blob: fddaa09f7b0dbd68d1d19cef054dccaa6369e45c [file] [log] [blame]
/*
* Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/kernel.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/ratelimit.h>
#include <net/addrconf.h>
#include "rds_single_path.h"
#include "rds.h"
#include "ib.h"
#include "ib_mr.h"
/*
* Set the selected protocol version
*/
static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version)
{
conn->c_version = version;
}
/*
* Set up flow control
*/
static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits)
{
struct rds_ib_connection *ic = conn->c_transport_data;
if (rds_ib_sysctl_flow_control && credits != 0) {
/* We're doing flow control */
ic->i_flowctl = 1;
rds_ib_send_add_credits(conn, credits);
} else {
ic->i_flowctl = 0;
}
}
/*
* Tune RNR behavior. Without flow control, we use a rather
* low timeout, but not the absolute minimum - this should
* be tunable.
*
* We already set the RNR retry count to 7 (which is the
* smallest infinite number :-) above.
* If flow control is off, we want to change this back to 0
* so that we learn quickly when our credit accounting is
* buggy.
*
* Caller passes in a qp_attr pointer - don't waste stack spacv
* by allocation this twice.
*/
static void
rds_ib_tune_rnr(struct rds_ib_connection *ic, struct ib_qp_attr *attr)
{
int ret;
attr->min_rnr_timer = IB_RNR_TIMER_000_32;
ret = ib_modify_qp(ic->i_cm_id->qp, attr, IB_QP_MIN_RNR_TIMER);
if (ret)
printk(KERN_NOTICE "ib_modify_qp(IB_QP_MIN_RNR_TIMER): err=%d\n", -ret);
}
/*
* Connection established.
* We get here for both outgoing and incoming connection.
*/
void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event)
{
struct rds_ib_connection *ic = conn->c_transport_data;
const union rds_ib_conn_priv *dp = NULL;
struct ib_qp_attr qp_attr;
__be64 ack_seq = 0;
__be32 credit = 0;
u8 major = 0;
u8 minor = 0;
int err;
dp = event->param.conn.private_data;
if (conn->c_isv6) {
if (event->param.conn.private_data_len >=
sizeof(struct rds6_ib_connect_private)) {
major = dp->ricp_v6.dp_protocol_major;
minor = dp->ricp_v6.dp_protocol_minor;
credit = dp->ricp_v6.dp_credit;
/* dp structure start is not guaranteed to be 8 bytes
* aligned. Since dp_ack_seq is 64-bit extended load
* operations can be used so go through get_unaligned
* to avoid unaligned errors.
*/
ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq);
}
} else if (event->param.conn.private_data_len >=
sizeof(struct rds_ib_connect_private)) {
major = dp->ricp_v4.dp_protocol_major;
minor = dp->ricp_v4.dp_protocol_minor;
credit = dp->ricp_v4.dp_credit;
ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq);
}
/* make sure it isn't empty data */
if (major) {
rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor));
rds_ib_set_flow_control(conn, be32_to_cpu(credit));
}
if (conn->c_version < RDS_PROTOCOL_VERSION) {
if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) {
pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n",
&conn->c_laddr, &conn->c_faddr,
RDS_PROTOCOL_MAJOR(conn->c_version),
RDS_PROTOCOL_MINOR(conn->c_version));
rds_conn_destroy(conn);
return;
}
}
pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n",
ic->i_active_side ? "Active" : "Passive",
&conn->c_laddr, &conn->c_faddr, conn->c_tos,
RDS_PROTOCOL_MAJOR(conn->c_version),
RDS_PROTOCOL_MINOR(conn->c_version),
ic->i_flowctl ? ", flow control" : "");
atomic_set(&ic->i_cq_quiesce, 0);
/* Init rings and fill recv. this needs to wait until protocol
* negotiation is complete, since ring layout is different
* from 3.1 to 4.1.
