blob: d8eff68978f1e0414cbdb4c931148a096635ffdd [file] [log] [blame]
/*
* drivers/net/wireless/mwl8k.c
* Driver for Marvell TOPDOG 802.11 Wireless cards
*
* Copyright (C) 2008-2009 Marvell Semiconductor Inc.
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/completion.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/workqueue.h>
#define MWL8K_DESC "Marvell TOPDOG(R) 802.11 Wireless Network Driver"
#define MWL8K_NAME KBUILD_MODNAME
#define MWL8K_VERSION "0.11"
/* Register definitions */
#define MWL8K_HIU_GEN_PTR 0x00000c10
#define MWL8K_MODE_STA 0x0000005a
#define MWL8K_MODE_AP 0x000000a5
#define MWL8K_HIU_INT_CODE 0x00000c14
#define MWL8K_FWSTA_READY 0xf0f1f2f4
#define MWL8K_FWAP_READY 0xf1f2f4a5
#define MWL8K_INT_CODE_CMD_FINISHED 0x00000005
#define MWL8K_HIU_SCRATCH 0x00000c40
/* Host->device communications */
#define MWL8K_HIU_H2A_INTERRUPT_EVENTS 0x00000c18
#define MWL8K_HIU_H2A_INTERRUPT_STATUS 0x00000c1c
#define MWL8K_HIU_H2A_INTERRUPT_MASK 0x00000c20
#define MWL8K_HIU_H2A_INTERRUPT_CLEAR_SEL 0x00000c24
#define MWL8K_HIU_H2A_INTERRUPT_STATUS_MASK 0x00000c28
#define MWL8K_H2A_INT_DUMMY (1 << 20)
#define MWL8K_H2A_INT_RESET (1 << 15)
#define MWL8K_H2A_INT_DOORBELL (1 << 1)
#define MWL8K_H2A_INT_PPA_READY (1 << 0)
/* Device->host communications */
#define MWL8K_HIU_A2H_INTERRUPT_EVENTS 0x00000c2c
#define MWL8K_HIU_A2H_INTERRUPT_STATUS 0x00000c30
#define MWL8K_HIU_A2H_INTERRUPT_MASK 0x00000c34
#define MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL 0x00000c38
#define MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK 0x00000c3c
#define MWL8K_A2H_INT_DUMMY (1 << 20)
#define MWL8K_A2H_INT_CHNL_SWITCHED (1 << 11)
#define MWL8K_A2H_INT_QUEUE_EMPTY (1 << 10)
#define MWL8K_A2H_INT_RADAR_DETECT (1 << 7)
#define MWL8K_A2H_INT_RADIO_ON (1 << 6)
#define MWL8K_A2H_INT_RADIO_OFF (1 << 5)
#define MWL8K_A2H_INT_MAC_EVENT (1 << 3)
#define MWL8K_A2H_INT_OPC_DONE (1 << 2)
#define MWL8K_A2H_INT_RX_READY (1 << 1)
#define MWL8K_A2H_INT_TX_DONE (1 << 0)
#define MWL8K_A2H_EVENTS (MWL8K_A2H_INT_DUMMY | \
MWL8K_A2H_INT_CHNL_SWITCHED | \
MWL8K_A2H_INT_QUEUE_EMPTY | \
MWL8K_A2H_INT_RADAR_DETECT | \
MWL8K_A2H_INT_RADIO_ON | \
MWL8K_A2H_INT_RADIO_OFF | \
MWL8K_A2H_INT_MAC_EVENT | \
MWL8K_A2H_INT_OPC_DONE | \
MWL8K_A2H_INT_RX_READY | \
MWL8K_A2H_INT_TX_DONE)
#define MWL8K_RX_QUEUES 1
#define MWL8K_TX_QUEUES 4
struct rxd_ops {
int rxd_size;
void (*rxd_init)(void *rxd, dma_addr_t next_dma_addr);
void (*rxd_refill)(void *rxd, dma_addr_t addr, int len);
int (*rxd_process)(void *rxd, struct ieee80211_rx_status *status,
__le16 *qos);
};
struct mwl8k_device_info {
char *part_name;
char *helper_image;
char *fw_image;
struct rxd_ops *ap_rxd_ops;
};
struct mwl8k_rx_queue {
int rxd_count;
/* hw receives here */
int head;
/* refill descs here */
int tail;
void *rxd;
dma_addr_t rxd_dma;
struct {
struct sk_buff *skb;
DECLARE_PCI_UNMAP_ADDR(dma)
} *buf;
};
struct mwl8k_tx_queue {
/* hw transmits here */
int head;
/* sw appends here */
int tail;
struct ieee80211_tx_queue_stats stats;
struct mwl8k_tx_desc *txd;
dma_addr_t txd_dma;
struct sk_buff **skb;
};
struct mwl8k_priv {
struct ieee80211_hw *hw;
struct pci_dev *pdev;
struct mwl8k_device_info *device_info;
void __iomem *sram;
void __iomem *regs;
/* firmware */
struct firmware *fw_helper;
struct firmware *fw_ucode;
/* hardware/firmware parameters */
bool ap_fw;
struct rxd_ops *rxd_ops;
/* firmware access */
struct mutex fw_mutex;
struct task_struct *fw_mutex_owner;
int fw_mutex_depth;
struct completion *hostcmd_wait;
/* lock held over TX and TX reap */
spinlock_t tx_lock;
/* TX quiesce completion, protected by fw_mutex and tx_lock */
struct completion *tx_wait;
struct ieee80211_vif *vif;
struct ieee80211_channel *current_channel;
/* power management status cookie from firmware */
u32 *cookie;
dma_addr_t cookie_dma;
u16 num_mcaddrs;
u8 hw_rev;
u32 fw_rev;
/*
* Running count of TX packets in flight, to avoid
* iterating over the transmit rings each time.
*/
int pending_tx_pkts;
struct mwl8k_rx_queue rxq[MWL8K_RX_QUEUES];
struct mwl8k_tx_queue txq[MWL8K_TX_QUEUES];
/* PHY parameters */
struct ieee80211_supported_band band;
struct ieee80211_channel channels[14];
struct ieee80211_rate rates[14];
bool radio_on;
bool radio_short_preamble;
bool sniffer_enabled;
bool wmm_enabled;
struct work_struct sta_notify_worker;
spinlock_t sta_notify_list_lock;
struct list_head sta_notify_list;
/* XXX need to convert this to handle multiple interfaces */
bool capture_beacon;
u8 capture_bssid[ETH_ALEN];
struct sk_buff *beacon_skb;
/*
* This FJ worker has to be global as it is scheduled from the
* RX handler. At this point we don't know which interface it
* belongs to until the list of bssids waiting to complete join
* is checked.
*/
struct work_struct finalize_join_worker;
/* Tasklet to reclaim TX descriptors and buffers after tx */
struct tasklet_struct tx_reclaim_task;
};
/* Per interface specific private data */
struct mwl8k_vif {
/* Local MAC address. */
u8 mac_addr[ETH_ALEN];
/* Non AMPDU sequence number assigned by driver */
u16 seqno;
};
#define MWL8K_VIF(_vif) ((struct mwl8k_vif *)&((_vif)->drv_priv))
struct mwl8k_sta {
/* Index into station database. Returned by UPDATE_STADB. */
u8 peer_id;
};
#define MWL8K_STA(_sta) ((struct mwl8k_sta *)&((_sta)->drv_priv))
static const struct ieee80211_channel mwl8k_channels[] = {
{ .center_freq = 2412, .hw_value = 1, },
{ .center_freq = 2417, .hw_value = 2, },
{ .center_freq = 2422, .hw_value = 3, },
{ .center_freq = 2427, .hw_value = 4, },
{ .center_freq = 2432, .hw_value = 5, },
{ .center_freq = 2437, .hw_value = 6, },
{ .center_freq = 2442, .hw_value = 7, },
{ .center_freq = 2447, .hw_value = 8, },
{ .center_freq = 2452, .hw_value = 9, },
{ .center_freq = 2457, .hw_value = 10, },
{ .center_freq = 2462, .hw_value = 11, },
{ .center_freq = 2467, .hw_value = 12, },
{ .center_freq = 2472, .hw_value = 13, },
{ .center_freq = 2484, .hw_value = 14, },
};
static const struct ieee80211_rate mwl8k_rates[] = {
{ .bitrate = 10, .hw_value = 2, },
{ .bitrate = 20, .hw_value = 4, },
{ .bitrate = 55, .hw_value = 11, },
{ .bitrate = 110, .hw_value = 22, },
{ .bitrate = 220, .hw_value = 44, },
{ .bitrate = 60, .hw_value = 12, },
{ .bitrate = 90, .hw_value = 18, },
{ .bitrate = 120, .hw_value = 24, },
{ .bitrate = 180, .hw_value = 36, },
{ .bitrate = 240, .hw_value = 48, },
{ .bitrate = 360, .hw_value = 72, },
{ .bitrate = 480, .hw_value = 96, },
{ .bitrate = 540, .hw_value = 108, },
{ .bitrate = 720, .hw_value = 144, },
};
/* Set or get info from Firmware */
#define MWL8K_CMD_SET 0x0001
#define MWL8K_CMD_GET 0x0000
/* Firmware command codes */
#define MWL8K_CMD_CODE_DNLD 0x0001
#define MWL8K_CMD_GET_HW_SPEC 0x0003
#define MWL8K_CMD_SET_HW_SPEC 0x0004
#define MWL8K_CMD_MAC_MULTICAST_ADR 0x0010
#define MWL8K_CMD_GET_STAT 0x0014
#define MWL8K_CMD_RADIO_CONTROL 0x001c
#define MWL8K_CMD_RF_TX_POWER 0x001e
#define MWL8K_CMD_RF_ANTENNA 0x0020
#define MWL8K_CMD_SET_PRE_SCAN 0x0107
#define MWL8K_CMD_SET_POST_SCAN 0x0108
#define MWL8K_CMD_SET_RF_CHANNEL 0x010a
#define MWL8K_CMD_SET_AID 0x010d
#define MWL8K_CMD_SET_RATE 0x0110
#define MWL8K_CMD_SET_FINALIZE_JOIN 0x0111
#define MWL8K_CMD_RTS_THRESHOLD 0x0113
#define MWL8K_CMD_SET_SLOT 0x0114
#define MWL8K_CMD_SET_EDCA_PARAMS 0x0115
#define MWL8K_CMD_SET_WMM_MODE 0x0123
#define MWL8K_CMD_MIMO_CONFIG 0x0125
#define MWL8K_CMD_USE_FIXED_RATE 0x0126
#define MWL8K_CMD_ENABLE_SNIFFER 0x0150
#define MWL8K_CMD_SET_MAC_ADDR 0x0202
#define MWL8K_CMD_SET_RATEADAPT_MODE 0x0203
#define MWL8K_CMD_UPDATE_STADB 0x1123
static const char *mwl8k_cmd_name(u16 cmd, char *buf, int bufsize)
{
#define MWL8K_CMDNAME(x) case MWL8K_CMD_##x: do {\
snprintf(buf, bufsize, "%s", #x);\
return buf;\
} while (0)
switch (cmd & ~0x8000) {
MWL8K_CMDNAME(CODE_DNLD);
MWL8K_CMDNAME(GET_HW_SPEC);
MWL8K_CMDNAME(SET_HW_SPEC);
MWL8K_CMDNAME(MAC_MULTICAST_ADR);
MWL8K_CMDNAME(GET_STAT);
MWL8K_CMDNAME(RADIO_CONTROL);
MWL8K_CMDNAME(RF_TX_POWER);
MWL8K_CMDNAME(RF_ANTENNA);
MWL8K_CMDNAME(SET_PRE_SCAN);
MWL8K_CMDNAME(SET_POST_SCAN);
MWL8K_CMDNAME(SET_RF_CHANNEL);
MWL8K_CMDNAME(SET_AID);
MWL8K_CMDNAME(SET_RATE);
MWL8K_CMDNAME(SET_FINALIZE_JOIN);
MWL8K_CMDNAME(RTS_THRESHOLD);
MWL8K_CMDNAME(SET_SLOT);
MWL8K_CMDNAME(SET_EDCA_PARAMS);
MWL8K_CMDNAME(SET_WMM_MODE);
MWL8K_CMDNAME(MIMO_CONFIG);
MWL8K_CMDNAME(USE_FIXED_RATE);
MWL8K_CMDNAME(ENABLE_SNIFFER);
MWL8K_CMDNAME(SET_MAC_ADDR);
MWL8K_CMDNAME(SET_RATEADAPT_MODE);
MWL8K_CMDNAME(UPDATE_STADB);
default:
snprintf(buf, bufsize, "0x%x", cmd);
}
#undef MWL8K_CMDNAME
return buf;
}
/* Hardware and firmware reset */
static void mwl8k_hw_reset(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_RESET,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
msleep(20);
}
/* Release fw image */
static void mwl8k_release_fw(struct firmware **fw)
{
if (*fw == NULL)
return;
release_firmware(*fw);
*fw = NULL;
}
static void mwl8k_release_firmware(struct mwl8k_priv *priv)
{
mwl8k_release_fw(&priv->fw_ucode);
mwl8k_release_fw(&priv->fw_helper);
}
/* Request fw image */
static int mwl8k_request_fw(struct mwl8k_priv *priv,
const char *fname, struct firmware **fw)
{
/* release current image */
if (*fw != NULL)
mwl8k_release_fw(fw);
return request_firmware((const struct firmware **)fw,
fname, &priv->pdev->dev);
}
static int mwl8k_request_firmware(struct mwl8k_priv *priv)
{
struct mwl8k_device_info *di = priv->device_info;
int rc;
if (di->helper_image != NULL) {
rc = mwl8k_request_fw(priv, di->helper_image, &priv->fw_helper);
if (rc) {
printk(KERN_ERR "%s: Error requesting helper "
"firmware file %s\n", pci_name(priv->pdev),
di->helper_image);
return rc;
}
}
rc = mwl8k_request_fw(priv, di->fw_image, &priv->fw_ucode);
if (rc) {
printk(KERN_ERR "%s: Error requesting firmware file %s\n",
pci_name(priv->pdev), di->fw_image);
mwl8k_release_fw(&priv->fw_helper);
return rc;
}
return 0;
}
MODULE_FIRMWARE("mwl8k/helper_8687.fw");
MODULE_FIRMWARE("mwl8k/fmimage_8687.fw");
struct mwl8k_cmd_pkt {
__le16 code;
__le16 length;
__le16 seq_num;
__le16 result;
char payload[0];
} __attribute__((packed));
/*
* Firmware loading.
