| /* |
| * Copyright (C) 2015 Broadcom |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| /** |
| * DOC: VC4 CRTC module |
| * |
| * In VC4, the Pixel Valve is what most closely corresponds to the |
| * DRM's concept of a CRTC. The PV generates video timings from the |
| * output's clock plus its configuration. It pulls scaled pixels from |
| * the HVS at that timing, and feeds it to the encoder. |
| * |
| * However, the DRM CRTC also collects the configuration of all the |
| * DRM planes attached to it. As a result, this file also manages |
| * setup of the VC4 HVS's display elements on the CRTC. |
| * |
| * The 2835 has 3 different pixel valves. pv0 in the audio power |
| * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the |
| * image domain can feed either HDMI or the SDTV controller. The |
| * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for |
| * SDTV, etc.) according to which output type is chosen in the mux. |
| * |
| * For power management, the pixel valve's registers are all clocked |
| * by the AXI clock, while the timings and FIFOs make use of the |
| * output-specific clock. Since the encoders also directly consume |
| * the CPRMAN clocks, and know what timings they need, they are the |
| * ones that set the clock. |
| */ |
| |
| #include "drm_atomic.h" |
| #include "drm_atomic_helper.h" |
| #include "drm_crtc_helper.h" |
| #include "linux/clk.h" |
| #include "linux/component.h" |
| #include "linux/of_device.h" |
| #include "vc4_drv.h" |
| #include "vc4_regs.h" |
| |
| struct vc4_crtc { |
| struct drm_crtc base; |
| const struct vc4_crtc_data *data; |
| void __iomem *regs; |
| |
| /* Which HVS channel we're using for our CRTC. */ |
| int channel; |
| |
| /* Pointer to the actual hardware display list memory for the |
| * crtc. |
| */ |
| u32 __iomem *dlist; |
| |
| u32 dlist_size; /* in dwords */ |
| |
| struct drm_pending_vblank_event *event; |
| }; |
| |
| static inline struct vc4_crtc * |
| to_vc4_crtc(struct drm_crtc *crtc) |
| { |
| return (struct vc4_crtc *)crtc; |
| } |
| |
| struct vc4_crtc_data { |
| /* Which channel of the HVS this pixelvalve sources from. */ |
| int hvs_channel; |
| |
| enum vc4_encoder_type encoder0_type; |
| enum vc4_encoder_type encoder1_type; |
| }; |
| |
| #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) |
| #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) |
| |
| #define CRTC_REG(reg) { reg, #reg } |
| static const struct { |
| u32 reg; |
| const char *name; |
| } crtc_regs[] = { |
| CRTC_REG(PV_CONTROL), |
| CRTC_REG(PV_V_CONTROL), |
| CRTC_REG(PV_VSYNCD), |
| CRTC_REG(PV_HORZA), |
| CRTC_REG(PV_HORZB), |
| CRTC_REG(PV_VERTA), |
| CRTC_REG(PV_VERTB), |
| CRTC_REG(PV_VERTA_EVEN), |
| CRTC_REG(PV_VERTB_EVEN), |
| CRTC_REG(PV_INTEN), |
| CRTC_REG(PV_INTSTAT), |
| CRTC_REG(PV_STAT), |
| CRTC_REG(PV_HACT_ACT), |
| }; |
| |
| static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { |
| DRM_INFO("0x%04x (%s): 0x%08x\n", |
| crtc_regs[i].reg, crtc_regs[i].name, |
| CRTC_READ(crtc_regs[i].reg)); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) |
| { |
| struct drm_info_node *node = (struct drm_info_node *)m->private; |
| struct drm_device *dev = node->minor->dev; |
| int crtc_index = (uintptr_t)node->info_ent->data; |
| struct drm_crtc *crtc; |
| struct vc4_crtc *vc4_crtc; |
| int i; |
| |
| i = 0; |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| if (i == crtc_index) |
| break; |
| i++; |
| } |
| if (!crtc) |
| return 0; |
| vc4_crtc = to_vc4_crtc(crtc); |
| |
| for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { |
| seq_printf(m, "%s (0x%04x): 0x%08x\n", |
| crtc_regs[i].name, crtc_regs[i].reg, |
| CRTC_READ(crtc_regs[i].reg)); |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static void vc4_crtc_destroy(struct drm_crtc *crtc) |
| { |
| drm_crtc_cleanup(crtc); |