*/
rds_ib_send_init_ring(ic);
rds_ib_recv_init_ring(ic);
/* Post receive buffers - as a side effect, this will update
* the posted credit count. */
rds_ib_recv_refill(conn, 1, GFP_KERNEL);
/* Tune RNR behavior */
rds_ib_tune_rnr(ic, &qp_attr);
qp_attr.qp_state = IB_QPS_RTS;
err = ib_modify_qp(ic->i_cm_id->qp, &qp_attr, IB_QP_STATE);
if (err)
printk(KERN_NOTICE "ib_modify_qp(IB_QP_STATE, RTS): err=%d\n", err);
/* update ib_device with this local ipaddr */
err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr);
if (err)
printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n",
err);
/* If the peer gave us the last packet it saw, process this as if
* we had received a regular ACK. */
if (dp) {
if (ack_seq)
rds_send_drop_acked(conn, be64_to_cpu(ack_seq),
NULL);
}
conn->c_proposed_version = conn->c_version;
rds_connect_complete(conn);
}
static void rds_ib_cm_fill_conn_param(struct rds_connection *conn,
struct rdma_conn_param *conn_param,
union rds_ib_conn_priv *dp,
u32 protocol_version,
u32 max_responder_resources,
u32 max_initiator_depth,
bool isv6)
{
struct rds_ib_connection *ic = conn->c_transport_data;
struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
memset(conn_param, 0, sizeof(struct rdma_conn_param));
conn_param->responder_resources =
min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources);
conn_param->initiator_depth =
min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth);
conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7);
conn_param->rnr_retry_count = 7;
if (dp) {
memset(dp, 0, sizeof(*dp));
if (isv6) {
dp->ricp_v6.dp_saddr = conn->c_laddr;
dp->ricp_v6.dp_daddr = conn->c_faddr;
dp->ricp_v6.dp_protocol_major =
RDS_PROTOCOL_MAJOR(protocol_version);
dp->ricp_v6.dp_protocol_minor =
RDS_PROTOCOL_MINOR(protocol_version);
dp->ricp_v6.dp_protocol_minor_mask =
cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
dp->ricp_v6.dp_ack_seq =
cpu_to_be64(rds_ib_piggyb_ack(ic));
dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos;
conn_param->private_data = &dp->ricp_v6;
conn_param->private_data_len = sizeof(dp->ricp_v6);
} else {
dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3];
dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3];
dp->ricp_v4.dp_protocol_major =
RDS_PROTOCOL_MAJOR(protocol_version);
dp->ricp_v4.dp_protocol_minor =
RDS_PROTOCOL_MINOR(protocol_version);
dp->ricp_v4.dp_protocol_minor_mask =
cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS);
dp->ricp_v4.dp_ack_seq =
cpu_to_be64(rds_ib_piggyb_ack(ic));
dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos;
conn_param->private_data = &dp->ricp_v4;
conn_param->private_data_len = sizeof(dp->ricp_v4);
}
/* Advertise flow control */
if (ic->i_flowctl) {
unsigned int credits;
credits = IB_GET_POST_CREDITS
(atomic_read(&ic->i_credits));
if (isv6)
dp->ricp_v6.dp_credit = cpu_to_be32(credits);
else
dp->ricp_v4.dp_credit = cpu_to_be32(credits);
atomic_sub(IB_SET_POST_CREDITS(credits),
&ic->i_credits);
}
}
}
static void rds_ib_cq_event_handler(struct ib_event *event, void *data)
{
rdsdebug("event %u (%s) data %p\n",
event->event, ib_event_msg(event->event), data);
}
/* Plucking the oldest entry from the ring can be done concurrently with
* the thread refilling the ring. Each ring operation is protected by
* spinlocks and the transient state of refilling doesn't change the
* recording of which entry is oldest.
*
* This relies on IB only calling one cq comp_handler for each cq so that
* there will only be one caller of rds_recv_incoming() per RDS connection.
