| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2020 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <linux/slab.h> |
| |
| #include "habanalabs.h" |
| |
| static bool is_dram_va(struct hl_device *hdev, u64 virt_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, |
| prop->dmmu.start_addr, |
| prop->dmmu.end_addr); |
| } |
| |
| /** |
| * hl_mmu_init() - initialize the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * Return: 0 for success, non-zero for failure. |
| */ |
| int hl_mmu_init(struct hl_device *hdev) |
| { |
| int rc = -EOPNOTSUPP; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { |
| rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); |
| if (rc) |
| return rc; |
| } |
| |
| if (hdev->mmu_func[MMU_HR_PGT].init != NULL) |
| rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_mmu_fini() - release the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * This function does the following: |
| * - Disable MMU in H/W. |
| * - Free the pgt_infos pool. |
| * |
| * All contexts should be freed before calling this function. |
| */ |
| void hl_mmu_fini(struct hl_device *hdev) |
| { |
| if (!hdev->mmu_enable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].fini(hdev); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_HR_PGT].fini(hdev); |
| } |
| |
| /** |
| * hl_mmu_ctx_init() - initialize a context for using the MMU module. |
| * @ctx: pointer to the context structure to initialize. |
| * |
| * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all |
| * page tables hops related to this context. |
| * Return: 0 on success, non-zero otherwise. |
| */ |
| int hl_mmu_ctx_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| int rc = -EOPNOTSUPP; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { |
| rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); |
| if (rc) |
| return rc; |
| } |
| |
| if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) |
| rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_ctx_fini - disable a ctx from using the mmu module |
| * |
| * @ctx: pointer to the context structure |
| * |
| * This function does the following: |
| * - Free any pgts which were not freed yet |
| * - Free the mutex |
| * - Free DRAM default page mapping hops |
| */ |
| void hl_mmu_ctx_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->mmu_enable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) |
| hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); |
| } |
| |
| /* |
| * hl_mmu_unmap - unmaps a virtual addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @page_size: size of the page to unmap |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is mapped |
| * - Unmap the virt addr and frees pgts if possible |
| * - Returns 0 on success, -EINVAL if the given addr is not mapped |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after unmapping of |
| * large area. |
| */ |
| int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, |
| bool flush_pte) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 real_virt_addr; |
| u32 real_page_size, npages; |
| int i, rc = 0, pgt_residency; |
| bool is_dram_addr; |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| is_dram_addr = is_dram_va(hdev, virt_addr); |
| |
| if (is_dram_addr) |
| mmu_prop = &prop->dmmu; |
| else if ((page_size % prop->pmmu_huge.page_size) == 0) |
| mmu_prop = &prop->pmmu_huge; |
| else |
| mmu_prop = &prop->pmmu; |
| |
| pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; |
| |
| /* |
| * The H/W handles mapping of specific page sizes. Hence if the page |
| * size is bigger, we break it to sub-pages and unmap them separately. |
| */ |
| if ((page_size % mmu_prop->page_size) == 0) { |
| real_page_size = mmu_prop->page_size; |
| } else { |
| dev_err(hdev->dev, |
| "page size of %u is not %uKB aligned, can't unmap\n", |
| page_size, mmu_prop->page_size >> 10); |
| |
| return -EFAULT; |
| } |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = hdev->mmu_func[pgt_residency].unmap(ctx, |
| real_virt_addr, is_dram_addr); |
| if (rc) |
| break; |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| if (flush_pte) |
| hdev->mmu_func[pgt_residency].flush(ctx); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_map - maps a virtual addr to physical addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @phys_addr: phys addr to map to |
| * @page_size: physical page size |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is not mapped |
| * - Allocate pgts as necessary in order to map the virt addr to the phys |
| * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after mapping of |
| * large area. |
| */ |
| int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, |
| bool flush_pte) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_mmu_properties *mmu_prop; |
| u64 real_virt_addr, real_phys_addr; |
| u32 real_page_size, npages; |
| int i, rc, pgt_residency, mapped_cnt = 0; |
| bool is_dram_addr; |
| |
| |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| is_dram_addr = is_dram_va(hdev, virt_addr); |
| |
| if (is_dram_addr) |
| mmu_prop = &prop->dmmu; |
| else if ((page_size % prop->pmmu_huge.page_size) == 0) |
| mmu_prop = &prop->pmmu_huge; |
| else |
| mmu_prop = &prop->pmmu; |
| |
| pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; |
| |
| /* |
| * The H/W handles mapping of specific page sizes. Hence if the page |
| * size is bigger, we break it to sub-pages and map them separately. |
| */ |
| if ((page_size % mmu_prop->page_size) == 0) { |
| real_page_size = mmu_prop->page_size; |
| } else { |
| dev_err(hdev->dev, |
| "page size of %u is not %uKB aligned, can't map\n", |
| page_size, mmu_prop->page_size >> 10); |
| |
| return -EFAULT; |
| } |
| |
| WARN_ONCE((phys_addr & (real_page_size - 1)), |
| "Mapping 0x%llx with page size of 0x%x is erroneous! Address must be divisible by page size", |
| phys_addr, real_page_size); |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| real_phys_addr = phys_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = hdev->mmu_func[pgt_residency].map(ctx, |
| real_virt_addr, real_phys_addr, |
| real_page_size, is_dram_addr); |
| if (rc) |
| goto err; |
| |
| real_virt_addr += real_page_size; |
| real_phys_addr += real_page_size; |
| mapped_cnt++; |
| } |
| |
| if (flush_pte) |
| hdev->mmu_func[pgt_residency].flush(ctx); |
| |
| return 0; |
| |
| err: |
| real_virt_addr = virt_addr; |
| for (i = 0 ; i < mapped_cnt ; i++) { |
| if (hdev->mmu_func[pgt_residency].unmap(ctx, |
| real_virt_addr, is_dram_addr)) |
| dev_warn_ratelimited(hdev->dev, |
| "failed to unmap va: 0x%llx\n", real_virt_addr); |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| hdev->mmu_func[pgt_residency].flush(ctx); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| void hl_mmu_swap_out(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->mmu_enable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) |
| hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) |
| hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); |
| } |
| |
| /* |
| * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in |
| * |
| * @ctx: pointer to the context structure |
| * |
| */ |
| void hl_mmu_swap_in(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->mmu_enable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) |
| hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) |
| hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); |
| } |
| |
| int hl_mmu_if_set_funcs(struct hl_device *hdev) |
| { |
| if (!hdev->mmu_enable) |
| return 0; |
| |
| switch (hdev->asic_type) { |
| case ASIC_GOYA: |
| case ASIC_GAUDI: |
| hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); |
| break; |
| default: |
| dev_err(hdev->dev, "Unrecognized ASIC type %d\n", |
| hdev->asic_type); |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |