| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| * Copyright (C) 2017 SiFive |
| */ |
| #include <linux/clocksource.h> |
| #include <linux/clockchips.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/irq.h> |
| #include <linux/sched_clock.h> |
| #include <asm/smp.h> |
| #include <asm/sbi.h> |
| |
| /* |
| * All RISC-V systems have a timer attached to every hart. These timers can be |
| * read by the 'rdcycle' pseudo instruction, and can use the SBI to setup |
| * events. In order to abstract the architecture-specific timer reading and |
| * setting functions away from the clock event insertion code, we provide |
| * function pointers to the clockevent subsystem that perform two basic |
| * operations: rdtime() reads the timer on the current CPU, and |
| * next_event(delta) sets the next timer event to 'delta' cycles in the future. |
| * As the timers are inherently a per-cpu resource, these callbacks perform |
| * operations on the current hart. There is guaranteed to be exactly one timer |
| * per hart on all RISC-V systems. |
| */ |
| |
| static int riscv_clock_next_event(unsigned long delta, |
| struct clock_event_device *ce) |
| { |
| csr_set(sie, SIE_STIE); |
| sbi_set_timer(get_cycles64() + delta); |
| return 0; |
| } |
| |
| static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = { |
| .name = "riscv_timer_clockevent", |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| .rating = 100, |
| .set_next_event = riscv_clock_next_event, |
| }; |
| |
| /* |
| * It is guaranteed that all the timers across all the harts are synchronized |
| * within one tick of each other, so while this could technically go |
| * backwards when hopping between CPUs, practically it won't happen. |
| */ |
| static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs) |
| { |
| return get_cycles64(); |
| } |
| |
| static u64 riscv_sched_clock(void) |
| { |
| return get_cycles64(); |
| } |
| |
| static DEFINE_PER_CPU(struct clocksource, riscv_clocksource) = { |
| .name = "riscv_clocksource", |
| .rating = 300, |
| .mask = CLOCKSOURCE_MASK(BITS_PER_LONG), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .read = riscv_clocksource_rdtime, |
| }; |
| |
| static int riscv_timer_starting_cpu(unsigned int cpu) |
| { |
| struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu); |
| |
| ce->cpumask = cpumask_of(cpu); |
| clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff); |
| |
| csr_set(sie, SIE_STIE); |
| return 0; |
| } |
| |
| static int riscv_timer_dying_cpu(unsigned int cpu) |
| { |
| csr_clear(sie, SIE_STIE); |
| return 0; |
| } |
| |
| /* called directly from the low-level interrupt handler */ |
| void riscv_timer_interrupt(void) |
| { |
| struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event); |
| |
| csr_clear(sie, SIE_STIE); |
| evdev->event_handler(evdev); |
| } |
| |
| static int __init riscv_timer_init_dt(struct device_node *n) |
| { |
| int cpuid, hartid, error; |
| struct clocksource *cs; |
| |
| hartid = riscv_of_processor_hartid(n); |
| cpuid = riscv_hartid_to_cpuid(hartid); |
| |
| if (cpuid != smp_processor_id()) |
| return 0; |
| |
| cs = per_cpu_ptr(&riscv_clocksource, cpuid); |
| clocksource_register_hz(cs, riscv_timebase); |
| |
| sched_clock_register(riscv_sched_clock, |
| BITS_PER_LONG, riscv_timebase); |
| |
| error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING, |
| "clockevents/riscv/timer:starting", |
| riscv_timer_starting_cpu, riscv_timer_dying_cpu); |
| if (error) |
| pr_err("RISCV timer register failed [%d] for cpu = [%d]\n", |
| error, cpuid); |
| return error; |
| } |
| |
| TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt); |