*/
static int
mwl8k_send_fw_load_cmd(struct mwl8k_priv *priv, void *data, int length)
{
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
int loops;
dma_addr = pci_map_single(priv->pdev, data, length, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
loops = 1000;
do {
u32 int_code;
int_code = ioread32(regs + MWL8K_HIU_INT_CODE);
if (int_code == MWL8K_INT_CODE_CMD_FINISHED) {
iowrite32(0, regs + MWL8K_HIU_INT_CODE);
break;
}
cond_resched();
udelay(1);
} while (--loops);
pci_unmap_single(priv->pdev, dma_addr, length, PCI_DMA_TODEVICE);
return loops ? 0 : -ETIMEDOUT;
}
static int mwl8k_load_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
struct mwl8k_cmd_pkt *cmd;
int done;
int rc = 0;
cmd = kmalloc(sizeof(*cmd) + 256, GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->code = cpu_to_le16(MWL8K_CMD_CODE_DNLD);
cmd->seq_num = 0;
cmd->result = 0;
done = 0;
while (length) {
int block_size = length > 256 ? 256 : length;
memcpy(cmd->payload, data + done, block_size);
cmd->length = cpu_to_le16(block_size);
rc = mwl8k_send_fw_load_cmd(priv, cmd,
sizeof(*cmd) + block_size);
if (rc)
break;
done += block_size;
length -= block_size;
}
if (!rc) {
cmd->length = 0;
rc = mwl8k_send_fw_load_cmd(priv, cmd, sizeof(*cmd));
}
kfree(cmd);
return rc;
}
static int mwl8k_feed_fw_image(struct mwl8k_priv *priv,
const u8 *data, size_t length)
{
unsigned char *buffer;
int may_continue, rc = 0;
u32 done, prev_block_size;
buffer = kmalloc(1024, GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
done = 0;
prev_block_size = 0;
may_continue = 1000;
while (may_continue > 0) {
u32 block_size;
block_size = ioread32(priv->regs + MWL8K_HIU_SCRATCH);
if (block_size & 1) {
block_size &= ~1;
may_continue--;
} else {
done += prev_block_size;
length -= prev_block_size;
}
if (block_size > 1024 || block_size > length) {
rc = -EOVERFLOW;
break;
}
if (length == 0) {
rc = 0;
break;
}
if (block_size == 0) {
rc = -EPROTO;
may_continue--;
udelay(1);
continue;
}
prev_block_size = block_size;
memcpy(buffer, data + done, block_size);
rc = mwl8k_send_fw_load_cmd(priv, buffer, block_size);
if (rc)
break;
}
if (!rc && length != 0)
rc = -EREMOTEIO;
kfree(buffer);
return rc;
}
static int mwl8k_load_firmware(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct firmware *fw = priv->fw_ucode;
int rc;
int loops;
if (!memcmp(fw->data, "\x01\x00\x00\x00", 4)) {
struct firmware *helper = priv->fw_helper;
if (helper == NULL) {
printk(KERN_ERR "%s: helper image needed but none "
"given\n", pci_name(priv->pdev));
return -EINVAL;
}
rc = mwl8k_load_fw_image(priv, helper->data, helper->size);
if (rc) {
printk(KERN_ERR "%s: unable to load firmware "
"helper image\n", pci_name(priv->pdev));
return rc;
}
msleep(5);
rc = mwl8k_feed_fw_image(priv, fw->data, fw->size);
} else {
rc = mwl8k_load_fw_image(priv, fw->data, fw->size);
}
if (rc) {
printk(KERN_ERR "%s: unable to load firmware image\n",
pci_name(priv->pdev));
return rc;
}
iowrite32(MWL8K_MODE_STA, priv->regs + MWL8K_HIU_GEN_PTR);
loops = 500000;
do {
u32 ready_code;
ready_code = ioread32(priv->regs + MWL8K_HIU_INT_CODE);
if (ready_code == MWL8K_FWAP_READY) {
priv->ap_fw = 1;
break;
} else if (ready_code == MWL8K_FWSTA_READY) {
priv->ap_fw = 0;
break;
}
cond_resched();
udelay(1);
} while (--loops);
return loops ? 0 : -ETIMEDOUT;
}
/* DMA header used by firmware and hardware. */
struct mwl8k_dma_data {
__le16 fwlen;
struct ieee80211_hdr wh;
char data[0];
} __attribute__((packed));
/* Routines to add/remove DMA header from skb. */
static inline void mwl8k_remove_dma_header(struct sk_buff *skb, __le16 qos)
{
struct mwl8k_dma_data *tr;
int hdrlen;
tr = (struct mwl8k_dma_data *)skb->data;
hdrlen = ieee80211_hdrlen(tr->wh.frame_control);
if (hdrlen != sizeof(tr->wh)) {
if (ieee80211_is_data_qos(tr->wh.frame_control)) {
memmove(tr->data - hdrlen, &tr->wh, hdrlen - 2);
*((__le16 *)(tr->data - 2)) = qos;
} else {
memmove(tr->data - hdrlen, &tr->wh, hdrlen);
}
}
if (hdrlen != sizeof(*tr))
skb_pull(skb, sizeof(*tr) - hdrlen);
}
static inline void mwl8k_add_dma_header(struct sk_buff *skb)
{
struct ieee80211_hdr *wh;
int hdrlen;
struct mwl8k_dma_data *tr;
/*
* Add a firmware DMA header; the firmware requires that we
* present a 2-byte payload length followed by a 4-address
* header (without QoS field), followed (optionally) by any
* WEP/ExtIV header (but only filled in for CCMP).
*/
wh = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_hdrlen(wh->frame_control);
if (hdrlen != sizeof(*tr))
skb_push(skb, sizeof(*tr) - hdrlen);
if (ieee80211_is_data_qos(wh->frame_control))
hdrlen -= 2;
tr = (struct mwl8k_dma_data *)skb->data;
if (wh != &tr->wh)
memmove(&tr->wh, wh, hdrlen);
if (hdrlen != sizeof(tr->wh))
memset(((void *)&tr->wh) + hdrlen, 0, sizeof(tr->wh) - hdrlen);
/*
* Firmware length is the length of the fully formed "802.11
* payload". That is, everything except for the 802.11 header.
* This includes all crypto material including the MIC.
*/
tr->fwlen = cpu_to_le16(skb->len - sizeof(*tr));
}
/*
* Packet reception for 88w8366 AP firmware.
*/
struct mwl8k_rxd_8366_ap {
__le16 pkt_len;
__u8 sq2;
__u8 rate;
__le32 pkt_phys_addr;
__le32 next_rxd_phys_addr;
__le16 qos_control;
__le16 htsig2;
__le32 hw_rssi_info;
__le32 hw_noise_floor_info;
__u8 noise_floor;
__u8 pad0[3];
__u8 rssi;
__u8 rx_status;
__u8 channel;
__u8 rx_ctrl;
} __attribute__((packed));
#define MWL8K_8366_AP_RATE_INFO_MCS_FORMAT 0x80
#define MWL8K_8366_AP_RATE_INFO_40MHZ 0x40
#define MWL8K_8366_AP_RATE_INFO_RATEID(x) ((x) & 0x3f)
#define MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST 0x80
static void mwl8k_rxd_8366_ap_init(void *_rxd, dma_addr_t next_dma_addr)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
rxd->rx_ctrl = MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST;
}
static void mwl8k_rxd_8366_ap_refill(void *_rxd, dma_addr_t addr, int len)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
rxd->pkt_len = cpu_to_le16(len);
rxd->pkt_phys_addr = cpu_to_le32(addr);
wmb();
rxd->rx_ctrl = 0;
}
static int
mwl8k_rxd_8366_ap_process(void *_rxd, struct ieee80211_rx_status *status,
__le16 *qos)
{
struct mwl8k_rxd_8366_ap *rxd = _rxd;
if (!(rxd->rx_ctrl & MWL8K_8366_AP_RX_CTRL_OWNED_BY_HOST))
return -1;
rmb();
memset(status, 0, sizeof(*status));
status->signal = -rxd->rssi;
status->noise = -rxd->noise_floor;
if (rxd->rate & MWL8K_8366_AP_RATE_INFO_MCS_FORMAT) {
status->flag |= RX_FLAG_HT;
if (rxd->rate & MWL8K_8366_AP_RATE_INFO_40MHZ)
status->flag |= RX_FLAG_40MHZ;
status->rate_idx = MWL8K_8366_AP_RATE_INFO_RATEID(rxd->rate);
} else {
int i;
for (i = 0; i < ARRAY_SIZE(mwl8k_rates); i++) {
if (mwl8k_rates[i].hw_value == rxd->rate) {
status->rate_idx = i;
break;
}
}
}
status->band = IEEE80211_BAND_2GHZ;
status->freq = ieee80211_channel_to_frequency(rxd->channel);
*qos = rxd->qos_control;
return le16_to_cpu(rxd->pkt_len);
}
static struct rxd_ops rxd_8366_ap_ops = {
.rxd_size = sizeof(struct mwl8k_rxd_8366_ap),
.rxd_init = mwl8k_rxd_8366_ap_init,
.rxd_refill = mwl8k_rxd_8366_ap_refill,
.rxd_process = mwl8k_rxd_8366_ap_process,
};
/*
* Packet reception for STA firmware.