*/
static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context)
{
struct rds_connection *conn = context;
struct rds_ib_connection *ic = conn->c_transport_data;
rdsdebug("conn %p cq %p\n", conn, cq);
rds_ib_stats_inc(s_ib_evt_handler_call);
tasklet_schedule(&ic->i_recv_tasklet);
}
static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq,
struct ib_wc *wcs)
{
int nr, i;
struct ib_wc *wc;
while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
for (i = 0; i < nr; i++) {
wc = wcs + i;
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
(unsigned long long)wc->wr_id, wc->status,
wc->byte_len, be32_to_cpu(wc->ex.imm_data));
if (wc->wr_id <= ic->i_send_ring.w_nr ||
wc->wr_id == RDS_IB_ACK_WR_ID)
rds_ib_send_cqe_handler(ic, wc);
else
rds_ib_mr_cqe_handler(ic, wc);
}
}
}
static void rds_ib_tasklet_fn_send(unsigned long data)
{
struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
struct rds_connection *conn = ic->conn;
rds_ib_stats_inc(s_ib_tasklet_call);
/* if cq has been already reaped, ignore incoming cq event */
if (atomic_read(&ic->i_cq_quiesce))
return;
poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
poll_scq(ic, ic->i_send_cq, ic->i_send_wc);
if (rds_conn_up(conn) &&
(!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
test_bit(0, &conn->c_map_queued)))
rds_send_xmit(&ic->conn->c_path[0]);
}
static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq,
struct ib_wc *wcs,
struct rds_ib_ack_state *ack_state)
{
int nr, i;
struct ib_wc *wc;
while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) {
for (i = 0; i < nr; i++) {
wc = wcs + i;
rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
(unsigned long long)wc->wr_id, wc->status,
wc->byte_len, be32_to_cpu(wc->ex.imm_data));
rds_ib_recv_cqe_handler(ic, wc, ack_state);
}
}
}
static void rds_ib_tasklet_fn_recv(unsigned long data)
{
struct rds_ib_connection *ic = (struct rds_ib_connection *)data;
struct rds_connection *conn = ic->conn;
struct rds_ib_device *rds_ibdev = ic->rds_ibdev;
struct rds_ib_ack_state state;
if (!rds_ibdev)
rds_conn_drop(conn);
rds_ib_stats_inc(s_ib_tasklet_call);
/* if cq has been already reaped, ignore incoming cq event */
if (atomic_read(&ic->i_cq_quiesce))
return;
memset(&state, 0, sizeof(state));
poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state);
if (state.ack_next_valid)
rds_ib_set_ack(ic, state.ack_next, state.ack_required);
if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
rds_send_drop_acked(conn, state.ack_recv, NULL);
ic->i_ack_recv = state.ack_recv;
}
if (rds_conn_up(conn))
rds_ib_attempt_ack(ic);
}
static void rds_ib_qp_event_handler(struct ib_event *event, void *data)
{
struct rds_connection *conn = data;
struct rds_ib_connection *ic = conn->c_transport_data;
rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event,
ib_event_msg(event->event));
switch (event->event) {
case IB_EVENT_COMM_EST:
rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST);
break;
default:
rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n",
event->event, ib_event_msg(event->event),
&conn->c_laddr, &conn->c_faddr);
rds_conn_drop(conn);
break;
}
}
static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context)
{
struct rds_connection *conn = context;
struct rds_ib_connection *ic = conn->c_transport_data;
rdsdebug("conn %p cq %p\n", conn, cq);
rds_ib_stats_inc(s_ib_evt_handler_call);
tasklet_schedule(&ic->i_send_tasklet);
}
static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev)
{
int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1];
int index = rds_ibdev->dev->num_comp_vectors - 1;
int i;
for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) {
if (rds_ibdev->vector_load[i] < min) {
index = i;
min = rds_ibdev->vector_load[i];
}
}
rds_ibdev->vector_load[index]++;
return index;
}
static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index)
{
rds_ibdev->vector_load[index]--;
}
/*
* This needs to be very careful to not leave IS_ERR pointers around for
* cleanup to trip over.
*/
static int rds_ib_setup_qp(struct rds_connection *conn)
{
struct rds_ib_connection *ic = conn->c_transport_data;
struct ib_device *dev = ic->i_cm_id->device;
struct ib_qp_init_attr attr;
struct ib_cq_init_attr cq_attr = {};
struct rds_ib_device *rds_ibdev;
int ret, fr_queue_space;
/*
* It's normal to see a null device if an incoming connection races
* with device removal, so we don't print a warning.