| } |
| |
| static u32 vc4_get_fifo_full_level(u32 format) |
| { |
| static const u32 fifo_len_bytes = 64; |
| static const u32 hvs_latency_pix = 6; |
| |
| switch (format) { |
| case PV_CONTROL_FORMAT_DSIV_16: |
| case PV_CONTROL_FORMAT_DSIC_16: |
| return fifo_len_bytes - 2 * hvs_latency_pix; |
| case PV_CONTROL_FORMAT_DSIV_18: |
| return fifo_len_bytes - 14; |
| case PV_CONTROL_FORMAT_24: |
| case PV_CONTROL_FORMAT_DSIV_24: |
| default: |
| return fifo_len_bytes - 3 * hvs_latency_pix; |
| } |
| } |
| |
| /* |
| * Returns the clock select bit for the connector attached to the |
| * CRTC. |
| */ |
| static int vc4_get_clock_select(struct drm_crtc *crtc) |
| { |
| struct drm_connector *connector; |
| |
| drm_for_each_connector(connector, crtc->dev) { |
| if (connector && connector->state->crtc == crtc) { |
| struct drm_encoder *encoder = connector->encoder; |
| struct vc4_encoder *vc4_encoder = |
| to_vc4_encoder(encoder); |
| |
| return vc4_encoder->clock_select; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_crtc_state *state = crtc->state; |
| struct drm_display_mode *mode = &state->adjusted_mode; |
| bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; |
| u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); |
| u32 format = PV_CONTROL_FORMAT_24; |
| bool debug_dump_regs = false; |
| int clock_select = vc4_get_clock_select(crtc); |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); |
| vc4_crtc_dump_regs(vc4_crtc); |
| } |
| |
| /* Reset the PV fifo. */ |
| CRTC_WRITE(PV_CONTROL, 0); |
| CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); |
| CRTC_WRITE(PV_CONTROL, 0); |
| |
| CRTC_WRITE(PV_HORZA, |
| VC4_SET_FIELD(mode->htotal - mode->hsync_end, |
| PV_HORZA_HBP) | |
| VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, |
| PV_HORZA_HSYNC)); |
| CRTC_WRITE(PV_HORZB, |
| VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, |
| PV_HORZB_HFP) | |
| VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); |
| |
| if (interlace) { |
| CRTC_WRITE(PV_VERTA_EVEN, |
| VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, |
| PV_VERTA_VBP) | |
| VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, |
| PV_VERTA_VSYNC)); |
| CRTC_WRITE(PV_VERTB_EVEN, |
| VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, |
| PV_VERTB_VFP) | |
| VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); |
| } |
| |
| CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); |
| |
| CRTC_WRITE(PV_V_CONTROL, |
| PV_VCONTROL_CONTINUOUS | |
| (interlace ? PV_VCONTROL_INTERLACE : 0)); |
| |
| CRTC_WRITE(PV_CONTROL, |
| VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | |
| VC4_SET_FIELD(vc4_get_fifo_full_level(format), |
| PV_CONTROL_FIFO_LEVEL) | |
| PV_CONTROL_CLR_AT_START | |
| PV_CONTROL_TRIGGER_UNDERFLOW | |
| PV_CONTROL_WAIT_HSTART | |
| VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | |
| PV_CONTROL_FIFO_CLR | |
| PV_CONTROL_EN); |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); |
| vc4_crtc_dump_regs(vc4_crtc); |
| } |
| } |
| |
| static void require_hvs_enabled(struct drm_device *dev) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| |
| WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != |
| SCALER_DISPCTRL_ENABLE); |
| } |
| |
| static void vc4_crtc_disable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 chan = vc4_crtc->channel; |
| int ret; |
| require_hvs_enabled(dev); |
| |
| CRTC_WRITE(PV_V_CONTROL, |
| CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); |
| ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); |
| WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); |
| |
| if (HVS_READ(SCALER_DISPCTRLX(chan)) & |
| SCALER_DISPCTRLX_ENABLE) { |
| HVS_WRITE(SCALER_DISPCTRLX(chan), |
| SCALER_DISPCTRLX_RESET); |
| |
| /* While the docs say that reset is self-clearing, it |
