| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * This file contains common KASAN code. |
| * |
| * Copyright (c) 2014 Samsung Electronics Co., Ltd. |
| * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> |
| * |
| * Some code borrowed from https://github.com/xairy/kasan-prototype by |
| * Andrey Konovalov <andreyknvl@gmail.com> |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/kasan.h> |
| #include <linux/kernel.h> |
| #include <linux/linkage.h> |
| #include <linux/memblock.h> |
| #include <linux/memory.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/printk.h> |
| #include <linux/sched.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/slab.h> |
| #include <linux/stacktrace.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/bug.h> |
| |
| #include "kasan.h" |
| #include "../slab.h" |
| |
| depot_stack_handle_t kasan_save_stack(gfp_t flags) |
| { |
| unsigned long entries[KASAN_STACK_DEPTH]; |
| unsigned int nr_entries; |
| |
| nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); |
| nr_entries = filter_irq_stacks(entries, nr_entries); |
| return stack_depot_save(entries, nr_entries, flags); |
| } |
| |
| void kasan_set_track(struct kasan_track *track, gfp_t flags) |
| { |
| track->pid = current->pid; |
| track->stack = kasan_save_stack(flags); |
| } |
| |
| #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) |
| void kasan_enable_current(void) |
| { |
| current->kasan_depth++; |
| } |
| |
| void kasan_disable_current(void) |
| { |
| current->kasan_depth--; |
| } |
| #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ |
| |
| void __kasan_unpoison_range(const void *address, size_t size) |
| { |
| kasan_unpoison(address, size); |
| } |
| |
| #if CONFIG_KASAN_STACK |
| /* Unpoison the entire stack for a task. */ |
| void kasan_unpoison_task_stack(struct task_struct *task) |
| { |
| void *base = task_stack_page(task); |
| |
| kasan_unpoison(base, THREAD_SIZE); |
| } |
| |
| /* Unpoison the stack for the current task beyond a watermark sp value. */ |
| asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) |
| { |
| /* |
| * Calculate the task stack base address. Avoid using 'current' |
| * because this function is called by early resume code which hasn't |
| * yet set up the percpu register (%gs). |
| */ |
| void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); |
| |
| kasan_unpoison(base, watermark - base); |
| } |
| #endif /* CONFIG_KASAN_STACK */ |
| |
| /* |
| * Only allow cache merging when stack collection is disabled and no metadata |
| * is present. |
| */ |
| slab_flags_t __kasan_never_merge(void) |
| { |
| if (kasan_stack_collection_enabled()) |
| return SLAB_KASAN; |
| return 0; |
| } |
| |
| void __kasan_alloc_pages(struct page *page, unsigned int order) |
| { |
| u8 tag; |
| unsigned long i; |
| |
| if (unlikely(PageHighMem(page))) |
| return; |
| |
| tag = kasan_random_tag(); |
| for (i = 0; i < (1 << order); i++) |
| page_kasan_tag_set(page + i, tag); |
| kasan_unpoison(page_address(page), PAGE_SIZE << order); |
| } |
| |
| void __kasan_free_pages(struct page *page, unsigned int order) |
| { |
| if (likely(!PageHighMem(page))) |
| kasan_poison(page_address(page), PAGE_SIZE << order, |
| KASAN_FREE_PAGE); |
| } |
| |
| /* |
| * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. |
| * For larger allocations larger redzones are used. |
| */ |
| static inline unsigned int optimal_redzone(unsigned int object_size) |
| { |
| return |
| object_size <= 64 - 16 ? 16 : |
| object_size <= 128 - 32 ? 32 : |
| object_size <= 512 - 64 ? 64 : |
| object_size <= 4096 - 128 ? 128 : |
| object_size <= (1 << 14) - 256 ? 256 : |
| object_size <= (1 << 15) - 512 ? 512 : |
| object_size <= (1 << 16) - 1024 ? 1024 : 2048; |
| } |
| |
| void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, |
| slab_flags_t *flags) |
| { |
| unsigned int ok_size; |
| unsigned int optimal_size; |
| |
| /* |
| * SLAB_KASAN is used to mark caches as ones that are sanitized by |
| * KASAN. Currently this flag is used in two places: |
| * 1. In slab_ksize() when calculating the size of the accessible |
| * memory within the object. |
| * 2. In slab_common.c to prevent merging of sanitized caches. |
| */ |
| *flags |= SLAB_KASAN; |
| |
| if (!kasan_stack_collection_enabled()) |
| return; |
| |
| ok_size = *size; |
| |
| /* Add alloc meta into redzone. */ |
| cache->kasan_info.alloc_meta_offset = *size; |
| *size += sizeof(struct kasan_alloc_meta); |
| |
| /* |
| * If alloc meta doesn't fit, don't add it. |
| * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal |
| * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for |
| * larger sizes. |
| */ |
| if (*size > KMALLOC_MAX_SIZE) { |
| cache->kasan_info.alloc_meta_offset = 0; |
| *size = ok_size; |
| /* Continue, since free meta might still fit. */ |
| } |
| |
| /* Only the generic mode uses free meta or flexible redzones. */ |
| if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { |
| cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; |
| return; |
| } |
| |
| /* |
| * Add free meta into redzone when it's not possible to store |
| * it in the object. This is the case when: |
| * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can |
| * be touched after it was freed, or |
| * 2. Object has a constructor, which means it's expected to |
| * retain its content until the next allocation, or |
| * 3. Object is too small. |
| * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. |
| */ |
| if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || |
| cache->object_size < sizeof(struct kasan_free_meta)) { |
| ok_size = *size; |
| |
| cache->kasan_info.free_meta_offset = *size; |
| *size += sizeof(struct kasan_free_meta); |
| |
| /* If free meta doesn't fit, don't add it. */ |
| if (*size > KMALLOC_MAX_SIZE) { |
| cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; |
| *size = ok_size; |
| } |
| } |
| |
| /* Calculate size with optimal redzone. */ |
| optimal_size = cache->object_size + optimal_redzone(cache->object_size); |
| /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ |
| if (optimal_size > KMALLOC_MAX_SIZE) |
| optimal_size = KMALLOC_MAX_SIZE; |
| /* Use optimal size if the size with added metas is not large enough. */ |
| if (*size < optimal_size) |
| *size = optimal_size; |
| } |
| |
| void __kasan_cache_create_kmalloc(struct kmem_cache *cache) |
| { |
| cache->kasan_info.is_kmalloc = true; |
| } |
| |
| size_t __kasan_metadata_size(struct kmem_cache *cache) |
| { |
| if (!kasan_stack_collection_enabled()) |
| return 0; |
| return (cache->kasan_info.alloc_meta_offset ? |
| sizeof(struct kasan_alloc_meta) : 0) + |
| (cache->kasan_info.free_meta_offset ? |
| sizeof(struct kasan_free_meta) : 0); |
| } |
| |
| struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, |
| const void *object) |
| { |
| if (!cache->kasan_info.alloc_meta_offset) |
| return NULL; |
| return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; |
| } |
| |
| #ifdef CONFIG_KASAN_GENERIC |
| struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, |
| const void *object) |
| { |
| BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); |
| if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) |
| return NULL; |
| return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; |
| } |
| #endif |
| |
| void __kasan_poison_slab(struct page *page) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < compound_nr(page); i++) |
| page_kasan_tag_reset(page + i); |
| kasan_poison(page_address(page), page_size(page), |
| KASAN_KMALLOC_REDZONE); |
| } |
| |
| void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) |
| { |
| kasan_unpoison(object, cache->object_size); |
| } |
| |
| void __kasan_poison_object_data(struct kmem_cache *cache, void *object) |
| { |
| kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), |
| KASAN_KMALLOC_REDZONE); |
| } |
| |
| /* |
| * This function assigns a tag to an object considering the following: |
| * 1. A cache might have a constructor, which might save a pointer to a slab |
| * object somewhere (e.g. in the object itself). We preassign a tag for |
| * each object in caches with constructors during slab creation and reuse |
| * the same tag each time a particular object is allocated. |
| * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be |
| * accessed after being freed. We preassign tags for objects in these |
| * caches as well. |
| * 3. For SLAB allocator we can't preassign tags randomly since the freelist |
| * is stored as an array of indexes instead of a linked list. Assign tags |
| * based on objects indexes, so that objects that are next to each other |
| * get different tags. |
