| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 1994, 1995 Waldorf GmbH |
| * Copyright (C) 1994 - 2000, 06 Ralf Baechle |
| * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. |
| * Author: Maciej W. Rozycki <macro@mips.com> |
| */ |
| #ifndef _ASM_IO_H |
| #define _ASM_IO_H |
| |
| #define ARCH_HAS_IOREMAP_WC |
| |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/irqflags.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/barrier.h> |
| #include <asm/bug.h> |
| #include <asm/byteorder.h> |
| #include <asm/cpu.h> |
| #include <asm/cpu-features.h> |
| #include <asm-generic/iomap.h> |
| #include <asm/page.h> |
| #include <asm/pgtable-bits.h> |
| #include <asm/processor.h> |
| #include <asm/string.h> |
| |
| #include <ioremap.h> |
| #include <mangle-port.h> |
| |
| /* |
| * Raw operations are never swapped in software. OTOH values that raw |
| * operations are working on may or may not have been swapped by the bus |
| * hardware. An example use would be for flash memory that's used for |
| * execute in place. |
| */ |
| # define __raw_ioswabb(a, x) (x) |
| # define __raw_ioswabw(a, x) (x) |
| # define __raw_ioswabl(a, x) (x) |
| # define __raw_ioswabq(a, x) (x) |
| # define ____raw_ioswabq(a, x) (x) |
| |
| # define __relaxed_ioswabb ioswabb |
| # define __relaxed_ioswabw ioswabw |
| # define __relaxed_ioswabl ioswabl |
| # define __relaxed_ioswabq ioswabq |
| |
| /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ |
| |
| #define IO_SPACE_LIMIT 0xffff |
| |
| /* |
| * On MIPS I/O ports are memory mapped, so we access them using normal |
| * load/store instructions. mips_io_port_base is the virtual address to |
| * which all ports are being mapped. For sake of efficiency some code |
| * assumes that this is an address that can be loaded with a single lui |
| * instruction, so the lower 16 bits must be zero. Should be true on |
| * on any sane architecture; generic code does not use this assumption. |
| */ |
| extern unsigned long mips_io_port_base; |
| |
| static inline void set_io_port_base(unsigned long base) |
| { |
| mips_io_port_base = base; |
| } |
| |
| /* |
| * Provide the necessary definitions for generic iomap. We make use of |
| * mips_io_port_base for iomap(), but we don't reserve any low addresses for |
| * use with I/O ports. |
| */ |
| |
| #define HAVE_ARCH_PIO_SIZE |
| #define PIO_OFFSET mips_io_port_base |
| #define PIO_MASK IO_SPACE_LIMIT |
| #define PIO_RESERVED 0x0UL |
| |
| /* |
| * Enforce in-order execution of data I/O. In the MIPS architecture |
| * these are equivalent to corresponding platform-specific memory |
| * barriers defined in <asm/barrier.h>. API pinched from PowerPC, |
| * with sync additionally defined. |
| */ |
| #define iobarrier_rw() mb() |
| #define iobarrier_r() rmb() |
| #define iobarrier_w() wmb() |
| #define iobarrier_sync() iob() |
| |
| /* |
| * virt_to_phys - map virtual addresses to physical |
| * @address: address to remap |
| * |
| * The returned physical address is the physical (CPU) mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses directly mapped or allocated via kmalloc. |
| * |
| * This function does not give bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline unsigned long virt_to_phys(volatile const void *address) |
| { |
| return __pa(address); |
| } |
| |
| /* |
| * phys_to_virt - map physical address to virtual |
| * @address: address to remap |
| * |
| * The returned virtual address is a current CPU mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses that have a kernel mapping |
| * |
| * This function does not handle bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| static inline void * phys_to_virt(unsigned long address) |
| { |
| return (void *)(address + PAGE_OFFSET - PHYS_OFFSET); |
| } |
| |
| /* |
| * ISA I/O bus memory addresses are 1:1 with the physical address. |
| */ |
| static inline unsigned long isa_virt_to_bus(volatile void *address) |
| { |
| return virt_to_phys(address); |
| } |
| |
| static inline void *isa_bus_to_virt(unsigned long address) |
| { |
| return phys_to_virt(address); |
| } |
| |
| /* |
| * However PCI ones are not necessarily 1:1 and therefore these interfaces |
| * are forbidden in portable PCI drivers. |
| * |
| * Allow them for x86 for legacy drivers, though. |
| */ |
| #define virt_to_bus virt_to_phys |
| #define bus_to_virt phys_to_virt |
| |
| /* |
| * Change "struct page" to physical address. |
| */ |
| #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) |
| |
| extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags); |
| extern void __iounmap(const volatile void __iomem *addr); |
| |
| static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size, |
| unsigned long flags) |
| { |
| void __iomem *addr = plat_ioremap(offset, size, flags); |
| |
| if (addr) |
| return addr; |
| |
| #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL)) |
| |
| if (cpu_has_64bit_addresses) { |
| u64 base = UNCAC_BASE; |
| |
| /* |
| * R10000 supports a 2 bit uncached attribute therefore |
| * UNCAC_BASE may not equal IO_BASE. |
| */ |
| if (flags == _CACHE_UNCACHED) |
| base = (u64) IO_BASE; |
| return (void __iomem *) (unsigned long) (base + offset); |
| } else if (__builtin_constant_p(offset) && |
| __builtin_constant_p(size) && __builtin_constant_p(flags)) { |
| phys_addr_t phys_addr, last_addr; |
| |
| phys_addr = fixup_bigphys_addr(offset, size); |
| |
| /* Don't allow wraparound or zero size. */ |
| last_addr = phys_addr + size - 1; |
| if (!size || last_addr < phys_addr) |
| return NULL; |
| |
| /* |
| * Map uncached objects in the low 512MB of address |
| * space using KSEG1. |
| */ |
| if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) && |
| flags == _CACHE_UNCACHED) |
| return (void __iomem *) |
| (unsigned long)CKSEG1ADDR(phys_addr); |
| } |
| |
| return __ioremap(offset, size, flags); |
| |
| #undef __IS_LOW512 |
| } |
| |
| /* |
| * ioremap_prot - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| |
| * ioremap_prot gives the caller control over cache coherency attributes (CCA) |
| */ |
| static inline void __iomem *ioremap_prot(phys_addr_t offset, |
| unsigned long size, unsigned long prot_val) { |
| return __ioremap_mode(offset, size, prot_val & _CACHE_MASK); |
| } |
| |
| /* |
| * ioremap - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| */ |
| #define ioremap(offset, size) \ |
| __ioremap_mode((offset), (size), _CACHE_UNCACHED) |
| #define ioremap_nocache ioremap |
| #define ioremap_uc ioremap |
| |
| /* |
| * ioremap_cache - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap_cache performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked cachable by |
| * the CPU. Also enables full write-combining. Useful for some |
| * memory-like regions on I/O busses. |
| */ |
| #define ioremap_cache(offset, size) \ |
| __ioremap_mode((offset), (size), _page_cachable_default) |
| |
| /* |
| * ioremap_wc - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap_wc performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * This version of ioremap ensures that the memory is marked uncachable |
| * but accelerated by means of write-combining feature. It is specifically |
| * useful for PCIe prefetchable windows, which may vastly improve a |
| * communications performance. If it was determined on boot stage, what |
| * CPU CCA doesn't support UCA, the method shall fall-back to the |
| * _CACHE_UNCACHED option (see cpu_probe() method). |
| */ |
| #define ioremap_wc(offset, size) \ |
| __ioremap_mode((offset), (size), boot_cpu_data.writecombine) |
| |
| static inline void iounmap(const volatile void __iomem *addr) |
| { |
| if (plat_iounmap(addr)) |
| return; |
| |
| #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1) |
| |
| if (cpu_has_64bit_addresses || |
| (__builtin_constant_p(addr) && __IS_KSEG1(addr))) |
| return; |
| |
| __iounmap(addr); |
| |
| #undef __IS_KSEG1 |
| } |
| |
| #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64) |
| #define war_io_reorder_wmb() wmb() |
| #else |
| #define war_io_reorder_wmb() barrier() |
| #endif |
| |
| #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \ |
| \ |
| static inline void pfx##write##bwlq(type val, \ |
| volatile void __iomem *mem) \ |
| { \ |
| volatile type *__mem; \ |
| type __val; \ |
| \ |
| if (barrier) \ |
| iobarrier_rw(); \ |
| else \ |
| war_io_reorder_wmb(); \ |
| \ |
| __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| \ |
| __val = pfx##ioswab##bwlq(__mem, val); \ |
| \ |
| if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| *__mem = __val; \ |
| else if (cpu_has_64bits) { \ |
| unsigned long __flags; \ |