| * seems it doesn't actually. |
| */ |
| HVS_WRITE(SCALER_DISPCTRLX(chan), 0); |
| } |
| |
| /* Once we leave, the scaler should be disabled and its fifo empty. */ |
| |
| WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); |
| |
| WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), |
| SCALER_DISPSTATX_MODE) != |
| SCALER_DISPSTATX_MODE_DISABLED); |
| |
| WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & |
| (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != |
| SCALER_DISPSTATX_EMPTY); |
| } |
| |
| static void vc4_crtc_enable(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_crtc_state *state = crtc->state; |
| struct drm_display_mode *mode = &state->adjusted_mode; |
| |
| require_hvs_enabled(dev); |
| |
| /* Turn on the scaler, which will wait for vstart to start |
| * compositing. |
| */ |
| HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), |
| VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | |
| VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | |
| SCALER_DISPCTRLX_ENABLE); |
| |
| /* Turn on the pixel valve, which will emit the vstart signal. */ |
| CRTC_WRITE(PV_V_CONTROL, |
| CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); |
| } |
| |
| static int vc4_crtc_atomic_check(struct drm_crtc *crtc, |
| struct drm_crtc_state *state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct drm_plane *plane; |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| u32 dlist_count = 0; |
| |
| /* The pixelvalve can only feed one encoder (and encoders are |
| * 1:1 with connectors.) |
| */ |
| if (drm_atomic_connectors_for_crtc(state->state, crtc) > 1) |
| return -EINVAL; |
| |
| drm_atomic_crtc_state_for_each_plane(plane, state) { |
| struct drm_plane_state *plane_state = |
| state->state->plane_states[drm_plane_index(plane)]; |
| |
| /* plane might not have changed, in which case take |
| * current state: |
| */ |
| if (!plane_state) |
| plane_state = plane->state; |
| |
| dlist_count += vc4_plane_dlist_size(plane_state); |
| } |
| |
| dlist_count++; /* Account for SCALER_CTL0_END. */ |
| |
| if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) { |
| vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist + |
| HVS_BOOTLOADER_DLIST_END); |
| vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) - |
| HVS_BOOTLOADER_DLIST_END); |
| |
| if (dlist_count > vc4_crtc->dlist_size) { |
| DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n", |
| dlist_count, vc4_crtc->dlist_size); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, |
| struct drm_crtc_state *old_state) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_plane *plane; |
| bool debug_dump_regs = false; |
| u32 __iomem *dlist_next = vc4_crtc->dlist; |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| |
| /* Copy all the active planes' dlist contents to the hardware dlist. |
| * |
| * XXX: If the new display list was large enough that it |
| * overlapped a currently-read display list, we need to do |
| * something like disable scanout before putting in the new |
| * list. For now, we're safe because we only have the two |
| * planes. |
| */ |
| drm_atomic_crtc_for_each_plane(plane, crtc) { |
| dlist_next += vc4_plane_write_dlist(plane, dlist_next); |
| } |
| |
| if (dlist_next == vc4_crtc->dlist) { |
| /* If no planes were enabled, use the SCALER_CTL0_END |
| * at the start of the display list memory (in the |
| * bootloader section). We'll rewrite that |
| * SCALER_CTL0_END, just in case, though. |
| */ |
| writel(SCALER_CTL0_END, vc4->hvs->dlist); |
| HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0); |
| } else { |
| writel(SCALER_CTL0_END, dlist_next); |
| dlist_next++; |
| |
| HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), |
| (u32 *)vc4_crtc->dlist - (u32 *)vc4->hvs->dlist); |
| |
| /* Make the next display list start after ours. */ |
| vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist); |
| vc4_crtc->dlist = dlist_next; |
| } |
| |
| if (debug_dump_regs) { |
| DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); |
| vc4_hvs_dump_state(dev); |
| } |
| |
| if (crtc->state->event) { |
| unsigned long flags; |
| |
| crtc->state->event->pipe = drm_crtc_index(crtc); |
| |
| WARN_ON(drm_crtc_vblank_get(crtc) != 0); |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| vc4_crtc->event = crtc->state->event; |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| crtc->state->event = NULL; |
| } |
| } |
| |
| int vc4_enable_vblank(struct drm_device *dev, int crtc_id) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; |
| |
| CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); |
| |
| return 0; |
| } |
| |
| void vc4_disable_vblank(struct drm_device *dev, int crtc_id) |
| { |
| struct vc4_dev *vc4 = to_vc4_dev(dev); |
| struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| } |
| |
| static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) |
| { |
| struct drm_crtc *crtc = &vc4_crtc->base; |
| struct drm_device *dev = crtc->dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| if (vc4_crtc->event) { |
| drm_crtc_send_vblank_event(crtc, vc4_crtc->event); |
| vc4_crtc->event = NULL; |
| } |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) |
| { |
| struct vc4_crtc *vc4_crtc = data; |
| u32 stat = CRTC_READ(PV_INTSTAT); |
| irqreturn_t ret = IRQ_NONE; |
| |
| if (stat & PV_INT_VFP_START) { |
| CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); |
| drm_crtc_handle_vblank(&vc4_crtc->base); |
| vc4_crtc_handle_page_flip(vc4_crtc); |
| ret = IRQ_HANDLED; |
| } |
| |
| return ret; |
| } |
| |
| static const struct drm_crtc_funcs vc4_crtc_funcs = { |
| .set_config = drm_atomic_helper_set_config, |
| .destroy = vc4_crtc_destroy, |
| .page_flip = drm_atomic_helper_page_flip, |
| .set_property = NULL, |
| .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ |
| .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ |
| .reset = drm_atomic_helper_crtc_reset, |
| .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, |
| .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, |
| }; |
| |
| static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { |
| .mode_set_nofb = vc4_crtc_mode_set_nofb, |
| .disable = vc4_crtc_disable, |
| .enable = vc4_crtc_enable, |
| .atomic_check = vc4_crtc_atomic_check, |
| .atomic_flush = vc4_crtc_atomic_flush, |
| }; |
| |
| /* Frees the page flip event when the DRM device is closed with the |
| * event still outstanding. |
| */ |
| void vc4_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_device *dev = crtc->dev; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->event_lock, flags); |
| |
| if (vc4_crtc->event && vc4_crtc->event->base.file_priv == file) { |
| vc4_crtc->event->base.destroy(&vc4_crtc->event->base); |
| drm_crtc_vblank_put(crtc); |
| vc4_crtc->event = NULL; |
| } |
| |
| spin_unlock_irqrestore(&dev->event_lock, flags); |
| } |
| |
| static const struct vc4_crtc_data pv0_data = { |
| .hvs_channel = 0, |
| .encoder0_type = VC4_ENCODER_TYPE_DSI0, |
| .encoder1_type = VC4_ENCODER_TYPE_DPI, |
| }; |
| |
| static const struct vc4_crtc_data pv1_data = { |
| .hvs_channel = 2, |
| .encoder0_type = VC4_ENCODER_TYPE_DSI1, |
| .encoder1_type = VC4_ENCODER_TYPE_SMI, |
| }; |
| |
| static const struct vc4_crtc_data pv2_data = { |
| .hvs_channel = 1, |
| .encoder0_type = VC4_ENCODER_TYPE_VEC, |
| .encoder1_type = VC4_ENCODER_TYPE_HDMI, |
| }; |
| |
| static const struct of_device_id vc4_crtc_dt_match[] = { |
| { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, |
| { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, |
| { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, |
| {} |