*/
struct mwl8k_rxd_sta {
__le16 pkt_len;
__u8 link_quality;
__u8 noise_level;
__le32 pkt_phys_addr;
__le32 next_rxd_phys_addr;
__le16 qos_control;
__le16 rate_info;
__le32 pad0[4];
__u8 rssi;
__u8 channel;
__le16 pad1;
__u8 rx_ctrl;
__u8 rx_status;
__u8 pad2[2];
} __attribute__((packed));
#define MWL8K_STA_RATE_INFO_SHORTPRE 0x8000
#define MWL8K_STA_RATE_INFO_ANTSELECT(x) (((x) >> 11) & 0x3)
#define MWL8K_STA_RATE_INFO_RATEID(x) (((x) >> 3) & 0x3f)
#define MWL8K_STA_RATE_INFO_40MHZ 0x0004
#define MWL8K_STA_RATE_INFO_SHORTGI 0x0002
#define MWL8K_STA_RATE_INFO_MCS_FORMAT 0x0001
#define MWL8K_STA_RX_CTRL_OWNED_BY_HOST 0x02
static void mwl8k_rxd_sta_init(void *_rxd, dma_addr_t next_dma_addr)
{
struct mwl8k_rxd_sta *rxd = _rxd;
rxd->next_rxd_phys_addr = cpu_to_le32(next_dma_addr);
rxd->rx_ctrl = MWL8K_STA_RX_CTRL_OWNED_BY_HOST;
}
static void mwl8k_rxd_sta_refill(void *_rxd, dma_addr_t addr, int len)
{
struct mwl8k_rxd_sta *rxd = _rxd;
rxd->pkt_len = cpu_to_le16(len);
rxd->pkt_phys_addr = cpu_to_le32(addr);
wmb();
rxd->rx_ctrl = 0;
}
static int
mwl8k_rxd_sta_process(void *_rxd, struct ieee80211_rx_status *status,
__le16 *qos)
{
struct mwl8k_rxd_sta *rxd = _rxd;
u16 rate_info;
if (!(rxd->rx_ctrl & MWL8K_STA_RX_CTRL_OWNED_BY_HOST))
return -1;
rmb();
rate_info = le16_to_cpu(rxd->rate_info);
memset(status, 0, sizeof(*status));
status->signal = -rxd->rssi;
status->noise = -rxd->noise_level;
status->antenna = MWL8K_STA_RATE_INFO_ANTSELECT(rate_info);
status->rate_idx = MWL8K_STA_RATE_INFO_RATEID(rate_info);
if (rate_info & MWL8K_STA_RATE_INFO_SHORTPRE)
status->flag |= RX_FLAG_SHORTPRE;
if (rate_info & MWL8K_STA_RATE_INFO_40MHZ)
status->flag |= RX_FLAG_40MHZ;
if (rate_info & MWL8K_STA_RATE_INFO_SHORTGI)
status->flag |= RX_FLAG_SHORT_GI;
if (rate_info & MWL8K_STA_RATE_INFO_MCS_FORMAT)
status->flag |= RX_FLAG_HT;
status->band = IEEE80211_BAND_2GHZ;
status->freq = ieee80211_channel_to_frequency(rxd->channel);
*qos = rxd->qos_control;
return le16_to_cpu(rxd->pkt_len);
}
static struct rxd_ops rxd_sta_ops = {
.rxd_size = sizeof(struct mwl8k_rxd_sta),
.rxd_init = mwl8k_rxd_sta_init,
.rxd_refill = mwl8k_rxd_sta_refill,
.rxd_process = mwl8k_rxd_sta_process,
};
#define MWL8K_RX_DESCS 256
#define MWL8K_RX_MAXSZ 3800
static int mwl8k_rxq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int size;
int i;
rxq->rxd_count = 0;
rxq->head = 0;
rxq->tail = 0;
size = MWL8K_RX_DESCS * priv->rxd_ops->rxd_size;
rxq->rxd = pci_alloc_consistent(priv->pdev, size, &rxq->rxd_dma);
if (rxq->rxd == NULL) {
printk(KERN_ERR "%s: failed to alloc RX descriptors\n",
wiphy_name(hw->wiphy));
return -ENOMEM;
}
memset(rxq->rxd, 0, size);
rxq->buf = kmalloc(MWL8K_RX_DESCS * sizeof(*rxq->buf), GFP_KERNEL);
if (rxq->buf == NULL) {
printk(KERN_ERR "%s: failed to alloc RX skbuff list\n",
wiphy_name(hw->wiphy));
pci_free_consistent(priv->pdev, size, rxq->rxd, rxq->rxd_dma);
return -ENOMEM;
}
memset(rxq->buf, 0, MWL8K_RX_DESCS * sizeof(*rxq->buf));
for (i = 0; i < MWL8K_RX_DESCS; i++) {
int desc_size;
void *rxd;
int nexti;
dma_addr_t next_dma_addr;
desc_size = priv->rxd_ops->rxd_size;
rxd = rxq->rxd + (i * priv->rxd_ops->rxd_size);
nexti = i + 1;
if (nexti == MWL8K_RX_DESCS)
nexti = 0;
next_dma_addr = rxq->rxd_dma + (nexti * desc_size);
priv->rxd_ops->rxd_init(rxd, next_dma_addr);
}
return 0;
}
static int rxq_refill(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int refilled;
refilled = 0;
while (rxq->rxd_count < MWL8K_RX_DESCS && limit--) {
struct sk_buff *skb;
dma_addr_t addr;
int rx;
void *rxd;
skb = dev_alloc_skb(MWL8K_RX_MAXSZ);
if (skb == NULL)
break;
addr = pci_map_single(priv->pdev, skb->data,
MWL8K_RX_MAXSZ, DMA_FROM_DEVICE);
rxq->rxd_count++;
rx = rxq->tail++;
if (rxq->tail == MWL8K_RX_DESCS)
rxq->tail = 0;
rxq->buf[rx].skb = skb;
pci_unmap_addr_set(&rxq->buf[rx], dma, addr);
rxd = rxq->rxd + (rx * priv->rxd_ops->rxd_size);
priv->rxd_ops->rxd_refill(rxd, addr, MWL8K_RX_MAXSZ);
refilled++;
}
return refilled;
}
/* Must be called only when the card's reception is completely halted */
static void mwl8k_rxq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int i;
for (i = 0; i < MWL8K_RX_DESCS; i++) {
if (rxq->buf[i].skb != NULL) {
pci_unmap_single(priv->pdev,
pci_unmap_addr(&rxq->buf[i], dma),
MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
pci_unmap_addr_set(&rxq->buf[i], dma, 0);
kfree_skb(rxq->buf[i].skb);
rxq->buf[i].skb = NULL;
}
}
kfree(rxq->buf);
rxq->buf = NULL;
pci_free_consistent(priv->pdev,
MWL8K_RX_DESCS * priv->rxd_ops->rxd_size,
rxq->rxd, rxq->rxd_dma);
rxq->rxd = NULL;
}
/*
* Scan a list of BSSIDs to process for finalize join.
* Allows for extension to process multiple BSSIDs.
*/
static inline int
mwl8k_capture_bssid(struct mwl8k_priv *priv, struct ieee80211_hdr *wh)
{
return priv->capture_beacon &&
ieee80211_is_beacon(wh->frame_control) &&
!compare_ether_addr(wh->addr3, priv->capture_bssid);
}
static inline void mwl8k_save_beacon(struct ieee80211_hw *hw,
struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
priv->capture_beacon = false;
memset(priv->capture_bssid, 0, ETH_ALEN);
/*
* Use GFP_ATOMIC as rxq_process is called from
* the primary interrupt handler, memory allocation call
* must not sleep.
*/
priv->beacon_skb = skb_copy(skb, GFP_ATOMIC);
if (priv->beacon_skb != NULL)
ieee80211_queue_work(hw, &priv->finalize_join_worker);
}
static int rxq_process(struct ieee80211_hw *hw, int index, int limit)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_rx_queue *rxq = priv->rxq + index;
int processed;
processed = 0;
while (rxq->rxd_count && limit--) {
struct sk_buff *skb;
void *rxd;
int pkt_len;
struct ieee80211_rx_status status;
__le16 qos;
skb = rxq->buf[rxq->head].skb;
if (skb == NULL)
break;
rxd = rxq->rxd + (rxq->head * priv->rxd_ops->rxd_size);
pkt_len = priv->rxd_ops->rxd_process(rxd, &status, &qos);
if (pkt_len < 0)
break;
rxq->buf[rxq->head].skb = NULL;
pci_unmap_single(priv->pdev,
pci_unmap_addr(&rxq->buf[rxq->head], dma),
MWL8K_RX_MAXSZ, PCI_DMA_FROMDEVICE);
pci_unmap_addr_set(&rxq->buf[rxq->head], dma, 0);
rxq->head++;
if (rxq->head == MWL8K_RX_DESCS)
rxq->head = 0;
rxq->rxd_count--;
skb_put(skb, pkt_len);
mwl8k_remove_dma_header(skb, qos);
/*
* Check for a pending join operation. Save a
* copy of the beacon and schedule a tasklet to
* send a FINALIZE_JOIN command to the firmware.
*/
if (mwl8k_capture_bssid(priv, (void *)skb->data))
mwl8k_save_beacon(hw, skb);
memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status));
ieee80211_rx_irqsafe(hw, skb);
processed++;
}
return processed;
}
/*
* Packet transmission.
*/
#define MWL8K_TXD_STATUS_OK 0x00000001
#define MWL8K_TXD_STATUS_OK_RETRY 0x00000002
#define MWL8K_TXD_STATUS_OK_MORE_RETRY 0x00000004
#define MWL8K_TXD_STATUS_MULTICAST_TX 0x00000008
#define MWL8K_TXD_STATUS_FW_OWNED 0x80000000
#define MWL8K_QOS_QLEN_UNSPEC 0xff00
#define MWL8K_QOS_ACK_POLICY_MASK 0x0060
#define MWL8K_QOS_ACK_POLICY_NORMAL 0x0000
#define MWL8K_QOS_ACK_POLICY_BLOCKACK 0x0060
#define MWL8K_QOS_EOSP 0x0010
struct mwl8k_tx_desc {
__le32 status;
__u8 data_rate;
__u8 tx_priority;
__le16 qos_control;
__le32 pkt_phys_addr;
__le16 pkt_len;
__u8 dest_MAC_addr[ETH_ALEN];
__le32 next_txd_phys_addr;
__le32 reserved;
__le16 rate_info;
__u8 peer_id;
__u8 tx_frag_cnt;
} __attribute__((packed));
#define MWL8K_TX_DESCS 128
static int mwl8k_txq_init(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int size;
int i;
memset(&txq->stats, 0, sizeof(struct ieee80211_tx_queue_stats));
txq->stats.limit = MWL8K_TX_DESCS;
txq->head = 0;
txq->tail = 0;
size = MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc);
txq->txd = pci_alloc_consistent(priv->pdev, size, &txq->txd_dma);
if (txq->txd == NULL) {
printk(KERN_ERR "%s: failed to alloc TX descriptors\n",
wiphy_name(hw->wiphy));
return -ENOMEM;
}
memset(txq->txd, 0, size);
txq->skb = kmalloc(MWL8K_TX_DESCS * sizeof(*txq->skb), GFP_KERNEL);
if (txq->skb == NULL) {
printk(KERN_ERR "%s: failed to alloc TX skbuff list\n",
wiphy_name(hw->wiphy));
pci_free_consistent(priv->pdev, size, txq->txd, txq->txd_dma);
return -ENOMEM;
}
memset(txq->skb, 0, MWL8K_TX_DESCS * sizeof(*txq->skb));
for (i = 0; i < MWL8K_TX_DESCS; i++) {
struct mwl8k_tx_desc *tx_desc;
int nexti;
tx_desc = txq->txd + i;
nexti = (i + 1) % MWL8K_TX_DESCS;
tx_desc->status = 0;
tx_desc->next_txd_phys_addr =
cpu_to_le32(txq->txd_dma + nexti * sizeof(*tx_desc));
}
return 0;
}
static inline void mwl8k_tx_start(struct mwl8k_priv *priv)
{
iowrite32(MWL8K_H2A_INT_PPA_READY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
priv->regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
ioread32(priv->regs + MWL8K_HIU_INT_CODE);
}
static void mwl8k_dump_tx_rings(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int i;
for (i = 0; i < MWL8K_TX_QUEUES; i++) {
struct mwl8k_tx_queue *txq = priv->txq + i;
int fw_owned = 0;
int drv_owned = 0;
int unused = 0;
int desc;
for (desc = 0; desc < MWL8K_TX_DESCS; desc++) {
struct mwl8k_tx_desc *tx_desc = txq->txd + desc;
u32 status;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED)
fw_owned++;
else
drv_owned++;
if (tx_desc->pkt_len == 0)
unused++;
}
printk(KERN_ERR "%s: txq[%d] len=%d head=%d tail=%d "
"fw_owned=%d drv_owned=%d unused=%d\n",
wiphy_name(hw->wiphy), i,
txq->stats.len, txq->head, txq->tail,
fw_owned, drv_owned, unused);
}
}
/*
* Must be called with priv->fw_mutex held and tx queues stopped.
*/
#define MWL8K_TX_WAIT_TIMEOUT_MS 1000
static int mwl8k_tx_wait_empty(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
DECLARE_COMPLETION_ONSTACK(tx_wait);
int retry;
int rc;
might_sleep();
/*
* The TX queues are stopped at this point, so this test
* doesn't need to take ->tx_lock.
