Apply the link width downgrade enabled policy against the current active
* link widths.
*
* Called when the enabled policy changes or the active link widths change.
*/
void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
{
int do_bounce = 0;
int tries;
u16 lwde;
u16 tx, rx;
/* use the hls lock to avoid a race with actual link up */
tries = 0;
retry:
mutex_lock(&ppd->hls_lock);
/* only apply if the link is up */
if (ppd->host_link_state & HLS_DOWN) {
/* still going up..wait and retry */
if (ppd->host_link_state & HLS_GOING_UP) {
if (++tries < 1000) {
mutex_unlock(&ppd->hls_lock);
usleep_range(100, 120); /* arbitrary */
goto retry;
}
dd_dev_err(ppd->dd,
"%s: giving up waiting for link state change\n",
__func__);
}
goto done;
}
lwde = ppd->link_width_downgrade_enabled;
if (refresh_widths) {
get_link_widths(ppd->dd, &tx, &rx);
ppd->link_width_downgrade_tx_active = tx;
ppd->link_width_downgrade_rx_active = rx;
}
if (ppd->link_width_downgrade_tx_active == 0 ||
ppd->link_width_downgrade_rx_active == 0) {
/* the 8051 reported a dead link as a downgrade */
dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
} else if (lwde == 0) {
/* downgrade is disabled */
/* bounce if not at starting active width */
if ((ppd->link_width_active !=
ppd->link_width_downgrade_tx_active) ||
(ppd->link_width_active !=
ppd->link_width_downgrade_rx_active)) {
dd_dev_err(ppd->dd,
"Link downgrade is disabled and link has downgraded, downing link\n");
dd_dev_err(ppd->dd,
" original 0x%x, tx active 0x%x, rx active 0x%x\n",
ppd->link_width_active,
ppd->link_width_downgrade_tx_active,
ppd->link_width_downgrade_rx_active);
do_bounce = 1;
}
} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
(lwde & ppd->link_width_downgrade_rx_active) == 0) {
/* Tx or Rx is outside the enabled policy */
dd_dev_err(ppd->dd,
"Link is outside of downgrade allowed, downing link\n");
dd_dev_err(ppd->dd,
" enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
lwde, ppd->link_width_downgrade_tx_active,
ppd->link_width_downgrade_rx_active);
do_bounce = 1;
}
done:
mutex_unlock(&ppd->hls_lock);
if (do_bounce) {
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
OPA_LINKDOWN_REASON_WIDTH_POLICY);
set_link_state(ppd, HLS_DN_OFFLINE);
start_link(ppd);
}
}
/*
* Handle a link downgrade interrupt from the 8051.
*
* This is a work-queue function outside of the interrupt.
*/
void handle_link_downgrade(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
link_downgrade_work);
dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
apply_link_downgrade_policy(ppd, 1);
}
static char *dcc_err_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, dcc_err_flags,
ARRAY_SIZE(dcc_err_flags));
}
static char *lcb_err_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, lcb_err_flags,
ARRAY_SIZE(lcb_err_flags));
}
static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, dc8051_err_flags,
ARRAY_SIZE(dc8051_err_flags));
}
static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
ARRAY_SIZE(dc8051_info_err_flags));
}
static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
{
return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
ARRAY_SIZE(dc8051_info_host_msg_flags));
}
static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
struct hfi1_pportdata *ppd = dd->pport;
u64 info, err, host_msg;
int queue_link_down = 0;
char buf[96];
/* look at the flags */
if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
/* 8051 information set by firmware */
/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
host_msg = (info >>
DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
/*
* Handle error flags.
*/
if (err & FAILED_LNI) {
/*
* LNI error indications are cleared by the 8051
* only when starting polling. Only pay attention
* to them when in the states that occur during
* LNI.
*/
if (ppd->host_link_state
& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
queue_link_down = 1;
dd_dev_info(dd, "Link error: %s\n",
dc8051_info_err_string(buf,
sizeof(buf),
err &
FAILED_LNI));
}
err &= ~(u64)FAILED_LNI;
}
/* unknown frames can happen durning LNI, just count */
if (err & UNKNOWN_FRAME) {
ppd->unknown_frame_count++;
err &= ~(u64)UNKNOWN_FRAME;
}
if (err) {
/* report remaining errors, but do not do anything */
dd_dev_err(dd, "8051 info error: %s\n",
dc8051_info_err_string(buf, sizeof(buf),
err));
}
/*
* Handle host message flags.
*/
if (host_msg & HOST_REQ_DONE) {
/*
* Presently, the driver does a busy wait for
* host requests to complete. This is only an
* informational message.
* NOTE: The 8051 clears the host message
* information *on the next 8051 command*.
* Therefore, when linkup is achieved,
* this flag will still be set.
*/
host_msg &= ~(u64)HOST_REQ_DONE;
}
if (host_msg & BC_SMA_MSG) {
queue_work(ppd->link_wq, &ppd->sma_message_work);
host_msg &= ~(u64)BC_SMA_MSG;
}
if (host_msg & LINKUP_ACHIEVED) {
dd_dev_info(dd, "8051: Link up\n");
queue_work(ppd->link_wq, &ppd->link_up_work);
host_msg &= ~(u64)LINKUP_ACHIEVED;
}
if (host_msg & EXT_DEVICE_CFG_REQ) {
handle_8051_request(ppd);
host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
}
if (host_msg & VERIFY_CAP_FRAME) {
queue_work(ppd->link_wq, &ppd->link_vc_work);
host_msg &= ~(u64)VERIFY_CAP_FRAME;
}
if (host_msg & LINK_GOING_DOWN) {
const char *extra = "";
/* no downgrade action needed if going down */
if (host_msg & LINK_WIDTH_DOWNGRADED) {
host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
extra = " (ignoring downgrade)";
}
dd_dev_info(dd, "8051: Link down%s\n", extra);
queue_link_down = 1;
host_msg &= ~(u64)LINK_GOING_DOWN;
}
if (host_msg & LINK_WIDTH_DOWNGRADED) {
queue_work(ppd->link_wq, &ppd->link_downgrade_work);
host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
}
if (host_msg) {
/* report remaining messages, but do not do anything */
dd_dev_info(dd, "8051 info host message: %s\n",
dc8051_info_host_msg_string(buf,
sizeof(buf),
host_msg));
}
reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
}
if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
/*
* Lost the 8051 heartbeat. If this happens, we
* receive constant interrupts about it. Disable
* the interrupt after the first.
*/
dd_dev_err(dd, "Lost 8051 heartbeat\n");
write_csr(dd, DC_DC8051_ERR_EN,
read_csr(dd, DC_DC8051_ERR_EN) &
~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
}
if (reg) {
/* report the error, but do not do anything */
dd_dev_err(dd, "8051 error: %s\n",
dc8051_err_string(buf, sizeof(buf), reg));
}
if (queue_link_down) {
/*
* if the link is already going down or disabled, do not
* queue another. If there's a link down entry already
* queued, don't queue another one.
*/
if ((ppd->host_link_state &
(HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
ppd->link_enabled == 0) {
dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
__func__, ppd->host_link_state,
ppd->link_enabled);
} else {
if (xchg(&ppd->is_link_down_queued, 1) == 1)
dd_dev_info(dd,
"%s: link down request already queued\n",
__func__);
else
queue_work(ppd->link_wq, &ppd->link_down_work);
}
}
}
static const char * const fm_config_txt[] = {
[0] =
"BadHeadDist: Distance violation between two head flits",
[1] =
"BadTailDist: Distance violation between two tail flits",
[2] =
"BadCtrlDist: Distance violation between two credit control flits",
[3] =
"BadCrdAck: Credits return for unsupported VL",
[4] =
"UnsupportedVLMarker: Received VL Marker",
[5] =
"BadPreempt: Exceeded the preemption nesting level",
[6] =
"BadControlFlit: Received unsupported control flit",
/* no 7 */
[8] =
"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
};
static const char * const port_rcv_txt[] = {
[1] =
"BadPktLen: Illegal PktLen",
[2] =
"PktLenTooLong: Packet longer than PktLen",
[3] =
"PktLenTooShort: Packet shorter than PktLen",
[4] =
"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
[5] =
"BadDLID: Illegal DLID (0, doesn't match HFI)",
[6] =
"BadL2: Illegal L2 opcode",
[7] =
"BadSC: Unsupported SC",
[9] =
"BadRC: Illegal RC",
[11] =
"PreemptError: Preempting with same VL",
[12] =
"PreemptVL15: Preempting a VL15 packet",
};
#define OPA_LDR_FMCONFIG_OFFSET 16
#define OPA_LDR_PORTRCV_OFFSET 0
static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
u64 info, hdr0, hdr1;
const char *extra;
char buf[96];
struct hfi1_pportdata *ppd = dd->pport;
u8 lcl_reason = 0;
int do_bounce = 0;
if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
/* set status bit */
dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
}
reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
}
if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
struct hfi1_pportdata *ppd = dd->pport;
/* this counter saturates at (2^32) - 1 */
if (ppd->link_downed < (u32)UINT_MAX)
ppd->link_downed++;
reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
}
if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
u8 reason_valid = 1;
info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
/* set status bit */
dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
}
switch (info) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
extra = fm_config_txt[info];
break;
case 8:
extra = fm_config_txt[info];
if (ppd->port_error_action &
OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
do_bounce = 1;
/*
* lcl_reason cannot be derived from info
* for this error
*/
lcl_reason =
OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
}
break;
default:
reason_valid = 0;
snprintf(buf, sizeof(buf), "reserved%lld", info);
extra = buf;
break;
}
if (reason_valid && !do_bounce) {
do_bounce = ppd->port_error_action &
(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
}
/* just report this */
dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
extra);
reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
}
if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
u8 reason_valid = 1;
info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
if (!(dd->err_info_rcvport.status_and_code &
OPA_EI_STATUS_SMASK)) {
dd->err_info_rcvport.status_and_code =
info & OPA_EI_CODE_SMASK;
/* set status bit */
dd->err_info_rcvport.status_and_code |=
OPA_EI_STATUS_SMASK;
/*
* save first 2 flits in the packet that caused
* the error
*/
dd->err_info_rcvport.packet_flit1 = hdr0;
dd->err_info_rcvport.packet_flit2 = hdr1;
}
switch (info) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 9:
case 11:
case 12:
extra = port_rcv_txt[info];
break;
default:
reason_valid = 0;
snprintf(buf, sizeof(buf), "reserved%lld", info);
extra = buf;
break;
}
if (reason_valid && !do_bounce) {
do_bounce = ppd->port_error_action &
(1 << (OPA_LDR_PORTRCV_OFFSET + info));
lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
}
/* just report this */
dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
" hdr0 0x%llx, hdr1 0x%llx\n",
extra, hdr0, hdr1);
reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
}
if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
/* informative only */
dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
}
if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
/* informative only */
dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
}
if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
/* report any remaining errors */
if (reg)
dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
dcc_err_string(buf, sizeof(buf), reg));
if (lcl_reason == 0)
lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
if (do_bounce) {
dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
__func__);
set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
queue_work(ppd->link_wq, &ppd->link_bounce_work);
}
}
static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
{
char buf[96];
dd_dev_info(dd, "LCB Error: %s\n",
lcb_err_string(buf, sizeof(buf), reg));
}
/*
* CCE block DC interrupt. Source is < 8.
*/
static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
{
const struct err_reg_info *eri = &dc_errs[source];
if (eri->handler) {
interrupt_clear_down(dd, 0, eri);
} else if (source == 3 /* dc_lbm_int */) {
/*
* This indicates that a parity error has occurred on the
* address/control lines presented to the LBM. The error
* is a single pulse, there is no associated error flag,
* and it is non-maskable. This is because if a parity
* error occurs on the request the request is dropped.
* This should never occur, but it is nice to know if it
* ever does.
*/
dd_dev_err(dd, "Parity error in DC LBM block\n");
} else {
dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
}
}
/*
* TX block send credit interrupt. Source is < 160.
*/
static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
{
sc_group_release_update(dd, source);
}
/*
* TX block SDMA interrupt. Source is < 48.
*
* SDMA interrupts are grouped by type:
*
* 0 - N-1 = SDma
* N - 2N-1 = SDmaProgress
* 2N - 3N-1 = SDmaIdle
*/
static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
{
/* what interrupt */
unsigned int what = source / TXE_NUM_SDMA_ENGINES;
/* which engine */
unsigned int which = source % TXE_NUM_SDMA_ENGINES;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
slashstrip(__FILE__), __LINE__, __func__);
sdma_dumpstate(&dd->per_sdma[which]);
#endif
if (likely(what < 3 && which < dd->num_sdma)) {
sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
} else {
/* should not happen */
dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
}
}
/*
* RX block receive available interrupt. Source is < 160.
*/
static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
{
struct hfi1_ctxtdata *rcd;
char *err_detail;
if (likely(source < dd->num_rcv_contexts)) {
rcd = hfi1_rcd_get_by_index(dd, source);
if (rcd) {
/* Check for non-user contexts, including vnic */
if ((source < dd->first_dyn_alloc_ctxt) ||
(rcd->sc && (rcd->sc->type == SC_KERNEL)))
rcd->do_interrupt(rcd, 0);
else
handle_user_interrupt(rcd);
hfi1_rcd_put(rcd);
return; /* OK */
}
/* received an interrupt, but no rcd */
err_detail = "dataless";
} else {
/* received an interrupt, but are not using that context */
err_detail = "out of range";
}
dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
err_detail, source);
}
/*
* RX block receive urgent interrupt. Source is < 160.
*/
static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
{
struct hfi1_ctxtdata *rcd;
char *err_detail;
if (likely(source < dd->num_rcv_contexts)) {
rcd = hfi1_rcd_get_by_index(dd, source);
if (rcd) {
/* only pay attention to user urgent interrupts */
if ((source >= dd->first_dyn_alloc_ctxt) &&
(!rcd->sc || (rcd->sc->type == SC_USER)))
handle_user_interrupt(rcd);
hfi1_rcd_put(rcd);
return; /* OK */
}
/* received an interrupt, but no rcd */
err_detail = "dataless";
} else {
/* received an interrupt, but are not using that context */
err_detail = "out of range";
}
dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
err_detail, source);
}
/*
* Reserved range interrupt. Should not be called in normal operation.
*/
static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
{
char name[64];
dd_dev_err(dd, "unexpected %s interrupt\n",
is_reserved_name(name, sizeof(name), source));
}
static const struct is_table is_table[] = {
/*
* start end
* name func interrupt func
*/
{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
is_misc_err_name, is_misc_err_int },
{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
is_sdma_eng_err_name, is_sdma_eng_err_int },
{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
is_sendctxt_err_name, is_sendctxt_err_int },
{ IS_SDMA_START, IS_SDMA_END,
is_sdma_eng_name, is_sdma_eng_int },
{ IS_VARIOUS_START, IS_VARIOUS_END,
is_various_name, is_various_int },
{ IS_DC_START, IS_DC_END,
is_dc_name, is_dc_int },
{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
is_rcv_avail_name, is_rcv_avail_int },
{ IS_RCVURGENT_START, IS_RCVURGENT_END,
is_rcv_urgent_name, is_rcv_urgent_int },
{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
is_send_credit_name, is_send_credit_int},
{ IS_RESERVED_START, IS_RESERVED_END,
is_reserved_name, is_reserved_int},
};
/*
* Interrupt source interrupt - called when the given source has an interrupt.
* Source is a bit index into an array of 64-bit integers.
*/
static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
{
const struct is_table *entry;
/* avoids a double compare by walking the table in-order */
for (entry = &is_table[0]; entry->is_name; entry++) {
if (source < entry->end) {
trace_hfi1_interrupt(dd, entry, source);
entry->is_int(dd, source - entry->start);
return;
}
}
/* fell off the end */
dd_dev_err(dd, "invalid interrupt source %u\n", source);
}
/*
* General interrupt handler. This is able to correctly handle
* all interrupts in case INTx is used.
*/
static irqreturn_t general_interrupt(int irq, void *data)
{
struct hfi1_devdata *dd = data;
u64 regs[CCE_NUM_INT_CSRS];
u32 bit;
int i;
this_cpu_inc(*dd->int_counter);
/* phase 1: scan and clear all handled interrupts */
for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
if (dd->gi_mask[i] == 0) {
regs[i] = 0; /* used later */
continue;
}
regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
dd->gi_mask[i];
/* only clear if anything is set */
if (regs[i])
write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
}
/* phase 2: call the appropriate handler */
for_each_set_bit(bit, (unsigned long *)&regs[0],
CCE_NUM_INT_CSRS * 64) {
is_interrupt(dd, bit);
}
return IRQ_HANDLED;
}
static irqreturn_t sdma_interrupt(int irq, void *data)
{
struct sdma_engine *sde = data;
struct hfi1_devdata *dd = sde->dd;
u64 status;
#ifdef CONFIG_SDMA_VERBOSITY
dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
slashstrip(__FILE__), __LINE__, __func__);
sdma_dumpstate(sde);
#endif
this_cpu_inc(*dd->int_counter);
/* This read_csr is really bad in the hot path */
status = read_csr(dd,
CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
& sde->imask;
if (likely(status)) {
/* clear the interrupt(s) */
write_csr(dd,
CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
status);
/* handle the interrupt(s) */
sdma_engine_interrupt(sde, status);
} else {
dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
sde->this_idx);
}
return IRQ_HANDLED;
}
/*
* Clear the receive interrupt. Use a read of the interrupt clear CSR
* to insure that the write completed. This does NOT guarantee that
* queued DMA writes to memory from the chip are pushed.
*/
static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
{
struct hfi1_devdata *dd = rcd->dd;
u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
mmiowb(); /* make sure everything before is written */
write_csr(dd, addr, rcd->imask);
/* force the above write on the chip and get a value back */
(void)read_csr(dd, addr);
}
/* force the receive interrupt */
void force_recv_intr(struct hfi1_ctxtdata *rcd)
{
write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
}
/*
* Return non-zero if a packet is present.
*
* This routine is called when rechecking for packets after the RcvAvail
* interrupt has been cleared down. First, do a quick check of memory for
* a packet present. If not found, use an expensive CSR read of the context
* tail to determine the actual tail. The CSR read is necessary because there
* is no method to push pending DMAs to memory other than an interrupt and we
* are trying to determine if we need to force an interrupt.
*/
static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
{
u32 tail;
int present;
if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
present = (rcd->seq_cnt ==
rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
else /* is RDMA rtail */
present = (rcd->head != get_rcvhdrtail(rcd));
if (present)
return 1;
/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
return rcd->head != tail;
}
/*
* Receive packet IRQ handler. This routine expects to be on its own IRQ.
* This routine will try to handle packets immediately (latency), but if
* it finds too many, it will invoke the thread handler (bandwitdh). The
* chip receive interrupt is *not* cleared down until this or the thread (if
* invoked) is finished. The intent is to avoid extra interrupts while we
* are processing packets anyway.
*/
static irqreturn_t receive_context_interrupt(int irq, void *data)
{
struct hfi1_ctxtdata *rcd = data;
struct hfi1_devdata *dd = rcd->dd;
int disposition;
int present;
trace_hfi1_receive_interrupt(dd, rcd);
this_cpu_inc(*dd->int_counter);
aspm_ctx_disable(rcd);
/* receive interrupt remains blocked while processing packets */
disposition = rcd->do_interrupt(rcd, 0);
/*
* Too many packets were seen while processing packets in this
* IRQ handler. Invoke the handler thread. The receive interrupt
* remains blocked.
*/
if (disposition == RCV_PKT_LIMIT)
return IRQ_WAKE_THREAD;
/*
* The packet processor detected no more packets. Clear the receive
* interrupt and recheck for a packet packet that may have arrived
* after the previous check and interrupt clear. If a packet arrived,
* force another interrupt.
*/
clear_recv_intr(rcd);
present = check_packet_present(rcd);
if (present)
force_recv_intr(rcd);
return IRQ_HANDLED;
}
/*
* Receive packet thread handler. This expects to be invoked with the
* receive interrupt still blocked.
*/
static irqreturn_t receive_context_thread(int irq, void *data)
{
struct hfi1_ctxtdata *rcd = data;
int present;
/* receive interrupt is still blocked from the IRQ handler */
(void)rcd->do_interrupt(rcd, 1);
/*
* The packet processor will only return if it detected no more
* packets. Hold IRQs here so we can safely clear the interrupt and
* recheck for a packet that may have arrived after the previous
* check and the interrupt clear. If a packet arrived, force another
* interrupt.
*/
local_irq_disable();
clear_recv_intr(rcd);
present = check_packet_present(rcd);
if (present)
force_recv_intr(rcd);
local_irq_enable();
return IRQ_HANDLED;
}
/* ========================================================================= */
u32 read_physical_state(struct hfi1_devdata *dd)
{
u64 reg;
reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
& DC_DC8051_STS_CUR_STATE_PORT_MASK;
}
u32 read_logical_state(struct hfi1_devdata *dd)
{
u64 reg;
reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
}
static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
{
u64 reg;
reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
/* clear current state, set new state */
reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
}
/*
* Use the 8051 to read a LCB CSR.
*/
static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
{
u32 regno;
int ret;
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
if (acquire_lcb_access(dd, 0) == 0) {
*data = read_csr(dd, addr);
release_lcb_access(dd, 0);
return 0;
}
return -EBUSY;
}
/* register is an index of LCB registers: (offset - base) / 8 */
regno = (addr - DC_LCB_CFG_RUN) >> 3;
ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
if (ret != HCMD_SUCCESS)
return -EBUSY;
return 0;
}
/*
* Provide a cache for some of the LCB registers in case the LCB is
* unavailable.
* (The LCB is unavailable in certain link states, for example.)
*/
struct lcb_datum {
u32 off;
u64 val;
};
static struct lcb_datum lcb_cache[] = {
{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
};
static void update_lcb_cache(struct hfi1_devdata *dd)
{
int i;
int ret;
u64 val;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
/* Update if we get good data */
if (likely(ret != -EBUSY))
lcb_cache[i].val = val;
}
}
static int read_lcb_cache(u32 off, u64 *val)
{
int i;
for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
if (lcb_cache[i].off == off) {
*val = lcb_cache[i].val;
return 0;
}
}
pr_warn("%s bad offset 0x%x\n", __func__, off);
return -1;
}
/*
* Read an LCB CSR. Access may not be in host control, so check.
* Return 0 on success, -EBUSY on failure.