| }; |
| |
| static void vc4_set_crtc_possible_masks(struct drm_device *drm, |
| struct drm_crtc *crtc) |
| { |
| struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); |
| struct drm_encoder *encoder; |
| |
| drm_for_each_encoder(encoder, drm) { |
| struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); |
| |
| if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { |
| vc4_encoder->clock_select = 0; |
| encoder->possible_crtcs |= drm_crtc_mask(crtc); |
| } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { |
| vc4_encoder->clock_select = 1; |
| encoder->possible_crtcs |= drm_crtc_mask(crtc); |
| } |
| } |
| } |
| |
| static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct drm_device *drm = dev_get_drvdata(master); |
| struct vc4_dev *vc4 = to_vc4_dev(drm); |
| struct vc4_crtc *vc4_crtc; |
| struct drm_crtc *crtc; |
| struct drm_plane *primary_plane, *cursor_plane; |
| const struct of_device_id *match; |
| int ret; |
| |
| vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); |
| if (!vc4_crtc) |
| return -ENOMEM; |
| crtc = &vc4_crtc->base; |
| |
| match = of_match_device(vc4_crtc_dt_match, dev); |
| if (!match) |
| return -ENODEV; |
| vc4_crtc->data = match->data; |
| |
| vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); |
| if (IS_ERR(vc4_crtc->regs)) |
| return PTR_ERR(vc4_crtc->regs); |
| |
| /* For now, we create just the primary and the legacy cursor |
| * planes. We should be able to stack more planes on easily, |
| * but to do that we would need to compute the bandwidth |
| * requirement of the plane configuration, and reject ones |
| * that will take too much. |
| */ |
| primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); |
| if (!primary_plane) { |
| dev_err(dev, "failed to construct primary plane\n"); |
| ret = PTR_ERR(primary_plane); |
| goto err; |
| } |
| |
| cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); |
| if (!cursor_plane) { |
| dev_err(dev, "failed to construct cursor plane\n"); |
| ret = PTR_ERR(cursor_plane); |
| goto err_primary; |
| } |
| |
| drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane, |
| &vc4_crtc_funcs); |
| drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); |
| primary_plane->crtc = crtc; |
| cursor_plane->crtc = crtc; |
| vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; |
| vc4_crtc->channel = vc4_crtc->data->hvs_channel; |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); |
| ret = devm_request_irq(dev, platform_get_irq(pdev, 0), |
| vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); |
| if (ret) |
| goto err_cursor; |
| |
| vc4_set_crtc_possible_masks(drm, crtc); |
| |
| platform_set_drvdata(pdev, vc4_crtc); |
| |
| return 0; |
| |
| err_cursor: |
| cursor_plane->funcs->destroy(cursor_plane); |
| err_primary: |
| primary_plane->funcs->destroy(primary_plane); |
| err: |
| return ret; |
| } |
| |
| static void vc4_crtc_unbind(struct device *dev, struct device *master, |
| void *data) |
| { |
| struct platform_device *pdev = to_platform_device(dev); |
| struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); |
| |
| vc4_crtc_destroy(&vc4_crtc->base); |
| |
| CRTC_WRITE(PV_INTEN, 0); |
| |
| platform_set_drvdata(pdev, NULL); |
| } |
| |
| static const struct component_ops vc4_crtc_ops = { |
| .bind = vc4_crtc_bind, |
| .unbind = vc4_crtc_unbind, |
| }; |
| |
| static int vc4_crtc_dev_probe(struct platform_device *pdev) |
| { |
| return component_add(&pdev->dev, &vc4_crtc_ops); |
| } |
| |
| static int vc4_crtc_dev_remove(struct platform_device *pdev) |
| { |
| component_del(&pdev->dev, &vc4_crtc_ops); |
| return 0; |
| } |
| |
| struct platform_driver vc4_crtc_driver = { |
| .probe = vc4_crtc_dev_probe, |
| .remove = vc4_crtc_dev_remove, |
| .driver = { |
| .name = "vc4_crtc", |
| .of_match_table = vc4_crtc_dt_match, |
| }, |
| }; |