*/
if (!priv->pending_tx_pkts)
return 0;
retry = 0;
rc = 0;
spin_lock_bh(&priv->tx_lock);
priv->tx_wait = &tx_wait;
while (!rc) {
int oldcount;
unsigned long timeout;
oldcount = priv->pending_tx_pkts;
spin_unlock_bh(&priv->tx_lock);
timeout = wait_for_completion_timeout(&tx_wait,
msecs_to_jiffies(MWL8K_TX_WAIT_TIMEOUT_MS));
spin_lock_bh(&priv->tx_lock);
if (timeout) {
WARN_ON(priv->pending_tx_pkts);
if (retry) {
printk(KERN_NOTICE "%s: tx rings drained\n",
wiphy_name(hw->wiphy));
}
break;
}
if (priv->pending_tx_pkts < oldcount) {
printk(KERN_NOTICE "%s: waiting for tx rings "
"to drain (%d -> %d pkts)\n",
wiphy_name(hw->wiphy), oldcount,
priv->pending_tx_pkts);
retry = 1;
continue;
}
priv->tx_wait = NULL;
printk(KERN_ERR "%s: tx rings stuck for %d ms\n",
wiphy_name(hw->wiphy), MWL8K_TX_WAIT_TIMEOUT_MS);
mwl8k_dump_tx_rings(hw);
rc = -ETIMEDOUT;
}
spin_unlock_bh(&priv->tx_lock);
return rc;
}
#define MWL8K_TXD_SUCCESS(status) \
((status) & (MWL8K_TXD_STATUS_OK | \
MWL8K_TXD_STATUS_OK_RETRY | \
MWL8K_TXD_STATUS_OK_MORE_RETRY))
static void mwl8k_txq_reclaim(struct ieee80211_hw *hw, int index, int force)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
int wake = 0;
while (txq->stats.len > 0) {
int tx;
struct mwl8k_tx_desc *tx_desc;
unsigned long addr;
int size;
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 status;
tx = txq->head;
tx_desc = txq->txd + tx;
status = le32_to_cpu(tx_desc->status);
if (status & MWL8K_TXD_STATUS_FW_OWNED) {
if (!force)
break;
tx_desc->status &=
~cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED);
}
txq->head = (tx + 1) % MWL8K_TX_DESCS;
BUG_ON(txq->stats.len == 0);
txq->stats.len--;
priv->pending_tx_pkts--;
addr = le32_to_cpu(tx_desc->pkt_phys_addr);
size = le16_to_cpu(tx_desc->pkt_len);
skb = txq->skb[tx];
txq->skb[tx] = NULL;
BUG_ON(skb == NULL);
pci_unmap_single(priv->pdev, addr, size, PCI_DMA_TODEVICE);
mwl8k_remove_dma_header(skb, tx_desc->qos_control);
/* Mark descriptor as unused */
tx_desc->pkt_phys_addr = 0;
tx_desc->pkt_len = 0;
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
if (MWL8K_TXD_SUCCESS(status))
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
wake = 1;
}
if (wake && priv->radio_on && !mutex_is_locked(&priv->fw_mutex))
ieee80211_wake_queue(hw, index);
}
/* must be called only when the card's transmit is completely halted */
static void mwl8k_txq_deinit(struct ieee80211_hw *hw, int index)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq = priv->txq + index;
mwl8k_txq_reclaim(hw, index, 1);
kfree(txq->skb);
txq->skb = NULL;
pci_free_consistent(priv->pdev,
MWL8K_TX_DESCS * sizeof(struct mwl8k_tx_desc),
txq->txd, txq->txd_dma);
txq->txd = NULL;
}
static int
mwl8k_txq_xmit(struct ieee80211_hw *hw, int index, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
struct ieee80211_tx_info *tx_info;
struct mwl8k_vif *mwl8k_vif;
struct ieee80211_hdr *wh;
struct mwl8k_tx_queue *txq;
struct mwl8k_tx_desc *tx;
dma_addr_t dma;
u32 txstatus;
u8 txdatarate;
u16 qos;
wh = (struct ieee80211_hdr *)skb->data;
if (ieee80211_is_data_qos(wh->frame_control))
qos = le16_to_cpu(*((__le16 *)ieee80211_get_qos_ctl(wh)));
else
qos = 0;
mwl8k_add_dma_header(skb);
wh = &((struct mwl8k_dma_data *)skb->data)->wh;
tx_info = IEEE80211_SKB_CB(skb);
mwl8k_vif = MWL8K_VIF(tx_info->control.vif);
if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
u16 seqno = mwl8k_vif->seqno;
wh->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
wh->seq_ctrl |= cpu_to_le16(seqno << 4);
mwl8k_vif->seqno = seqno++ % 4096;
}
/* Setup firmware control bit fields for each frame type. */
txstatus = 0;
txdatarate = 0;
if (ieee80211_is_mgmt(wh->frame_control) ||
ieee80211_is_ctl(wh->frame_control)) {
txdatarate = 0;
qos |= MWL8K_QOS_QLEN_UNSPEC | MWL8K_QOS_EOSP;
} else if (ieee80211_is_data(wh->frame_control)) {
txdatarate = 1;
if (is_multicast_ether_addr(wh->addr1))
txstatus |= MWL8K_TXD_STATUS_MULTICAST_TX;
qos &= ~MWL8K_QOS_ACK_POLICY_MASK;
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
qos |= MWL8K_QOS_ACK_POLICY_BLOCKACK;
else
qos |= MWL8K_QOS_ACK_POLICY_NORMAL;
}
dma = pci_map_single(priv->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (pci_dma_mapping_error(priv->pdev, dma)) {
printk(KERN_DEBUG "%s: failed to dma map skb, "
"dropping TX frame.\n", wiphy_name(hw->wiphy));
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
spin_lock_bh(&priv->tx_lock);
txq = priv->txq + index;
BUG_ON(txq->skb[txq->tail] != NULL);
txq->skb[txq->tail] = skb;
tx = txq->txd + txq->tail;
tx->data_rate = txdatarate;
tx->tx_priority = index;
tx->qos_control = cpu_to_le16(qos);
tx->pkt_phys_addr = cpu_to_le32(dma);
tx->pkt_len = cpu_to_le16(skb->len);
tx->rate_info = 0;
if (!priv->ap_fw && tx_info->control.sta != NULL)
tx->peer_id = MWL8K_STA(tx_info->control.sta)->peer_id;
else
tx->peer_id = 0;
wmb();
tx->status = cpu_to_le32(MWL8K_TXD_STATUS_FW_OWNED | txstatus);
txq->stats.count++;
txq->stats.len++;
priv->pending_tx_pkts++;
txq->tail++;
if (txq->tail == MWL8K_TX_DESCS)
txq->tail = 0;
if (txq->head == txq->tail)
ieee80211_stop_queue(hw, index);
mwl8k_tx_start(priv);
spin_unlock_bh(&priv->tx_lock);
return NETDEV_TX_OK;
}
/*
* Firmware access.
*
* We have the following requirements for issuing firmware commands:
* - Some commands require that the packet transmit path is idle when
* the command is issued. (For simplicity, we'll just quiesce the
* transmit path for every command.)
* - There are certain sequences of commands that need to be issued to
* the hardware sequentially, with no other intervening commands.
*
* This leads to an implementation of a "firmware lock" as a mutex that
* can be taken recursively, and which is taken by both the low-level
* command submission function (mwl8k_post_cmd) as well as any users of
* that function that require issuing of an atomic sequence of commands,
* and quiesces the transmit path whenever it's taken.
*/
static int mwl8k_fw_lock(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
if (priv->fw_mutex_owner != current) {
int rc;
mutex_lock(&priv->fw_mutex);
ieee80211_stop_queues(hw);
rc = mwl8k_tx_wait_empty(hw);
if (rc) {
ieee80211_wake_queues(hw);
mutex_unlock(&priv->fw_mutex);
return rc;
}
priv->fw_mutex_owner = current;
}
priv->fw_mutex_depth++;
return 0;
}
static void mwl8k_fw_unlock(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
if (!--priv->fw_mutex_depth) {
ieee80211_wake_queues(hw);
priv->fw_mutex_owner = NULL;
mutex_unlock(&priv->fw_mutex);
}
}
/*
* Command processing.
*/
/* Timeout firmware commands after 10s */
#define MWL8K_CMD_TIMEOUT_MS 10000
static int mwl8k_post_cmd(struct ieee80211_hw *hw, struct mwl8k_cmd_pkt *cmd)
{
DECLARE_COMPLETION_ONSTACK(cmd_wait);
struct mwl8k_priv *priv = hw->priv;
void __iomem *regs = priv->regs;
dma_addr_t dma_addr;
unsigned int dma_size;
int rc;
unsigned long timeout = 0;
u8 buf[32];
cmd->result = 0xffff;
dma_size = le16_to_cpu(cmd->length);
dma_addr = pci_map_single(priv->pdev, cmd, dma_size,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(priv->pdev, dma_addr))
return -ENOMEM;
rc = mwl8k_fw_lock(hw);
if (rc) {
pci_unmap_single(priv->pdev, dma_addr, dma_size,
PCI_DMA_BIDIRECTIONAL);
return rc;
}
priv->hostcmd_wait = &cmd_wait;
iowrite32(dma_addr, regs + MWL8K_HIU_GEN_PTR);
iowrite32(MWL8K_H2A_INT_DOORBELL,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
iowrite32(MWL8K_H2A_INT_DUMMY,
regs + MWL8K_HIU_H2A_INTERRUPT_EVENTS);
timeout = wait_for_completion_timeout(&cmd_wait,
msecs_to_jiffies(MWL8K_CMD_TIMEOUT_MS));
priv->hostcmd_wait = NULL;
mwl8k_fw_unlock(hw);
pci_unmap_single(priv->pdev, dma_addr, dma_size,
PCI_DMA_BIDIRECTIONAL);
if (!timeout) {
printk(KERN_ERR "%s: Command %s timeout after %u ms\n",
wiphy_name(hw->wiphy),
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
MWL8K_CMD_TIMEOUT_MS);
rc = -ETIMEDOUT;
} else {
int ms;
ms = MWL8K_CMD_TIMEOUT_MS - jiffies_to_msecs(timeout);
rc = cmd->result ? -EINVAL : 0;
if (rc)
printk(KERN_ERR "%s: Command %s error 0x%x\n",
wiphy_name(hw->wiphy),
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
le16_to_cpu(cmd->result));
else if (ms > 2000)
printk(KERN_NOTICE "%s: Command %s took %d ms\n",
wiphy_name(hw->wiphy),
mwl8k_cmd_name(cmd->code, buf, sizeof(buf)),
ms);
}
return rc;
}
/*
* CMD_GET_HW_SPEC (STA version).
*/
struct mwl8k_cmd_get_hw_spec_sta {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le32 fw_rev;
__le32 ps_cookie;
__le32 caps;
__u8 mcs_bitmap[16];
__le32 rx_queue_ptr;
__le32 num_tx_queues;
__le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
__le32 caps2;
__le32 num_tx_desc_per_queue;
__le32 total_rxd;
} __attribute__((packed));
static int mwl8k_cmd_get_hw_spec_sta(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_get_hw_spec_sta *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
priv->fw_rev = le32_to_cpu(cmd->fw_rev);
priv->hw_rev = cmd->hw_rev;
}
kfree(cmd);
return rc;
}
/*
* CMD_GET_HW_SPEC (AP version).
*/
struct mwl8k_cmd_get_hw_spec_ap {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_wcb;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le16 num_antenna;
__le32 fw_rev;
__le32 wcbbase0;
__le32 rxwrptr;
__le32 rxrdptr;
__le32 ps_cookie;
__le32 wcbbase1;
__le32 wcbbase2;
__le32 wcbbase3;
} __attribute__((packed));
static int mwl8k_cmd_get_hw_spec_ap(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_get_hw_spec_ap *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
memset(cmd->perm_addr, 0xff, sizeof(cmd->perm_addr));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
int off;
SET_IEEE80211_PERM_ADDR(hw, cmd->perm_addr);
priv->num_mcaddrs = le16_to_cpu(cmd->num_mcaddrs);
priv->fw_rev = le32_to_cpu(cmd->fw_rev);
priv->hw_rev = cmd->hw_rev;
off = le32_to_cpu(cmd->wcbbase0) & 0xffff;
iowrite32(cpu_to_le32(priv->txq[0].txd_dma), priv->sram + off);
off = le32_to_cpu(cmd->rxwrptr) & 0xffff;
iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
off = le32_to_cpu(cmd->rxrdptr) & 0xffff;
iowrite32(cpu_to_le32(priv->rxq[0].rxd_dma), priv->sram + off);
off = le32_to_cpu(cmd->wcbbase1) & 0xffff;
iowrite32(cpu_to_le32(priv->txq[1].txd_dma), priv->sram + off);
off = le32_to_cpu(cmd->wcbbase2) & 0xffff;
iowrite32(cpu_to_le32(priv->txq[2].txd_dma), priv->sram + off);
off = le32_to_cpu(cmd->wcbbase3) & 0xffff;
iowrite32(cpu_to_le32(priv->txq[3].txd_dma), priv->sram + off);
}
kfree(cmd);
return rc;
}
/*
* CMD_SET_HW_SPEC.