*/
int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
{
struct hfi1_pportdata *ppd = dd->pport;
/* if up, go through the 8051 for the value */
if (ppd->host_link_state & HLS_UP)
return read_lcb_via_8051(dd, addr, data);
/* if going up or down, check the cache, otherwise, no access */
if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
if (read_lcb_cache(addr, data))
return -EBUSY;
return 0;
}
/* otherwise, host has access */
*data = read_csr(dd, addr);
return 0;
}
/*
* Use the 8051 to write a LCB CSR.
*/
static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
{
u32 regno;
int ret;
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
(dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
if (acquire_lcb_access(dd, 0) == 0) {
write_csr(dd, addr, data);
release_lcb_access(dd, 0);
return 0;
}
return -EBUSY;
}
/* register is an index of LCB registers: (offset - base) / 8 */
regno = (addr - DC_LCB_CFG_RUN) >> 3;
ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
if (ret != HCMD_SUCCESS)
return -EBUSY;
return 0;
}
/*
* Write an LCB CSR. Access may not be in host control, so check.
* Return 0 on success, -EBUSY on failure.
*/
int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
{
struct hfi1_pportdata *ppd = dd->pport;
/* if up, go through the 8051 for the value */
if (ppd->host_link_state & HLS_UP)
return write_lcb_via_8051(dd, addr, data);
/* if going up or down, no access */
if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
return -EBUSY;
/* otherwise, host has access */
write_csr(dd, addr, data);
return 0;
}
/*
* Returns:
* < 0 = Linux error, not able to get access
* > 0 = 8051 command RETURN_CODE
*/
static int do_8051_command(
struct hfi1_devdata *dd,
u32 type,
u64 in_data,
u64 *out_data)
{
u64 reg, completed;
int return_code;
unsigned long timeout;
hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
mutex_lock(&dd->dc8051_lock);
/* We can't send any commands to the 8051 if it's in reset */
if (dd->dc_shutdown) {
return_code = -ENODEV;
goto fail;
}
/*
* If an 8051 host command timed out previously, then the 8051 is
* stuck.
*
* On first timeout, attempt to reset and restart the entire DC
* block (including 8051). (Is this too big of a hammer?)
*
* If the 8051 times out a second time, the reset did not bring it
* back to healthy life. In that case, fail any subsequent commands.
*/
if (dd->dc8051_timed_out) {
if (dd->dc8051_timed_out > 1) {
dd_dev_err(dd,
"Previous 8051 host command timed out, skipping command %u\n",
type);
return_code = -ENXIO;
goto fail;
}
_dc_shutdown(dd);
_dc_start(dd);
}
/*
* If there is no timeout, then the 8051 command interface is
* waiting for a command.
*/
/*
* When writing a LCB CSR, out_data contains the full value to
* to be written, while in_data contains the relative LCB
* address in 7:0. Do the work here, rather than the caller,
* of distrubting the write data to where it needs to go:
*
* Write data
* 39:00 -> in_data[47:8]
* 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
* 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
*/
if (type == HCMD_WRITE_LCB_CSR) {
in_data |= ((*out_data) & 0xffffffffffull) << 8;
/* must preserve COMPLETED - it is tied to hardware */
reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
reg |= ((((*out_data) >> 40) & 0xff) <<
DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
| ((((*out_data) >> 48) & 0xffff) <<
DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
}
/*
* Do two writes: the first to stabilize the type and req_data, the
* second to activate.
*/
reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
/* wait for completion, alternate: interrupt */
timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
while (1) {
reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
if (completed)
break;
if (time_after(jiffies, timeout)) {
dd->dc8051_timed_out++;
dd_dev_err(dd, "8051 host command %u timeout\n", type);
if (out_data)
*out_data = 0;
return_code = -ETIMEDOUT;
goto fail;
}
udelay(2);
}
if (out_data) {
*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
if (type == HCMD_READ_LCB_CSR) {
/* top 16 bits are in a different register */
*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
<< (48
- DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
}
}
return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
dd->dc8051_timed_out = 0;
/*
* Clear command for next user.
*/
write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
fail:
mutex_unlock(&dd->dc8051_lock);
return return_code;
}
static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
{
return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
}
int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
u8 lane_id, u32 config_data)
{
u64 data;
int ret;
data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
| (u64)config_data << LOAD_DATA_DATA_SHIFT;
ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd,
"load 8051 config: field id %d, lane %d, err %d\n",
(int)field_id, (int)lane_id, ret);
}
return ret;
}
/*
* Read the 8051 firmware "registers". Use the RAM directly. Always
* set the result, even on error.
* Return 0 on success, -errno on failure
*/
int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
u32 *result)
{
u64 big_data;
u32 addr;
int ret;
/* address start depends on the lane_id */
if (lane_id < 4)
addr = (4 * NUM_GENERAL_FIELDS)
+ (lane_id * 4 * NUM_LANE_FIELDS);
else
addr = 0;
addr += field_id * 4;
/* read is in 8-byte chunks, hardware will truncate the address down */
ret = read_8051_data(dd, addr, 8, &big_data);
if (ret == 0) {
/* extract the 4 bytes we want */
if (addr & 0x4)
*result = (u32)(big_data >> 32);
else
*result = (u32)big_data;
} else {
*result = 0;
dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
__func__, lane_id, field_id);
}
return ret;
}
static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
u8 continuous)
{
u32 frame;
frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
| power_management << POWER_MANAGEMENT_SHIFT;
return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
GENERAL_CONFIG, frame);
}
static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
u16 vl15buf, u8 crc_sizes)
{
u32 frame;
frame = (u32)vau << VAU_SHIFT
| (u32)z << Z_SHIFT
| (u32)vcu << VCU_SHIFT
| (u32)vl15buf << VL15BUF_SHIFT
| (u32)crc_sizes << CRC_SIZES_SHIFT;
return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
GENERAL_CONFIG, frame);
}
static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
u8 *flag_bits, u16 *link_widths)
{
u32 frame;
read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
&frame);
*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
}
static int write_vc_local_link_width(struct hfi1_devdata *dd,
u8 misc_bits,
u8 flag_bits,
u16 link_widths)
{
u32 frame;
frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
| (u32)link_widths << LINK_WIDTH_SHIFT;
return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
frame);
}
static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
u8 device_rev)
{
u32 frame;
frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
}
static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
u8 *device_rev)
{
u32 frame;
read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
& REMOTE_DEVICE_REV_MASK;
}
int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
{
u32 frame;
u32 mask;
mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
/* Clear, then set field */
frame &= ~mask;
frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
frame);
}
void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
u8 *ver_patch)
{
u32 frame;
read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
STS_FM_VERSION_MAJOR_MASK;
*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
STS_FM_VERSION_MINOR_MASK;
read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
STS_FM_VERSION_PATCH_MASK;
}
static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
u8 *continuous)
{
u32 frame;
read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
& POWER_MANAGEMENT_MASK;
*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
}
static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
{
u32 frame;
read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
*vau = (frame >> VAU_SHIFT) & VAU_MASK;
*z = (frame >> Z_SHIFT) & Z_MASK;
*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
}
static void read_vc_remote_link_width(struct hfi1_devdata *dd,
u8 *remote_tx_rate,
u16 *link_widths)
{
u32 frame;
read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
&frame);
*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
& REMOTE_TX_RATE_MASK;
*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
}
static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
{
u32 frame;
read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
}
static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
{
u32 frame;
read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
}
static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
{
read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
}
static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
{
read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
}
void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
{
u32 frame;
int ret;
*link_quality = 0;
if (dd->pport->host_link_state & HLS_UP) {
ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
&frame);
if (ret == 0)
*link_quality = (frame >> LINK_QUALITY_SHIFT)
& LINK_QUALITY_MASK;
}
}
static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
{
u32 frame;
read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
}
static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
{
u32 frame;
read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
*ldr = (frame & 0xff);
}
static int read_tx_settings(struct hfi1_devdata *dd,
u8 *enable_lane_tx,
u8 *tx_polarity_inversion,
u8 *rx_polarity_inversion,
u8 *max_rate)
{
u32 frame;
int ret;
ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
& ENABLE_LANE_TX_MASK;
*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
& TX_POLARITY_INVERSION_MASK;
*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
& RX_POLARITY_INVERSION_MASK;
*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
return ret;
}
static int write_tx_settings(struct hfi1_devdata *dd,
u8 enable_lane_tx,
u8 tx_polarity_inversion,
u8 rx_polarity_inversion,
u8 max_rate)
{
u32 frame;
/* no need to mask, all variable sizes match field widths */
frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
| max_rate << MAX_RATE_SHIFT;
return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
}
/*
* Read an idle LCB message.
*
* Returns 0 on success, -EINVAL on error
*/
static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
{
int ret;
ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd, "read idle message: type %d, err %d\n",
(u32)type, ret);
return -EINVAL;
}
dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
/* return only the payload as we already know the type */
*data_out >>= IDLE_PAYLOAD_SHIFT;
return 0;
}
/*
* Read an idle SMA message. To be done in response to a notification from
* the 8051.
*
* Returns 0 on success, -EINVAL on error
*/
static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
{
return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
data);
}
/*
* Send an idle LCB message.
*
* Returns 0 on success, -EINVAL on error
*/
static int send_idle_message(struct hfi1_devdata *dd, u64 data)
{
int ret;
dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
data, ret);
return -EINVAL;
}
return 0;
}
/*
* Send an idle SMA message.
*
* Returns 0 on success, -EINVAL on error
*/
int send_idle_sma(struct hfi1_devdata *dd, u64 message)
{
u64 data;
data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
return send_idle_message(dd, data);
}
/*
* Initialize the LCB then do a quick link up. This may or may not be
* in loopback.
*
* return 0 on success, -errno on error
*/
static int do_quick_linkup(struct hfi1_devdata *dd)
{
int ret;
lcb_shutdown(dd, 0);
if (loopback) {
/* LCB_CFG_LOOPBACK.VAL = 2 */
/* LCB_CFG_LANE_WIDTH.VAL = 0 */
write_csr(dd, DC_LCB_CFG_LOOPBACK,
IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
}
/* start the LCBs */
/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
/* simulator only loopback steps */
if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
/* LCB_CFG_RUN.EN = 1 */
write_csr(dd, DC_LCB_CFG_RUN,
1ull << DC_LCB_CFG_RUN_EN_SHIFT);
ret = wait_link_transfer_active(dd, 10);
if (ret)
return ret;
write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
}
if (!loopback) {
/*
* When doing quick linkup and not in loopback, both
* sides must be done with LCB set-up before either
* starts the quick linkup. Put a delay here so that
* both sides can be started and have a chance to be
* done with LCB set up before resuming.
*/
dd_dev_err(dd,
"Pausing for peer to be finished with LCB set up\n");
msleep(5000);
dd_dev_err(dd, "Continuing with quick linkup\n");
}
write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
set_8051_lcb_access(dd);
/*
* State "quick" LinkUp request sets the physical link state to
* LinkUp without a verify capability sequence.
* This state is in simulator v37 and later.
*/
ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd,
"%s: set physical link state to quick LinkUp failed with return %d\n",
__func__, ret);
set_host_lcb_access(dd);
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
if (ret >= 0)
ret = -EINVAL;
return ret;
}
return 0; /* success */
}
/*
* Set the SerDes to internal loopback mode.
* Returns 0 on success, -errno on error.
*/
static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
{
int ret;
ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
if (ret == HCMD_SUCCESS)
return 0;
dd_dev_err(dd,
"Set physical link state to SerDes Loopback failed with return %d\n",
ret);
if (ret >= 0)
ret = -EINVAL;
return ret;
}
/*
* Do all special steps to set up loopback.
*/
static int init_loopback(struct hfi1_devdata *dd)
{
dd_dev_info(dd, "Entering loopback mode\n");
/* all loopbacks should disable self GUID check */
write_csr(dd, DC_DC8051_CFG_MODE,
(read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
/*
* The simulator has only one loopback option - LCB. Switch
* to that option, which includes quick link up.
*
* Accept all valid loopback values.
*/
if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
(loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
loopback == LOOPBACK_CABLE)) {
loopback = LOOPBACK_LCB;
quick_linkup = 1;
return 0;
}
/* handle serdes loopback */
if (loopback == LOOPBACK_SERDES) {
/* internal serdes loopack needs quick linkup on RTL */
if (dd->icode == ICODE_RTL_SILICON)
quick_linkup = 1;
return set_serdes_loopback_mode(dd);
}
/* LCB loopback - handled at poll time */
if (loopback == LOOPBACK_LCB) {
quick_linkup = 1; /* LCB is always quick linkup */
/* not supported in emulation due to emulation RTL changes */
if (dd->icode == ICODE_FPGA_EMULATION) {
dd_dev_err(dd,
"LCB loopback not supported in emulation\n");
return -EINVAL;
}
return 0;
}
/* external cable loopback requires no extra steps */
if (loopback == LOOPBACK_CABLE)
return 0;
dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
return -EINVAL;
}
/*
* Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
* used in the Verify Capability link width attribute.
*/
static u16 opa_to_vc_link_widths(u16 opa_widths)
{
int i;
u16 result = 0;
static const struct link_bits {
u16 from;
u16 to;
} opa_link_xlate[] = {
{ OPA_LINK_WIDTH_1X, 1 << (1 - 1) },
{ OPA_LINK_WIDTH_2X, 1 << (2 - 1) },
{ OPA_LINK_WIDTH_3X, 1 << (3 - 1) },
{ OPA_LINK_WIDTH_4X, 1 << (4 - 1) },
};
for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
if (opa_widths & opa_link_xlate[i].from)
result |= opa_link_xlate[i].to;
}
return result;
}
/*
* Set link attributes before moving to polling.
*/
static int set_local_link_attributes(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u8 enable_lane_tx;
u8 tx_polarity_inversion;
u8 rx_polarity_inversion;
int ret;
/* reset our fabric serdes to clear any lingering problems */
fabric_serdes_reset(dd);
/* set the local tx rate - need to read-modify-write */
ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
&rx_polarity_inversion, &ppd->local_tx_rate);
if (ret)
goto set_local_link_attributes_fail;
if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
/* set the tx rate to the fastest enabled */
if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
ppd->local_tx_rate = 1;
else
ppd->local_tx_rate = 0;
} else {
/* set the tx rate to all enabled */
ppd->local_tx_rate = 0;
if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
ppd->local_tx_rate |= 2;
if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
ppd->local_tx_rate |= 1;
}
enable_lane_tx = 0xF; /* enable all four lanes */
ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
rx_polarity_inversion, ppd->local_tx_rate);
if (ret != HCMD_SUCCESS)
goto set_local_link_attributes_fail;
/*
* DC supports continuous updates.
*/
ret = write_vc_local_phy(dd,
0 /* no power management */,
1 /* continuous updates */);
if (ret != HCMD_SUCCESS)
goto set_local_link_attributes_fail;
/* z=1 in the next call: AU of 0 is not supported by the hardware */
ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
ppd->port_crc_mode_enabled);
if (ret != HCMD_SUCCESS)
goto set_local_link_attributes_fail;
ret = write_vc_local_link_width(dd, 0, 0,
opa_to_vc_link_widths(
ppd->link_width_enabled));
if (ret != HCMD_SUCCESS)
goto set_local_link_attributes_fail;
/* let peer know who we are */
ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
if (ret == HCMD_SUCCESS)
return 0;
set_local_link_attributes_fail:
dd_dev_err(dd,
"Failed to set local link attributes, return 0x%x\n",
ret);
return ret;
}
/*
* Call this to start the link.
* Do not do anything if the link is disabled.
* Returns 0 if link is disabled, moved to polling, or the driver is not ready.
*/
int start_link(struct hfi1_pportdata *ppd)
{
/*
* Tune the SerDes to a ballpark setting for optimal signal and bit
* error rate. Needs to be done before starting the link.
*/
tune_serdes(ppd);
if (!ppd->driver_link_ready) {
dd_dev_info(ppd->dd,
"%s: stopping link start because driver is not ready\n",
__func__);
return 0;
}
/*
* FULL_MGMT_P_KEY is cleared from the pkey table, so that the
* pkey table can be configured properly if the HFI unit is connected
* to switch port with MgmtAllowed=NO
*/
clear_full_mgmt_pkey(ppd);
return set_link_state(ppd, HLS_DN_POLL);
}
static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u64 mask;
unsigned long timeout;
/*
* Some QSFP cables have a quirk that asserts the IntN line as a side
* effect of power up on plug-in. We ignore this false positive
* interrupt until the module has finished powering up by waiting for
* a minimum timeout of the module inrush initialization time of
* 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
* module have stabilized.
*/
msleep(500);
/*
* Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
*/
timeout = jiffies + msecs_to_jiffies(2000);
while (1) {
mask = read_csr(dd, dd->hfi1_id ?
ASIC_QSFP2_IN : ASIC_QSFP1_IN);
if (!(mask & QSFP_HFI0_INT_N))
break;
if (time_after(jiffies, timeout)) {
dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
__func__);
break;
}
udelay(2);
}
}
static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
{
struct hfi1_devdata *dd = ppd->dd;
u64 mask;
mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
if (enable) {
/*
* Clear the status register to avoid an immediate interrupt
* when we re-enable the IntN pin
*/
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
QSFP_HFI0_INT_N);
mask |= (u64)QSFP_HFI0_INT_N;
} else {
mask &= ~(u64)QSFP_HFI0_INT_N;
}
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
}
void reset_qsfp(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u64 mask, qsfp_mask;
/* Disable INT_N from triggering QSFP interrupts */
set_qsfp_int_n(ppd, 0);
/* Reset the QSFP */
mask = (u64)QSFP_HFI0_RESET_N;
qsfp_mask = read_csr(dd,
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
qsfp_mask &= ~mask;
write_csr(dd,
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
udelay(10);
qsfp_mask |= mask;
write_csr(dd,
dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
wait_for_qsfp_init(ppd);
/*
* Allow INT_N to trigger the QSFP interrupt to watch
* for alarms and warnings
*/
set_qsfp_int_n(ppd, 1);
}
static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
u8 *qsfp_interrupt_status)
{
struct hfi1_devdata *dd = ppd->dd;
if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
(qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
__func__);
if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
(qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
__func__);
/*
* The remaining alarms/warnings don't matter if the link is down.
*/
if (ppd->host_link_state & HLS_DOWN)
return 0;
if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
(qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
__func__);
if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
(qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
__func__);
/* Byte 2 is vendor specific */
if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
(qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
__func__);
if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
(qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
__func__);
if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
(qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
__func__);
if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
(qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
__func__);
if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
(qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
__func__);
if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
(qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
__func__);
if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
(qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
__func__);
if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
(qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
__func__);
if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
(qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
__func__);
if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
(qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
__func__);
if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
(qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
__func__);
if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
(qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
__func__);
/* Bytes 9-10 and 11-12 are reserved */
/* Bytes 13-15 are vendor specific */
return 0;
}
/* This routine will only be scheduled if the QSFP module present is asserted */
void qsfp_event(struct work_struct *work)
{
struct qsfp_data *qd;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
qd = container_of(work, struct qsfp_data, qsfp_work);
ppd = qd->ppd;
dd = ppd->dd;
/* Sanity check */
if (!qsfp_mod_present(ppd))
return;
if (ppd->host_link_state == HLS_DN_DISABLE) {
dd_dev_info(ppd->dd,
"%s: stopping link start because link is disabled\n",
__func__);
return;
}
/*
* Turn DC back on after cable has been re-inserted. Up until
* now, the DC has been in reset to save power.
*/
dc_start(dd);
if (qd->cache_refresh_required) {
set_qsfp_int_n(ppd, 0);
wait_for_qsfp_init(ppd);
/*
* Allow INT_N to trigger the QSFP interrupt to watch
* for alarms and warnings
*/
set_qsfp_int_n(ppd, 1);
start_link(ppd);
}
if (qd->check_interrupt_flags) {
u8 qsfp_interrupt_status[16] = {0,};
if (one_qsfp_read(ppd, dd->hfi1_id, 6,
&qsfp_interrupt_status[0], 16) != 16) {
dd_dev_info(dd,
"%s: Failed to read status of QSFP module\n",
__func__);
} else {
unsigned long flags;
handle_qsfp_error_conditions(
ppd, qsfp_interrupt_status);
spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
ppd->qsfp_info.check_interrupt_flags = 0;
spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
flags);
}
}
}
static void init_qsfp_int(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd = dd->pport;
u64 qsfp_mask, cce_int_mask;
const int qsfp1_int_smask = QSFP1_INT % 64;
const int qsfp2_int_smask = QSFP2_INT % 64;
/*
* disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
* Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
* therefore just one of QSFP1_INT/QSFP2_INT can be used to find
* the index of the appropriate CSR in the CCEIntMask CSR array
*/
cce_int_mask = read_csr(dd, CCE_INT_MASK +
(8 * (QSFP1_INT / 64)));
if (dd->hfi1_id) {
cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
cce_int_mask);
} else {
cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
cce_int_mask);
}
qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
/* Clear current status to avoid spurious interrupts */
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
qsfp_mask);
write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
qsfp_mask);
set_qsfp_int_n(ppd, 0);
/* Handle active low nature of INT_N and MODPRST_N pins */
if (qsfp_mod_present(ppd))
qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
write_csr(dd,
dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
qsfp_mask);
}
/*
* Do a one-time initialize of the LCB block.
*/
static void init_lcb(struct hfi1_devdata *dd)
{
/* simulator does not correctly handle LCB cclk loopback, skip */
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
return;
/* the DC has been reset earlier in the driver load */
/* set LCB for cclk loopback on the port */
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
}
/*
* Perform a test read on the QSFP. Return 0 on success, -ERRNO
* on error.
*/
static int test_qsfp_read(struct hfi1_pportdata *ppd)
{
int ret;
u8 status;
/*
* Report success if not a QSFP or, if it is a QSFP, but the cable is
* not present
*/
if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
return 0;
/* read byte 2, the status byte */
ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
if (ret < 0)
return ret;
if (ret != 1)
return -EIO;
return 0; /* success */
}
/*
* Values for QSFP retry.
*
* Give up after 10s (20 x 500ms). The overall timeout was empirically
* arrived at from experience on a large cluster.
*/
#define MAX_QSFP_RETRIES 20
#define QSFP_RETRY_WAIT 500 /* msec */
/*
* Try a QSFP read. If it fails, schedule a retry for later.
* Called on first link activation after driver load.