*/
rds_ibdev = rds_ib_get_client_data(dev);
if (!rds_ibdev)
return -EOPNOTSUPP;
/* The fr_queue_space is currently set to 512, to add extra space on
* completion queue and send queue. This extra space is used for FRMR
* registration and invalidation work requests
*/
fr_queue_space = (rds_ibdev->use_fastreg ? RDS_IB_DEFAULT_FR_WR : 0);
/* add the conn now so that connection establishment has the dev */
rds_ib_add_conn(rds_ibdev, conn);
if (rds_ibdev->max_wrs < ic->i_send_ring.w_nr + 1)
rds_ib_ring_resize(&ic->i_send_ring, rds_ibdev->max_wrs - 1);
if (rds_ibdev->max_wrs < ic->i_recv_ring.w_nr + 1)
rds_ib_ring_resize(&ic->i_recv_ring, rds_ibdev->max_wrs - 1);
/* Protection domain and memory range */
ic->i_pd = rds_ibdev->pd;
ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev);
cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1;
cq_attr.comp_vector = ic->i_scq_vector;
ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send,
rds_ib_cq_event_handler, conn,
&cq_attr);
if (IS_ERR(ic->i_send_cq)) {
ret = PTR_ERR(ic->i_send_cq);
ic->i_send_cq = NULL;
ibdev_put_vector(rds_ibdev, ic->i_scq_vector);
rdsdebug("ib_create_cq send failed: %d\n", ret);
goto rds_ibdev_out;
}
ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev);
cq_attr.cqe = ic->i_recv_ring.w_nr;
cq_attr.comp_vector = ic->i_rcq_vector;
ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv,
rds_ib_cq_event_handler, conn,
&cq_attr);
if (IS_ERR(ic->i_recv_cq)) {
ret = PTR_ERR(ic->i_recv_cq);
ic->i_recv_cq = NULL;
ibdev_put_vector(rds_ibdev, ic->i_rcq_vector);
rdsdebug("ib_create_cq recv failed: %d\n", ret);
goto send_cq_out;
}
ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP);
if (ret) {
rdsdebug("ib_req_notify_cq send failed: %d\n", ret);
goto recv_cq_out;
}
ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
if (ret) {
rdsdebug("ib_req_notify_cq recv failed: %d\n", ret);
goto recv_cq_out;
}
/* XXX negotiate max send/recv with remote? */
memset(&attr, 0, sizeof(attr));
attr.event_handler = rds_ib_qp_event_handler;
attr.qp_context = conn;
/* + 1 to allow for the single ack message */
attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1;
attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1;
attr.cap.max_send_sge = rds_ibdev->max_sge;
attr.cap.max_recv_sge = RDS_IB_RECV_SGE;
attr.sq_sig_type = IB_SIGNAL_REQ_WR;
attr.qp_type = IB_QPT_RC;
attr.send_cq = ic->i_send_cq;
attr.recv_cq = ic->i_recv_cq;
/*
* XXX this can fail if max_*_wr is too large? Are we supposed
* to back off until we get a value that the hardware can support?
*/
ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr);
if (ret) {
rdsdebug("rdma_create_qp failed: %d\n", ret);
goto recv_cq_out;
}
ic->i_send_hdrs = ib_dma_alloc_coherent(dev,
ic->i_send_ring.w_nr *
sizeof(struct rds_header),
&ic->i_send_hdrs_dma, GFP_KERNEL);
if (!ic->i_send_hdrs) {
ret = -ENOMEM;
rdsdebug("ib_dma_alloc_coherent send failed\n");
goto qp_out;
}
ic->i_recv_hdrs = ib_dma_alloc_coherent(dev,
ic->i_recv_ring.w_nr *
sizeof(struct rds_header),
&ic->i_recv_hdrs_dma, GFP_KERNEL);
if (!ic->i_recv_hdrs) {
ret = -ENOMEM;
rdsdebug("ib_dma_alloc_coherent recv failed\n");
goto send_hdrs_dma_out;
}
ic->i_ack = ib_dma_alloc_coherent(dev, sizeof(struct rds_header),
&ic->i_ack_dma, GFP_KERNEL);
if (!ic->i_ack) {
ret = -ENOMEM;
rdsdebug("ib_dma_alloc_coherent ack failed\n");
goto recv_hdrs_dma_out;
}
ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work),
ic->i_send_ring.w_nr),
ibdev_to_node(dev));
if (!ic->i_sends) {
ret = -ENOMEM;
rdsdebug("send allocation failed\n");
goto ack_dma_out;
}
ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work),
ic->i_recv_ring.w_nr),
ibdev_to_node(dev));
if (!ic->i_recvs) {
ret = -ENOMEM;
rdsdebug("recv allocation failed\n");
goto sends_out;
}
rds_ib_recv_init_ack(ic);
rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd,
ic->i_send_cq, ic->i_recv_cq);
goto out;
sends_out:
vfree(ic->i_sends);
ack_dma_out:
ib_dma_free_coherent(dev, sizeof(struct rds_header),
ic->i_ack, ic->i_ack_dma);
recv_hdrs_dma_out:
ib_dma_free_coherent(dev, ic->i_recv_ring.w_nr *
sizeof(struct rds_header),
ic->i_recv_hdrs, ic->i_recv_hdrs_dma);
send_hdrs_dma_out:
ib_dma_free_coherent(dev, ic->i_send_ring.w_nr *
sizeof(struct rds_header),
ic->i_send_hdrs, ic->i_send_hdrs_dma);
qp_out:
rdma_destroy_qp(ic->i_cm_id);
recv_cq_out:
ib_destroy_cq(ic->i_recv_cq);
ic->i_recv_cq = NULL;
send_cq_out:
ib_destroy_cq(ic->i_send_cq);
ic->i_send_cq = NULL;
rds_ibdev_out:
rds_ib_remove_conn(rds_ibdev, conn);
out:
rds_ib_dev_put(rds_ibdev);
return ret;
}
static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6)
{
const union rds_ib_conn_priv *dp = event->param.conn.private_data;
u8 data_len, major, minor;
u32 version = 0;
__be16 mask;
u16 common;
/*
* rdma_cm private data is odd - when there is any private data in the
* request, we will be given a pretty large buffer without telling us the
* original size. The only way to tell the difference is by looking at
* the contents, which are initialized to zero.