*/
struct mwl8k_cmd_set_hw_spec {
struct mwl8k_cmd_pkt header;
__u8 hw_rev;
__u8 host_interface;
__le16 num_mcaddrs;
__u8 perm_addr[ETH_ALEN];
__le16 region_code;
__le32 fw_rev;
__le32 ps_cookie;
__le32 caps;
__le32 rx_queue_ptr;
__le32 num_tx_queues;
__le32 tx_queue_ptrs[MWL8K_TX_QUEUES];
__le32 flags;
__le32 num_tx_desc_per_queue;
__le32 total_rxd;
} __attribute__((packed));
#define MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT 0x00000080
static int mwl8k_cmd_set_hw_spec(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_hw_spec *cmd;
int rc;
int i;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_HW_SPEC);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->ps_cookie = cpu_to_le32(priv->cookie_dma);
cmd->rx_queue_ptr = cpu_to_le32(priv->rxq[0].rxd_dma);
cmd->num_tx_queues = cpu_to_le32(MWL8K_TX_QUEUES);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
cmd->tx_queue_ptrs[i] = cpu_to_le32(priv->txq[i].txd_dma);
cmd->flags = cpu_to_le32(MWL8K_SET_HW_SPEC_FLAG_HOST_DECR_MGMT);
cmd->num_tx_desc_per_queue = cpu_to_le32(MWL8K_TX_DESCS);
cmd->total_rxd = cpu_to_le32(MWL8K_RX_DESCS);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_MAC_MULTICAST_ADR.
*/
struct mwl8k_cmd_mac_multicast_adr {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 numaddr;
__u8 addr[0][ETH_ALEN];
};
#define MWL8K_ENABLE_RX_DIRECTED 0x0001
#define MWL8K_ENABLE_RX_MULTICAST 0x0002
#define MWL8K_ENABLE_RX_ALL_MULTICAST 0x0004
#define MWL8K_ENABLE_RX_BROADCAST 0x0008
static struct mwl8k_cmd_pkt *
__mwl8k_cmd_mac_multicast_adr(struct ieee80211_hw *hw, int allmulti,
int mc_count, struct dev_addr_list *mclist)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_mac_multicast_adr *cmd;
int size;
if (allmulti || mc_count > priv->num_mcaddrs) {
allmulti = 1;
mc_count = 0;
}
size = sizeof(*cmd) + mc_count * ETH_ALEN;
cmd = kzalloc(size, GFP_ATOMIC);
if (cmd == NULL)
return NULL;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MAC_MULTICAST_ADR);
cmd->header.length = cpu_to_le16(size);
cmd->action = cpu_to_le16(MWL8K_ENABLE_RX_DIRECTED |
MWL8K_ENABLE_RX_BROADCAST);
if (allmulti) {
cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_ALL_MULTICAST);
} else if (mc_count) {
int i;
cmd->action |= cpu_to_le16(MWL8K_ENABLE_RX_MULTICAST);
cmd->numaddr = cpu_to_le16(mc_count);
for (i = 0; i < mc_count && mclist; i++) {
if (mclist->da_addrlen != ETH_ALEN) {
kfree(cmd);
return NULL;
}
memcpy(cmd->addr[i], mclist->da_addr, ETH_ALEN);
mclist = mclist->next;
}
}
return &cmd->header;
}
/*
* CMD_GET_STAT.
*/
struct mwl8k_cmd_get_stat {
struct mwl8k_cmd_pkt header;
__le32 stats[64];
} __attribute__((packed));
#define MWL8K_STAT_ACK_FAILURE 9
#define MWL8K_STAT_RTS_FAILURE 12
#define MWL8K_STAT_FCS_ERROR 24
#define MWL8K_STAT_RTS_SUCCESS 11
static int mwl8k_cmd_get_stat(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
struct mwl8k_cmd_get_stat *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_GET_STAT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
if (!rc) {
stats->dot11ACKFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_ACK_FAILURE]);
stats->dot11RTSFailureCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_FAILURE]);
stats->dot11FCSErrorCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_FCS_ERROR]);
stats->dot11RTSSuccessCount =
le32_to_cpu(cmd->stats[MWL8K_STAT_RTS_SUCCESS]);
}
kfree(cmd);
return rc;
}
/*
* CMD_RADIO_CONTROL.
*/
struct mwl8k_cmd_radio_control {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 control;
__le16 radio_on;
} __attribute__((packed));
static int
mwl8k_cmd_radio_control(struct ieee80211_hw *hw, bool enable, bool force)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_radio_control *cmd;
int rc;
if (enable == priv->radio_on && !force)
return 0;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RADIO_CONTROL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->control = cpu_to_le16(priv->radio_short_preamble ? 3 : 1);
cmd->radio_on = cpu_to_le16(enable ? 0x0001 : 0x0000);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->radio_on = enable;
return rc;
}
static int mwl8k_cmd_radio_disable(struct ieee80211_hw *hw)
{
return mwl8k_cmd_radio_control(hw, 0, 0);
}
static int mwl8k_cmd_radio_enable(struct ieee80211_hw *hw)
{
return mwl8k_cmd_radio_control(hw, 1, 0);
}
static int
mwl8k_set_radio_preamble(struct ieee80211_hw *hw, bool short_preamble)
{
struct mwl8k_priv *priv = hw->priv;
priv->radio_short_preamble = short_preamble;
return mwl8k_cmd_radio_control(hw, 1, 1);
}
/*
* CMD_RF_TX_POWER.
*/
#define MWL8K_TX_POWER_LEVEL_TOTAL 8
struct mwl8k_cmd_rf_tx_power {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 support_level;
__le16 current_level;
__le16 reserved;
__le16 power_level_list[MWL8K_TX_POWER_LEVEL_TOTAL];
} __attribute__((packed));
static int mwl8k_cmd_rf_tx_power(struct ieee80211_hw *hw, int dBm)
{
struct mwl8k_cmd_rf_tx_power *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_TX_POWER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->support_level = cpu_to_le16(dBm);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_RF_ANTENNA.
*/
struct mwl8k_cmd_rf_antenna {
struct mwl8k_cmd_pkt header;
__le16 antenna;
__le16 mode;
} __attribute__((packed));
#define MWL8K_RF_ANTENNA_RX 1
#define MWL8K_RF_ANTENNA_TX 2
static int
mwl8k_cmd_rf_antenna(struct ieee80211_hw *hw, int antenna, int mask)
{
struct mwl8k_cmd_rf_antenna *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RF_ANTENNA);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->antenna = cpu_to_le16(antenna);
cmd->mode = cpu_to_le16(mask);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_PRE_SCAN.
*/
struct mwl8k_cmd_set_pre_scan {
struct mwl8k_cmd_pkt header;
} __attribute__((packed));
static int mwl8k_cmd_set_pre_scan(struct ieee80211_hw *hw)
{
struct mwl8k_cmd_set_pre_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_PRE_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_POST_SCAN.
*/
struct mwl8k_cmd_set_post_scan {
struct mwl8k_cmd_pkt header;
__le32 isibss;
__u8 bssid[ETH_ALEN];
} __attribute__((packed));
static int
mwl8k_cmd_set_post_scan(struct ieee80211_hw *hw, const __u8 *mac)
{
struct mwl8k_cmd_set_post_scan *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_POST_SCAN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->isibss = 0;
memcpy(cmd->bssid, mac, ETH_ALEN);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RF_CHANNEL.
*/
struct mwl8k_cmd_set_rf_channel {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 current_channel;
__le32 channel_flags;
} __attribute__((packed));
static int mwl8k_cmd_set_rf_channel(struct ieee80211_hw *hw,
struct ieee80211_channel *channel)
{
struct mwl8k_cmd_set_rf_channel *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RF_CHANNEL);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->current_channel = channel->hw_value;
if (channel->band == IEEE80211_BAND_2GHZ)
cmd->channel_flags = cpu_to_le32(0x00000081);
else
cmd->channel_flags = cpu_to_le32(0x00000000);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_AID.
*/
#define MWL8K_FRAME_PROT_DISABLED 0x00
#define MWL8K_FRAME_PROT_11G 0x07
#define MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY 0x02
#define MWL8K_FRAME_PROT_11N_HT_ALL 0x06
struct mwl8k_cmd_update_set_aid {
struct mwl8k_cmd_pkt header;
__le16 aid;
/* AP's MAC address (BSSID) */
__u8 bssid[ETH_ALEN];
__le16 protection_mode;
__u8 supp_rates[14];
} __attribute__((packed));
static void legacy_rate_mask_to_array(u8 *rates, u32 mask)
{
int i;
int j;
/*
* Clear nonstandard rates 4 and 13.
*/
mask &= 0x1fef;
for (i = 0, j = 0; i < 14; i++) {
if (mask & (1 << i))
rates[j++] = mwl8k_rates[i].hw_value;
}
}
static int
mwl8k_cmd_set_aid(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u32 legacy_rate_mask)
{
struct mwl8k_cmd_update_set_aid *cmd;
u16 prot_mode;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_AID);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->aid = cpu_to_le16(vif->bss_conf.aid);
memcpy(cmd->bssid, vif->bss_conf.bssid, ETH_ALEN);
if (vif->bss_conf.use_cts_prot) {
prot_mode = MWL8K_FRAME_PROT_11G;
} else {
switch (vif->bss_conf.ht_operation_mode &
IEEE80211_HT_OP_MODE_PROTECTION) {
case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
prot_mode = MWL8K_FRAME_PROT_11N_HT_40MHZ_ONLY;
break;
case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
prot_mode = MWL8K_FRAME_PROT_11N_HT_ALL;
break;
default:
prot_mode = MWL8K_FRAME_PROT_DISABLED;
break;
}
}
cmd->protection_mode = cpu_to_le16(prot_mode);
legacy_rate_mask_to_array(cmd->supp_rates, legacy_rate_mask);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RATE.
*/
struct mwl8k_cmd_set_rate {
struct mwl8k_cmd_pkt header;
__u8 legacy_rates[14];
/* Bitmap for supported MCS codes. */
__u8 mcs_set[16];
__u8 reserved[16];
} __attribute__((packed));
static int
mwl8k_cmd_set_rate(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 legacy_rate_mask)
{
struct mwl8k_cmd_set_rate *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
legacy_rate_mask_to_array(cmd->legacy_rates, legacy_rate_mask);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_FINALIZE_JOIN.
*/
#define MWL8K_FJ_BEACON_MAXLEN 128
struct mwl8k_cmd_finalize_join {
struct mwl8k_cmd_pkt header;
__le32 sleep_interval; /* Number of beacon periods to sleep */
__u8 beacon_data[MWL8K_FJ_BEACON_MAXLEN];
} __attribute__((packed));
static int mwl8k_cmd_finalize_join(struct ieee80211_hw *hw, void *frame,
int framelen, int dtim)
{
struct mwl8k_cmd_finalize_join *cmd;
struct ieee80211_mgmt *payload = frame;
int payload_len;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_FINALIZE_JOIN);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->sleep_interval = cpu_to_le32(dtim ? dtim : 1);
payload_len = framelen - ieee80211_hdrlen(payload->frame_control);
if (payload_len < 0)
payload_len = 0;
else if (payload_len > MWL8K_FJ_BEACON_MAXLEN)
payload_len = MWL8K_FJ_BEACON_MAXLEN;
memcpy(cmd->beacon_data, &payload->u.beacon, payload_len);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RTS_THRESHOLD.
*/
struct mwl8k_cmd_set_rts_threshold {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 threshold;
} __attribute__((packed));
static int mwl8k_cmd_set_rts_threshold(struct ieee80211_hw *hw,
u16 action, u16 threshold)
{
struct mwl8k_cmd_set_rts_threshold *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_RTS_THRESHOLD);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(action);
cmd->threshold = cpu_to_le16(threshold);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_SLOT.