*/
static void try_start_link(struct hfi1_pportdata *ppd)
{
if (test_qsfp_read(ppd)) {
/* read failed */
if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
return;
}
dd_dev_info(ppd->dd,
"QSFP not responding, waiting and retrying %d\n",
(int)ppd->qsfp_retry_count);
ppd->qsfp_retry_count++;
queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
msecs_to_jiffies(QSFP_RETRY_WAIT));
return;
}
ppd->qsfp_retry_count = 0;
start_link(ppd);
}
/*
* Workqueue function to start the link after a delay.
*/
void handle_start_link(struct work_struct *work)
{
struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
start_link_work.work);
try_start_link(ppd);
}
int bringup_serdes(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u64 guid;
int ret;
if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
guid = ppd->guids[HFI1_PORT_GUID_INDEX];
if (!guid) {
if (dd->base_guid)
guid = dd->base_guid + ppd->port - 1;
ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
}
/* Set linkinit_reason on power up per OPA spec */
ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
/* one-time init of the LCB */
init_lcb(dd);
if (loopback) {
ret = init_loopback(dd);
if (ret < 0)
return ret;
}
get_port_type(ppd);
if (ppd->port_type == PORT_TYPE_QSFP) {
set_qsfp_int_n(ppd, 0);
wait_for_qsfp_init(ppd);
set_qsfp_int_n(ppd, 1);
}
try_start_link(ppd);
return 0;
}
void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
/*
* Shut down the link and keep it down. First turn off that the
* driver wants to allow the link to be up (driver_link_ready).
* Then make sure the link is not automatically restarted
* (link_enabled). Cancel any pending restart. And finally
* go offline.
*/
ppd->driver_link_ready = 0;
ppd->link_enabled = 0;
ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
flush_delayed_work(&ppd->start_link_work);
cancel_delayed_work_sync(&ppd->start_link_work);
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
OPA_LINKDOWN_REASON_SMA_DISABLED);
set_link_state(ppd, HLS_DN_OFFLINE);
/* disable the port */
clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
}
static inline int init_cpu_counters(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int i;
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
ppd->ibport_data.rvp.rc_acks = NULL;
ppd->ibport_data.rvp.rc_qacks = NULL;
ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
if (!ppd->ibport_data.rvp.rc_acks ||
!ppd->ibport_data.rvp.rc_delayed_comp ||
!ppd->ibport_data.rvp.rc_qacks)
return -ENOMEM;
}
return 0;
}
/*
* index is the index into the receive array
*/
void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
u32 type, unsigned long pa, u16 order)
{
u64 reg;
if (!(dd->flags & HFI1_PRESENT))
goto done;
if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
pa = 0;
order = 0;
} else if (type > PT_INVALID) {
dd_dev_err(dd,
"unexpected receive array type %u for index %u, not handled\n",
type, index);
goto done;
}
trace_hfi1_put_tid(dd, index, type, pa, order);
#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
<< RCV_ARRAY_RT_ADDR_SHIFT;
trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
writeq(reg, dd->rcvarray_wc + (index * 8));
if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
/*
* Eager entries are written and flushed
*
* Expected entries are flushed every 4 writes
*/
flush_wc();
done:
return;
}
void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
{
struct hfi1_devdata *dd = rcd->dd;
u32 i;
/* this could be optimized */
for (i = rcd->eager_base; i < rcd->eager_base +
rcd->egrbufs.alloced; i++)
hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
for (i = rcd->expected_base;
i < rcd->expected_base + rcd->expected_count; i++)
hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
}
static const char * const ib_cfg_name_strings[] = {
"HFI1_IB_CFG_LIDLMC",
"HFI1_IB_CFG_LWID_DG_ENB",
"HFI1_IB_CFG_LWID_ENB",
"HFI1_IB_CFG_LWID",
"HFI1_IB_CFG_SPD_ENB",
"HFI1_IB_CFG_SPD",
"HFI1_IB_CFG_RXPOL_ENB",
"HFI1_IB_CFG_LREV_ENB",
"HFI1_IB_CFG_LINKLATENCY",
"HFI1_IB_CFG_HRTBT",
"HFI1_IB_CFG_OP_VLS",
"HFI1_IB_CFG_VL_HIGH_CAP",
"HFI1_IB_CFG_VL_LOW_CAP",
"HFI1_IB_CFG_OVERRUN_THRESH",
"HFI1_IB_CFG_PHYERR_THRESH",
"HFI1_IB_CFG_LINKDEFAULT",
"HFI1_IB_CFG_PKEYS",
"HFI1_IB_CFG_MTU",
"HFI1_IB_CFG_LSTATE",
"HFI1_IB_CFG_VL_HIGH_LIMIT",
"HFI1_IB_CFG_PMA_TICKS",
"HFI1_IB_CFG_PORT"
};
static const char *ib_cfg_name(int which)
{
if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
return "invalid";
return ib_cfg_name_strings[which];
}
int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
{
struct hfi1_devdata *dd = ppd->dd;
int val = 0;
switch (which) {
case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
val = ppd->link_width_enabled;
break;
case HFI1_IB_CFG_LWID: /* currently active Link-width */
val = ppd->link_width_active;
break;
case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
val = ppd->link_speed_enabled;
break;
case HFI1_IB_CFG_SPD: /* current Link speed */
val = ppd->link_speed_active;
break;
case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
case HFI1_IB_CFG_LINKLATENCY:
goto unimplemented;
case HFI1_IB_CFG_OP_VLS:
val = ppd->vls_operational;
break;
case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
break;
case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
val = VL_ARB_LOW_PRIO_TABLE_SIZE;
break;
case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
val = ppd->overrun_threshold;
break;
case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
val = ppd->phy_error_threshold;
break;
case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
val = dd->link_default;
break;
case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
case HFI1_IB_CFG_PMA_TICKS:
default:
unimplemented:
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
dd_dev_info(
dd,
"%s: which %s: not implemented\n",
__func__,
ib_cfg_name(which));
break;
}
return val;
}
/*
* The largest MAD packet size.
*/
#define MAX_MAD_PACKET 2048
/*
* Return the maximum header bytes that can go on the _wire_
* for this device. This count includes the ICRC which is
* not part of the packet held in memory but it is appended
* by the HW.
* This is dependent on the device's receive header entry size.
* HFI allows this to be set per-receive context, but the
* driver presently enforces a global value.
*/
u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
{
/*
* The maximum non-payload (MTU) bytes in LRH.PktLen are
* the Receive Header Entry Size minus the PBC (or RHF) size
* plus one DW for the ICRC appended by HW.
*
* dd->rcd[0].rcvhdrqentsize is in DW.
* We use rcd[0] as all context will have the same value. Also,
* the first kernel context would have been allocated by now so
* we are guaranteed a valid value.
*/
return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
}
/*
* Set Send Length
* @ppd - per port data
*
* Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
* registers compare against LRH.PktLen, so use the max bytes included
* in the LRH.
*
* This routine changes all VL values except VL15, which it maintains at
* the same value.
*/
static void set_send_length(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
u32 maxvlmtu = dd->vld[15].mtu;
u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
& SEND_LEN_CHECK1_LEN_VL15_MASK) <<
SEND_LEN_CHECK1_LEN_VL15_SHIFT;
int i, j;
u32 thres;
for (i = 0; i < ppd->vls_supported; i++) {
if (dd->vld[i].mtu > maxvlmtu)
maxvlmtu = dd->vld[i].mtu;
if (i <= 3)
len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
& SEND_LEN_CHECK0_LEN_VL0_MASK) <<
((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
else
len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
& SEND_LEN_CHECK1_LEN_VL4_MASK) <<
((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
}
write_csr(dd, SEND_LEN_CHECK0, len1);
write_csr(dd, SEND_LEN_CHECK1, len2);
/* adjust kernel credit return thresholds based on new MTUs */
/* all kernel receive contexts have the same hdrqentsize */
for (i = 0; i < ppd->vls_supported; i++) {
thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
sc_mtu_to_threshold(dd->vld[i].sc,
dd->vld[i].mtu,
dd->rcd[0]->rcvhdrqentsize));
for (j = 0; j < INIT_SC_PER_VL; j++)
sc_set_cr_threshold(
pio_select_send_context_vl(dd, j, i),
thres);
}
thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
sc_mtu_to_threshold(dd->vld[15].sc,
dd->vld[15].mtu,
dd->rcd[0]->rcvhdrqentsize));
sc_set_cr_threshold(dd->vld[15].sc, thres);
/* Adjust maximum MTU for the port in DC */
dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
(ilog2(maxvlmtu >> 8) + 1);
len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
}
static void set_lidlmc(struct hfi1_pportdata *ppd)
{
int i;
u64 sreg = 0;
struct hfi1_devdata *dd = ppd->dd;
u32 mask = ~((1U << ppd->lmc) - 1);
u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
u32 lid;
/*
* Program 0 in CSR if port lid is extended. This prevents
* 9B packets being sent out for large lids.
*/
lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
/*
* Iterate over all the send contexts and set their SLID check
*/
sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
(((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
for (i = 0; i < dd->chip_send_contexts; i++) {
hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
i, (u32)sreg);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
}
/* Now we have to do the same thing for the sdma engines */
sdma_update_lmc(dd, mask, lid);
}
static const char *state_completed_string(u32 completed)
{
static const char * const state_completed[] = {
"EstablishComm",
"OptimizeEQ",
"VerifyCap"
};
if (completed < ARRAY_SIZE(state_completed))
return state_completed[completed];
return "unknown";
}
static const char all_lanes_dead_timeout_expired[] =
"All lanes were inactive – was the interconnect media removed?";
static const char tx_out_of_policy[] =
"Passing lanes on local port do not meet the local link width policy";
static const char no_state_complete[] =
"State timeout occurred before link partner completed the state";
static const char * const state_complete_reasons[] = {
[0x00] = "Reason unknown",
[0x01] = "Link was halted by driver, refer to LinkDownReason",
[0x02] = "Link partner reported failure",
[0x10] = "Unable to achieve frame sync on any lane",
[0x11] =
"Unable to find a common bit rate with the link partner",
[0x12] =
"Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
[0x13] =
"Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
[0x14] = no_state_complete,
[0x15] =
"State timeout occurred before link partner identified equalization presets",
[0x16] =
"Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
[0x17] = tx_out_of_policy,
[0x20] = all_lanes_dead_timeout_expired,
[0x21] =
"Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
[0x22] = no_state_complete,
[0x23] =
"Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
[0x24] = tx_out_of_policy,
[0x30] = all_lanes_dead_timeout_expired,
[0x31] =
"State timeout occurred waiting for host to process received frames",
[0x32] = no_state_complete,
[0x33] =
"Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
[0x34] = tx_out_of_policy,
};
static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
u32 code)
{
const char *str = NULL;
if (code < ARRAY_SIZE(state_complete_reasons))
str = state_complete_reasons[code];
if (str)
return str;
return "Reserved";
}
/* describe the given last state complete frame */
static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
const char *prefix)
{
struct hfi1_devdata *dd = ppd->dd;
u32 success;
u32 state;
u32 reason;
u32 lanes;
/*
* Decode frame:
* [ 0: 0] - success
* [ 3: 1] - state
* [ 7: 4] - next state timeout
* [15: 8] - reason code
* [31:16] - lanes
*/
success = frame & 0x1;
state = (frame >> 1) & 0x7;
reason = (frame >> 8) & 0xff;
lanes = (frame >> 16) & 0xffff;
dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
prefix, frame);
dd_dev_err(dd, " last reported state state: %s (0x%x)\n",
state_completed_string(state), state);
dd_dev_err(dd, " state successfully completed: %s\n",
success ? "yes" : "no");
dd_dev_err(dd, " fail reason 0x%x: %s\n",
reason, state_complete_reason_code_string(ppd, reason));
dd_dev_err(dd, " passing lane mask: 0x%x", lanes);
}
/*
* Read the last state complete frames and explain them. This routine
* expects to be called if the link went down during link negotiation
* and initialization (LNI). That is, anywhere between polling and link up.
*/
static void check_lni_states(struct hfi1_pportdata *ppd)
{
u32 last_local_state;
u32 last_remote_state;
read_last_local_state(ppd->dd, &last_local_state);
read_last_remote_state(ppd->dd, &last_remote_state);
/*
* Don't report anything if there is nothing to report. A value of
* 0 means the link was taken down while polling and there was no
* training in-process.
*/
if (last_local_state == 0 && last_remote_state == 0)
return;
decode_state_complete(ppd, last_local_state, "transmitted");
decode_state_complete(ppd, last_remote_state, "received");
}
/* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
{
u64 reg;
unsigned long timeout;
/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
timeout = jiffies + msecs_to_jiffies(wait_ms);
while (1) {
reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
if (reg)
break;
if (time_after(jiffies, timeout)) {
dd_dev_err(dd,
"timeout waiting for LINK_TRANSFER_ACTIVE\n");
return -ETIMEDOUT;
}
udelay(2);
}
return 0;
}
/* called when the logical link state is not down as it should be */
static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
/*
* Bring link up in LCB loopback
*/
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
udelay(3);
write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
wait_link_transfer_active(dd, 100);
/*
* Bring the link down again.
*/
write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
/* adjust ppd->statusp, if needed */
update_statusp(ppd, IB_PORT_DOWN);
dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
}
/*
* Helper for set_link_state(). Do not call except from that routine.
* Expects ppd->hls_mutex to be held.
*
* @rem_reason value to be sent to the neighbor
*
* LinkDownReasons only set if transition succeeds.
*/
static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
{
struct hfi1_devdata *dd = ppd->dd;
u32 previous_state;
int ret;
update_lcb_cache(dd);
previous_state = ppd->host_link_state;
ppd->host_link_state = HLS_GOING_OFFLINE;
/* start offline transition */
ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
if (ret != HCMD_SUCCESS) {
dd_dev_err(dd,
"Failed to transition to Offline link state, return %d\n",
ret);
return -EINVAL;
}
if (ppd->offline_disabled_reason ==
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
/*
* Wait for offline transition. It can take a while for
* the link to go down.
*/
ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 10000);
if (ret < 0)
return ret;
/*
* Now in charge of LCB - must be after the physical state is
* offline.quiet and before host_link_state is changed.
*/
set_host_lcb_access(dd);
write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
/* make sure the logical state is also down */
ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
if (ret)
force_logical_link_state_down(ppd);
ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
if (ppd->port_type == PORT_TYPE_QSFP &&
ppd->qsfp_info.limiting_active &&
qsfp_mod_present(ppd)) {
int ret;
ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
if (ret == 0) {
set_qsfp_tx(ppd, 0);
release_chip_resource(dd, qsfp_resource(dd));
} else {
/* not fatal, but should warn */
dd_dev_err(dd,
"Unable to acquire lock to turn off QSFP TX\n");
}
}
/*
* The LNI has a mandatory wait time after the physical state
* moves to Offline.Quiet. The wait time may be different
* depending on how the link went down. The 8051 firmware
* will observe the needed wait time and only move to ready
* when that is completed. The largest of the quiet timeouts
* is 6s, so wait that long and then at least 0.5s more for
* other transitions, and another 0.5s for a buffer.
*/
ret = wait_fm_ready(dd, 7000);
if (ret) {
dd_dev_err(dd,
"After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
/* state is really offline, so make it so */
ppd->host_link_state = HLS_DN_OFFLINE;
return ret;
}
/*
* The state is now offline and the 8051 is ready to accept host
* requests.
* - change our state
* - notify others if we were previously in a linkup state
*/
ppd->host_link_state = HLS_DN_OFFLINE;
if (previous_state & HLS_UP) {
/* went down while link was up */
handle_linkup_change(dd, 0);
} else if (previous_state
& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
/* went down while attempting link up */
check_lni_states(ppd);
}
/* the active link width (downgrade) is 0 on link down */
ppd->link_width_active = 0;
ppd->link_width_downgrade_tx_active = 0;
ppd->link_width_downgrade_rx_active = 0;
ppd->current_egress_rate = 0;
return 0;
}
/* return the link state name */
static const char *link_state_name(u32 state)
{
const char *name;
int n = ilog2(state);
static const char * const names[] = {
[__HLS_UP_INIT_BP] = "INIT",
[__HLS_UP_ARMED_BP] = "ARMED",
[__HLS_UP_ACTIVE_BP] = "ACTIVE",
[__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
[__HLS_DN_POLL_BP] = "POLL",
[__HLS_DN_DISABLE_BP] = "DISABLE",
[__HLS_DN_OFFLINE_BP] = "OFFLINE",
[__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
[__HLS_GOING_UP_BP] = "GOING_UP",
[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
};
name = n < ARRAY_SIZE(names) ? names[n] : NULL;
return name ? name : "unknown";
}
/* return the link state reason name */
static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
{
if (state == HLS_UP_INIT) {
switch (ppd->linkinit_reason) {
case OPA_LINKINIT_REASON_LINKUP:
return "(LINKUP)";
case OPA_LINKINIT_REASON_FLAPPING:
return "(FLAPPING)";
case OPA_LINKINIT_OUTSIDE_POLICY:
return "(OUTSIDE_POLICY)";
case OPA_LINKINIT_QUARANTINED:
return "(QUARANTINED)";
case OPA_LINKINIT_INSUFIC_CAPABILITY:
return "(INSUFIC_CAPABILITY)";
default:
break;
}
}
return "";
}
/*
* driver_pstate - convert the driver's notion of a port's
* state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
* Return -1 (converted to a u32) to indicate error.
*/
u32 driver_pstate(struct hfi1_pportdata *ppd)
{
switch (ppd->host_link_state) {
case HLS_UP_INIT:
case HLS_UP_ARMED:
case HLS_UP_ACTIVE:
return IB_PORTPHYSSTATE_LINKUP;
case HLS_DN_POLL:
return IB_PORTPHYSSTATE_POLLING;
case HLS_DN_DISABLE:
return IB_PORTPHYSSTATE_DISABLED;
case HLS_DN_OFFLINE:
return OPA_PORTPHYSSTATE_OFFLINE;
case HLS_VERIFY_CAP:
return IB_PORTPHYSSTATE_POLLING;
case HLS_GOING_UP:
return IB_PORTPHYSSTATE_POLLING;
case HLS_GOING_OFFLINE:
return OPA_PORTPHYSSTATE_OFFLINE;
case HLS_LINK_COOLDOWN:
return OPA_PORTPHYSSTATE_OFFLINE;
case HLS_DN_DOWNDEF:
default:
dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
ppd->host_link_state);
return -1;
}
}
/*
* driver_lstate - convert the driver's notion of a port's
* state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
* (converted to a u32) to indicate error.
*/
u32 driver_lstate(struct hfi1_pportdata *ppd)
{
if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
return IB_PORT_DOWN;
switch (ppd->host_link_state & HLS_UP) {
case HLS_UP_INIT:
return IB_PORT_INIT;
case HLS_UP_ARMED:
return IB_PORT_ARMED;
case HLS_UP_ACTIVE:
return IB_PORT_ACTIVE;
default:
dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
ppd->host_link_state);
return -1;
}
}
void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
u8 neigh_reason, u8 rem_reason)
{
if (ppd->local_link_down_reason.latest == 0 &&
ppd->neigh_link_down_reason.latest == 0) {
ppd->local_link_down_reason.latest = lcl_reason;
ppd->neigh_link_down_reason.latest = neigh_reason;
ppd->remote_link_down_reason = rem_reason;
}
}
/*
* Verify if BCT for data VLs is non-zero.
*/
static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
{
return !!ppd->actual_vls_operational;
}
/*
* Change the physical and/or logical link state.
*
* Do not call this routine while inside an interrupt. It contains
* calls to routines that can take multiple seconds to finish.
*
* Returns 0 on success, -errno on failure.
*/
int set_link_state(struct hfi1_pportdata *ppd, u32 state)
{
struct hfi1_devdata *dd = ppd->dd;
struct ib_event event = {.device = NULL};
int ret1, ret = 0;
int orig_new_state, poll_bounce;
mutex_lock(&ppd->hls_lock);
orig_new_state = state;
if (state == HLS_DN_DOWNDEF)
state = dd->link_default;
/* interpret poll -> poll as a link bounce */
poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
state == HLS_DN_POLL;
dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
link_state_name(ppd->host_link_state),
link_state_name(orig_new_state),
poll_bounce ? "(bounce) " : "",
link_state_reason_name(ppd, state));
/*
* If we're going to a (HLS_*) link state that implies the logical
* link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
* reset is_sm_config_started to 0.
*/
if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
ppd->is_sm_config_started = 0;
/*
* Do nothing if the states match. Let a poll to poll link bounce
* go through.
*/
if (ppd->host_link_state == state && !poll_bounce)
goto done;
switch (state) {
case HLS_UP_INIT:
if (ppd->host_link_state == HLS_DN_POLL &&
(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
/*
* Quick link up jumps from polling to here.
*
* Whether in normal or loopback mode, the
* simulator jumps from polling to link up.
* Accept that here.
*/
/* OK */
} else if (ppd->host_link_state != HLS_GOING_UP) {
goto unexpected;
}
/*
* Wait for Link_Up physical state.
* Physical and Logical states should already be
* be transitioned to LinkUp and LinkInit respectively.
*/
ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
if (ret) {
dd_dev_err(dd,
"%s: physical state did not change to LINK-UP\n",
__func__);
break;
}
ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
if (ret) {
dd_dev_err(dd,
"%s: logical state did not change to INIT\n",
__func__);
break;
}
/* clear old transient LINKINIT_REASON code */
if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
ppd->linkinit_reason =
OPA_LINKINIT_REASON_LINKUP;
/* enable the port */
add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
handle_linkup_change(dd, 1);
ppd->host_link_state = HLS_UP_INIT;
break;
case HLS_UP_ARMED:
if (ppd->host_link_state != HLS_UP_INIT)
goto unexpected;
if (!data_vls_operational(ppd)) {
dd_dev_err(dd,
"%s: data VLs not operational\n", __func__);
ret = -EINVAL;
break;
}
set_logical_state(dd, LSTATE_ARMED);
ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
if (ret) {
dd_dev_err(dd,
"%s: logical state did not change to ARMED\n",
__func__);
break;
}
ppd->host_link_state = HLS_UP_ARMED;
/*
* The simulator does not currently implement SMA messages,
* so neighbor_normal is not set. Set it here when we first
* move to Armed.