* If the protocol version fields aren't set, this is a connection attempt
* from an older version. This could could be 3.0 or 2.0 - we can't tell.
* We really should have changed this for OFED 1.3 :-(
*/
/* Be paranoid. RDS always has privdata */
if (!event->param.conn.private_data_len) {
printk(KERN_NOTICE "RDS incoming connection has no private data, "
"rejecting\n");
return 0;
}
if (isv6) {
data_len = sizeof(struct rds6_ib_connect_private);
major = dp->ricp_v6.dp_protocol_major;
minor = dp->ricp_v6.dp_protocol_minor;
mask = dp->ricp_v6.dp_protocol_minor_mask;
} else {
data_len = sizeof(struct rds_ib_connect_private);
major = dp->ricp_v4.dp_protocol_major;
minor = dp->ricp_v4.dp_protocol_minor;
mask = dp->ricp_v4.dp_protocol_minor_mask;
}
/* Even if len is crap *now* I still want to check it. -ASG */
if (event->param.conn.private_data_len < data_len || major == 0)
return RDS_PROTOCOL_4_0;
common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS;
if (major == 4 && common) {
version = RDS_PROTOCOL_4_0;
while ((common >>= 1) != 0)
version++;
} else if (RDS_PROTOCOL_COMPAT_VERSION ==
RDS_PROTOCOL(major, minor)) {
version = RDS_PROTOCOL_COMPAT_VERSION;
} else {
if (isv6)
printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n",
&dp->ricp_v6.dp_saddr, major, minor);
else
printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n",
&dp->ricp_v4.dp_saddr, major, minor);
}
return version;
}
#if IS_ENABLED(CONFIG_IPV6)
/* Given an IPv6 address, find the net_device which hosts that address and
* return its index. This is used by the rds_ib_cm_handle_connect() code to
* find the interface index of where an incoming request comes from when
* the request is using a link local address.
*
* Note one problem in this search. It is possible that two interfaces have
* the same link local address. Unfortunately, this cannot be solved unless
* the underlying layer gives us the interface which an incoming RDMA connect
* request comes from.
*/
static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr)
{
struct net_device *dev;
int idx = 0;
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
if (ipv6_chk_addr(net, addr, dev, 1)) {
idx = dev->ifindex;
break;
}
}
rcu_read_unlock();
return idx;
}
#endif
int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event, bool isv6)
{
__be64 lguid = cm_id->route.path_rec->sgid.global.interface_id;
__be64 fguid = cm_id->route.path_rec->dgid.global.interface_id;
const struct rds_ib_conn_priv_cmn *dp_cmn;
struct rds_connection *conn = NULL;
struct rds_ib_connection *ic = NULL;
struct rdma_conn_param conn_param;
const union rds_ib_conn_priv *dp;
union rds_ib_conn_priv dp_rep;
struct in6_addr s_mapped_addr;
struct in6_addr d_mapped_addr;
const struct in6_addr *saddr6;
const struct in6_addr *daddr6;
int destroy = 1;
u32 ifindex = 0;
u32 version;
int err = 1;
/* Check whether the remote protocol version matches ours. */
version = rds_ib_protocol_compatible(event, isv6);
if (!version) {
err = RDS_RDMA_REJ_INCOMPAT;
goto out;
}
dp = event->param.conn.private_data;
if (isv6) {
#if IS_ENABLED(CONFIG_IPV6)
dp_cmn = &dp->ricp_v6.dp_cmn;
saddr6 = &dp->ricp_v6.dp_saddr;
daddr6 = &dp->ricp_v6.dp_daddr;
/* If either address is link local, need to find the
* interface index in order to create a proper RDS
* connection.