| type __tmp; \ |
| \ |
| if (irq) \ |
| local_irq_save(__flags); \ |
| __asm__ __volatile__( \ |
| ".set push" "\t\t# __writeq""\n\t" \ |
| ".set arch=r4000" "\n\t" \ |
| "dsll32 %L0, %L0, 0" "\n\t" \ |
| "dsrl32 %L0, %L0, 0" "\n\t" \ |
| "dsll32 %M0, %M0, 0" "\n\t" \ |
| "or %L0, %L0, %M0" "\n\t" \ |
| "sd %L0, %2" "\n\t" \ |
| ".set pop" "\n" \ |
| : "=r" (__tmp) \ |
| : "0" (__val), "m" (*__mem)); \ |
| if (irq) \ |
| local_irq_restore(__flags); \ |
| } else \ |
| BUG(); \ |
| } \ |
| \ |
| static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ |
| { \ |
| volatile type *__mem; \ |
| type __val; \ |
| \ |
| __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| \ |
| if (barrier) \ |
| iobarrier_rw(); \ |
| \ |
| if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| __val = *__mem; \ |
| else if (cpu_has_64bits) { \ |
| unsigned long __flags; \ |
| \ |
| if (irq) \ |
| local_irq_save(__flags); \ |
| __asm__ __volatile__( \ |
| ".set push" "\t\t# __readq" "\n\t" \ |
| ".set arch=r4000" "\n\t" \ |
| "ld %L0, %1" "\n\t" \ |
| "dsra32 %M0, %L0, 0" "\n\t" \ |
| "sll %L0, %L0, 0" "\n\t" \ |
| ".set pop" "\n" \ |
| : "=r" (__val) \ |
| : "m" (*__mem)); \ |
| if (irq) \ |
| local_irq_restore(__flags); \ |
| } else { \ |
| __val = 0; \ |
| BUG(); \ |
| } \ |
| \ |
| /* prevent prefetching of coherent DMA data prematurely */ \ |
| if (!relax) \ |
| rmb(); \ |
| return pfx##ioswab##bwlq(__mem, __val); \ |
| } |
| |
| #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p) \ |
| \ |
| static inline void pfx##out##bwlq##p(type val, unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| if (barrier) \ |
| iobarrier_rw(); \ |
| else \ |
| war_io_reorder_wmb(); \ |
| \ |
| __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ |
| \ |
| __val = pfx##ioswab##bwlq(__addr, val); \ |
| \ |
| /* Really, we want this to be atomic */ \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| *__addr = __val; \ |
| } \ |
| \ |
| static inline type pfx##in##bwlq##p(unsigned long port) \ |
| { \ |
| volatile type *__addr; \ |
| type __val; \ |
| \ |
| __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ |
| \ |
| BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ |
| \ |
| if (barrier) \ |
| iobarrier_rw(); \ |
| \ |
| __val = *__addr; \ |
| \ |
| /* prevent prefetching of coherent DMA data prematurely */ \ |
| if (!relax) \ |
| rmb(); \ |
| return pfx##ioswab##bwlq(__addr, __val); \ |
| } |
| |
| #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \ |
| \ |
| __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1) |
| |
| #define BUILDIO_MEM(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \ |
| __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \ |
| __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \ |
| __BUILD_MEMORY_PFX(, bwlq, type, 0) |
| |
| BUILDIO_MEM(b, u8) |
| BUILDIO_MEM(w, u16) |
| BUILDIO_MEM(l, u32) |
| #ifdef CONFIG_64BIT |
| BUILDIO_MEM(q, u64) |
| #else |
| __BUILD_MEMORY_PFX(__raw_, q, u64, 0) |
| __BUILD_MEMORY_PFX(__mem_, q, u64, 0) |
| #endif |
| |
| #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,) \ |
| __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p) |
| |
| #define BUILDIO_IOPORT(bwlq, type) \ |
| __BUILD_IOPORT_PFX(, bwlq, type) \ |
| __BUILD_IOPORT_PFX(__mem_, bwlq, type) |
| |
| BUILDIO_IOPORT(b, u8) |
| BUILDIO_IOPORT(w, u16) |
| BUILDIO_IOPORT(l, u32) |
| #ifdef CONFIG_64BIT |
| BUILDIO_IOPORT(q, u64) |
| #endif |
| |
| #define __BUILDIO(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0) |
| |
| __BUILDIO(q, u64) |
| |
| #define readb_relaxed __relaxed_readb |
| #define readw_relaxed __relaxed_readw |
| #define readl_relaxed __relaxed_readl |
| #ifdef CONFIG_64BIT |
| #define readq_relaxed __relaxed_readq |
| #endif |
| |
| #define writeb_relaxed __relaxed_writeb |
| #define writew_relaxed __relaxed_writew |
| #define writel_relaxed __relaxed_writel |
| #ifdef CONFIG_64BIT |
| #define writeq_relaxed __relaxed_writeq |
| #endif |
| |
| #define readb_be(addr) \ |
| __raw_readb((__force unsigned *)(addr)) |
| #define readw_be(addr) \ |
| be16_to_cpu(__raw_readw((__force unsigned *)(addr))) |
| #define readl_be(addr) \ |
| be32_to_cpu(__raw_readl((__force unsigned *)(addr))) |
| #define readq_be(addr) \ |
| be64_to_cpu(__raw_readq((__force unsigned *)(addr))) |
| |