*/
if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
ppd->neighbor_normal = 1;
break;
case HLS_UP_ACTIVE:
if (ppd->host_link_state != HLS_UP_ARMED)
goto unexpected;
set_logical_state(dd, LSTATE_ACTIVE);
ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
if (ret) {
dd_dev_err(dd,
"%s: logical state did not change to ACTIVE\n",
__func__);
} else {
/* tell all engines to go running */
sdma_all_running(dd);
ppd->host_link_state = HLS_UP_ACTIVE;
/* Signal the IB layer that the port has went active */
event.device = &dd->verbs_dev.rdi.ibdev;
event.element.port_num = ppd->port;
event.event = IB_EVENT_PORT_ACTIVE;
}
break;
case HLS_DN_POLL:
if ((ppd->host_link_state == HLS_DN_DISABLE ||
ppd->host_link_state == HLS_DN_OFFLINE) &&
dd->dc_shutdown)
dc_start(dd);
/* Hand LED control to the DC */
write_csr(dd, DCC_CFG_LED_CNTRL, 0);
if (ppd->host_link_state != HLS_DN_OFFLINE) {
u8 tmp = ppd->link_enabled;
ret = goto_offline(ppd, ppd->remote_link_down_reason);
if (ret) {
ppd->link_enabled = tmp;
break;
}
ppd->remote_link_down_reason = 0;
if (ppd->driver_link_ready)
ppd->link_enabled = 1;
}
set_all_slowpath(ppd->dd);
ret = set_local_link_attributes(ppd);
if (ret)
break;
ppd->port_error_action = 0;
ppd->host_link_state = HLS_DN_POLL;
if (quick_linkup) {
/* quick linkup does not go into polling */
ret = do_quick_linkup(dd);
} else {
ret1 = set_physical_link_state(dd, PLS_POLLING);
if (ret1 != HCMD_SUCCESS) {
dd_dev_err(dd,
"Failed to transition to Polling link state, return 0x%x\n",
ret1);
ret = -EINVAL;
}
}
ppd->offline_disabled_reason =
HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
/*
* If an error occurred above, go back to offline. The
* caller may reschedule another attempt.
*/
if (ret)
goto_offline(ppd, 0);
else
log_physical_state(ppd, PLS_POLLING);
break;
case HLS_DN_DISABLE:
/* link is disabled */
ppd->link_enabled = 0;
/* allow any state to transition to disabled */
/* must transition to offline first */
if (ppd->host_link_state != HLS_DN_OFFLINE) {
ret = goto_offline(ppd, ppd->remote_link_down_reason);
if (ret)
break;
ppd->remote_link_down_reason = 0;
}
if (!dd->dc_shutdown) {
ret1 = set_physical_link_state(dd, PLS_DISABLED);
if (ret1 != HCMD_SUCCESS) {
dd_dev_err(dd,
"Failed to transition to Disabled link state, return 0x%x\n",
ret1);
ret = -EINVAL;
break;
}
ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
if (ret) {
dd_dev_err(dd,
"%s: physical state did not change to DISABLED\n",
__func__);
break;
}
dc_shutdown(dd);
}
ppd->host_link_state = HLS_DN_DISABLE;
break;
case HLS_DN_OFFLINE:
if (ppd->host_link_state == HLS_DN_DISABLE)
dc_start(dd);
/* allow any state to transition to offline */
ret = goto_offline(ppd, ppd->remote_link_down_reason);
if (!ret)
ppd->remote_link_down_reason = 0;
break;
case HLS_VERIFY_CAP:
if (ppd->host_link_state != HLS_DN_POLL)
goto unexpected;
ppd->host_link_state = HLS_VERIFY_CAP;
log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
break;
case HLS_GOING_UP:
if (ppd->host_link_state != HLS_VERIFY_CAP)
goto unexpected;
ret1 = set_physical_link_state(dd, PLS_LINKUP);
if (ret1 != HCMD_SUCCESS) {
dd_dev_err(dd,
"Failed to transition to link up state, return 0x%x\n",
ret1);
ret = -EINVAL;
break;
}
ppd->host_link_state = HLS_GOING_UP;
break;
case HLS_GOING_OFFLINE: /* transient within goto_offline() */
case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
default:
dd_dev_info(dd, "%s: state 0x%x: not supported\n",
__func__, state);
ret = -EINVAL;
break;
}
goto done;
unexpected:
dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
__func__, link_state_name(ppd->host_link_state),
link_state_name(state));
ret = -EINVAL;
done:
mutex_unlock(&ppd->hls_lock);
if (event.device)
ib_dispatch_event(&event);
return ret;
}
int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
{
u64 reg;
int ret = 0;
switch (which) {
case HFI1_IB_CFG_LIDLMC:
set_lidlmc(ppd);
break;
case HFI1_IB_CFG_VL_HIGH_LIMIT:
/*
* The VL Arbitrator high limit is sent in units of 4k
* bytes, while HFI stores it in units of 64 bytes.
*/
val *= 4096 / 64;
reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
break;
case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
/* HFI only supports POLL as the default link down state */
if (val != HLS_DN_POLL)
ret = -EINVAL;
break;
case HFI1_IB_CFG_OP_VLS:
if (ppd->vls_operational != val) {
ppd->vls_operational = val;
if (!ppd->port)
ret = -EINVAL;
}
break;
/*
* For link width, link width downgrade, and speed enable, always AND
* the setting with what is actually supported. This has two benefits.
* First, enabled can't have unsupported values, no matter what the
* SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
* "fill in with your supported value" have all the bits in the
* field set, so simply ANDing with supported has the desired result.
*/
case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
ppd->link_width_enabled = val & ppd->link_width_supported;
break;
case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
ppd->link_width_downgrade_enabled =
val & ppd->link_width_downgrade_supported;
break;
case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
ppd->link_speed_enabled = val & ppd->link_speed_supported;
break;
case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
/*
* HFI does not follow IB specs, save this value
* so we can report it, if asked.
*/
ppd->overrun_threshold = val;
break;
case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
/*
* HFI does not follow IB specs, save this value
* so we can report it, if asked.
*/
ppd->phy_error_threshold = val;
break;
case HFI1_IB_CFG_MTU:
set_send_length(ppd);
break;
case HFI1_IB_CFG_PKEYS:
if (HFI1_CAP_IS_KSET(PKEY_CHECK))
set_partition_keys(ppd);
break;
default:
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
dd_dev_info(ppd->dd,
"%s: which %s, val 0x%x: not implemented\n",
__func__, ib_cfg_name(which), val);
break;
}
return ret;
}
/* begin functions related to vl arbitration table caching */
static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
{
int i;
BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
VL_ARB_LOW_PRIO_TABLE_SIZE);
BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
VL_ARB_HIGH_PRIO_TABLE_SIZE);
/*
* Note that we always return values directly from the
* 'vl_arb_cache' (and do no CSR reads) in response to a
* 'Get(VLArbTable)'. This is obviously correct after a
* 'Set(VLArbTable)', since the cache will then be up to
* date. But it's also correct prior to any 'Set(VLArbTable)'
* since then both the cache, and the relevant h/w registers
* will be zeroed.
*/
for (i = 0; i < MAX_PRIO_TABLE; i++)
spin_lock_init(&ppd->vl_arb_cache[i].lock);
}
/*
* vl_arb_lock_cache
*
* All other vl_arb_* functions should be called only after locking
* the cache.
*/
static inline struct vl_arb_cache *
vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
{
if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
return NULL;
spin_lock(&ppd->vl_arb_cache[idx].lock);
return &ppd->vl_arb_cache[idx];
}
static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
{
spin_unlock(&ppd->vl_arb_cache[idx].lock);
}
static void vl_arb_get_cache(struct vl_arb_cache *cache,
struct ib_vl_weight_elem *vl)
{
memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
}
static void vl_arb_set_cache(struct vl_arb_cache *cache,
struct ib_vl_weight_elem *vl)
{
memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
}
static int vl_arb_match_cache(struct vl_arb_cache *cache,
struct ib_vl_weight_elem *vl)
{
return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
}
/* end functions related to vl arbitration table caching */
static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
u32 size, struct ib_vl_weight_elem *vl)
{
struct hfi1_devdata *dd = ppd->dd;
u64 reg;
unsigned int i, is_up = 0;
int drain, ret = 0;
mutex_lock(&ppd->hls_lock);
if (ppd->host_link_state & HLS_UP)
is_up = 1;
drain = !is_ax(dd) && is_up;
if (drain)
/*
* Before adjusting VL arbitration weights, empty per-VL
* FIFOs, otherwise a packet whose VL weight is being
* set to 0 could get stuck in a FIFO with no chance to
* egress.
*/
ret = stop_drain_data_vls(dd);
if (ret) {
dd_dev_err(
dd,
"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
__func__);
goto err;
}
for (i = 0; i < size; i++, vl++) {
/*
* NOTE: The low priority shift and mask are used here, but
* they are the same for both the low and high registers.
*/
reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
| (((u64)vl->weight
& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
write_csr(dd, target + (i * 8), reg);
}
pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
if (drain)
open_fill_data_vls(dd); /* reopen all VLs */
err:
mutex_unlock(&ppd->hls_lock);
return ret;
}
/*
* Read one credit merge VL register.
*/
static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
struct vl_limit *vll)
{
u64 reg = read_csr(dd, csr);
vll->dedicated = cpu_to_be16(
(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
vll->shared = cpu_to_be16(
(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
}
/*
* Read the current credit merge limits.
*/
static int get_buffer_control(struct hfi1_devdata *dd,
struct buffer_control *bc, u16 *overall_limit)
{
u64 reg;
int i;
/* not all entries are filled in */
memset(bc, 0, sizeof(*bc));
/* OPA and HFI have a 1-1 mapping */
for (i = 0; i < TXE_NUM_DATA_VL; i++)
read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
bc->overall_shared_limit = cpu_to_be16(
(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
if (overall_limit)
*overall_limit = (reg
>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
return sizeof(struct buffer_control);
}
static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
{
u64 reg;
int i;
/* each register contains 16 SC->VLnt mappings, 4 bits each */
reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
for (i = 0; i < sizeof(u64); i++) {
u8 byte = *(((u8 *)&reg) + i);
dp->vlnt[2 * i] = byte & 0xf;
dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
}
reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
for (i = 0; i < sizeof(u64); i++) {
u8 byte = *(((u8 *)&reg) + i);
dp->vlnt[16 + (2 * i)] = byte & 0xf;
dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
}
return sizeof(struct sc2vlnt);
}
static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
struct ib_vl_weight_elem *vl)
{
unsigned int i;
for (i = 0; i < nelems; i++, vl++) {
vl->vl = 0xf;
vl->weight = 0;
}
}
static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
{
write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
DC_SC_VL_VAL(15_0,
0, dp->vlnt[0] & 0xf,
1, dp->vlnt[1] & 0xf,
2, dp->vlnt[2] & 0xf,
3, dp->vlnt[3] & 0xf,
4, dp->vlnt[4] & 0xf,
5, dp->vlnt[5] & 0xf,
6, dp->vlnt[6] & 0xf,
7, dp->vlnt[7] & 0xf,
8, dp->vlnt[8] & 0xf,
9, dp->vlnt[9] & 0xf,
10, dp->vlnt[10] & 0xf,
11, dp->vlnt[11] & 0xf,
12, dp->vlnt[12] & 0xf,
13, dp->vlnt[13] & 0xf,
14, dp->vlnt[14] & 0xf,
15, dp->vlnt[15] & 0xf));
write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
DC_SC_VL_VAL(31_16,
16, dp->vlnt[16] & 0xf,
17, dp->vlnt[17] & 0xf,
18, dp->vlnt[18] & 0xf,
19, dp->vlnt[19] & 0xf,
20, dp->vlnt[20] & 0xf,
21, dp->vlnt[21] & 0xf,
22, dp->vlnt[22] & 0xf,
23, dp->vlnt[23] & 0xf,
24, dp->vlnt[24] & 0xf,
25, dp->vlnt[25] & 0xf,
26, dp->vlnt[26] & 0xf,
27, dp->vlnt[27] & 0xf,
28, dp->vlnt[28] & 0xf,
29, dp->vlnt[29] & 0xf,
30, dp->vlnt[30] & 0xf,
31, dp->vlnt[31] & 0xf));
}
static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
u16 limit)
{
if (limit != 0)
dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
what, (int)limit, idx);
}
/* change only the shared limit portion of SendCmGLobalCredit */
static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
{
u64 reg;
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
}
/* change only the total credit limit portion of SendCmGLobalCredit */
static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
{
u64 reg;
reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
}
/* set the given per-VL shared limit */
static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
{
u64 reg;
u32 addr;
if (vl < TXE_NUM_DATA_VL)
addr = SEND_CM_CREDIT_VL + (8 * vl);
else
addr = SEND_CM_CREDIT_VL15;
reg = read_csr(dd, addr);
reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
write_csr(dd, addr, reg);
}
/* set the given per-VL dedicated limit */
static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
{
u64 reg;
u32 addr;
if (vl < TXE_NUM_DATA_VL)
addr = SEND_CM_CREDIT_VL + (8 * vl);
else
addr = SEND_CM_CREDIT_VL15;
reg = read_csr(dd, addr);
reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
write_csr(dd, addr, reg);
}
/* spin until the given per-VL status mask bits clear */
static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
const char *which)
{
unsigned long timeout;
u64 reg;
timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
while (1) {
reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
if (reg == 0)
return; /* success */
if (time_after(jiffies, timeout))
break; /* timed out */
udelay(1);
}
dd_dev_err(dd,
"%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
/*
* If this occurs, it is likely there was a credit loss on the link.
* The only recovery from that is a link bounce.
*/
dd_dev_err(dd,
"Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
}
/*
* The number of credits on the VLs may be changed while everything
* is "live", but the following algorithm must be followed due to
* how the hardware is actually implemented. In particular,
* Return_Credit_Status[] is the only correct status check.
*
* if (reducing Global_Shared_Credit_Limit or any shared limit changing)
* set Global_Shared_Credit_Limit = 0
* use_all_vl = 1
* mask0 = all VLs that are changing either dedicated or shared limits
* set Shared_Limit[mask0] = 0
* spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
* if (changing any dedicated limit)
* mask1 = all VLs that are lowering dedicated limits
* lower Dedicated_Limit[mask1]
* spin until Return_Credit_Status[mask1] == 0
* raise Dedicated_Limits
* raise Shared_Limits
* raise Global_Shared_Credit_Limit
*
* lower = if the new limit is lower, set the limit to the new value
* raise = if the new limit is higher than the current value (may be changed
* earlier in the algorithm), set the new limit to the new value
*/
int set_buffer_control(struct hfi1_pportdata *ppd,
struct buffer_control *new_bc)
{
struct hfi1_devdata *dd = ppd->dd;
u64 changing_mask, ld_mask, stat_mask;
int change_count;
int i, use_all_mask;
int this_shared_changing;
int vl_count = 0, ret;
/*
* A0: add the variable any_shared_limit_changing below and in the
* algorithm above. If removing A0 support, it can be removed.
*/
int any_shared_limit_changing;
struct buffer_control cur_bc;
u8 changing[OPA_MAX_VLS];
u8 lowering_dedicated[OPA_MAX_VLS];
u16 cur_total;
u32 new_total = 0;
const u64 all_mask =
SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
| SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
#define NUM_USABLE_VLS 16 /* look at VL15 and less */
/* find the new total credits, do sanity check on unused VLs */
for (i = 0; i < OPA_MAX_VLS; i++) {
if (valid_vl(i)) {
new_total += be16_to_cpu(new_bc->vl[i].dedicated);
continue;
}
nonzero_msg(dd, i, "dedicated",
be16_to_cpu(new_bc->vl[i].dedicated));
nonzero_msg(dd, i, "shared",
be16_to_cpu(new_bc->vl[i].shared));
new_bc->vl[i].dedicated = 0;
new_bc->vl[i].shared = 0;
}
new_total += be16_to_cpu(new_bc->overall_shared_limit);
/* fetch the current values */
get_buffer_control(dd, &cur_bc, &cur_total);
/*
* Create the masks we will use.
*/
memset(changing, 0, sizeof(changing));
memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
/*
* NOTE: Assumes that the individual VL bits are adjacent and in
* increasing order
*/
stat_mask =
SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
changing_mask = 0;
ld_mask = 0;
change_count = 0;
any_shared_limit_changing = 0;
for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
if (!valid_vl(i))
continue;
this_shared_changing = new_bc->vl[i].shared
!= cur_bc.vl[i].shared;
if (this_shared_changing)
any_shared_limit_changing = 1;
if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
this_shared_changing) {
changing[i] = 1;
changing_mask |= stat_mask;
change_count++;
}
if (be16_to_cpu(new_bc->vl[i].dedicated) <
be16_to_cpu(cur_bc.vl[i].dedicated)) {
lowering_dedicated[i] = 1;
ld_mask |= stat_mask;
}
}
/* bracket the credit change with a total adjustment */
if (new_total > cur_total)
set_global_limit(dd, new_total);
/*
* Start the credit change algorithm.
*/
use_all_mask = 0;
if ((be16_to_cpu(new_bc->overall_shared_limit) <
be16_to_cpu(cur_bc.overall_shared_limit)) ||
(is_ax(dd) && any_shared_limit_changing)) {
set_global_shared(dd, 0);
cur_bc.overall_shared_limit = 0;
use_all_mask = 1;
}
for (i = 0; i < NUM_USABLE_VLS; i++) {
if (!valid_vl(i))
continue;
if (changing[i]) {
set_vl_shared(dd, i, 0);
cur_bc.vl[i].shared = 0;
}
}
wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
"shared");
if (change_count > 0) {
for (i = 0; i < NUM_USABLE_VLS; i++) {
if (!valid_vl(i))
continue;
if (lowering_dedicated[i]) {
set_vl_dedicated(dd, i,
be16_to_cpu(new_bc->
vl[i].dedicated));
cur_bc.vl[i].dedicated =
new_bc->vl[i].dedicated;
}
}
wait_for_vl_status_clear(dd, ld_mask, "dedicated");
/* now raise all dedicated that are going up */
for (i = 0; i < NUM_USABLE_VLS; i++) {
if (!valid_vl(i))
continue;
if (be16_to_cpu(new_bc->vl[i].dedicated) >
be16_to_cpu(cur_bc.vl[i].dedicated))
set_vl_dedicated(dd, i,
be16_to_cpu(new_bc->
vl[i].dedicated));
}
}
/* next raise all shared that are going up */
for (i = 0; i < NUM_USABLE_VLS; i++) {
if (!valid_vl(i))
continue;
if (be16_to_cpu(new_bc->vl[i].shared) >
be16_to_cpu(cur_bc.vl[i].shared))
set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
}
/* finally raise the global shared */
if (be16_to_cpu(new_bc->overall_shared_limit) >
be16_to_cpu(cur_bc.overall_shared_limit))
set_global_shared(dd,
be16_to_cpu(new_bc->overall_shared_limit));
/* bracket the credit change with a total adjustment */
if (new_total < cur_total)
set_global_limit(dd, new_total);
/*
* Determine the actual number of operational VLS using the number of
* dedicated and shared credits for each VL.
*/
if (change_count > 0) {
for (i = 0; i < TXE_NUM_DATA_VL; i++)
if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
be16_to_cpu(new_bc->vl[i].shared) > 0)
vl_count++;
ppd->actual_vls_operational = vl_count;
ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
ppd->actual_vls_operational :
ppd->vls_operational,
NULL);
if (ret == 0)
ret = pio_map_init(dd, ppd->port - 1, vl_count ?
ppd->actual_vls_operational :
ppd->vls_operational, NULL);
if (ret)
return ret;
}
return 0;
}
/*
* Read the given fabric manager table. Return the size of the
* table (in bytes) on success, and a negative error code on
* failure.
*/
int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
{
int size;
struct vl_arb_cache *vlc;
switch (which) {
case FM_TBL_VL_HIGH_ARB:
size = 256;
/*
* OPA specifies 128 elements (of 2 bytes each), though
* HFI supports only 16 elements in h/w.
*/
vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
vl_arb_get_cache(vlc, t);
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
break;
case FM_TBL_VL_LOW_ARB:
size = 256;
/*
* OPA specifies 128 elements (of 2 bytes each), though
* HFI supports only 16 elements in h/w.
*/
vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
vl_arb_get_cache(vlc, t);
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
break;
case FM_TBL_BUFFER_CONTROL:
size = get_buffer_control(ppd->dd, t, NULL);
break;
case FM_TBL_SC2VLNT:
size = get_sc2vlnt(ppd->dd, t);
break;
case FM_TBL_VL_PREEMPT_ELEMS:
size = 256;
/* OPA specifies 128 elements, of 2 bytes each */
get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
break;
case FM_TBL_VL_PREEMPT_MATRIX:
size = 256;
/*
* OPA specifies that this is the same size as the VL
* arbitration tables (i.e., 256 bytes).
*/
break;
default:
return -EINVAL;
}
return size;
}
/*
* Write the given fabric manager table.
*/
int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
{
int ret = 0;
struct vl_arb_cache *vlc;
switch (which) {
case FM_TBL_VL_HIGH_ARB:
vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
if (vl_arb_match_cache(vlc, t)) {
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
break;
}
vl_arb_set_cache(vlc, t);
vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
break;
case FM_TBL_VL_LOW_ARB:
vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
if (vl_arb_match_cache(vlc, t)) {
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
break;
}
vl_arb_set_cache(vlc, t);
vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
VL_ARB_LOW_PRIO_TABLE_SIZE, t);
break;
case FM_TBL_BUFFER_CONTROL:
ret = set_buffer_control(ppd, t);
break;
case FM_TBL_SC2VLNT:
set_sc2vlnt(ppd->dd, t);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* Disable all data VLs.
*
* Return 0 if disabled, non-zero if the VLs cannot be disabled.
*/
static int disable_data_vls(struct hfi1_devdata *dd)
{
if (is_ax(dd))
return 1;
pio_send_control(dd, PSC_DATA_VL_DISABLE);
return 0;
}
/*
* open_fill_data_vls() - the counterpart to stop_drain_data_vls().
* Just re-enables all data VLs (the "fill" part happens
* automatically - the name was chosen for symmetry with
* stop_drain_data_vls()).
*
* Return 0 if successful, non-zero if the VLs cannot be enabled.
*/
int open_fill_data_vls(struct hfi1_devdata *dd)
{
if (is_ax(dd))
return 1;
pio_send_control(dd, PSC_DATA_VL_ENABLE);
return 0;
}
/*
* drain_data_vls() - assumes that disable_data_vls() has been called,
* wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
* engines to drop to 0.
*/
static void drain_data_vls(struct hfi1_devdata *dd)
{
sc_wait(dd);
sdma_wait(dd);
pause_for_credit_return(dd);
}
/*
* stop_drain_data_vls() - disable, then drain all per-VL fifos.