*/
if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) {
/* Using init_net for now .. */
ifindex = __rds_find_ifindex(&init_net, daddr6);
/* No index found... Need to bail out. */
if (ifindex == 0) {
err = -EOPNOTSUPP;
goto out;
}
} else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) {
/* Use our address to find the correct index. */
ifindex = __rds_find_ifindex(&init_net, daddr6);
/* No index found... Need to bail out. */
if (ifindex == 0) {
err = -EOPNOTSUPP;
goto out;
}
}
#else
err = -EOPNOTSUPP;
goto out;
#endif
} else {
dp_cmn = &dp->ricp_v4.dp_cmn;
ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr);
ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr);
saddr6 = &s_mapped_addr;
daddr6 = &d_mapped_addr;
}
rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n",
saddr6, daddr6, RDS_PROTOCOL_MAJOR(version),
RDS_PROTOCOL_MINOR(version),
(unsigned long long)be64_to_cpu(lguid),
(unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss);
/* RDS/IB is not currently netns aware, thus init_net */
conn = rds_conn_create(&init_net, daddr6, saddr6,
&rds_ib_transport, dp_cmn->ricpc_dp_toss,
GFP_KERNEL, ifindex);
if (IS_ERR(conn)) {
rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn));
conn = NULL;
goto out;
}
/*
* The connection request may occur while the
* previous connection exist, e.g. in case of failover.
* But as connections may be initiated simultaneously
* by both hosts, we have a random backoff mechanism -
* see the comment above rds_queue_reconnect()
*/
mutex_lock(&conn->c_cm_lock);
if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) {
if (rds_conn_state(conn) == RDS_CONN_UP) {
rdsdebug("incoming connect while connecting\n");
rds_conn_drop(conn);
rds_ib_stats_inc(s_ib_listen_closed_stale);
} else
if (rds_conn_state(conn) == RDS_CONN_CONNECTING) {
/* Wait and see - our connect may still be succeeding */
rds_ib_stats_inc(s_ib_connect_raced);
}
goto out;
}
ic = conn->c_transport_data;
rds_ib_set_protocol(conn, version);
rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit));
/* If the peer gave us the last packet it saw, process this as if
* we had received a regular ACK. */
if (dp_cmn->ricpc_ack_seq)
rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq),
NULL);
BUG_ON(cm_id->context);
BUG_ON(ic->i_cm_id);
ic->i_cm_id = cm_id;
cm_id->context = conn;
/* We got halfway through setting up the ib_connection, if we
* fail now, we have to take the long route out of this mess. */
destroy = 0;
err = rds_ib_setup_qp(conn);
if (err) {
rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err);
goto out;
}
rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version,
event->param.conn.responder_resources,
event->param.conn.initiator_depth, isv6);
/* rdma_accept() calls rdma_reject() internally if it fails */
if (rdma_accept(cm_id, &conn_param))
rds_ib_conn_error(conn, "rdma_accept failed\n");
out:
if (conn)
mutex_unlock(&conn->c_cm_lock);
if (err)
rdma_reject(cm_id, &err, sizeof(int));
return destroy;
}
int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6)
{
struct rds_connection *conn = cm_id->context;
struct rds_ib_connection *ic = conn->c_transport_data;
struct rdma_conn_param conn_param;
union rds_ib_conn_priv dp;
int ret;
/* If the peer doesn't do protocol negotiation, we must
* default to RDSv3.0 */
rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1);
ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */
ret = rds_ib_setup_qp(conn);
if (ret) {
rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret);
goto out;
}
rds_ib_cm_fill_conn_param(conn, &conn_param, &dp,
conn->c_proposed_version,
UINT_MAX, UINT_MAX, isv6);
ret = rdma_connect(cm_id, &conn_param);
if (ret)
rds_ib_conn_error(conn, "rdma_connect failed (%d)\n", ret);
out:
/* Beware - returning non-zero tells the rdma_cm to destroy
* the cm_id. We should certainly not do it as long as we still
* "own" the cm_id. */
if (ret) {
if (ic->i_cm_id == cm_id)
ret = 0;
}
ic->i_active_side = true;
return ret;
}
int rds_ib_conn_path_connect(struct rds_conn_path *cp)
{
struct rds_connection *conn = cp->cp_conn;
struct sockaddr_storage src, dest;
rdma_cm_event_handler handler;
struct rds_ib_connection *ic;