| */ |
| static u8 assign_tag(struct kmem_cache *cache, const void *object, bool init) |
| { |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| return 0xff; |
| |
| /* |
| * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU |
| * set, assign a tag when the object is being allocated (init == false). |
| */ |
| if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| return init ? KASAN_TAG_KERNEL : kasan_random_tag(); |
| |
| /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ |
| #ifdef CONFIG_SLAB |
| /* For SLAB assign tags based on the object index in the freelist. */ |
| return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); |
| #else |
| /* |
| * For SLUB assign a random tag during slab creation, otherwise reuse |
| * the already assigned tag. |
| */ |
| return init ? kasan_random_tag() : get_tag(object); |
| #endif |
| } |
| |
| void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, |
| const void *object) |
| { |
| struct kasan_alloc_meta *alloc_meta; |
| |
| if (kasan_stack_collection_enabled()) { |
| alloc_meta = kasan_get_alloc_meta(cache, object); |
| if (alloc_meta) |
| __memset(alloc_meta, 0, sizeof(*alloc_meta)); |
| } |
| |
| /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ |
| object = set_tag(object, assign_tag(cache, object, true)); |
| |
| return (void *)object; |
| } |
| |
| static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, |
| unsigned long ip, bool quarantine) |
| { |
| u8 tag; |
| void *tagged_object; |
| |
| tag = get_tag(object); |
| tagged_object = object; |
| object = kasan_reset_tag(object); |
| |
| if (is_kfence_address(object)) |
| return false; |
| |
| if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != |
| object)) { |
| kasan_report_invalid_free(tagged_object, ip); |
| return true; |
| } |
| |
| /* RCU slabs could be legally used after free within the RCU period */ |
| if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) |
| return false; |
| |
| if (!kasan_byte_accessible(tagged_object)) { |
| kasan_report_invalid_free(tagged_object, ip); |
| return true; |
| } |
| |
| kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), |
| KASAN_KMALLOC_FREE); |
| |
| if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) |
| return false; |
| |
| if (kasan_stack_collection_enabled()) |
| kasan_set_free_info(cache, object, tag); |
| |
| return kasan_quarantine_put(cache, object); |
| } |
| |
| bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) |
| { |
| return ____kasan_slab_free(cache, object, ip, true); |
| } |
| |
| static bool ____kasan_kfree_large(void *ptr, unsigned long ip) |
| { |
| if (ptr != page_address(virt_to_head_page(ptr))) { |
| kasan_report_invalid_free(ptr, ip); |
| return true; |
| } |
| |
| if (!kasan_byte_accessible(ptr)) { |
| kasan_report_invalid_free(ptr, ip); |
| return true; |
| } |
| |
| /* |
| * The object will be poisoned by kasan_free_pages() or |
| * kasan_slab_free_mempool(). |
| */ |
| |
| return false; |
| } |
| |
| void __kasan_kfree_large(void *ptr, unsigned long ip) |
| { |
| ____kasan_kfree_large(ptr, ip); |
| } |
| |
| void __kasan_slab_free_mempool(void *ptr, unsigned long ip) |
| { |
| struct page *page; |
| |
| page = virt_to_head_page(ptr); |
| |
| /* |
| * Even though this function is only called for kmem_cache_alloc and |
| * kmalloc backed mempool allocations, those allocations can still be |
| * !PageSlab() when the size provided to kmalloc is larger than |
| * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. |
| */ |
| if (unlikely(!PageSlab(page))) { |
| if (____kasan_kfree_large(ptr, ip)) |
| return; |
| kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE); |
| } else { |
| ____kasan_slab_free(page->slab_cache, ptr, ip, false); |
| } |
| } |
| |
| static void set_alloc_info(struct kmem_cache *cache, void *object, |
| gfp_t flags, bool is_kmalloc) |
| { |
| struct kasan_alloc_meta *alloc_meta; |
| |
| /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ |
| if (cache->kasan_info.is_kmalloc && !is_kmalloc) |
| return; |
| |
| alloc_meta = kasan_get_alloc_meta(cache, object); |
| if (alloc_meta) |
| kasan_set_track(&alloc_meta->alloc_track, flags); |
| } |
| |
| void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, |
| void *object, gfp_t flags) |
| { |
| u8 tag; |
| void *tagged_object; |
| |
| if (gfpflags_allow_blocking(flags)) |