*
* Use open_fill_data_vls() to resume using data VLs. This pair is
* meant to be used like this:
*
* stop_drain_data_vls(dd);
* // do things with per-VL resources
* open_fill_data_vls(dd);
*/
int stop_drain_data_vls(struct hfi1_devdata *dd)
{
int ret;
ret = disable_data_vls(dd);
if (ret == 0)
drain_data_vls(dd);
return ret;
}
/*
* Convert a nanosecond time to a cclock count. No matter how slow
* the cclock, a non-zero ns will always have a non-zero result.
*/
u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
{
u32 cclocks;
if (dd->icode == ICODE_FPGA_EMULATION)
cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
else /* simulation pretends to be ASIC */
cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
cclocks = 1;
return cclocks;
}
/*
* Convert a cclock count to nanoseconds. Not matter how slow
* the cclock, a non-zero cclocks will always have a non-zero result.
*/
u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
{
u32 ns;
if (dd->icode == ICODE_FPGA_EMULATION)
ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
else /* simulation pretends to be ASIC */
ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
if (cclocks && !ns)
ns = 1;
return ns;
}
/*
* Dynamically adjust the receive interrupt timeout for a context based on
* incoming packet rate.
*
* NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
*/
static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
{
struct hfi1_devdata *dd = rcd->dd;
u32 timeout = rcd->rcvavail_timeout;
/*
* This algorithm doubles or halves the timeout depending on whether
* the number of packets received in this interrupt were less than or
* greater equal the interrupt count.
*
* The calculations below do not allow a steady state to be achieved.
* Only at the endpoints it is possible to have an unchanging
* timeout.
*/
if (npkts < rcv_intr_count) {
/*
* Not enough packets arrived before the timeout, adjust
* timeout downward.
*/
if (timeout < 2) /* already at minimum? */
return;
timeout >>= 1;
} else {
/*
* More than enough packets arrived before the timeout, adjust
* timeout upward.
*/
if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
return;
timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
}
rcd->rcvavail_timeout = timeout;
/*
* timeout cannot be larger than rcv_intr_timeout_csr which has already
* been verified to be in range
*/
write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
(u64)timeout <<
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
}
void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
u32 intr_adjust, u32 npkts)
{
struct hfi1_devdata *dd = rcd->dd;
u64 reg;
u32 ctxt = rcd->ctxt;
/*
* Need to write timeout register before updating RcvHdrHead to ensure
* that a new value is used when the HW decides to restart counting.
*/
if (intr_adjust)
adjust_rcv_timeout(rcd, npkts);
if (updegr) {
reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
}
mmiowb();
reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
<< RCV_HDR_HEAD_HEAD_SHIFT);
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
mmiowb();
}
u32 hdrqempty(struct hfi1_ctxtdata *rcd)
{
u32 head, tail;
head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
if (rcd->rcvhdrtail_kvaddr)
tail = get_rcvhdrtail(rcd);
else
tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
return head == tail;
}
/*
* Context Control and Receive Array encoding for buffer size:
* 0x0 invalid
* 0x1 4 KB
* 0x2 8 KB
* 0x3 16 KB
* 0x4 32 KB
* 0x5 64 KB
* 0x6 128 KB
* 0x7 256 KB
* 0x8 512 KB (Receive Array only)
* 0x9 1 MB (Receive Array only)
* 0xa 2 MB (Receive Array only)
*
* 0xB-0xF - reserved (Receive Array only)
*
*
* This routine assumes that the value has already been sanity checked.
*/
static u32 encoded_size(u32 size)
{
switch (size) {
case 4 * 1024: return 0x1;
case 8 * 1024: return 0x2;
case 16 * 1024: return 0x3;
case 32 * 1024: return 0x4;
case 64 * 1024: return 0x5;
case 128 * 1024: return 0x6;
case 256 * 1024: return 0x7;
case 512 * 1024: return 0x8;
case 1 * 1024 * 1024: return 0x9;
case 2 * 1024 * 1024: return 0xa;
}
return 0x1; /* if invalid, go with the minimum size */
}
void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
struct hfi1_ctxtdata *rcd)
{
u64 rcvctrl, reg;
int did_enable = 0;
u16 ctxt;
if (!rcd)
return;
ctxt = rcd->ctxt;
hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
/* if the context already enabled, don't do the extra steps */
if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
!(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
/* reset the tail and hdr addresses, and sequence count */
write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
rcd->rcvhdrq_dma);
if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
rcd->rcvhdrqtailaddr_dma);
rcd->seq_cnt = 1;
/* reset the cached receive header queue head value */
rcd->head = 0;
/*
* Zero the receive header queue so we don't get false
* positives when checking the sequence number. The
* sequence numbers could land exactly on the same spot.
* E.g. a rcd restart before the receive header wrapped.
*/
memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
/* starting timeout */
rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
/* enable the context */
rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
/* clean the egr buffer size first */
rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
did_enable = 1;
/* zero RcvEgrIndexHead */
write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
/* set eager count and base index */
reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
& RCV_EGR_CTRL_EGR_CNT_MASK)
<< RCV_EGR_CTRL_EGR_CNT_SHIFT) |
(((rcd->eager_base >> RCV_SHIFT)
& RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
<< RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
/*
* Set TID (expected) count and base index.
* rcd->expected_count is set to individual RcvArray entries,
* not pairs, and the CSR takes a pair-count in groups of
* four, so divide by 8.
*/
reg = (((rcd->expected_count >> RCV_SHIFT)
& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
(((rcd->expected_base >> RCV_SHIFT)
& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
if (ctxt == HFI1_CTRL_CTXT)
write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
}
if (op & HFI1_RCVCTRL_CTXT_DIS) {
write_csr(dd, RCV_VL15, 0);
/*
* When receive context is being disabled turn on tail
* update with a dummy tail address and then disable
* receive context.
*/
if (dd->rcvhdrtail_dummy_dma) {
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
dd->rcvhdrtail_dummy_dma);
/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
}
rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
}
if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
/* See comment on RcvCtxtCtrl.TailUpd above */
if (!(op & HFI1_RCVCTRL_CTXT_DIS))
rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
}
if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
/*
* In one-packet-per-eager mode, the size comes from
* the RcvArray entry.
*/
rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
}
if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
rcd->rcvctrl = rcvctrl;
hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
/* work around sticky RcvCtxtStatus.BlockedRHQFull */
if (did_enable &&
(rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
if (reg != 0) {
dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
ctxt, reg);
read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
ctxt, reg, reg == 0 ? "not" : "still");
}
}
if (did_enable) {
/*
* The interrupt timeout and count must be set after
* the context is enabled to take effect.
*/
/* set interrupt timeout */
write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
(u64)rcd->rcvavail_timeout <<
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
}
if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
/*
* If the context has been disabled and the Tail Update has
* been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
* so it doesn't contain an address that is invalid.
*/
write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
dd->rcvhdrtail_dummy_dma);
}
u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
{
int ret;
u64 val = 0;
if (namep) {
ret = dd->cntrnameslen;
*namep = dd->cntrnames;
} else {
const struct cntr_entry *entry;
int i, j;
ret = (dd->ndevcntrs) * sizeof(u64);
/* Get the start of the block of counters */
*cntrp = dd->cntrs;
/*
* Now go and fill in each counter in the block.
*/
for (i = 0; i < DEV_CNTR_LAST; i++) {
entry = &dev_cntrs[i];
hfi1_cdbg(CNTR, "reading %s", entry->name);
if (entry->flags & CNTR_DISABLED) {
/* Nothing */
hfi1_cdbg(CNTR, "\tDisabled\n");
} else {
if (entry->flags & CNTR_VL) {
hfi1_cdbg(CNTR, "\tPer VL\n");
for (j = 0; j < C_VL_COUNT; j++) {
val = entry->rw_cntr(entry,
dd, j,
CNTR_MODE_R,
0);
hfi1_cdbg(
CNTR,
"\t\tRead 0x%llx for %d\n",
val, j);
dd->cntrs[entry->offset + j] =
val;
}
} else if (entry->flags & CNTR_SDMA) {
hfi1_cdbg(CNTR,
"\t Per SDMA Engine\n");
for (j = 0; j < dd->chip_sdma_engines;
j++) {
val =
entry->rw_cntr(entry, dd, j,
CNTR_MODE_R, 0);
hfi1_cdbg(CNTR,
"\t\tRead 0x%llx for %d\n",
val, j);
dd->cntrs[entry->offset + j] =
val;
}
} else {
val = entry->rw_cntr(entry, dd,
CNTR_INVALID_VL,
CNTR_MODE_R, 0);
dd->cntrs[entry->offset] = val;
hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
}
}
}
}
return ret;
}
/*
* Used by sysfs to create files for hfi stats to read
*/
u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
{
int ret;
u64 val = 0;
if (namep) {
ret = ppd->dd->portcntrnameslen;
*namep = ppd->dd->portcntrnames;
} else {
const struct cntr_entry *entry;
int i, j;
ret = ppd->dd->nportcntrs * sizeof(u64);
*cntrp = ppd->cntrs;
for (i = 0; i < PORT_CNTR_LAST; i++) {
entry = &port_cntrs[i];
hfi1_cdbg(CNTR, "reading %s", entry->name);
if (entry->flags & CNTR_DISABLED) {
/* Nothing */
hfi1_cdbg(CNTR, "\tDisabled\n");
continue;
}
if (entry->flags & CNTR_VL) {
hfi1_cdbg(CNTR, "\tPer VL");
for (j = 0; j < C_VL_COUNT; j++) {
val = entry->rw_cntr(entry, ppd, j,
CNTR_MODE_R,
0);
hfi1_cdbg(
CNTR,
"\t\tRead 0x%llx for %d",
val, j);
ppd->cntrs[entry->offset + j] = val;
}
} else {
val = entry->rw_cntr(entry, ppd,
CNTR_INVALID_VL,
CNTR_MODE_R,
0);
ppd->cntrs[entry->offset] = val;
hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
}
}
}
return ret;
}
static void free_cntrs(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd;
int i;
if (dd->synth_stats_timer.data)
del_timer_sync(&dd->synth_stats_timer);
dd->synth_stats_timer.data = 0;
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
kfree(ppd->cntrs);
kfree(ppd->scntrs);
free_percpu(ppd->ibport_data.rvp.rc_acks);
free_percpu(ppd->ibport_data.rvp.rc_qacks);
free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
ppd->cntrs = NULL;
ppd->scntrs = NULL;
ppd->ibport_data.rvp.rc_acks = NULL;
ppd->ibport_data.rvp.rc_qacks = NULL;
ppd->ibport_data.rvp.rc_delayed_comp = NULL;
}
kfree(dd->portcntrnames);
dd->portcntrnames = NULL;
kfree(dd->cntrs);
dd->cntrs = NULL;
kfree(dd->scntrs);
dd->scntrs = NULL;
kfree(dd->cntrnames);
dd->cntrnames = NULL;
if (dd->update_cntr_wq) {
destroy_workqueue(dd->update_cntr_wq);
dd->update_cntr_wq = NULL;
}
}
static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
u64 *psval, void *context, int vl)
{
u64 val;
u64 sval = *psval;
if (entry->flags & CNTR_DISABLED) {
dd_dev_err(dd, "Counter %s not enabled", entry->name);
return 0;
}
hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
/* If its a synthetic counter there is more work we need to do */
if (entry->flags & CNTR_SYNTH) {
if (sval == CNTR_MAX) {
/* No need to read already saturated */
return CNTR_MAX;
}
if (entry->flags & CNTR_32BIT) {
/* 32bit counters can wrap multiple times */
u64 upper = sval >> 32;
u64 lower = (sval << 32) >> 32;
if (lower > val) { /* hw wrapped */
if (upper == CNTR_32BIT_MAX)
val = CNTR_MAX;
else
upper++;
}
if (val != CNTR_MAX)
val = (upper << 32) | val;
} else {
/* If we rolled we are saturated */
if ((val < sval) || (val > CNTR_MAX))
val = CNTR_MAX;
}
}
*psval = val;
hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
return val;
}
static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
struct cntr_entry *entry,
u64 *psval, void *context, int vl, u64 data)
{
u64 val;
if (entry->flags & CNTR_DISABLED) {
dd_dev_err(dd, "Counter %s not enabled", entry->name);
return 0;
}
hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
if (entry->flags & CNTR_SYNTH) {
*psval = data;
if (entry->flags & CNTR_32BIT) {
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
(data << 32) >> 32);
val = data; /* return the full 64bit value */
} else {
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
data);
}
} else {
val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
}
*psval = val;
hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
return val;
}
u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
{
struct cntr_entry *entry;
u64 *sval;
entry = &dev_cntrs[index];
sval = dd->scntrs + entry->offset;
if (vl != CNTR_INVALID_VL)
sval += vl;
return read_dev_port_cntr(dd, entry, sval, dd, vl);
}
u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
{
struct cntr_entry *entry;
u64 *sval;
entry = &dev_cntrs[index];
sval = dd->scntrs + entry->offset;
if (vl != CNTR_INVALID_VL)
sval += vl;
return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
}
u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
{
struct cntr_entry *entry;
u64 *sval;
entry = &port_cntrs[index];
sval = ppd->scntrs + entry->offset;
if (vl != CNTR_INVALID_VL)
sval += vl;
if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
(index <= C_RCV_HDR_OVF_LAST)) {
/* We do not want to bother for disabled contexts */
return 0;
}
return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
}
u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
{
struct cntr_entry *entry;
u64 *sval;
entry = &port_cntrs[index];
sval = ppd->scntrs + entry->offset;
if (vl != CNTR_INVALID_VL)
sval += vl;
if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
(index <= C_RCV_HDR_OVF_LAST)) {
/* We do not want to bother for disabled contexts */
return 0;
}
return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
}
static void do_update_synth_timer(struct work_struct *work)
{
u64 cur_tx;
u64 cur_rx;
u64 total_flits;
u8 update = 0;
int i, j, vl;
struct hfi1_pportdata *ppd;
struct cntr_entry *entry;
struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
update_cntr_work);
/*
* Rather than keep beating on the CSRs pick a minimal set that we can
* check to watch for potential roll over. We can do this by looking at
* the number of flits sent/recv. If the total flits exceeds 32bits then
* we have to iterate all the counters and update.
*/
entry = &dev_cntrs[C_DC_RCV_FLITS];
cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
entry = &dev_cntrs[C_DC_XMIT_FLITS];
cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
hfi1_cdbg(
CNTR,
"[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
/*
* May not be strictly necessary to update but it won't hurt and
* simplifies the logic here.
*/
update = 1;
hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
dd->unit);
} else {
total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
hfi1_cdbg(CNTR,
"[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
total_flits, (u64)CNTR_32BIT_MAX);
if (total_flits >= CNTR_32BIT_MAX) {
hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
dd->unit);
update = 1;
}
}
if (update) {
hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
for (i = 0; i < DEV_CNTR_LAST; i++) {
entry = &dev_cntrs[i];
if (entry->flags & CNTR_VL) {
for (vl = 0; vl < C_VL_COUNT; vl++)
read_dev_cntr(dd, i, vl);
} else {
read_dev_cntr(dd, i, CNTR_INVALID_VL);
}
}
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
for (j = 0; j < PORT_CNTR_LAST; j++) {
entry = &port_cntrs[j];
if (entry->flags & CNTR_VL) {
for (vl = 0; vl < C_VL_COUNT; vl++)
read_port_cntr(ppd, j, vl);
} else {
read_port_cntr(ppd, j, CNTR_INVALID_VL);
}
}
}
/*
* We want the value in the register. The goal is to keep track
* of the number of "ticks" not the counter value. In other
* words if the register rolls we want to notice it and go ahead
* and force an update.
*/
entry = &dev_cntrs[C_DC_XMIT_FLITS];
dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
CNTR_MODE_R, 0);
entry = &dev_cntrs[C_DC_RCV_FLITS];
dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
CNTR_MODE_R, 0);
hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
dd->unit, dd->last_tx, dd->last_rx);
} else {
hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
}
}
static void update_synth_timer(unsigned long opaque)
{
struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
}
#define C_MAX_NAME 16 /* 15 chars + one for /0 */
static int init_cntrs(struct hfi1_devdata *dd)
{
int i, rcv_ctxts, j;
size_t sz;
char *p;
char name[C_MAX_NAME];
struct hfi1_pportdata *ppd;
const char *bit_type_32 = ",32";
const int bit_type_32_sz = strlen(bit_type_32);
/* set up the stats timer; the add_timer is done at the end */
setup_timer(&dd->synth_stats_timer, update_synth_timer,
(unsigned long)dd);
/***********************/
/* per device counters */
/***********************/
/* size names and determine how many we have*/
dd->ndevcntrs = 0;
sz = 0;
for (i = 0; i < DEV_CNTR_LAST; i++) {
if (dev_cntrs[i].flags & CNTR_DISABLED) {
hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
continue;
}
if (dev_cntrs[i].flags & CNTR_VL) {
dev_cntrs[i].offset = dd->ndevcntrs;
for (j = 0; j < C_VL_COUNT; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
dev_cntrs[i].name, vl_from_idx(j));
sz += strlen(name);
/* Add ",32" for 32-bit counters */
if (dev_cntrs[i].flags & CNTR_32BIT)
sz += bit_type_32_sz;
sz++;
dd->ndevcntrs++;
}
} else if (dev_cntrs[i].flags & CNTR_SDMA) {
dev_cntrs[i].offset = dd->ndevcntrs;
for (j = 0; j < dd->chip_sdma_engines; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
dev_cntrs[i].name, j);
sz += strlen(name);
/* Add ",32" for 32-bit counters */
if (dev_cntrs[i].flags & CNTR_32BIT)
sz += bit_type_32_sz;
sz++;
dd->ndevcntrs++;
}
} else {
/* +1 for newline. */
sz += strlen(dev_cntrs[i].name) + 1;
/* Add ",32" for 32-bit counters */
if (dev_cntrs[i].flags & CNTR_32BIT)
sz += bit_type_32_sz;
dev_cntrs[i].offset = dd->ndevcntrs;
dd->ndevcntrs++;
}
}
/* allocate space for the counter values */
dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
if (!dd->cntrs)
goto bail;
dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
if (!dd->scntrs)
goto bail;
/* allocate space for the counter names */
dd->cntrnameslen = sz;
dd->cntrnames = kmalloc(sz, GFP_KERNEL);
if (!dd->cntrnames)
goto bail;
/* fill in the names */
for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
if (dev_cntrs[i].flags & CNTR_DISABLED) {
/* Nothing */
} else if (dev_cntrs[i].flags & CNTR_VL) {
for (j = 0; j < C_VL_COUNT; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
dev_cntrs[i].name,
vl_from_idx(j));
memcpy(p, name, strlen(name));
p += strlen(name);
/* Counter is 32 bits */
if (dev_cntrs[i].flags & CNTR_32BIT) {
memcpy(p, bit_type_32, bit_type_32_sz);
p += bit_type_32_sz;
}
*p++ = '\n';
}
} else if (dev_cntrs[i].flags & CNTR_SDMA) {
for (j = 0; j < dd->chip_sdma_engines; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
dev_cntrs[i].name, j);
memcpy(p, name, strlen(name));
p += strlen(name);
/* Counter is 32 bits */
if (dev_cntrs[i].flags & CNTR_32BIT) {
memcpy(p, bit_type_32, bit_type_32_sz);
p += bit_type_32_sz;
}
*p++ = '\n';
}
} else {
memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
p += strlen(dev_cntrs[i].name);
/* Counter is 32 bits */
if (dev_cntrs[i].flags & CNTR_32BIT) {
memcpy(p, bit_type_32, bit_type_32_sz);
p += bit_type_32_sz;
}
*p++ = '\n';
}
}
/*********************/
/* per port counters */
/*********************/
/*
* Go through the counters for the overflows and disable the ones we
* don't need. This varies based on platform so we need to do it
* dynamically here.
*/
rcv_ctxts = dd->num_rcv_contexts;
for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
i <= C_RCV_HDR_OVF_LAST; i++) {
port_cntrs[i].flags |= CNTR_DISABLED;
}
/* size port counter names and determine how many we have*/
sz = 0;
dd->nportcntrs = 0;
for (i = 0; i < PORT_CNTR_LAST; i++) {
if (port_cntrs[i].flags & CNTR_DISABLED) {
hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
continue;
}
if (port_cntrs[i].flags & CNTR_VL) {
port_cntrs[i].offset = dd->nportcntrs;
for (j = 0; j < C_VL_COUNT; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
port_cntrs[i].name, vl_from_idx(j));
sz += strlen(name);
/* Add ",32" for 32-bit counters */
if (port_cntrs[i].flags & CNTR_32BIT)
sz += bit_type_32_sz;
sz++;
dd->nportcntrs++;
}
} else {
/* +1 for newline */
sz += strlen(port_cntrs[i].name) + 1;
/* Add ",32" for 32-bit counters */
if (port_cntrs[i].flags & CNTR_32BIT)
sz += bit_type_32_sz;
port_cntrs[i].offset = dd->nportcntrs;
dd->nportcntrs++;
}
}
/* allocate space for the counter names */
dd->portcntrnameslen = sz;
dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
if (!dd->portcntrnames)
goto bail;
/* fill in port cntr names */
for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
if (port_cntrs[i].flags & CNTR_DISABLED)
continue;
if (port_cntrs[i].flags & CNTR_VL) {
for (j = 0; j < C_VL_COUNT; j++) {
snprintf(name, C_MAX_NAME, "%s%d",
port_cntrs[i].name, vl_from_idx(j));
memcpy(p, name, strlen(name));
p += strlen(name);
/* Counter is 32 bits */
if (port_cntrs[i].flags & CNTR_32BIT) {
memcpy(p, bit_type_32, bit_type_32_sz);
p += bit_type_32_sz;
}
*p++ = '\n';
}
} else {
memcpy(p, port_cntrs[i].name,
strlen(port_cntrs[i].name));
p += strlen(port_cntrs[i].name);
/* Counter is 32 bits */
if (port_cntrs[i].flags & CNTR_32BIT) {
memcpy(p, bit_type_32, bit_type_32_sz);
p += bit_type_32_sz;
}
*p++ = '\n';
}
}
/* allocate per port storage for counter values */
ppd = (struct hfi1_pportdata *)(dd + 1);
for (i = 0; i < dd->num_pports; i++, ppd++) {
ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
if (!ppd->cntrs)
goto bail;
ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
if (!ppd->scntrs)
goto bail;
}
/* CPU counters need to be allocated and zeroed */
if (init_cpu_counters(dd))
goto bail;
dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
WQ_MEM_RECLAIM, dd->unit);
if (!dd->update_cntr_wq)
goto bail;
INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
return 0;
bail:
free_cntrs(dd);
return -ENOMEM;
}
static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
{
switch (chip_lstate) {
default:
dd_dev_err(dd,
"Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
chip_lstate);
/* fall through */
case LSTATE_DOWN:
return IB_PORT_DOWN;
case LSTATE_INIT:
return IB_PORT_INIT;
case LSTATE_ARMED:
return IB_PORT_ARMED;
case LSTATE_ACTIVE:
return IB_PORT_ACTIVE;
}
}
u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
{
/* look at the HFI meta-states only */
switch (chip_pstate & 0xf0) {
default:
dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
chip_pstate);
/* fall through */
case PLS_DISABLED:
return IB_PORTPHYSSTATE_DISABLED;
case PLS_OFFLINE:
return OPA_PORTPHYSSTATE_OFFLINE;
case PLS_POLLING:
return IB_PORTPHYSSTATE_POLLING;
case PLS_CONFIGPHY:
return IB_PORTPHYSSTATE_TRAINING;
case PLS_LINKUP:
return IB_PORTPHYSSTATE_LINKUP;
case PLS_PHYTEST:
return IB_PORTPHYSSTATE_PHY_TEST;
}
}
/* return the OPA port logical state name */
const char *opa_lstate_name(u32 lstate)
{
static const char * const port_logical_names[] = {
"PORT_NOP",
"PORT_DOWN",
"PORT_INIT",
"PORT_ARMED",
"PORT_ACTIVE",
"PORT_ACTIVE_DEFER",
};
if (lstate < ARRAY_SIZE(port_logical_names))
return port_logical_names[lstate];
return "unknown";
}
/* return the OPA port physical state name */
const char *opa_pstate_name(u32 pstate)
{
static const char * const port_physical_names[] = {
"PHYS_NOP",
"reserved1",
"PHYS_POLL",
"PHYS_DISABLED",
"PHYS_TRAINING",
"PHYS_LINKUP",
"PHYS_LINK_ERR_RECOVER",
"PHYS_PHY_TEST",
"reserved8",
"PHYS_OFFLINE",
"PHYS_GANGED",
"PHYS_TEST",
};
if (pstate < ARRAY_SIZE(port_physical_names))
return port_physical_names[pstate];
return "unknown";
}
static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
{
/*
* Set port status flags in the page mapped into userspace
* memory. Do it here to ensure a reliable state - this is
* the only function called by all state handling code.