int ret;
ic = conn->c_transport_data;
/* XXX I wonder what affect the port space has */
/* delegate cm event handler to rdma_transport */
#if IS_ENABLED(CONFIG_IPV6)
if (conn->c_isv6)
handler = rds6_rdma_cm_event_handler;
else
#endif
handler = rds_rdma_cm_event_handler;
ic->i_cm_id = rdma_create_id(&init_net, handler, conn,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(ic->i_cm_id)) {
ret = PTR_ERR(ic->i_cm_id);
ic->i_cm_id = NULL;
rdsdebug("rdma_create_id() failed: %d\n", ret);
goto out;
}
rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn);
if (ipv6_addr_v4mapped(&conn->c_faddr)) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)&src;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3];
sin->sin_port = 0;
sin = (struct sockaddr_in *)&dest;
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3];
sin->sin_port = htons(RDS_PORT);
} else {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)&src;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = conn->c_laddr;
sin6->sin6_port = 0;
sin6->sin6_scope_id = conn->c_dev_if;
sin6 = (struct sockaddr_in6 *)&dest;
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = conn->c_faddr;
sin6->sin6_port = htons(RDS_CM_PORT);
sin6->sin6_scope_id = conn->c_dev_if;
}
ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src,
(struct sockaddr *)&dest,
RDS_RDMA_RESOLVE_TIMEOUT_MS);
if (ret) {
rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id,
ret);
rdma_destroy_id(ic->i_cm_id);
ic->i_cm_id = NULL;
}
out:
return ret;
}
/*
* This is so careful about only cleaning up resources that were built up
* so that it can be called at any point during startup. In fact it
* can be called multiple times for a given connection.
*/
void rds_ib_conn_path_shutdown(struct rds_conn_path *cp)
{
struct rds_connection *conn = cp->cp_conn;
struct rds_ib_connection *ic = conn->c_transport_data;
int err = 0;
rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id,
ic->i_pd, ic->i_send_cq, ic->i_recv_cq,
ic->i_cm_id ? ic->i_cm_id->qp : NULL);
if (ic->i_cm_id) {
struct ib_device *dev = ic->i_cm_id->device;
rdsdebug("disconnecting cm %p\n", ic->i_cm_id);
err = rdma_disconnect(ic->i_cm_id);
if (err) {
/* Actually this may happen quite frequently, when
* an outgoing connect raced with an incoming connect.
*/
rdsdebug("failed to disconnect, cm: %p err %d\n",
ic->i_cm_id, err);
}
/* kick off "flush_worker" for all pools in order to reap
* all FRMR registrations that are still marked "FRMR_IS_INUSE"
*/
rds_ib_flush_mrs();
/*
* We want to wait for tx and rx completion to finish
* before we tear down the connection, but we have to be
* careful not to get stuck waiting on a send ring that
* only has unsignaled sends in it. We've shutdown new
* sends before getting here so by waiting for signaled
* sends to complete we're ensured that there will be no
* more tx processing.
*/
wait_event(rds_ib_ring_empty_wait,
rds_ib_ring_empty(&ic->i_recv_ring) &&
(atomic_read(&ic->i_signaled_sends) == 0) &&
(atomic_read(&ic->i_fastreg_inuse_count) == 0) &&
(atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR));
tasklet_kill(&ic->i_send_tasklet);
tasklet_kill(&ic->i_recv_tasklet);
atomic_set(&ic->i_cq_quiesce, 1);
/* first destroy the ib state that generates callbacks */
if (ic->i_cm_id->qp)
rdma_destroy_qp(ic->i_cm_id);
if (ic->i_send_cq) {
if (ic->rds_ibdev)
ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector);
ib_destroy_cq(ic->i_send_cq);
}
if (ic->i_recv_cq) {
if (ic->rds_ibdev)
ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector);
ib_destroy_cq(ic->i_recv_cq);
}
/* then free the resources that ib callbacks use */
if (ic->i_send_hdrs)
ib_dma_free_coherent(dev,
ic->i_send_ring.w_nr *
sizeof(struct rds_header),
ic->i_send_hdrs,
ic->i_send_hdrs_dma);
if (ic->i_recv_hdrs)
ib_dma_free_coherent(dev,
ic->i_recv_ring.w_nr *
sizeof(struct rds_header),
ic->i_recv_hdrs,
ic->i_recv_hdrs_dma);
if (ic->i_ack)
ib_dma_free_coherent(dev, sizeof(struct rds_header),
ic->i_ack, ic->i_ack_dma);
if (ic->i_sends)
rds_ib_send_clear_ring(ic);
if (ic->i_recvs)
rds_ib_recv_clear_ring(ic);
rdma_destroy_id(ic->i_cm_id);
/*
* Move connection back to the nodev list.