| kasan_quarantine_reduce(); |
| |
| if (unlikely(object == NULL)) |
| return NULL; |
| |
| if (is_kfence_address(object)) |
| return (void *)object; |
| |
| /* |
| * Generate and assign random tag for tag-based modes. |
| * Tag is ignored in set_tag() for the generic mode. |
| */ |
| tag = assign_tag(cache, object, false); |
| tagged_object = set_tag(object, tag); |
| |
| /* |
| * Unpoison the whole object. |
| * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. |
| */ |
| kasan_unpoison(tagged_object, cache->object_size); |
| |
| /* Save alloc info (if possible) for non-kmalloc() allocations. */ |
| if (kasan_stack_collection_enabled()) |
| set_alloc_info(cache, (void *)object, flags, false); |
| |
| return tagged_object; |
| } |
| |
| static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| size_t size, gfp_t flags) |
| { |
| unsigned long redzone_start; |
| unsigned long redzone_end; |
| |
| if (gfpflags_allow_blocking(flags)) |
| kasan_quarantine_reduce(); |
| |
| if (unlikely(object == NULL)) |
| return NULL; |
| |
| if (is_kfence_address(kasan_reset_tag(object))) |
| return (void *)object; |
| |
| /* |
| * The object has already been unpoisoned by kasan_slab_alloc() for |
| * kmalloc() or by kasan_krealloc() for krealloc(). |
| */ |
| |
| /* |
| * The redzone has byte-level precision for the generic mode. |
| * Partially poison the last object granule to cover the unaligned |
| * part of the redzone. |
| */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| kasan_poison_last_granule((void *)object, size); |
| |
| /* Poison the aligned part of the redzone. */ |
| redzone_start = round_up((unsigned long)(object + size), |
| KASAN_GRANULE_SIZE); |
| redzone_end = round_up((unsigned long)(object + cache->object_size), |
| KASAN_GRANULE_SIZE); |
| kasan_poison((void *)redzone_start, redzone_end - redzone_start, |
| KASAN_KMALLOC_REDZONE); |
| |
| /* |
| * Save alloc info (if possible) for kmalloc() allocations. |
| * This also rewrites the alloc info when called from kasan_krealloc(). |
| */ |
| if (kasan_stack_collection_enabled()) |
| set_alloc_info(cache, (void *)object, flags, true); |
| |
| /* Keep the tag that was set by kasan_slab_alloc(). */ |
| return (void *)object; |
| } |
| |
| void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, |
| size_t size, gfp_t flags) |
| { |
| return ____kasan_kmalloc(cache, object, size, flags); |
| } |
| EXPORT_SYMBOL(__kasan_kmalloc); |
| |
| void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, |
| gfp_t flags) |
| { |
| unsigned long redzone_start; |
| unsigned long redzone_end; |
| |
| if (gfpflags_allow_blocking(flags)) |
| kasan_quarantine_reduce(); |
| |
| if (unlikely(ptr == NULL)) |
| return NULL; |
| |
| /* |
| * The object has already been unpoisoned by kasan_alloc_pages() for |
| * alloc_pages() or by kasan_krealloc() for krealloc(). |
| */ |
| |
| /* |
| * The redzone has byte-level precision for the generic mode. |
| * Partially poison the last object granule to cover the unaligned |
| * part of the redzone. |
| */ |
| if (IS_ENABLED(CONFIG_KASAN_GENERIC)) |
| kasan_poison_last_granule(ptr, size); |
| |
| /* Poison the aligned part of the redzone. */ |
| redzone_start = round_up((unsigned long)(ptr + size), |
| KASAN_GRANULE_SIZE); |
| redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); |
| kasan_poison((void *)redzone_start, redzone_end - redzone_start, |
| KASAN_PAGE_REDZONE); |
| |
| return (void *)ptr; |
| } |
| |
| void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) |
| { |
| struct page *page; |
| |
| if (unlikely(object == ZERO_SIZE_PTR)) |
| return (void *)object; |
| |
| /* |
| * Unpoison the object's data. |
| * Part of it might already have been unpoisoned, but it's unknown |
| * how big that part is. |
| */ |
| kasan_unpoison(object, size); |
| |
| page = virt_to_head_page(object); |
| |
| /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ |
| if (unlikely(!PageSlab(page))) |
| return __kasan_kmalloc_large(object, size, flags); |
| else |
| return ____kasan_kmalloc(page->slab_cache, object, size, flags); |
| } |
| |
| bool __kasan_check_byte(const void *address, unsigned long ip) |
| { |
| if (!kasan_byte_accessible(address)) { |
| kasan_report((unsigned long)address, 1, false, ip); |
| return false; |
| } |
| return true; |
| } |