* Always set the flags due to the fact that the cache value
* might have been changed explicitly outside of this
* function.
*/
if (ppd->statusp) {
switch (state) {
case IB_PORT_DOWN:
case IB_PORT_INIT:
*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
HFI1_STATUS_IB_READY);
break;
case IB_PORT_ARMED:
*ppd->statusp |= HFI1_STATUS_IB_CONF;
break;
case IB_PORT_ACTIVE:
*ppd->statusp |= HFI1_STATUS_IB_READY;
break;
}
}
}
/*
* wait_logical_linkstate - wait for an IB link state change to occur
* @ppd: port device
* @state: the state to wait for
* @msecs: the number of milliseconds to wait
*
* Wait up to msecs milliseconds for IB link state change to occur.
* For now, take the easy polling route.
* Returns 0 if state reached, otherwise -ETIMEDOUT.
*/
static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
int msecs)
{
unsigned long timeout;
u32 new_state;
timeout = jiffies + msecs_to_jiffies(msecs);
while (1) {
new_state = chip_to_opa_lstate(ppd->dd,
read_logical_state(ppd->dd));
if (new_state == state)
break;
if (time_after(jiffies, timeout)) {
dd_dev_err(ppd->dd,
"timeout waiting for link state 0x%x\n",
state);
return -ETIMEDOUT;
}
msleep(20);
}
update_statusp(ppd, state);
dd_dev_info(ppd->dd,
"logical state changed to %s (0x%x)\n",
opa_lstate_name(state),
state);
return 0;
}
static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
{
u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
dd_dev_info(ppd->dd,
"physical state changed to %s (0x%x), phy 0x%x\n",
opa_pstate_name(ib_pstate), ib_pstate, state);
}
/*
* Read the physical hardware link state and check if it matches host
* drivers anticipated state.
*/
static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
{
u32 read_state = read_physical_state(ppd->dd);
if (read_state == state) {
log_state_transition(ppd, state);
} else {
dd_dev_err(ppd->dd,
"anticipated phy link state 0x%x, read 0x%x\n",
state, read_state);
}
}
/*
* wait_physical_linkstate - wait for an physical link state change to occur
* @ppd: port device
* @state: the state to wait for
* @msecs: the number of milliseconds to wait
*
* Wait up to msecs milliseconds for physical link state change to occur.
* Returns 0 if state reached, otherwise -ETIMEDOUT.
*/
static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
int msecs)
{
u32 read_state;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(msecs);
while (1) {
read_state = read_physical_state(ppd->dd);
if (read_state == state)
break;
if (time_after(jiffies, timeout)) {
dd_dev_err(ppd->dd,
"timeout waiting for phy link state 0x%x\n",
state);
return -ETIMEDOUT;
}
usleep_range(1950, 2050); /* sleep 2ms-ish */
}
log_state_transition(ppd, state);
return 0;
}
#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
#define SET_STATIC_RATE_CONTROL_SMASK(r) \
(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
void hfi1_init_ctxt(struct send_context *sc)
{
if (sc) {
struct hfi1_devdata *dd = sc->dd;
u64 reg;
u8 set = (sc->type == SC_USER ?
HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
reg = read_kctxt_csr(dd, sc->hw_context,
SEND_CTXT_CHECK_ENABLE);
if (set)
CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
else
SET_STATIC_RATE_CONTROL_SMASK(reg);
write_kctxt_csr(dd, sc->hw_context,
SEND_CTXT_CHECK_ENABLE, reg);
}
}
int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
{
int ret = 0;
u64 reg;
if (dd->icode != ICODE_RTL_SILICON) {
if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
dd_dev_info(dd, "%s: tempsense not supported by HW\n",
__func__);
return -EINVAL;
}
reg = read_csr(dd, ASIC_STS_THERM);
temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
ASIC_STS_THERM_CURR_TEMP_MASK);
temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
ASIC_STS_THERM_LO_TEMP_MASK);
temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
ASIC_STS_THERM_HI_TEMP_MASK);
temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
ASIC_STS_THERM_CRIT_TEMP_MASK);
/* triggers is a 3-bit value - 1 bit per trigger. */
temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
return ret;
}
/* ========================================================================= */
/*
* Enable/disable chip from delivering interrupts.
*/
void set_intr_state(struct hfi1_devdata *dd, u32 enable)
{
int i;
/*
* In HFI, the mask needs to be 1 to allow interrupts.
*/
if (enable) {
/* enable all interrupts */
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
init_qsfp_int(dd);
} else {
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
}
}
/*
* Clear all interrupt sources on the chip.
*/
static void clear_all_interrupts(struct hfi1_devdata *dd)
{
int i;
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
for (i = 0; i < dd->chip_send_contexts; i++)
write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
for (i = 0; i < dd->chip_sdma_engines; i++)
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
}
/* Move to pcie.c? */
static void disable_intx(struct pci_dev *pdev)
{
pci_intx(pdev, 0);
}
static void clean_up_interrupts(struct hfi1_devdata *dd)
{
int i;
/* remove irqs - must happen before disabling/turning off */
if (dd->num_msix_entries) {
/* MSI-X */
struct hfi1_msix_entry *me = dd->msix_entries;
for (i = 0; i < dd->num_msix_entries; i++, me++) {
if (!me->arg) /* => no irq, no affinity */
continue;
hfi1_put_irq_affinity(dd, me);
free_irq(me->irq, me->arg);
}
/* clean structures */
kfree(dd->msix_entries);
dd->msix_entries = NULL;
dd->num_msix_entries = 0;
} else {
/* INTx */
if (dd->requested_intx_irq) {
free_irq(dd->pcidev->irq, dd);
dd->requested_intx_irq = 0;
}
disable_intx(dd->pcidev);
}
pci_free_irq_vectors(dd->pcidev);
}
/*
* Remap the interrupt source from the general handler to the given MSI-X
* interrupt.
*/
static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
{
u64 reg;
int m, n;
/* clear from the handled mask of the general interrupt */
m = isrc / 64;
n = isrc % 64;
if (likely(m < CCE_NUM_INT_CSRS)) {
dd->gi_mask[m] &= ~((u64)1 << n);
} else {
dd_dev_err(dd, "remap interrupt err\n");
return;
}
/* direct the chip source to the given MSI-X interrupt */
m = isrc / 8;
n = isrc % 8;
reg = read_csr(dd, CCE_INT_MAP + (8 * m));
reg &= ~((u64)0xff << (8 * n));
reg |= ((u64)msix_intr & 0xff) << (8 * n);
write_csr(dd, CCE_INT_MAP + (8 * m), reg);
}
static void remap_sdma_interrupts(struct hfi1_devdata *dd,
int engine, int msix_intr)
{
/*
* SDMA engine interrupt sources grouped by type, rather than
* engine. Per-engine interrupts are as follows:
* SDMA
* SDMAProgress
* SDMAIdle
*/
remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
msix_intr);
remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
msix_intr);
remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
msix_intr);
}
static int request_intx_irq(struct hfi1_devdata *dd)
{
int ret;
snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
dd->unit);
ret = request_irq(dd->pcidev->irq, general_interrupt,
IRQF_SHARED, dd->intx_name, dd);
if (ret)
dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
ret);
else
dd->requested_intx_irq = 1;
return ret;
}
static int request_msix_irqs(struct hfi1_devdata *dd)
{
int first_general, last_general;
int first_sdma, last_sdma;
int first_rx, last_rx;
int i, ret = 0;
/* calculate the ranges we are going to use */
first_general = 0;
last_general = first_general + 1;
first_sdma = last_general;
last_sdma = first_sdma + dd->num_sdma;
first_rx = last_sdma;
last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
/*
* Sanity check - the code expects all SDMA chip source
* interrupts to be in the same CSR, starting at bit 0. Verify
* that this is true by checking the bit location of the start.
*/
BUILD_BUG_ON(IS_SDMA_START % 64);
for (i = 0; i < dd->num_msix_entries; i++) {
struct hfi1_msix_entry *me = &dd->msix_entries[i];
const char *err_info;
irq_handler_t handler;
irq_handler_t thread = NULL;
void *arg = NULL;
int idx;
struct hfi1_ctxtdata *rcd = NULL;
struct sdma_engine *sde = NULL;
/* obtain the arguments to request_irq */
if (first_general <= i && i < last_general) {
idx = i - first_general;
handler = general_interrupt;
arg = dd;
snprintf(me->name, sizeof(me->name),
DRIVER_NAME "_%d", dd->unit);
err_info = "general";
me->type = IRQ_GENERAL;
} else if (first_sdma <= i && i < last_sdma) {
idx = i - first_sdma;
sde = &dd->per_sdma[idx];
handler = sdma_interrupt;
arg = sde;
snprintf(me->name, sizeof(me->name),
DRIVER_NAME "_%d sdma%d", dd->unit, idx);
err_info = "sdma";
remap_sdma_interrupts(dd, idx, i);
me->type = IRQ_SDMA;
} else if (first_rx <= i && i < last_rx) {
idx = i - first_rx;
rcd = hfi1_rcd_get_by_index(dd, idx);
if (rcd) {
/*
* Set the interrupt register and mask for this
* context's interrupt.
*/
rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
rcd->imask = ((u64)1) <<
((IS_RCVAVAIL_START + idx) % 64);
handler = receive_context_interrupt;
thread = receive_context_thread;
arg = rcd;
snprintf(me->name, sizeof(me->name),
DRIVER_NAME "_%d kctxt%d",
dd->unit, idx);
err_info = "receive context";
remap_intr(dd, IS_RCVAVAIL_START + idx, i);
me->type = IRQ_RCVCTXT;
rcd->msix_intr = i;
hfi1_rcd_put(rcd);
}
} else {
/* not in our expected range - complain, then
* ignore it
*/
dd_dev_err(dd,
"Unexpected extra MSI-X interrupt %d\n", i);
continue;
}
/* no argument, no interrupt */
if (!arg)
continue;
/* make sure the name is terminated */
me->name[sizeof(me->name) - 1] = 0;
me->irq = pci_irq_vector(dd->pcidev, i);
/*
* On err return me->irq. Don't need to clear this
* because 'arg' has not been set, and cleanup will
* do the right thing.
*/
if (me->irq < 0)
return me->irq;
ret = request_threaded_irq(me->irq, handler, thread, 0,
me->name, arg);
if (ret) {
dd_dev_err(dd,
"unable to allocate %s interrupt, irq %d, index %d, err %d\n",
err_info, me->irq, idx, ret);
return ret;
}
/*
* assign arg after request_irq call, so it will be
* cleaned up
*/
me->arg = arg;
ret = hfi1_get_irq_affinity(dd, me);
if (ret)
dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
}
return ret;
}
void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
{
int i;
if (!dd->num_msix_entries) {
synchronize_irq(dd->pcidev->irq);
return;
}
for (i = 0; i < dd->vnic.num_ctxt; i++) {
struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
synchronize_irq(me->irq);
}
}
void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
{
struct hfi1_devdata *dd = rcd->dd;
struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
if (!me->arg) /* => no irq, no affinity */
return;
hfi1_put_irq_affinity(dd, me);
free_irq(me->irq, me->arg);
me->arg = NULL;
}
void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
{
struct hfi1_devdata *dd = rcd->dd;
struct hfi1_msix_entry *me;
int idx = rcd->ctxt;
void *arg = rcd;
int ret;
rcd->msix_intr = dd->vnic.msix_idx++;
me = &dd->msix_entries[rcd->msix_intr];
/*
* Set the interrupt register and mask for this
* context's interrupt.
*/
rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
rcd->imask = ((u64)1) <<
((IS_RCVAVAIL_START + idx) % 64);
snprintf(me->name, sizeof(me->name),
DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
me->name[sizeof(me->name) - 1] = 0;
me->type = IRQ_RCVCTXT;
me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
if (me->irq < 0) {
dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
idx, me->irq);
return;
}
remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
ret = request_threaded_irq(me->irq, receive_context_interrupt,
receive_context_thread, 0, me->name, arg);
if (ret) {
dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
me->irq, idx, ret);
return;
}
/*
* assign arg after request_irq call, so it will be
* cleaned up
*/
me->arg = arg;
ret = hfi1_get_irq_affinity(dd, me);
if (ret) {
dd_dev_err(dd,
"unable to pin IRQ %d\n", ret);
free_irq(me->irq, me->arg);
}
}
/*
* Set the general handler to accept all interrupts, remap all
* chip interrupts back to MSI-X 0.
*/
static void reset_interrupts(struct hfi1_devdata *dd)
{
int i;
/* all interrupts handled by the general handler */
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
dd->gi_mask[i] = ~(u64)0;
/* all chip interrupts map to MSI-X 0 */
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
write_csr(dd, CCE_INT_MAP + (8 * i), 0);
}
static int set_up_interrupts(struct hfi1_devdata *dd)
{
u32 total;
int ret, request;
int single_interrupt = 0; /* we expect to have all the interrupts */
/*
* Interrupt count:
* 1 general, "slow path" interrupt (includes the SDMA engines
* slow source, SDMACleanupDone)
* N interrupts - one per used SDMA engine
* M interrupt - one per kernel receive context
*/
total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
/* ask for MSI-X interrupts */
request = request_msix(dd, total);
if (request < 0) {
ret = request;
goto fail;
} else if (request == 0) {
/* using INTx */
/* dd->num_msix_entries already zero */
single_interrupt = 1;
dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
} else if (request < total) {
/* using MSI-X, with reduced interrupts */
dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
total, request);
ret = -EINVAL;
goto fail;
} else {
dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
GFP_KERNEL);
if (!dd->msix_entries) {
ret = -ENOMEM;
goto fail;
}
/* using MSI-X */
dd->num_msix_entries = total;
dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
}
/* mask all interrupts */
set_intr_state(dd, 0);
/* clear all pending interrupts */
clear_all_interrupts(dd);
/* reset general handler mask, chip MSI-X mappings */
reset_interrupts(dd);
if (single_interrupt)
ret = request_intx_irq(dd);
else
ret = request_msix_irqs(dd);
if (ret)
goto fail;
return 0;
fail:
clean_up_interrupts(dd);
return ret;
}
/*
* Set up context values in dd. Sets:
*
* num_rcv_contexts - number of contexts being used
* n_krcv_queues - number of kernel contexts
* first_dyn_alloc_ctxt - first dynamically allocated context
* in array of contexts
* freectxts - number of free user contexts
* num_send_contexts - number of PIO send contexts being used
*/
static int set_up_context_variables(struct hfi1_devdata *dd)
{
unsigned long num_kernel_contexts;
int total_contexts;
int ret;
unsigned ngroups;
int qos_rmt_count;
int user_rmt_reduced;
/*
* Kernel receive contexts:
* - Context 0 - control context (VL15/multicast/error)
* - Context 1 - first kernel context
* - Context 2 - second kernel context
* ...
*/
if (n_krcvqs)
/*
* n_krcvqs is the sum of module parameter kernel receive
* contexts, krcvqs[]. It does not include the control
* context, so add that.
*/
num_kernel_contexts = n_krcvqs + 1;
else
num_kernel_contexts = DEFAULT_KRCVQS + 1;
/*
* Every kernel receive context needs an ACK send context.
* one send context is allocated for each VL{0-7} and VL15
*/
if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
dd_dev_err(dd,
"Reducing # kernel rcv contexts to: %d, from %lu\n",
(int)(dd->chip_send_contexts - num_vls - 1),
num_kernel_contexts);
num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
}
/*
* User contexts:
* - default to 1 user context per real (non-HT) CPU core if
* num_user_contexts is negative
*/
if (num_user_contexts < 0)
num_user_contexts =
cpumask_weight(&node_affinity.real_cpu_mask);
total_contexts = num_kernel_contexts + num_user_contexts;
/*
* Adjust the counts given a global max.
*/
if (total_contexts > dd->chip_rcv_contexts) {
dd_dev_err(dd,
"Reducing # user receive contexts to: %d, from %d\n",
(int)(dd->chip_rcv_contexts - num_kernel_contexts),
(int)num_user_contexts);
num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
/* recalculate */
total_contexts = num_kernel_contexts + num_user_contexts;
}
/* each user context requires an entry in the RMT */
qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
dd_dev_err(dd,
"RMT size is reducing the number of user receive contexts from %d to %d\n",
(int)num_user_contexts,
user_rmt_reduced);
/* recalculate */
num_user_contexts = user_rmt_reduced;
total_contexts = num_kernel_contexts + num_user_contexts;
}
/* Accommodate VNIC contexts */
if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
total_contexts += HFI1_NUM_VNIC_CTXT;
/* the first N are kernel contexts, the rest are user/vnic contexts */
dd->num_rcv_contexts = total_contexts;
dd->n_krcv_queues = num_kernel_contexts;
dd->first_dyn_alloc_ctxt = num_kernel_contexts;
dd->num_user_contexts = num_user_contexts;
dd->freectxts = num_user_contexts;
dd_dev_info(dd,
"rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
(int)dd->chip_rcv_contexts,
(int)dd->num_rcv_contexts,
(int)dd->n_krcv_queues,
(int)dd->num_rcv_contexts - dd->n_krcv_queues);
/*
* Receive array allocation:
* All RcvArray entries are divided into groups of 8. This
* is required by the hardware and will speed up writes to
* consecutive entries by using write-combining of the entire
* cacheline.
*
* The number of groups are evenly divided among all contexts.
* any left over groups will be given to the first N user
* contexts.
*/
dd->rcv_entries.group_size = RCV_INCREMENT;
ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
dd->rcv_entries.nctxt_extra = ngroups -
(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
dd->rcv_entries.ngroups,
dd->rcv_entries.nctxt_extra);
if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
MAX_EAGER_ENTRIES * 2) {
dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
dd->rcv_entries.group_size;
dd_dev_info(dd,
"RcvArray group count too high, change to %u\n",
dd->rcv_entries.ngroups);
dd->rcv_entries.nctxt_extra = 0;
}
/*
* PIO send contexts
*/
ret = init_sc_pools_and_sizes(dd);
if (ret >= 0) { /* success */
dd->num_send_contexts = ret;
dd_dev_info(
dd,
"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
dd->chip_send_contexts,
dd->num_send_contexts,
dd->sc_sizes[SC_KERNEL].count,
dd->sc_sizes[SC_ACK].count,
dd->sc_sizes[SC_USER].count,
dd->sc_sizes[SC_VL15].count);
ret = 0; /* success */
}
return ret;
}
/*
* Set the device/port partition key table. The MAD code
* will ensure that, at least, the partial management
* partition key is present in the table.
*/
static void set_partition_keys(struct hfi1_pportdata *ppd)
{
struct hfi1_devdata *dd = ppd->dd;
u64 reg = 0;
int i;
dd_dev_info(dd, "Setting partition keys\n");
for (i = 0; i < hfi1_get_npkeys(dd); i++) {
reg |= (ppd->pkeys[i] &
RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
((i % 4) *
RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
/* Each register holds 4 PKey values. */
if ((i % 4) == 3) {
write_csr(dd, RCV_PARTITION_KEY +
((i - 3) * 2), reg);
reg = 0;
}
}
/* Always enable HW pkeys check when pkeys table is set */
add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
}
/*
* These CSRs and memories are uninitialized on reset and must be
* written before reading to set the ECC/parity bits.
*
* NOTE: All user context CSRs that are not mmaped write-only
* (e.g. the TID flows) must be initialized even if the driver never
* reads them.