*/
struct mwl8k_cmd_set_slot {
struct mwl8k_cmd_pkt header;
__le16 action;
__u8 short_slot;
} __attribute__((packed));
static int mwl8k_cmd_set_slot(struct ieee80211_hw *hw, bool short_slot_time)
{
struct mwl8k_cmd_set_slot *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_SLOT);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->short_slot = short_slot_time;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_EDCA_PARAMS.
*/
struct mwl8k_cmd_set_edca_params {
struct mwl8k_cmd_pkt header;
/* See MWL8K_SET_EDCA_XXX below */
__le16 action;
/* TX opportunity in units of 32 us */
__le16 txop;
union {
struct {
/* Log exponent of max contention period: 0...15 */
__le32 log_cw_max;
/* Log exponent of min contention period: 0...15 */
__le32 log_cw_min;
/* Adaptive interframe spacing in units of 32us */
__u8 aifs;
/* TX queue to configure */
__u8 txq;
} ap;
struct {
/* Log exponent of max contention period: 0...15 */
__u8 log_cw_max;
/* Log exponent of min contention period: 0...15 */
__u8 log_cw_min;
/* Adaptive interframe spacing in units of 32us */
__u8 aifs;
/* TX queue to configure */
__u8 txq;
} sta;
};
} __attribute__((packed));
#define MWL8K_SET_EDCA_CW 0x01
#define MWL8K_SET_EDCA_TXOP 0x02
#define MWL8K_SET_EDCA_AIFS 0x04
#define MWL8K_SET_EDCA_ALL (MWL8K_SET_EDCA_CW | \
MWL8K_SET_EDCA_TXOP | \
MWL8K_SET_EDCA_AIFS)
static int
mwl8k_cmd_set_edca_params(struct ieee80211_hw *hw, __u8 qnum,
__u16 cw_min, __u16 cw_max,
__u8 aifs, __u16 txop)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_edca_params *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
/*
* Queues 0 (BE) and 1 (BK) are swapped in hardware for
* this call.
*/
qnum ^= !(qnum >> 1);
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_EDCA_PARAMS);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_SET_EDCA_ALL);
cmd->txop = cpu_to_le16(txop);
if (priv->ap_fw) {
cmd->ap.log_cw_max = cpu_to_le32(ilog2(cw_max + 1));
cmd->ap.log_cw_min = cpu_to_le32(ilog2(cw_min + 1));
cmd->ap.aifs = aifs;
cmd->ap.txq = qnum;
} else {
cmd->sta.log_cw_max = (u8)ilog2(cw_max + 1);
cmd->sta.log_cw_min = (u8)ilog2(cw_min + 1);
cmd->sta.aifs = aifs;
cmd->sta.txq = qnum;
}
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_WMM_MODE.
*/
struct mwl8k_cmd_set_wmm_mode {
struct mwl8k_cmd_pkt header;
__le16 action;
} __attribute__((packed));
static int mwl8k_cmd_set_wmm_mode(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_wmm_mode *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_WMM_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(!!enable);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
if (!rc)
priv->wmm_enabled = enable;
return rc;
}
/*
* CMD_MIMO_CONFIG.
*/
struct mwl8k_cmd_mimo_config {
struct mwl8k_cmd_pkt header;
__le32 action;
__u8 rx_antenna_map;
__u8 tx_antenna_map;
} __attribute__((packed));
static int mwl8k_cmd_mimo_config(struct ieee80211_hw *hw, __u8 rx, __u8 tx)
{
struct mwl8k_cmd_mimo_config *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_MIMO_CONFIG);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32((u32)MWL8K_CMD_SET);
cmd->rx_antenna_map = rx;
cmd->tx_antenna_map = tx;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_USE_FIXED_RATE.
*/
#define MWL8K_RATE_TABLE_SIZE 8
#define MWL8K_UCAST_RATE 0
#define MWL8K_USE_AUTO_RATE 0x0002
struct mwl8k_rate_entry {
/* Set to 1 if HT rate, 0 if legacy. */
__le32 is_ht_rate;
/* Set to 1 to use retry_count field. */
__le32 enable_retry;
/* Specified legacy rate or MCS. */
__le32 rate;
/* Number of allowed retries. */
__le32 retry_count;
} __attribute__((packed));
struct mwl8k_rate_table {
/* 1 to allow specified rate and below */
__le32 allow_rate_drop;
__le32 num_rates;
struct mwl8k_rate_entry rate_entry[MWL8K_RATE_TABLE_SIZE];
} __attribute__((packed));
struct mwl8k_cmd_use_fixed_rate {
struct mwl8k_cmd_pkt header;
__le32 action;
struct mwl8k_rate_table rate_table;
/* Unicast, Broadcast or Multicast */
__le32 rate_type;
__le32 reserved1;
__le32 reserved2;
} __attribute__((packed));
static int mwl8k_cmd_use_fixed_rate(struct ieee80211_hw *hw,
u32 action, u32 rate_type, struct mwl8k_rate_table *rate_table)
{
struct mwl8k_cmd_use_fixed_rate *cmd;
int count;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_USE_FIXED_RATE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(action);
cmd->rate_type = cpu_to_le32(rate_type);
if (rate_table != NULL) {
/*
* Copy over each field manually so that endian
* conversion can be done.
*/
cmd->rate_table.allow_rate_drop =
cpu_to_le32(rate_table->allow_rate_drop);
cmd->rate_table.num_rates =
cpu_to_le32(rate_table->num_rates);
for (count = 0; count < rate_table->num_rates; count++) {
struct mwl8k_rate_entry *dst =
&cmd->rate_table.rate_entry[count];
struct mwl8k_rate_entry *src =
&rate_table->rate_entry[count];
dst->is_ht_rate = cpu_to_le32(src->is_ht_rate);
dst->enable_retry = cpu_to_le32(src->enable_retry);
dst->rate = cpu_to_le32(src->rate);
dst->retry_count = cpu_to_le32(src->retry_count);
}
}
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_ENABLE_SNIFFER.
*/
struct mwl8k_cmd_enable_sniffer {
struct mwl8k_cmd_pkt header;
__le32 action;
} __attribute__((packed));
static int mwl8k_cmd_enable_sniffer(struct ieee80211_hw *hw, bool enable)
{
struct mwl8k_cmd_enable_sniffer *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_ENABLE_SNIFFER);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(!!enable);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_MAC_ADDR.
*/
struct mwl8k_cmd_set_mac_addr {
struct mwl8k_cmd_pkt header;
union {
struct {
__le16 mac_type;
__u8 mac_addr[ETH_ALEN];
} mbss;
__u8 mac_addr[ETH_ALEN];
};
} __attribute__((packed));
static int mwl8k_cmd_set_mac_addr(struct ieee80211_hw *hw, u8 *mac)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_set_mac_addr *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_MAC_ADDR);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
if (priv->ap_fw) {
cmd->mbss.mac_type = 0;
memcpy(cmd->mbss.mac_addr, mac, ETH_ALEN);
} else {
memcpy(cmd->mac_addr, mac, ETH_ALEN);
}
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_SET_RATEADAPT_MODE.
*/
struct mwl8k_cmd_set_rate_adapt_mode {
struct mwl8k_cmd_pkt header;
__le16 action;
__le16 mode;
} __attribute__((packed));
static int mwl8k_cmd_set_rateadapt_mode(struct ieee80211_hw *hw, __u16 mode)
{
struct mwl8k_cmd_set_rate_adapt_mode *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_SET_RATEADAPT_MODE);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le16(MWL8K_CMD_SET);
cmd->mode = cpu_to_le16(mode);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* CMD_UPDATE_STADB.
*/
struct ewc_ht_info {
__le16 control1;
__le16 control2;
__le16 control3;
} __attribute__((packed));
struct peer_capability_info {
/* Peer type - AP vs. STA. */
__u8 peer_type;
/* Basic 802.11 capabilities from assoc resp. */
__le16 basic_caps;
/* Set if peer supports 802.11n high throughput (HT). */
__u8 ht_support;
/* Valid if HT is supported. */
__le16 ht_caps;
__u8 extended_ht_caps;
struct ewc_ht_info ewc_info;
/* Legacy rate table. Intersection of our rates and peer rates. */
__u8 legacy_rates[12];
/* HT rate table. Intersection of our rates and peer rates. */
__u8 ht_rates[16];
__u8 pad[16];
/* If set, interoperability mode, no proprietary extensions. */
__u8 interop;
__u8 pad2;
__u8 station_id;
__le16 amsdu_enabled;
} __attribute__((packed));
struct mwl8k_cmd_update_stadb {
struct mwl8k_cmd_pkt header;
/* See STADB_ACTION_TYPE */
__le32 action;
/* Peer MAC address */
__u8 peer_addr[ETH_ALEN];
__le32 reserved;
/* Peer info - valid during add/update. */
struct peer_capability_info peer_info;
} __attribute__((packed));
#define MWL8K_STA_DB_MODIFY_ENTRY 1
#define MWL8K_STA_DB_DEL_ENTRY 2
/* Peer Entry flags - used to define the type of the peer node */
#define MWL8K_PEER_TYPE_ACCESSPOINT 2
static int mwl8k_cmd_update_stadb_add(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
u8 *addr, u32 legacy_rate_mask)
{
struct mwl8k_cmd_update_stadb *cmd;
struct peer_capability_info *p;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_STA_DB_MODIFY_ENTRY);
memcpy(cmd->peer_addr, addr, ETH_ALEN);
p = &cmd->peer_info;
p->peer_type = MWL8K_PEER_TYPE_ACCESSPOINT;
p->basic_caps = cpu_to_le16(vif->bss_conf.assoc_capability);
legacy_rate_mask_to_array(p->legacy_rates, legacy_rate_mask);
p->interop = 1;
p->amsdu_enabled = 0;
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc ? rc : p->station_id;
}
static int mwl8k_cmd_update_stadb_del(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u8 *addr)
{
struct mwl8k_cmd_update_stadb *cmd;
int rc;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (cmd == NULL)
return -ENOMEM;
cmd->header.code = cpu_to_le16(MWL8K_CMD_UPDATE_STADB);
cmd->header.length = cpu_to_le16(sizeof(*cmd));
cmd->action = cpu_to_le32(MWL8K_STA_DB_DEL_ENTRY);
memcpy(cmd->peer_addr, addr, ETH_ALEN);
rc = mwl8k_post_cmd(hw, &cmd->header);
kfree(cmd);
return rc;
}
/*
* Interrupt handling.
*/
static irqreturn_t mwl8k_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *hw = dev_id;
struct mwl8k_priv *priv = hw->priv;
u32 status;
status = ioread32(priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
iowrite32(~status, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
if (!status)
return IRQ_NONE;
if (status & MWL8K_A2H_INT_TX_DONE)
tasklet_schedule(&priv->tx_reclaim_task);
if (status & MWL8K_A2H_INT_RX_READY) {
while (rxq_process(hw, 0, 1))
rxq_refill(hw, 0, 1);
}
if (status & MWL8K_A2H_INT_OPC_DONE) {
if (priv->hostcmd_wait != NULL)
complete(priv->hostcmd_wait);
}
if (status & MWL8K_A2H_INT_QUEUE_EMPTY) {
if (!mutex_is_locked(&priv->fw_mutex) &&
priv->radio_on && priv->pending_tx_pkts)
mwl8k_tx_start(priv);
}
return IRQ_HANDLED;
}
/*
* Core driver operations.
*/
static int mwl8k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct mwl8k_priv *priv = hw->priv;
int index = skb_get_queue_mapping(skb);
int rc;
if (priv->current_channel == NULL) {
printk(KERN_DEBUG "%s: dropped TX frame since radio "
"disabled\n", wiphy_name(hw->wiphy));
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
rc = mwl8k_txq_xmit(hw, index, skb);
return rc;
}
static int mwl8k_start(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
printk(KERN_ERR "%s: failed to register IRQ handler\n",
wiphy_name(hw->wiphy));
return -EIO;
}
/* Enable tx reclaim tasklet */
tasklet_enable(&priv->tx_reclaim_task);
/* Enable interrupts */
iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
rc = mwl8k_fw_lock(hw);
if (!rc) {
rc = mwl8k_cmd_radio_enable(hw);
if (!priv->ap_fw) {
if (!rc)
rc = mwl8k_cmd_enable_sniffer(hw, 0);
if (!rc)
rc = mwl8k_cmd_set_pre_scan(hw);
if (!rc)
rc = mwl8k_cmd_set_post_scan(hw,
"\x00\x00\x00\x00\x00\x00");
}
if (!rc)
rc = mwl8k_cmd_set_rateadapt_mode(hw, 0);
if (!rc)
rc = mwl8k_cmd_set_wmm_mode(hw, 0);
mwl8k_fw_unlock(hw);
}
if (rc) {
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
tasklet_disable(&priv->tx_reclaim_task);
}
return rc;
}
static void mwl8k_stop(struct ieee80211_hw *hw)
{
struct mwl8k_priv *priv = hw->priv;
int i;
mwl8k_cmd_radio_disable(hw);
ieee80211_stop_queues(hw);
/* Disable interrupts */
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
/* Stop finalize join worker */
cancel_work_sync(&priv->finalize_join_worker);
if (priv->beacon_skb != NULL)
dev_kfree_skb(priv->beacon_skb);
/* Stop tx reclaim tasklet */
tasklet_disable(&priv->tx_reclaim_task);
/* Return all skbs to mac80211 */
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 1);
}
static int mwl8k_add_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_vif *mwl8k_vif;
/*
* We only support one active interface at a time.