| #define writeb_be(val, addr) \ |
| __raw_writeb((val), (__force unsigned *)(addr)) |
| #define writew_be(val, addr) \ |
| __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) |
| #define writel_be(val, addr) \ |
| __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) |
| #define writeq_be(val, addr) \ |
| __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) |
| |
| /* |
| * Some code tests for these symbols |
| */ |
| #ifdef CONFIG_64BIT |
| #define readq readq |
| #define writeq writeq |
| #endif |
| |
| #define __BUILD_MEMORY_STRING(bwlq, type) \ |
| \ |
| static inline void writes##bwlq(volatile void __iomem *mem, \ |
| const void *addr, unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| __mem_write##bwlq(*__addr, mem); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = __mem_read##bwlq(mem); \ |
| __addr++; \ |
| } \ |
| } |
| |
| #define __BUILD_IOPORT_STRING(bwlq, type) \ |
| \ |
| static inline void outs##bwlq(unsigned long port, const void *addr, \ |
| unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| __mem_out##bwlq(*__addr, port); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void ins##bwlq(unsigned long port, void *addr, \ |
| unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = __mem_in##bwlq(port); \ |
| __addr++; \ |
| } \ |
| } |
| |
| #define BUILDSTRING(bwlq, type) \ |
| \ |
| __BUILD_MEMORY_STRING(bwlq, type) \ |
| __BUILD_IOPORT_STRING(bwlq, type) |
| |
| BUILDSTRING(b, u8) |
| BUILDSTRING(w, u16) |
| BUILDSTRING(l, u32) |
| #ifdef CONFIG_64BIT |
| BUILDSTRING(q, u64) |
| #endif |
| |
| static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) |
| { |
| memset((void __force *) addr, val, count); |
| } |
| static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count) |
| { |
| memcpy(dst, (void __force *) src, count); |
| } |
| static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) |
| { |
| memcpy((void __force *) dst, src, count); |
| } |
| |
| /* |
| * The caches on some architectures aren't dma-coherent and have need to |
| * handle this in software. There are three types of operations that |
| * can be applied to dma buffers. |
| * |
| * - dma_cache_wback_inv(start, size) makes caches and coherent by |
| * writing the content of the caches back to memory, if necessary. |
| * The function also invalidates the affected part of the caches as |
| * necessary before DMA transfers from outside to memory. |
| * - dma_cache_wback(start, size) makes caches and coherent by |
| * writing the content of the caches back to memory, if necessary. |
| * The function also invalidates the affected part of the caches as |
| * necessary before DMA transfers from outside to memory. |
| * - dma_cache_inv(start, size) invalidates the affected parts of the |
| * caches. Dirty lines of the caches may be written back or simply |
| * be discarded. This operation is necessary before dma operations |
| * to the memory. |
| * |
| * This API used to be exported; it now is for arch code internal use only. |
| */ |
| #ifdef CONFIG_DMA_NONCOHERENT |
| |
| extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); |
| extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); |
| extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); |
| |
| #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) |
| #define dma_cache_wback(start, size) _dma_cache_wback(start, size) |
| #define dma_cache_inv(start, size) _dma_cache_inv(start, size) |
| |
| #else /* Sane hardware */ |
| |
| #define dma_cache_wback_inv(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| #define dma_cache_wback(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| #define dma_cache_inv(start,size) \ |
| do { (void) (start); (void) (size); } while (0) |
| |
| #endif /* CONFIG_DMA_NONCOHERENT */ |
| |
| /* |
| * Read a 32-bit register that requires a 64-bit read cycle on the bus. |
| * Avoid interrupt mucking, just adjust the address for 4-byte access. |
| * Assume the addresses are 8-byte aligned. |
| */ |
| #ifdef __MIPSEB__ |
| #define __CSR_32_ADJUST 4 |
| #else |
| #define __CSR_32_ADJUST 0 |
| #endif |
| |
| #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) |
| #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| void __ioread64_copy(void *to, const void __iomem *from, size_t count); |
| |
| #endif /* _ASM_IO_H */ |