*/
static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
{
int i, j;
/* CceIntMap */
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
write_csr(dd, CCE_INT_MAP + (8 * i), 0);
/* SendCtxtCreditReturnAddr */
for (i = 0; i < dd->chip_send_contexts; i++)
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
/* PIO Send buffers */
/* SDMA Send buffers */
/*
* These are not normally read, and (presently) have no method
* to be read, so are not pre-initialized
*/
/* RcvHdrAddr */
/* RcvHdrTailAddr */
/* RcvTidFlowTable */
for (i = 0; i < dd->chip_rcv_contexts; i++) {
write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
}
/* RcvArray */
for (i = 0; i < dd->chip_rcv_array_count; i++)
hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
/* RcvQPMapTable */
for (i = 0; i < 32; i++)
write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
}
/*
* Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
*/
static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
u64 ctrl_bits)
{
unsigned long timeout;
u64 reg;
/* is the condition present? */
reg = read_csr(dd, CCE_STATUS);
if ((reg & status_bits) == 0)
return;
/* clear the condition */
write_csr(dd, CCE_CTRL, ctrl_bits);
/* wait for the condition to clear */
timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
while (1) {
reg = read_csr(dd, CCE_STATUS);
if ((reg & status_bits) == 0)
return;
if (time_after(jiffies, timeout)) {
dd_dev_err(dd,
"Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
status_bits, reg & status_bits);
return;
}
udelay(1);
}
}
/* set CCE CSRs to chip reset defaults */
static void reset_cce_csrs(struct hfi1_devdata *dd)
{
int i;
/* CCE_REVISION read-only */
/* CCE_REVISION2 read-only */
/* CCE_CTRL - bits clear automatically */
/* CCE_STATUS read-only, use CceCtrl to clear */
clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
for (i = 0; i < CCE_NUM_SCRATCH; i++)
write_csr(dd, CCE_SCRATCH + (8 * i), 0);
/* CCE_ERR_STATUS read-only */
write_csr(dd, CCE_ERR_MASK, 0);
write_csr(dd, CCE_ERR_CLEAR, ~0ull);
/* CCE_ERR_FORCE leave alone */
for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
/* CCE_PCIE_CTRL leave alone */
for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
CCE_MSIX_TABLE_UPPER_RESETCSR);
}
for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
/* CCE_MSIX_PBA read-only */
write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
}
for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
write_csr(dd, CCE_INT_MAP, 0);
for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
/* CCE_INT_STATUS read-only */
write_csr(dd, CCE_INT_MASK + (8 * i), 0);
write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
/* CCE_INT_FORCE leave alone */
/* CCE_INT_BLOCKED read-only */
}
for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
}
/* set MISC CSRs to chip reset defaults */
static void reset_misc_csrs(struct hfi1_devdata *dd)
{
int i;
for (i = 0; i < 32; i++) {
write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
}
/*
* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
* only be written 128-byte chunks
*/
/* init RSA engine to clear lingering errors */
write_csr(dd, MISC_CFG_RSA_CMD, 1);
write_csr(dd, MISC_CFG_RSA_MU, 0);
write_csr(dd, MISC_CFG_FW_CTRL, 0);
/* MISC_STS_8051_DIGEST read-only */
/* MISC_STS_SBM_DIGEST read-only */
/* MISC_STS_PCIE_DIGEST read-only */
/* MISC_STS_FAB_DIGEST read-only */
/* MISC_ERR_STATUS read-only */
write_csr(dd, MISC_ERR_MASK, 0);
write_csr(dd, MISC_ERR_CLEAR, ~0ull);
/* MISC_ERR_FORCE leave alone */
}
/* set TXE CSRs to chip reset defaults */
static void reset_txe_csrs(struct hfi1_devdata *dd)
{
int i;
/*
* TXE Kernel CSRs
*/
write_csr(dd, SEND_CTRL, 0);
__cm_reset(dd, 0); /* reset CM internal state */
/* SEND_CONTEXTS read-only */
/* SEND_DMA_ENGINES read-only */
/* SEND_PIO_MEM_SIZE read-only */
/* SEND_DMA_MEM_SIZE read-only */
write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
/* SEND_PIO_ERR_STATUS read-only */
write_csr(dd, SEND_PIO_ERR_MASK, 0);
write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
/* SEND_PIO_ERR_FORCE leave alone */
/* SEND_DMA_ERR_STATUS read-only */
write_csr(dd, SEND_DMA_ERR_MASK, 0);
write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
/* SEND_DMA_ERR_FORCE leave alone */
/* SEND_EGRESS_ERR_STATUS read-only */
write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
/* SEND_EGRESS_ERR_FORCE leave alone */
write_csr(dd, SEND_BTH_QP, 0);
write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
write_csr(dd, SEND_SC2VLT0, 0);
write_csr(dd, SEND_SC2VLT1, 0);
write_csr(dd, SEND_SC2VLT2, 0);
write_csr(dd, SEND_SC2VLT3, 0);
write_csr(dd, SEND_LEN_CHECK0, 0);
write_csr(dd, SEND_LEN_CHECK1, 0);
/* SEND_ERR_STATUS read-only */
write_csr(dd, SEND_ERR_MASK, 0);
write_csr(dd, SEND_ERR_CLEAR, ~0ull);
/* SEND_ERR_FORCE read-only */
for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
/* SEND_CM_CREDIT_USED_STATUS read-only */
write_csr(dd, SEND_CM_TIMER_CTRL, 0);
write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
for (i = 0; i < TXE_NUM_DATA_VL; i++)
write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
write_csr(dd, SEND_CM_CREDIT_VL15, 0);
/* SEND_CM_CREDIT_USED_VL read-only */
/* SEND_CM_CREDIT_USED_VL15 read-only */
/* SEND_EGRESS_CTXT_STATUS read-only */
/* SEND_EGRESS_SEND_DMA_STATUS read-only */
write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
/* SEND_EGRESS_ERR_INFO read-only */
/* SEND_EGRESS_ERR_SOURCE read-only */
/*
* TXE Per-Context CSRs
*/
for (i = 0; i < dd->chip_send_contexts; i++) {
write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
}
/*
* TXE Per-SDMA CSRs
*/
for (i = 0; i < dd->chip_sdma_engines; i++) {
write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
/* SEND_DMA_STATUS read-only */
write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
/* SEND_DMA_HEAD read-only */
write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
/* SEND_DMA_IDLE_CNT read-only */
write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
/* SEND_DMA_DESC_FETCHED_CNT read-only */
/* SEND_DMA_ENG_ERR_STATUS read-only */
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
/* SEND_DMA_ENG_ERR_FORCE leave alone */
write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
}
}
/*
* Expect on entry:
* o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
*/
static void init_rbufs(struct hfi1_devdata *dd)
{
u64 reg;
int count;
/*
* Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
* clear.
*/
count = 0;
while (1) {
reg = read_csr(dd, RCV_STATUS);
if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
| RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
break;
/*
* Give up after 1ms - maximum wait time.
*
* RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at
* 250MB/s bandwidth. Lower rate to 66% for overhead to get:
* 136 KB / (66% * 250MB/s) = 844us
*/
if (count++ > 500) {
dd_dev_err(dd,
"%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
__func__, reg);
break;
}
udelay(2); /* do not busy-wait the CSR */
}
/* start the init - expect RcvCtrl to be 0 */
write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
/*
* Read to force the write of Rcvtrl.RxRbufInit. There is a brief
* period after the write before RcvStatus.RxRbufInitDone is valid.
* The delay in the first run through the loop below is sufficient and
* required before the first read of RcvStatus.RxRbufInintDone.
*/
read_csr(dd, RCV_CTRL);
/* wait for the init to finish */
count = 0;
while (1) {
/* delay is required first time through - see above */
udelay(2); /* do not busy-wait the CSR */
reg = read_csr(dd, RCV_STATUS);
if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
break;
/* give up after 100us - slowest possible at 33MHz is 73us */
if (count++ > 50) {
dd_dev_err(dd,
"%s: RcvStatus.RxRbufInit not set, continuing\n",
__func__);
break;
}
}
}
/* set RXE CSRs to chip reset defaults */
static void reset_rxe_csrs(struct hfi1_devdata *dd)
{
int i, j;
/*
* RXE Kernel CSRs
*/
write_csr(dd, RCV_CTRL, 0);
init_rbufs(dd);
/* RCV_STATUS read-only */
/* RCV_CONTEXTS read-only */
/* RCV_ARRAY_CNT read-only */
/* RCV_BUF_SIZE read-only */
write_csr(dd, RCV_BTH_QP, 0);
write_csr(dd, RCV_MULTICAST, 0);
write_csr(dd, RCV_BYPASS, 0);
write_csr(dd, RCV_VL15, 0);
/* this is a clear-down */
write_csr(dd, RCV_ERR_INFO,
RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
/* RCV_ERR_STATUS read-only */
write_csr(dd, RCV_ERR_MASK, 0);
write_csr(dd, RCV_ERR_CLEAR, ~0ull);
/* RCV_ERR_FORCE leave alone */
for (i = 0; i < 32; i++)
write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
for (i = 0; i < 4; i++)
write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
clear_rsm_rule(dd, i);
for (i = 0; i < 32; i++)
write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
/*
* RXE Kernel and User Per-Context CSRs
*/
for (i = 0; i < dd->chip_rcv_contexts; i++) {
/* kernel */
write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
/* RCV_CTXT_STATUS read-only */
write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
/* user */
/* RCV_HDR_TAIL read-only */
write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
/* RCV_EGR_INDEX_TAIL read-only */
write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
/* RCV_EGR_OFFSET_TAIL read-only */
for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
write_uctxt_csr(dd, i,
RCV_TID_FLOW_TABLE + (8 * j), 0);
}
}
}
/*
* Set sc2vl tables.
*
* They power on to zeros, so to avoid send context errors
* they need to be set:
*
* SC 0-7 -> VL 0-7 (respectively)
* SC 15 -> VL 15
* otherwise
* -> VL 0
*/
static void init_sc2vl_tables(struct hfi1_devdata *dd)
{
int i;
/* init per architecture spec, constrained by hardware capability */
/* HFI maps sent packets */
write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
0,
0, 0, 1, 1,
2, 2, 3, 3,
4, 4, 5, 5,
6, 6, 7, 7));
write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
1,
8, 0, 9, 0,
10, 0, 11, 0,
12, 0, 13, 0,
14, 0, 15, 15));
write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
2,
16, 0, 17, 0,
18, 0, 19, 0,
20, 0, 21, 0,
22, 0, 23, 0));
write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
3,
24, 0, 25, 0,
26, 0, 27, 0,
28, 0, 29, 0,
30, 0, 31, 0));
/* DC maps received packets */
write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
15_0,
0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
31_16,
16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
/* initialize the cached sc2vl values consistently with h/w */
for (i = 0; i < 32; i++) {
if (i < 8 || i == 15)
*((u8 *)(dd->sc2vl) + i) = (u8)i;
else
*((u8 *)(dd->sc2vl) + i) = 0;
}
}
/*
* Read chip sizes and then reset parts to sane, disabled, values. We cannot
* depend on the chip going through a power-on reset - a driver may be loaded
* and unloaded many times.
*
* Do not write any CSR values to the chip in this routine - there may be
* a reset following the (possible) FLR in this routine.
*
*/
static int init_chip(struct hfi1_devdata *dd)
{
int i;
int ret = 0;
/*
* Put the HFI CSRs in a known state.
* Combine this with a DC reset.
*
* Stop the device from doing anything while we do a
* reset. We know there are no other active users of
* the device since we are now in charge. Turn off
* off all outbound and inbound traffic and make sure
* the device does not generate any interrupts.
*/
/* disable send contexts and SDMA engines */
write_csr(dd, SEND_CTRL, 0);
for (i = 0; i < dd->chip_send_contexts; i++)
write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
for (i = 0; i < dd->chip_sdma_engines; i++)
write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
/* disable port (turn off RXE inbound traffic) and contexts */
write_csr(dd, RCV_CTRL, 0);
for (i = 0; i < dd->chip_rcv_contexts; i++)
write_csr(dd, RCV_CTXT_CTRL, 0);
/* mask all interrupt sources */
for (i = 0; i < CCE_NUM_INT_CSRS; i++)
write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
/*
* DC Reset: do a full DC reset before the register clear.
* A recommended length of time to hold is one CSR read,
* so reread the CceDcCtrl. Then, hold the DC in reset
* across the clear.
*/
write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
(void)read_csr(dd, CCE_DC_CTRL);
if (use_flr) {
/*
* A FLR will reset the SPC core and part of the PCIe.
* The parts that need to be restored have already been
* saved.
*/
dd_dev_info(dd, "Resetting CSRs with FLR\n");
/* do the FLR, the DC reset will remain */
pcie_flr(dd->pcidev);
/* restore command and BARs */
ret = restore_pci_variables(dd);
if (ret) {
dd_dev_err(dd, "%s: Could not restore PCI variables\n",
__func__);
return ret;
}
if (is_ax(dd)) {
dd_dev_info(dd, "Resetting CSRs with FLR\n");
pcie_flr(dd->pcidev);
ret = restore_pci_variables(dd);
if (ret) {
dd_dev_err(dd, "%s: Could not restore PCI variables\n",
__func__);
return ret;
}
}
} else {
dd_dev_info(dd, "Resetting CSRs with writes\n");
reset_cce_csrs(dd);
reset_txe_csrs(dd);
reset_rxe_csrs(dd);
reset_misc_csrs(dd);
}
/* clear the DC reset */
write_csr(dd, CCE_DC_CTRL, 0);
/* Set the LED off */
setextled(dd, 0);
/*
* Clear the QSFP reset.
* An FLR enforces a 0 on all out pins. The driver does not touch
* ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
* anything plugged constantly in reset, if it pays attention
* to RESET_N.
* Prime examples of this are optical cables. Set all pins high.
* I2CCLK and I2CDAT will change per direction, and INT_N and
* MODPRS_N are input only and their value is ignored.
*/
write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
init_chip_resources(dd);
return ret;
}
static void init_early_variables(struct hfi1_devdata *dd)
{
int i;
/* assign link credit variables */
dd->vau = CM_VAU;
dd->link_credits = CM_GLOBAL_CREDITS;
if (is_ax(dd))
dd->link_credits--;
dd->vcu = cu_to_vcu(hfi1_cu);
/* enough room for 8 MAD packets plus header - 17K */
dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
if (dd->vl15_init > dd->link_credits)
dd->vl15_init = dd->link_credits;
write_uninitialized_csrs_and_memories(dd);
if (HFI1_CAP_IS_KSET(PKEY_CHECK))
for (i = 0; i < dd->num_pports; i++) {
struct hfi1_pportdata *ppd = &dd->pport[i];
set_partition_keys(ppd);
}
init_sc2vl_tables(dd);
}
static void init_kdeth_qp(struct hfi1_devdata *dd)
{
/* user changed the KDETH_QP */
if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
/* out of range or illegal value */
dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
kdeth_qp = 0;
}
if (kdeth_qp == 0) /* not set, or failed range check */
kdeth_qp = DEFAULT_KDETH_QP;
write_csr(dd, SEND_BTH_QP,
(kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
SEND_BTH_QP_KDETH_QP_SHIFT);
write_csr(dd, RCV_BTH_QP,
(kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
RCV_BTH_QP_KDETH_QP_SHIFT);
}
/**
* init_qpmap_table
* @dd - device data
* @first_ctxt - first context
* @last_ctxt - first context
*
* This return sets the qpn mapping table that
* is indexed by qpn[8:1].
*
* The routine will round robin the 256 settings
* from first_ctxt to last_ctxt.
*
* The first/last looks ahead to having specialized
* receive contexts for mgmt and bypass. Normal
* verbs traffic will assumed to be on a range
* of receive contexts.
*/
static void init_qpmap_table(struct hfi1_devdata *dd,
u32 first_ctxt,
u32 last_ctxt)
{
u64 reg = 0;
u64 regno = RCV_QP_MAP_TABLE;
int i;
u64 ctxt = first_ctxt;
for (i = 0; i < 256; i++) {
reg |= ctxt << (8 * (i % 8));
ctxt++;
if (ctxt > last_ctxt)
ctxt = first_ctxt;
if (i % 8 == 7) {
write_csr(dd, regno, reg);
reg = 0;
regno += 8;
}
}
add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
}
struct rsm_map_table {
u64 map[NUM_MAP_REGS];
unsigned int used;
};
struct rsm_rule_data {
u8 offset;
u8 pkt_type;
u32 field1_off;
u32 field2_off;
u32 index1_off;
u32 index1_width;
u32 index2_off;
u32 index2_width;
u32 mask1;
u32 value1;
u32 mask2;
u32 value2;
};
/*
* Return an initialized RMT map table for users to fill in. OK if it
* returns NULL, indicating no table.
*/
static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
{
struct rsm_map_table *rmt;
u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
if (rmt) {
memset(rmt->map, rxcontext, sizeof(rmt->map));
rmt->used = 0;
}
return rmt;
}
/*
* Write the final RMT map table to the chip and free the table. OK if
* table is NULL.
*/
static void complete_rsm_map_table(struct hfi1_devdata *dd,
struct rsm_map_table *rmt)
{
int i;
if (rmt) {
/* write table to chip */
for (i = 0; i < NUM_MAP_REGS; i++)
write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
/* enable RSM */
add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
}
}
/*
* Add a receive side mapping rule.
*/
static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
struct rsm_rule_data *rrd)
{
write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
(u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
1ull << rule_index | /* enable bit */
(u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
(u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
(u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
(u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
(u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
(u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
(u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
(u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
(u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
(u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
(u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
}
/*
* Clear a receive side mapping rule.
*/
static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
{
write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
}
/* return the number of RSM map table entries that will be used for QOS */
static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
unsigned int *np)
{
int i;
unsigned int m, n;
u8 max_by_vl = 0;
/* is QOS active at all? */
if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
num_vls == 1 ||
krcvqsset <= 1)
goto no_qos;
/* determine bits for qpn */
for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
if (krcvqs[i] > max_by_vl)
max_by_vl = krcvqs[i];
if (max_by_vl > 32)
goto no_qos;
m = ilog2(__roundup_pow_of_two(max_by_vl));
/* determine bits for vl */
n = ilog2(__roundup_pow_of_two(num_vls));
/* reject if too much is used */
if ((m + n) > 7)
goto no_qos;
if (mp)
*mp = m;
if (np)
*np = n;
return 1 << (m + n);
no_qos:
if (mp)
*mp = 0;
if (np)
*np = 0;
return 0;
}
/**
* init_qos - init RX qos
* @dd - device data
* @rmt - RSM map table
*
* This routine initializes Rule 0 and the RSM map table to implement
* quality of service (qos).
*
* If all of the limit tests succeed, qos is applied based on the array
* interpretation of krcvqs where entry 0 is VL0.
*
* The number of vl bits (n) and the number of qpn bits (m) are computed to
* feed both the RSM map table and the single rule.
*/
static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
{
struct rsm_rule_data rrd;
unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
unsigned int rmt_entries;
u64 reg;
if (!rmt)
goto bail;
rmt_entries = qos_rmt_entries(dd, &m, &n);
if (rmt_entries == 0)
goto bail;
qpns_per_vl = 1 << m;
/* enough room in the map table? */
rmt_entries = 1 << (m + n);
if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
goto bail;
/* add qos entries to the the RSM map table */
for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
unsigned tctxt;
for (qpn = 0, tctxt = ctxt;
krcvqs[i] && qpn < qpns_per_vl; qpn++) {
unsigned idx, regoff, regidx;
/* generate the index the hardware will produce */
idx = rmt->used + ((qpn << n) ^ i);
regoff = (idx % 8) * 8;
regidx = idx / 8;
/* replace default with context number */
reg = rmt->map[regidx];
reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
<< regoff);
reg |= (u64)(tctxt++) << regoff;
rmt->map[regidx] = reg;
if (tctxt == ctxt + krcvqs[i])
tctxt = ctxt;
}
ctxt += krcvqs[i];
}
rrd.offset = rmt->used;
rrd.pkt_type = 2;
rrd.field1_off = LRH_BTH_MATCH_OFFSET;
rrd.field2_off = LRH_SC_MATCH_OFFSET;
rrd.index1_off = LRH_SC_SELECT_OFFSET;
rrd.index1_width = n;
rrd.index2_off = QPN_SELECT_OFFSET;
rrd.index2_width = m + n;
rrd.mask1 = LRH_BTH_MASK;
rrd.value1 = LRH_BTH_VALUE;
rrd.mask2 = LRH_SC_MASK;
rrd.value2 = LRH_SC_VALUE;
/* add rule 0 */
add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
/* mark RSM map entries as used */
rmt->used += rmt_entries;
/* map everything else to the mcast/err/vl15 context */
init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
dd->qos_shift = n + 1;
return;
bail:
dd->qos_shift = 1;
init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
}
static void init_user_fecn_handling(struct hfi1_devdata *dd,
struct rsm_map_table *rmt)
{
struct rsm_rule_data rrd;
u64 reg;
int i, idx, regoff, regidx;
u8 offset;
/* there needs to be enough room in the map table */
if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
return;
}
/*
* RSM will extract the destination context as an index into the
* map table. The destination contexts are a sequential block
* in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
* Map entries are accessed as offset + extracted value. Adjust
* the added offset so this sequence can be placed anywhere in
* the table - as long as the entries themselves do not wrap.
* There are only enough bits in offset for the table size, so
* start with that to allow for a "negative" offset.
*/
offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
(int)dd->first_dyn_alloc_ctxt);
for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
i < dd->num_rcv_contexts; i++, idx++) {
/* replace with identity mapping */
regoff = (idx % 8) * 8;
regidx = idx / 8;
reg = rmt->map[regidx];
reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
reg |= (u64)i << regoff;
rmt->map[regidx] = reg;
}
/*
* For RSM intercept of Expected FECN packets:
* o packet type 0 - expected
* o match on F (bit 95), using select/match 1, and
* o match on SH (bit 133), using select/match 2.
*
* Use index 1 to extract the 8-bit receive context from DestQP
* (start at bit 64). Use that as the RSM map table index.