*/
if (priv->vif != NULL)
return -EBUSY;
/*
* We only support managed interfaces for now.
*/
if (vif->type != NL80211_IFTYPE_STATION)
return -EINVAL;
/*
* Reject interface creation if sniffer mode is active, as
* STA operation is mutually exclusive with hardware sniffer
* mode.
*/
if (priv->sniffer_enabled) {
printk(KERN_INFO "%s: unable to create STA "
"interface due to sniffer mode being enabled\n",
wiphy_name(hw->wiphy));
return -EINVAL;
}
/* Clean out driver private area */
mwl8k_vif = MWL8K_VIF(vif);
memset(mwl8k_vif, 0, sizeof(*mwl8k_vif));
/* Set and save the mac address */
mwl8k_cmd_set_mac_addr(hw, vif->addr);
memcpy(mwl8k_vif->mac_addr, vif->addr, ETH_ALEN);
/* Set Initial sequence number to zero */
mwl8k_vif->seqno = 0;
priv->vif = vif;
priv->current_channel = NULL;
return 0;
}
static void mwl8k_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct mwl8k_priv *priv = hw->priv;
if (priv->vif == NULL)
return;
mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
priv->vif = NULL;
}
static int mwl8k_config(struct ieee80211_hw *hw, u32 changed)
{
struct ieee80211_conf *conf = &hw->conf;
struct mwl8k_priv *priv = hw->priv;
int rc;
if (conf->flags & IEEE80211_CONF_IDLE) {
mwl8k_cmd_radio_disable(hw);
priv->current_channel = NULL;
return 0;
}
rc = mwl8k_fw_lock(hw);
if (rc)
return rc;
rc = mwl8k_cmd_radio_enable(hw);
if (rc)
goto out;
rc = mwl8k_cmd_set_rf_channel(hw, conf->channel);
if (rc)
goto out;
priv->current_channel = conf->channel;
if (conf->power_level > 18)
conf->power_level = 18;
rc = mwl8k_cmd_rf_tx_power(hw, conf->power_level);
if (rc)
goto out;
if (priv->ap_fw) {
rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_RX, 0x7);
if (!rc)
rc = mwl8k_cmd_rf_antenna(hw, MWL8K_RF_ANTENNA_TX, 0x7);
} else {
rc = mwl8k_cmd_mimo_config(hw, 0x7, 0x7);
}
out:
mwl8k_fw_unlock(hw);
return rc;
}
static void mwl8k_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
if ((changed & BSS_CHANGED_ASSOC) == 0)
return;
priv->capture_beacon = false;
rc = mwl8k_fw_lock(hw);
if (rc)
return;
if (vif->bss_conf.assoc) {
struct ieee80211_sta *ap;
u32 legacy_rate_mask;
rcu_read_lock();
ap = ieee80211_find_sta(vif, vif->bss_conf.bssid);
if (ap != NULL)
legacy_rate_mask = ap->supp_rates[IEEE80211_BAND_2GHZ];
rcu_read_unlock();
if (ap == NULL)
goto out;
/* Install rates */
rc = mwl8k_cmd_set_rate(hw, vif, legacy_rate_mask);
if (rc)
goto out;
/* Turn on rate adaptation */
rc = mwl8k_cmd_use_fixed_rate(hw, MWL8K_USE_AUTO_RATE,
MWL8K_UCAST_RATE, NULL);
if (rc)
goto out;
/* Set radio preamble */
rc = mwl8k_set_radio_preamble(hw,
vif->bss_conf.use_short_preamble);
if (rc)
goto out;
/* Set slot time */
rc = mwl8k_cmd_set_slot(hw, vif->bss_conf.use_short_slot);
if (rc)
goto out;
/* Set AID */
rc = mwl8k_cmd_set_aid(hw, vif, legacy_rate_mask);
if (rc)
goto out;
/*
* Finalize the join. Tell rx handler to process
* next beacon from our BSSID.
*/
memcpy(priv->capture_bssid, vif->bss_conf.bssid, ETH_ALEN);
priv->capture_beacon = true;
}
out:
mwl8k_fw_unlock(hw);
}
static u64 mwl8k_prepare_multicast(struct ieee80211_hw *hw,
int mc_count, struct dev_addr_list *mclist)
{
struct mwl8k_cmd_pkt *cmd;
/*
* Synthesize and return a command packet that programs the
* hardware multicast address filter. At this point we don't
* know whether FIF_ALLMULTI is being requested, but if it is,
* we'll end up throwing this packet away and creating a new
* one in mwl8k_configure_filter().
*/
cmd = __mwl8k_cmd_mac_multicast_adr(hw, 0, mc_count, mclist);
return (unsigned long)cmd;
}
static int
mwl8k_configure_filter_sniffer(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags)
{
struct mwl8k_priv *priv = hw->priv;
/*
* Hardware sniffer mode is mutually exclusive with STA
* operation, so refuse to enable sniffer mode if a STA
* interface is active.
*/
if (priv->vif != NULL) {
if (net_ratelimit())
printk(KERN_INFO "%s: not enabling sniffer "
"mode because STA interface is active\n",
wiphy_name(hw->wiphy));
return 0;
}
if (!priv->sniffer_enabled) {
if (mwl8k_cmd_enable_sniffer(hw, 1))
return 0;
priv->sniffer_enabled = true;
}
*total_flags &= FIF_PROMISC_IN_BSS | FIF_ALLMULTI |
FIF_BCN_PRBRESP_PROMISC | FIF_CONTROL |
FIF_OTHER_BSS;
return 1;
}
static void mwl8k_configure_filter(struct ieee80211_hw *hw,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_cmd_pkt *cmd = (void *)(unsigned long)multicast;
/*
* AP firmware doesn't allow fine-grained control over
* the receive filter.
*/
if (priv->ap_fw) {
*total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
kfree(cmd);
return;
}
/*
* Enable hardware sniffer mode if FIF_CONTROL or
* FIF_OTHER_BSS is requested.
*/
if (*total_flags & (FIF_CONTROL | FIF_OTHER_BSS) &&
mwl8k_configure_filter_sniffer(hw, changed_flags, total_flags)) {
kfree(cmd);
return;
}
/* Clear unsupported feature flags */
*total_flags &= FIF_ALLMULTI | FIF_BCN_PRBRESP_PROMISC;
if (mwl8k_fw_lock(hw))
return;
if (priv->sniffer_enabled) {
mwl8k_cmd_enable_sniffer(hw, 0);
priv->sniffer_enabled = false;
}
if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
if (*total_flags & FIF_BCN_PRBRESP_PROMISC) {
/*
* Disable the BSS filter.
*/
mwl8k_cmd_set_pre_scan(hw);
} else {
const u8 *bssid;
/*
* Enable the BSS filter.
*
* If there is an active STA interface, use that
* interface's BSSID, otherwise use a dummy one
* (where the OUI part needs to be nonzero for
* the BSSID to be accepted by POST_SCAN).
*/
bssid = "\x01\x00\x00\x00\x00\x00";
if (priv->vif != NULL)
bssid = priv->vif->bss_conf.bssid;
mwl8k_cmd_set_post_scan(hw, bssid);
}
}
/*
* If FIF_ALLMULTI is being requested, throw away the command
* packet that ->prepare_multicast() built and replace it with
* a command packet that enables reception of all multicast
* packets.
*/
if (*total_flags & FIF_ALLMULTI) {
kfree(cmd);
cmd = __mwl8k_cmd_mac_multicast_adr(hw, 1, 0, NULL);
}
if (cmd != NULL) {
mwl8k_post_cmd(hw, cmd);
kfree(cmd);
}
mwl8k_fw_unlock(hw);
}
static int mwl8k_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
return mwl8k_cmd_set_rts_threshold(hw, MWL8K_CMD_SET, value);
}
struct mwl8k_sta_notify_item
{
struct list_head list;
struct ieee80211_vif *vif;
enum sta_notify_cmd cmd;
u8 addr[ETH_ALEN];
u32 legacy_rate_mask;
};
static void mwl8k_sta_notify_worker(struct work_struct *work)
{
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, sta_notify_worker);
struct ieee80211_hw *hw = priv->hw;
spin_lock_bh(&priv->sta_notify_list_lock);
while (!list_empty(&priv->sta_notify_list)) {
struct mwl8k_sta_notify_item *s;
s = list_entry(priv->sta_notify_list.next,
struct mwl8k_sta_notify_item, list);
list_del(&s->list);
spin_unlock_bh(&priv->sta_notify_list_lock);
if (s->cmd == STA_NOTIFY_ADD) {
int rc;
rc = mwl8k_cmd_update_stadb_add(hw, s->vif,
s->addr, s->legacy_rate_mask);
if (rc >= 0) {
struct ieee80211_sta *sta;
rcu_read_lock();
sta = ieee80211_find_sta(s->vif, s->addr);
if (sta != NULL)
MWL8K_STA(sta)->peer_id = rc;
rcu_read_unlock();
}
} else {
mwl8k_cmd_update_stadb_del(hw, s->vif, s->addr);
}
kfree(s);
spin_lock_bh(&priv->sta_notify_list_lock);
}
spin_unlock_bh(&priv->sta_notify_list_lock);
}
static void
mwl8k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd cmd, struct ieee80211_sta *sta)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_sta_notify_item *s;
if (cmd != STA_NOTIFY_ADD && cmd != STA_NOTIFY_REMOVE)
return;
s = kmalloc(sizeof(*s), GFP_ATOMIC);
if (s != NULL) {
s->vif = vif;
s->cmd = cmd;
memcpy(s->addr, sta->addr, ETH_ALEN);
s->legacy_rate_mask = sta->supp_rates[IEEE80211_BAND_2GHZ];
spin_lock(&priv->sta_notify_list_lock);
list_add_tail(&s->list, &priv->sta_notify_list);
spin_unlock(&priv->sta_notify_list_lock);
ieee80211_queue_work(hw, &priv->sta_notify_worker);
}
}
static int mwl8k_conf_tx(struct ieee80211_hw *hw, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct mwl8k_priv *priv = hw->priv;
int rc;
rc = mwl8k_fw_lock(hw);
if (!rc) {
if (!priv->wmm_enabled)
rc = mwl8k_cmd_set_wmm_mode(hw, 1);
if (!rc)
rc = mwl8k_cmd_set_edca_params(hw, queue,
params->cw_min,
params->cw_max,
params->aifs,
params->txop);
mwl8k_fw_unlock(hw);
}
return rc;
}
static int mwl8k_get_tx_stats(struct ieee80211_hw *hw,
struct ieee80211_tx_queue_stats *stats)
{
struct mwl8k_priv *priv = hw->priv;
struct mwl8k_tx_queue *txq;
int index;
spin_lock_bh(&priv->tx_lock);
for (index = 0; index < MWL8K_TX_QUEUES; index++) {
txq = priv->txq + index;
memcpy(&stats[index], &txq->stats,
sizeof(struct ieee80211_tx_queue_stats));
}
spin_unlock_bh(&priv->tx_lock);
return 0;
}
static int mwl8k_get_stats(struct ieee80211_hw *hw,
struct ieee80211_low_level_stats *stats)
{
return mwl8k_cmd_get_stat(hw, stats);
}
static const struct ieee80211_ops mwl8k_ops = {
.tx = mwl8k_tx,
.start = mwl8k_start,
.stop = mwl8k_stop,
.add_interface = mwl8k_add_interface,
.remove_interface = mwl8k_remove_interface,
.config = mwl8k_config,
.bss_info_changed = mwl8k_bss_info_changed,
.prepare_multicast = mwl8k_prepare_multicast,
.configure_filter = mwl8k_configure_filter,
.set_rts_threshold = mwl8k_set_rts_threshold,
.sta_notify = mwl8k_sta_notify,
.conf_tx = mwl8k_conf_tx,
.get_tx_stats = mwl8k_get_tx_stats,
.get_stats = mwl8k_get_stats,
};
static void mwl8k_tx_reclaim_handler(unsigned long data)
{
int i;
struct ieee80211_hw *hw = (struct ieee80211_hw *) data;
struct mwl8k_priv *priv = hw->priv;
spin_lock_bh(&priv->tx_lock);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 0);
if (priv->tx_wait != NULL && !priv->pending_tx_pkts) {
complete(priv->tx_wait);
priv->tx_wait = NULL;
}
spin_unlock_bh(&priv->tx_lock);
}
static void mwl8k_finalize_join_worker(struct work_struct *work)
{
struct mwl8k_priv *priv =
container_of(work, struct mwl8k_priv, finalize_join_worker);
struct sk_buff *skb = priv->beacon_skb;
mwl8k_cmd_finalize_join(priv->hw, skb->data, skb->len,
priv->vif->bss_conf.dtim_period);
dev_kfree_skb(skb);
priv->beacon_skb = NULL;
}
enum {
MWL8687 = 0,
MWL8366,
};
static struct mwl8k_device_info mwl8k_info_tbl[] __devinitdata = {
[MWL8687] = {
.part_name = "88w8687",
.helper_image = "mwl8k/helper_8687.fw",
.fw_image = "mwl8k/fmimage_8687.fw",
},
[MWL8366] = {
.part_name = "88w8366",
.helper_image = "mwl8k/helper_8366.fw",
.fw_image = "mwl8k/fmimage_8366.fw",
.ap_rxd_ops = &rxd_8366_ap_ops,
},
};
static DEFINE_PCI_DEVICE_TABLE(mwl8k_pci_id_table) = {
{ PCI_VDEVICE(MARVELL, 0x2a2b), .driver_data = MWL8687, },
{ PCI_VDEVICE(MARVELL, 0x2a30), .driver_data = MWL8687, },
{ PCI_VDEVICE(MARVELL, 0x2a40), .driver_data = MWL8366, },
{ },
};
MODULE_DEVICE_TABLE(pci, mwl8k_pci_id_table);
static int __devinit mwl8k_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
static int printed_version = 0;
struct ieee80211_hw *hw;
struct mwl8k_priv *priv;
int rc;
int i;
if (!printed_version) {
printk(KERN_INFO "%s version %s\n", MWL8K_DESC, MWL8K_VERSION);
printed_version = 1;
}
rc = pci_enable_device(pdev);
if (rc) {
printk(KERN_ERR "%s: Cannot enable new PCI device\n",
MWL8K_NAME);
return rc;
}
rc = pci_request_regions(pdev, MWL8K_NAME);
if (rc) {
printk(KERN_ERR "%s: Cannot obtain PCI resources\n",
MWL8K_NAME);
goto err_disable_device;
}
pci_set_master(pdev);
hw = ieee80211_alloc_hw(sizeof(*priv), &mwl8k_ops);
if (hw == NULL) {
printk(KERN_ERR "%s: ieee80211 alloc failed\n", MWL8K_NAME);
rc = -ENOMEM;
goto err_free_reg;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
priv = hw->priv;
priv->hw = hw;
priv->pdev = pdev;
priv->device_info = &mwl8k_info_tbl[id->driver_data];
priv->sram = pci_iomap(pdev, 0, 0x10000);
if (priv->sram == NULL) {
printk(KERN_ERR "%s: Cannot map device SRAM\n",
wiphy_name(hw->wiphy));
goto err_iounmap;
}
/*
* If BAR0 is a 32 bit BAR, the register BAR will be BAR1.