*/
if (ic->rds_ibdev)
rds_ib_remove_conn(ic->rds_ibdev, conn);
ic->i_cm_id = NULL;
ic->i_pd = NULL;
ic->i_send_cq = NULL;
ic->i_recv_cq = NULL;
ic->i_send_hdrs = NULL;
ic->i_recv_hdrs = NULL;
ic->i_ack = NULL;
}
BUG_ON(ic->rds_ibdev);
/* Clear pending transmit */
if (ic->i_data_op) {
struct rds_message *rm;
rm = container_of(ic->i_data_op, struct rds_message, data);
rds_message_put(rm);
ic->i_data_op = NULL;
}
/* Clear the ACK state */
clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
#ifdef KERNEL_HAS_ATOMIC64
atomic64_set(&ic->i_ack_next, 0);
#else
ic->i_ack_next = 0;
#endif
ic->i_ack_recv = 0;
/* Clear flow control state */
ic->i_flowctl = 0;
atomic_set(&ic->i_credits, 0);
rds_ib_ring_init(&ic->i_send_ring, rds_ib_sysctl_max_send_wr);
rds_ib_ring_init(&ic->i_recv_ring, rds_ib_sysctl_max_recv_wr);
if (ic->i_ibinc) {
rds_inc_put(&ic->i_ibinc->ii_inc);
ic->i_ibinc = NULL;
}
vfree(ic->i_sends);
ic->i_sends = NULL;
vfree(ic->i_recvs);
ic->i_recvs = NULL;
ic->i_active_side = false;
}
int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp)
{
struct rds_ib_connection *ic;
unsigned long flags;
int ret;
/* XXX too lazy? */
ic = kzalloc(sizeof(struct rds_ib_connection), gfp);
if (!ic)
return -ENOMEM;
ret = rds_ib_recv_alloc_caches(ic, gfp);
if (ret) {
kfree(ic);
return ret;
}
INIT_LIST_HEAD(&ic->ib_node);
tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send,
(unsigned long)ic);
tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv,
(unsigned long)ic);
mutex_init(&ic->i_recv_mutex);
#ifndef KERNEL_HAS_ATOMIC64
spin_lock_init(&ic->i_ack_lock);
#endif
atomic_set(&ic->i_signaled_sends, 0);
atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR);
/*
* rds_ib_conn_shutdown() waits for these to be emptied so they
* must be initialized before it can be called.
*/
rds_ib_ring_init(&ic->i_send_ring, rds_ib_sysctl_max_send_wr);
rds_ib_ring_init(&ic->i_recv_ring, rds_ib_sysctl_max_recv_wr);
ic->conn = conn;
conn->c_transport_data = ic;
spin_lock_irqsave(&ib_nodev_conns_lock, flags);
list_add_tail(&ic->ib_node, &ib_nodev_conns);
spin_unlock_irqrestore(&ib_nodev_conns_lock, flags);
rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data);
return 0;
}
/*
* Free a connection. Connection must be shut down and not set for reconnect.
*/
void rds_ib_conn_free(void *arg)
{
struct rds_ib_connection *ic = arg;
spinlock_t *lock_ptr;
rdsdebug("ic %p\n", ic);
/*
* Conn is either on a dev's list or on the nodev list.
* A race with shutdown() or connect() would cause problems
* (since rds_ibdev would change) but that should never happen.
*/
lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock;
spin_lock_irq(lock_ptr);
list_del(&ic->ib_node);
spin_unlock_irq(lock_ptr);
rds_ib_recv_free_caches(ic);
kfree(ic);
}
/*
* An error occurred on the connection
*/
void
__rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...)
{
va_list ap;
rds_conn_drop(conn);
va_start(ap, fmt);
vprintk(fmt, ap);
va_end(ap);
}