*/
rrd.offset = offset;
rrd.pkt_type = 0;
rrd.field1_off = 95;
rrd.field2_off = 133;
rrd.index1_off = 64;
rrd.index1_width = 8;
rrd.index2_off = 0;
rrd.index2_width = 0;
rrd.mask1 = 1;
rrd.value1 = 1;
rrd.mask2 = 1;
rrd.value2 = 1;
/* add rule 1 */
add_rsm_rule(dd, RSM_INS_FECN, &rrd);
rmt->used += dd->num_user_contexts;
}
/* Initialize RSM for VNIC */
void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
{
u8 i, j;
u8 ctx_id = 0;
u64 reg;
u32 regoff;
struct rsm_rule_data rrd;
if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
dd->vnic.rmt_start);
return;
}
dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
dd->vnic.rmt_start,
dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
reg = read_csr(dd, regoff);
for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
/* Update map register with vnic context */
j = (dd->vnic.rmt_start + i) % 8;
reg &= ~(0xffllu << (j * 8));
reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
/* Wrap up vnic ctx index */
ctx_id %= dd->vnic.num_ctxt;
/* Write back map register */
if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
dev_dbg(&(dd)->pcidev->dev,
"Vnic rsm map reg[%d] =0x%llx\n",
regoff - RCV_RSM_MAP_TABLE, reg);
write_csr(dd, regoff, reg);
regoff += 8;
if (i < (NUM_VNIC_MAP_ENTRIES - 1))
reg = read_csr(dd, regoff);
}
}
/* Add rule for vnic */
rrd.offset = dd->vnic.rmt_start;
rrd.pkt_type = 4;
/* Match 16B packets */
rrd.field1_off = L2_TYPE_MATCH_OFFSET;
rrd.mask1 = L2_TYPE_MASK;
rrd.value1 = L2_16B_VALUE;
/* Match ETH L4 packets */
rrd.field2_off = L4_TYPE_MATCH_OFFSET;
rrd.mask2 = L4_16B_TYPE_MASK;
rrd.value2 = L4_16B_ETH_VALUE;
/* Calc context from veswid and entropy */
rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
rrd.index2_off = L2_16B_ENTROPY_OFFSET;
rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
/* Enable RSM if not already enabled */
add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
}
void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
{
clear_rsm_rule(dd, RSM_INS_VNIC);
/* Disable RSM if used only by vnic */
if (dd->vnic.rmt_start == 0)
clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
}
static void init_rxe(struct hfi1_devdata *dd)
{
struct rsm_map_table *rmt;
u64 val;
/* enable all receive errors */
write_csr(dd, RCV_ERR_MASK, ~0ull);
rmt = alloc_rsm_map_table(dd);
/* set up QOS, including the QPN map table */
init_qos(dd, rmt);
init_user_fecn_handling(dd, rmt);
complete_rsm_map_table(dd, rmt);
/* record number of used rsm map entries for vnic */
dd->vnic.rmt_start = rmt->used;
kfree(rmt);
/*
* make sure RcvCtrl.RcvWcb <= PCIe Device Control
* Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
* space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
* invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
* Max_PayLoad_Size set to its minimum of 128.
*
* Presently, RcvCtrl.RcvWcb is not modified from its default of 0
* (64 bytes). Max_Payload_Size is possibly modified upward in
* tune_pcie_caps() which is called after this routine.
*/
/* Have 16 bytes (4DW) of bypass header available in header queue */
val = read_csr(dd, RCV_BYPASS);
val |= (4ull << 16);
write_csr(dd, RCV_BYPASS, val);
}
static void init_other(struct hfi1_devdata *dd)
{
/* enable all CCE errors */
write_csr(dd, CCE_ERR_MASK, ~0ull);
/* enable *some* Misc errors */
write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
/* enable all DC errors, except LCB */
write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
}
/*
* Fill out the given AU table using the given CU. A CU is defined in terms
* AUs. The table is a an encoding: given the index, how many AUs does that
* represent?
*
* NOTE: Assumes that the register layout is the same for the
* local and remote tables.
*/
static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
u32 csr0to3, u32 csr4to7)
{
write_csr(dd, csr0to3,
0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
2ull * cu <<
SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
4ull * cu <<
SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
write_csr(dd, csr4to7,
8ull * cu <<
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
16ull * cu <<
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
32ull * cu <<
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
64ull * cu <<
SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
}
static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
{
assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
SEND_CM_LOCAL_AU_TABLE4_TO7);
}
void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
{
assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
SEND_CM_REMOTE_AU_TABLE4_TO7);
}
static void init_txe(struct hfi1_devdata *dd)
{
int i;
/* enable all PIO, SDMA, general, and Egress errors */
write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
write_csr(dd, SEND_ERR_MASK, ~0ull);
write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
/* enable all per-context and per-SDMA engine errors */
for (i = 0; i < dd->chip_send_contexts; i++)
write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
for (i = 0; i < dd->chip_sdma_engines; i++)
write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
/* set the local CU to AU mapping */
assign_local_cm_au_table(dd, dd->vcu);
/*
* Set reasonable default for Credit Return Timer
* Don't set on Simulator - causes it to choke.
*/
if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
}
int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
u16 jkey)
{
u8 hw_ctxt;
u64 reg;
if (!rcd || !rcd->sc)
return -EINVAL;
hw_ctxt = rcd->sc->hw_context;
reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
/*
* Enable send-side J_KEY integrity check, unless this is A0 h/w
*/
if (!is_ax(dd)) {
reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
}
/* Enable J_KEY check on receive context. */
reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
return 0;
}
int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
{
u8 hw_ctxt;
u64 reg;
if (!rcd || !rcd->sc)
return -EINVAL;
hw_ctxt = rcd->sc->hw_context;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
/*
* Disable send-side J_KEY integrity check, unless this is A0 h/w.
* This check would not have been enabled for A0 h/w, see
* set_ctxt_jkey().
*/
if (!is_ax(dd)) {
reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
}
/* Turn off the J_KEY on the receive side */
write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
return 0;
}
int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
u16 pkey)
{
u8 hw_ctxt;
u64 reg;
if (!rcd || !rcd->sc)
return -EINVAL;
hw_ctxt = rcd->sc->hw_context;
reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
return 0;
}
int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
{
u8 hw_ctxt;
u64 reg;
if (!ctxt || !ctxt->sc)
return -EINVAL;
hw_ctxt = ctxt->sc->hw_context;
reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
return 0;
}
/*
* Start doing the clean up the the chip. Our clean up happens in multiple
* stages and this is just the first.
*/
void hfi1_start_cleanup(struct hfi1_devdata *dd)
{
aspm_exit(dd);
free_cntrs(dd);
free_rcverr(dd);
clean_up_interrupts(dd);
finish_chip_resources(dd);
}
#define HFI_BASE_GUID(dev) \
((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
/*
* Information can be shared between the two HFIs on the same ASIC
* in the same OS. This function finds the peer device and sets
* up a shared structure.
*/
static int init_asic_data(struct hfi1_devdata *dd)
{
unsigned long flags;
struct hfi1_devdata *tmp, *peer = NULL;
struct hfi1_asic_data *asic_data;
int ret = 0;
/* pre-allocate the asic structure in case we are the first device */
asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
if (!asic_data)
return -ENOMEM;
spin_lock_irqsave(&hfi1_devs_lock, flags);
/* Find our peer device */
list_for_each_entry(tmp, &hfi1_dev_list, list) {
if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
dd->unit != tmp->unit) {
peer = tmp;
break;
}
}
if (peer) {
/* use already allocated structure */
dd->asic_data = peer->asic_data;
kfree(asic_data);
} else {
dd->asic_data = asic_data;
mutex_init(&dd->asic_data->asic_resource_mutex);
}
dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
spin_unlock_irqrestore(&hfi1_devs_lock, flags);
/* first one through - set up i2c devices */
if (!peer)
ret = set_up_i2c(dd, dd->asic_data);
return ret;
}
/*
* Set dd->boardname. Use a generic name if a name is not returned from
* EFI variable space.
*
* Return 0 on success, -ENOMEM if space could not be allocated.
*/
static int obtain_boardname(struct hfi1_devdata *dd)
{
/* generic board description */
const char generic[] =
"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
unsigned long size;
int ret;
ret = read_hfi1_efi_var(dd, "description", &size,
(void **)&dd->boardname);
if (ret) {
dd_dev_info(dd, "Board description not found\n");
/* use generic description */
dd->boardname = kstrdup(generic, GFP_KERNEL);
if (!dd->boardname)
return -ENOMEM;
}
return 0;
}
/*
* Check the interrupt registers to make sure that they are mapped correctly.
* It is intended to help user identify any mismapping by VMM when the driver
* is running in a VM. This function should only be called before interrupt
* is set up properly.
*
* Return 0 on success, -EINVAL on failure.
*/
static int check_int_registers(struct hfi1_devdata *dd)
{
u64 reg;
u64 all_bits = ~(u64)0;
u64 mask;
/* Clear CceIntMask[0] to avoid raising any interrupts */
mask = read_csr(dd, CCE_INT_MASK);
write_csr(dd, CCE_INT_MASK, 0ull);
reg = read_csr(dd, CCE_INT_MASK);
if (reg)
goto err_exit;
/* Clear all interrupt status bits */
write_csr(dd, CCE_INT_CLEAR, all_bits);
reg = read_csr(dd, CCE_INT_STATUS);
if (reg)
goto err_exit;
/* Set all interrupt status bits */
write_csr(dd, CCE_INT_FORCE, all_bits);
reg = read_csr(dd, CCE_INT_STATUS);
if (reg != all_bits)
goto err_exit;
/* Restore the interrupt mask */
write_csr(dd, CCE_INT_CLEAR, all_bits);
write_csr(dd, CCE_INT_MASK, mask);
return 0;
err_exit:
write_csr(dd, CCE_INT_MASK, mask);
dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
return -EINVAL;
}
/**
* Allocate and initialize the device structure for the hfi.
* @dev: the pci_dev for hfi1_ib device
* @ent: pci_device_id struct for this dev
*
* Also allocates, initializes, and returns the devdata struct for this
* device instance
*
* This is global, and is called directly at init to set up the
* chip-specific function pointers for later use.
*/
struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct hfi1_devdata *dd;
struct hfi1_pportdata *ppd;
u64 reg;
int i, ret;
static const char * const inames[] = { /* implementation names */
"RTL silicon",
"RTL VCS simulation",
"RTL FPGA emulation",
"Functional simulator"
};
struct pci_dev *parent = pdev->bus->self;
dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
sizeof(struct hfi1_pportdata));
if (IS_ERR(dd))
goto bail;
ppd = dd->pport;
for (i = 0; i < dd->num_pports; i++, ppd++) {
int vl;
/* init common fields */
hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
/* DC supports 4 link widths */
ppd->link_width_supported =
OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
ppd->link_width_downgrade_supported =
ppd->link_width_supported;
/* start out enabling only 4X */
ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
ppd->link_width_downgrade_enabled =
ppd->link_width_downgrade_supported;
/* link width active is 0 when link is down */
/* link width downgrade active is 0 when link is down */
if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
num_vls > HFI1_MAX_VLS_SUPPORTED) {
hfi1_early_err(&pdev->dev,
"Invalid num_vls %u, using %u VLs\n",
num_vls, HFI1_MAX_VLS_SUPPORTED);
num_vls = HFI1_MAX_VLS_SUPPORTED;
}
ppd->vls_supported = num_vls;
ppd->vls_operational = ppd->vls_supported;
/* Set the default MTU. */
for (vl = 0; vl < num_vls; vl++)
dd->vld[vl].mtu = hfi1_max_mtu;
dd->vld[15].mtu = MAX_MAD_PACKET;
/*
* Set the initial values to reasonable default, will be set
* for real when link is up.
*/
ppd->overrun_threshold = 0x4;
ppd->phy_error_threshold = 0xf;
ppd->port_crc_mode_enabled = link_crc_mask;
/* initialize supported LTP CRC mode */
ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
/* initialize enabled LTP CRC mode */
ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
/* start in offline */
ppd->host_link_state = HLS_DN_OFFLINE;
init_vl_arb_caches(ppd);
}
dd->link_default = HLS_DN_POLL;
/*
* Do remaining PCIe setup and save PCIe values in dd.
* Any error printing is already done by the init code.
* On return, we have the chip mapped.
*/
ret = hfi1_pcie_ddinit(dd, pdev);
if (ret < 0)
goto bail_free;
/* Save PCI space registers to rewrite after device reset */
ret = save_pci_variables(dd);
if (ret < 0)
goto bail_cleanup;
/* verify that reads actually work, save revision for reset check */
dd->revision = read_csr(dd, CCE_REVISION);
if (dd->revision == ~(u64)0) {
dd_dev_err(dd, "cannot read chip CSRs\n");
ret = -EINVAL;
goto bail_cleanup;
}
dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
& CCE_REVISION_CHIP_REV_MAJOR_MASK;
dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
& CCE_REVISION_CHIP_REV_MINOR_MASK;
/*
* Check interrupt registers mapping if the driver has no access to
* the upstream component. In this case, it is likely that the driver
* is running in a VM.
*/
if (!parent) {
ret = check_int_registers(dd);
if (ret)
goto bail_cleanup;
}
/*
* obtain the hardware ID - NOT related to unit, which is a
* software enumeration
*/
reg = read_csr(dd, CCE_REVISION2);
dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
& CCE_REVISION2_HFI_ID_MASK;
/* the variable size will remove unwanted bits */
dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
dd->icode < ARRAY_SIZE(inames) ?
inames[dd->icode] : "unknown", (int)dd->irev);
/* speeds the hardware can support */
dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
/* speeds allowed to run at */
dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
/* give a reasonable active value, will be set on link up */
dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
/* fix up link widths for emulation _p */
ppd = dd->pport;
if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
ppd->link_width_supported =
ppd->link_width_enabled =
ppd->link_width_downgrade_supported =
ppd->link_width_downgrade_enabled =
OPA_LINK_WIDTH_1X;
}
/* insure num_vls isn't larger than number of sdma engines */
if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
num_vls, dd->chip_sdma_engines);
num_vls = dd->chip_sdma_engines;
ppd->vls_supported = dd->chip_sdma_engines;
ppd->vls_operational = ppd->vls_supported;
}
/*
* Convert the ns parameter to the 64 * cclocks used in the CSR.
* Limit the max if larger than the field holds. If timeout is
* non-zero, then the calculated field will be at least 1.
*
* Must be after icode is set up - the cclock rate depends
* on knowing the hardware being used.
*/
dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
if (dd->rcv_intr_timeout_csr >
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
dd->rcv_intr_timeout_csr =
RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
dd->rcv_intr_timeout_csr = 1;
/* needs to be done before we look for the peer device */
read_guid(dd);
/* set up shared ASIC data with peer device */
ret = init_asic_data(dd);
if (ret)
goto bail_cleanup;
/* obtain chip sizes, reset chip CSRs */
ret = init_chip(dd);
if (ret)
goto bail_cleanup;
/* read in the PCIe link speed information */
ret = pcie_speeds(dd);
if (ret)
goto bail_cleanup;
/* call before get_platform_config(), after init_chip_resources() */
ret = eprom_init(dd);
if (ret)
goto bail_free_rcverr;
/* Needs to be called before hfi1_firmware_init */
get_platform_config(dd);
/* read in firmware */
ret = hfi1_firmware_init(dd);
if (ret)
goto bail_cleanup;
/*
* In general, the PCIe Gen3 transition must occur after the
* chip has been idled (so it won't initiate any PCIe transactions
* e.g. an interrupt) and before the driver changes any registers
* (the transition will reset the registers).
*
* In particular, place this call after:
* - init_chip() - the chip will not initiate any PCIe transactions
* - pcie_speeds() - reads the current link speed
* - hfi1_firmware_init() - the needed firmware is ready to be
* downloaded
*/
ret = do_pcie_gen3_transition(dd);
if (ret)
goto bail_cleanup;
/* start setting dd values and adjusting CSRs */
init_early_variables(dd);
parse_platform_config(dd);
ret = obtain_boardname(dd);
if (ret)
goto bail_cleanup;
snprintf(dd->boardversion, BOARD_VERS_MAX,
"ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
(u32)dd->majrev,
(u32)dd->minrev,
(dd->revision >> CCE_REVISION_SW_SHIFT)
& CCE_REVISION_SW_MASK);
ret = set_up_context_variables(dd);
if (ret)
goto bail_cleanup;
/* set initial RXE CSRs */
init_rxe(dd);
/* set initial TXE CSRs */
init_txe(dd);
/* set initial non-RXE, non-TXE CSRs */
init_other(dd);
/* set up KDETH QP prefix in both RX and TX CSRs */
init_kdeth_qp(dd);
ret = hfi1_dev_affinity_init(dd);
if (ret)
goto bail_cleanup;
/* send contexts must be set up before receive contexts */
ret = init_send_contexts(dd);
if (ret)
goto bail_cleanup;
ret = hfi1_create_kctxts(dd);
if (ret)
goto bail_cleanup;
/*
* Initialize aspm, to be done after gen3 transition and setting up
* contexts and before enabling interrupts
*/
aspm_init(dd);
dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
/*
* rcd[0] is guaranteed to be valid by this point. Also, all
* context are using the same value, as per the module parameter.
*/
dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
ret = init_pervl_scs(dd);
if (ret)
goto bail_cleanup;
/* sdma init */
for (i = 0; i < dd->num_pports; ++i) {
ret = sdma_init(dd, i);
if (ret)
goto bail_cleanup;
}
/* use contexts created by hfi1_create_kctxts */
ret = set_up_interrupts(dd);
if (ret)
goto bail_cleanup;
/* set up LCB access - must be after set_up_interrupts() */
init_lcb_access(dd);
/*
* Serial number is created from the base guid:
* [27:24] = base guid [38:35]
* [23: 0] = base guid [23: 0]
*/
snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
(dd->base_guid & 0xFFFFFF) |
((dd->base_guid >> 11) & 0xF000000));
dd->oui1 = dd->base_guid >> 56 & 0xFF;
dd->oui2 = dd->base_guid >> 48 & 0xFF;
dd->oui3 = dd->base_guid >> 40 & 0xFF;
ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
if (ret)
goto bail_clear_intr;
thermal_init(dd);
ret = init_cntrs(dd);
if (ret)
goto bail_clear_intr;
ret = init_rcverr(dd);
if (ret)
goto bail_free_cntrs;
init_completion(&dd->user_comp);
/* The user refcount starts with one to inidicate an active device */
atomic_set(&dd->user_refcount, 1);
goto bail;
bail_free_rcverr:
free_rcverr(dd);
bail_free_cntrs:
free_cntrs(dd);
bail_clear_intr:
clean_up_interrupts(dd);
bail_cleanup:
hfi1_pcie_ddcleanup(dd);
bail_free:
hfi1_free_devdata(dd);
dd = ERR_PTR(ret);
bail:
return dd;
}
static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
u32 dw_len)
{
u32 delta_cycles;
u32 current_egress_rate = ppd->current_egress_rate;
/* rates here are in units of 10^6 bits/sec */
if (desired_egress_rate == -1)
return 0; /* shouldn't happen */
if (desired_egress_rate >= current_egress_rate)
return 0; /* we can't help go faster, only slower */
delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
egress_cycles(dw_len * 4, current_egress_rate);
return (u16)delta_cycles;
}
/**
* create_pbc - build a pbc for transmission
* @flags: special case flags or-ed in built pbc
* @srate: static rate
* @vl: vl
* @dwlen: dword length (header words + data words + pbc words)
*
* Create a PBC with the given flags, rate, VL, and length.
*
* NOTE: The PBC created will not insert any HCRC - all callers but one are
* for verbs, which does not use this PSM feature. The lone other caller
* is for the diagnostic interface which calls this if the user does not
* supply their own PBC.
*/
u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
u32 dw_len)
{
u64 pbc, delay = 0;
if (unlikely(srate_mbs))
delay = delay_cycles(ppd, srate_mbs, dw_len);
pbc = flags
| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
| (dw_len & PBC_LENGTH_DWS_MASK)
<< PBC_LENGTH_DWS_SHIFT;
return pbc;
}
#define SBUS_THERMAL 0x4f
#define SBUS_THERM_MONITOR_MODE 0x1
#define THERM_FAILURE(dev, ret, reason) \
dd_dev_err((dd), \
"Thermal sensor initialization failed: %s (%d)\n", \
(reason), (ret))
/*
* Initialize the thermal sensor.
*
* After initialization, enable polling of thermal sensor through
* SBus interface. In order for this to work, the SBus Master
* firmware has to be loaded due to the fact that the HW polling
* logic uses SBus interrupts, which are not supported with
* default firmware. Otherwise, no data will be returned through
* the ASIC_STS_THERM CSR.
*/
static int thermal_init(struct hfi1_devdata *dd)
{
int ret = 0;
if (dd->icode != ICODE_RTL_SILICON ||
check_chip_resource(dd, CR_THERM_INIT, NULL))
return ret;
ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
if (ret) {
THERM_FAILURE(dd, ret, "Acquire SBus");
return ret;
}
dd_dev_info(dd, "Initializing thermal sensor\n");
/* Disable polling of thermal readings */
write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
msleep(100);
/* Thermal Sensor Initialization */
/* Step 1: Reset the Thermal SBus Receiver */
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
RESET_SBUS_RECEIVER, 0);
if (ret) {
THERM_FAILURE(dd, ret, "Bus Reset");
goto done;
}
/* Step 2: Set Reset bit in Thermal block */
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
WRITE_SBUS_RECEIVER, 0x1);
if (ret) {
THERM_FAILURE(dd, ret, "Therm Block Reset");
goto done;
}
/* Step 3: Write clock divider value (100MHz -> 2MHz) */
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
WRITE_SBUS_RECEIVER, 0x32);
if (ret) {
THERM_FAILURE(dd, ret, "Write Clock Div");
goto done;
}
/* Step 4: Select temperature mode */
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
WRITE_SBUS_RECEIVER,
SBUS_THERM_MONITOR_MODE);
if (ret) {
THERM_FAILURE(dd, ret, "Write Mode Sel");
goto done;
}
/* Step 5: De-assert block reset and start conversion */
ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
WRITE_SBUS_RECEIVER, 0x2);
if (ret) {
THERM_FAILURE(dd, ret, "Write Reset Deassert");
goto done;
}
/* Step 5.1: Wait for first conversion (21.5ms per spec) */
msleep(22);
/* Enable polling of thermal readings */
write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
/* Set initialized flag */
ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
if (ret)
THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
done:
release_chip_resource(dd, CR_SBUS);
return ret;
}
static void handle_temp_err(struct hfi1_devdata *dd)
{
struct hfi1_pportdata *ppd = &dd->pport[0];
/*
* Thermal Critical Interrupt
* Put the device into forced freeze mode, take link down to
* offline, and put DC into reset.
*/
dd_dev_emerg(dd,
"Critical temperature reached! Forcing device into freeze mode!\n");
dd->flags |= HFI1_FORCED_FREEZE;
start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
/*
* Shut DC down as much and as quickly as possible.
*
* Step 1: Take the link down to OFFLINE. This will cause the
* 8051 to put the Serdes in reset. However, we don't want to
* go through the entire link state machine since we want to
* shutdown ASAP. Furthermore, this is not a graceful shutdown
* but rather an attempt to save the chip.
* Code below is almost the same as quiet_serdes() but avoids
* all the extra work and the sleeps.
*/
ppd->driver_link_ready = 0;
ppd->link_enabled = 0;
set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
PLS_OFFLINE);
/*
* Step 2: Shutdown LCB and 8051
* After shutdown, do not restore DC_CFG_RESET value.
*/
dc_shutdown(dd);
}