* If BAR0 is a 64 bit BAR, the register BAR will be BAR2.
*/
priv->regs = pci_iomap(pdev, 1, 0x10000);
if (priv->regs == NULL) {
priv->regs = pci_iomap(pdev, 2, 0x10000);
if (priv->regs == NULL) {
printk(KERN_ERR "%s: Cannot map device registers\n",
wiphy_name(hw->wiphy));
goto err_iounmap;
}
}
/* Reset firmware and hardware */
mwl8k_hw_reset(priv);
/* Ask userland hotplug daemon for the device firmware */
rc = mwl8k_request_firmware(priv);
if (rc) {
printk(KERN_ERR "%s: Firmware files not found\n",
wiphy_name(hw->wiphy));
goto err_stop_firmware;
}
/* Load firmware into hardware */
rc = mwl8k_load_firmware(hw);
if (rc) {
printk(KERN_ERR "%s: Cannot start firmware\n",
wiphy_name(hw->wiphy));
goto err_stop_firmware;
}
/* Reclaim memory once firmware is successfully loaded */
mwl8k_release_firmware(priv);
if (priv->ap_fw) {
priv->rxd_ops = priv->device_info->ap_rxd_ops;
if (priv->rxd_ops == NULL) {
printk(KERN_ERR "%s: Driver does not have AP "
"firmware image support for this hardware\n",
wiphy_name(hw->wiphy));
goto err_stop_firmware;
}
} else {
priv->rxd_ops = &rxd_sta_ops;
}
priv->sniffer_enabled = false;
priv->wmm_enabled = false;
priv->pending_tx_pkts = 0;
memcpy(priv->channels, mwl8k_channels, sizeof(mwl8k_channels));
priv->band.band = IEEE80211_BAND_2GHZ;
priv->band.channels = priv->channels;
priv->band.n_channels = ARRAY_SIZE(mwl8k_channels);
priv->band.bitrates = priv->rates;
priv->band.n_bitrates = ARRAY_SIZE(mwl8k_rates);
hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &priv->band;
BUILD_BUG_ON(sizeof(priv->rates) != sizeof(mwl8k_rates));
memcpy(priv->rates, mwl8k_rates, sizeof(mwl8k_rates));
/*
* Extra headroom is the size of the required DMA header
* minus the size of the smallest 802.11 frame (CTS frame).
*/
hw->extra_tx_headroom =
sizeof(struct mwl8k_dma_data) - sizeof(struct ieee80211_cts);
hw->channel_change_time = 10;
hw->queues = MWL8K_TX_QUEUES;
/* Set rssi and noise values to dBm */
hw->flags |= IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM;
hw->vif_data_size = sizeof(struct mwl8k_vif);
hw->sta_data_size = sizeof(struct mwl8k_sta);
priv->vif = NULL;
/* Set default radio state and preamble */
priv->radio_on = 0;
priv->radio_short_preamble = 0;
/* Station database handling */
INIT_WORK(&priv->sta_notify_worker, mwl8k_sta_notify_worker);
spin_lock_init(&priv->sta_notify_list_lock);
INIT_LIST_HEAD(&priv->sta_notify_list);
/* Finalize join worker */
INIT_WORK(&priv->finalize_join_worker, mwl8k_finalize_join_worker);
/* TX reclaim tasklet */
tasklet_init(&priv->tx_reclaim_task,
mwl8k_tx_reclaim_handler, (unsigned long)hw);
tasklet_disable(&priv->tx_reclaim_task);
/* Power management cookie */
priv->cookie = pci_alloc_consistent(priv->pdev, 4, &priv->cookie_dma);
if (priv->cookie == NULL)
goto err_stop_firmware;
rc = mwl8k_rxq_init(hw, 0);
if (rc)
goto err_free_cookie;
rxq_refill(hw, 0, INT_MAX);
mutex_init(&priv->fw_mutex);
priv->fw_mutex_owner = NULL;
priv->fw_mutex_depth = 0;
priv->hostcmd_wait = NULL;
spin_lock_init(&priv->tx_lock);
priv->tx_wait = NULL;
for (i = 0; i < MWL8K_TX_QUEUES; i++) {
rc = mwl8k_txq_init(hw, i);
if (rc)
goto err_free_queues;
}
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_CLEAR_SEL);
iowrite32(0xffffffff, priv->regs + MWL8K_HIU_A2H_INTERRUPT_STATUS_MASK);
rc = request_irq(priv->pdev->irq, mwl8k_interrupt,
IRQF_SHARED, MWL8K_NAME, hw);
if (rc) {
printk(KERN_ERR "%s: failed to register IRQ handler\n",
wiphy_name(hw->wiphy));
goto err_free_queues;
}
/*
* Temporarily enable interrupts. Initial firmware host
* commands use interrupts and avoids polling. Disable
* interrupts when done.
*/
iowrite32(MWL8K_A2H_EVENTS, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
/* Get config data, mac addrs etc */
if (priv->ap_fw) {
rc = mwl8k_cmd_get_hw_spec_ap(hw);
if (!rc)
rc = mwl8k_cmd_set_hw_spec(hw);
} else {
rc = mwl8k_cmd_get_hw_spec_sta(hw);
hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
}
if (rc) {
printk(KERN_ERR "%s: Cannot initialise firmware\n",
wiphy_name(hw->wiphy));
goto err_free_irq;
}
/* Turn radio off */
rc = mwl8k_cmd_radio_disable(hw);
if (rc) {
printk(KERN_ERR "%s: Cannot disable\n", wiphy_name(hw->wiphy));
goto err_free_irq;
}
/* Clear MAC address */
rc = mwl8k_cmd_set_mac_addr(hw, "\x00\x00\x00\x00\x00\x00");
if (rc) {
printk(KERN_ERR "%s: Cannot clear MAC address\n",
wiphy_name(hw->wiphy));
goto err_free_irq;
}
/* Disable interrupts */
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
rc = ieee80211_register_hw(hw);
if (rc) {
printk(KERN_ERR "%s: Cannot register device\n",
wiphy_name(hw->wiphy));
goto err_free_queues;
}
printk(KERN_INFO "%s: %s v%d, %pM, %s firmware %u.%u.%u.%u\n",
wiphy_name(hw->wiphy), priv->device_info->part_name,
priv->hw_rev, hw->wiphy->perm_addr,
priv->ap_fw ? "AP" : "STA",
(priv->fw_rev >> 24) & 0xff, (priv->fw_rev >> 16) & 0xff,
(priv->fw_rev >> 8) & 0xff, priv->fw_rev & 0xff);
return 0;
err_free_irq:
iowrite32(0, priv->regs + MWL8K_HIU_A2H_INTERRUPT_MASK);
free_irq(priv->pdev->irq, hw);
err_free_queues:
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
err_free_cookie:
if (priv->cookie != NULL)
pci_free_consistent(priv->pdev, 4,
priv->cookie, priv->cookie_dma);
err_stop_firmware:
mwl8k_hw_reset(priv);
mwl8k_release_firmware(priv);
err_iounmap:
if (priv->regs != NULL)
pci_iounmap(pdev, priv->regs);
if (priv->sram != NULL)
pci_iounmap(pdev, priv->sram);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
err_free_reg:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return rc;
}
static void __devexit mwl8k_shutdown(struct pci_dev *pdev)
{
printk(KERN_ERR "===>%s(%u)\n", __func__, __LINE__);
}
static void __devexit mwl8k_remove(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct mwl8k_priv *priv;
int i;
if (hw == NULL)
return;
priv = hw->priv;
ieee80211_stop_queues(hw);
ieee80211_unregister_hw(hw);
/* Remove tx reclaim tasklet */
tasklet_kill(&priv->tx_reclaim_task);
/* Stop hardware */
mwl8k_hw_reset(priv);
/* Return all skbs to mac80211 */
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_reclaim(hw, i, 1);
for (i = 0; i < MWL8K_TX_QUEUES; i++)
mwl8k_txq_deinit(hw, i);
mwl8k_rxq_deinit(hw, 0);
pci_free_consistent(priv->pdev, 4, priv->cookie, priv->cookie_dma);
pci_iounmap(pdev, priv->regs);
pci_iounmap(pdev, priv->sram);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver mwl8k_driver = {
.name = MWL8K_NAME,
.id_table = mwl8k_pci_id_table,
.probe = mwl8k_probe,
.remove = __devexit_p(mwl8k_remove),
.shutdown = __devexit_p(mwl8k_shutdown),
};
static int __init mwl8k_init(void)
{
return pci_register_driver(&mwl8k_driver);
}
static void __exit mwl8k_exit(void)
{
pci_unregister_driver(&mwl8k_driver);
}
module_init(mwl8k_init);
module_exit(mwl8k_exit);
MODULE_DESCRIPTION(MWL8K_DESC);
MODULE_VERSION(MWL8K_VERSION);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@marvell.com>");
MODULE_LICENSE("GPL");