| /* |
| * VGIC MMIO handling functions |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/bsearch.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/iodev.h> |
| #include <kvm/arm_arch_timer.h> |
| #include <kvm/arm_vgic.h> |
| |
| #include "vgic.h" |
| #include "vgic-mmio.h" |
| |
| unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| return 0; |
| } |
| |
| unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| return -1UL; |
| } |
| |
| void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, |
| unsigned int len, unsigned long val) |
| { |
| /* Ignore */ |
| } |
| |
| int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr, |
| unsigned int len, unsigned long val) |
| { |
| /* Ignore */ |
| return 0; |
| } |
| |
| /* |
| * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value |
| * of the enabled bit, so there is only one function for both here. |
| */ |
| unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->enabled) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| void vgic_mmio_write_senable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| unsigned long flags; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| irq->enabled = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| unsigned long flags; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| irq->enabled = false; |
| |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| if (irq_is_pending(irq)) |
| value |= (1U << i); |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| /* |
| * This function will return the VCPU that performed the MMIO access and |
| * trapped from within the VM, and will return NULL if this is a userspace |
| * access. |
| * |
| * We can disable preemption locally around accessing the per-CPU variable, |
| * and use the resolved vcpu pointer after enabling preemption again, because |
| * even if the current thread is migrated to another CPU, reading the per-CPU |
| * value later will give us the same value as we update the per-CPU variable |
| * in the preempt notifier handlers. |
| */ |
| static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void) |
| { |
| struct kvm_vcpu *vcpu; |
| |
| preempt_disable(); |
| vcpu = kvm_arm_get_running_vcpu(); |
| preempt_enable(); |
| return vcpu; |
| } |
| |
| /* Must be called with irq->irq_lock held */ |
| static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq, |
| bool is_uaccess) |
| { |
| if (is_uaccess) |
| return; |
| |
| irq->pending_latch = true; |
| vgic_irq_set_phys_active(irq, true); |
| } |
| |
| void vgic_mmio_write_spending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| bool is_uaccess = !vgic_get_mmio_requester_vcpu(); |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| unsigned long flags; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| if (irq->hw) |
| vgic_hw_irq_spending(vcpu, irq, is_uaccess); |
| else |
| irq->pending_latch = true; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| /* Must be called with irq->irq_lock held */ |
| static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq, |
| bool is_uaccess) |
| { |
| if (is_uaccess) |
| return; |
| |
| irq->pending_latch = false; |
| |
| /* |
| * We don't want the guest to effectively mask the physical |
| * interrupt by doing a write to SPENDR followed by a write to |
| * CPENDR for HW interrupts, so we clear the active state on |
| * the physical side if the virtual interrupt is not active. |
| * This may lead to taking an additional interrupt on the |
| * host, but that should not be a problem as the worst that |
| * can happen is an additional vgic injection. We also clear |
| * the pending state to maintain proper semantics for edge HW |
| * interrupts. |
| */ |
| vgic_irq_set_phys_pending(irq, false); |
| if (!irq->active) |
| vgic_irq_set_phys_active(irq, false); |
| } |
| |
| void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| bool is_uaccess = !vgic_get_mmio_requester_vcpu(); |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| unsigned long flags; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| if (irq->hw) |
| vgic_hw_irq_cpending(vcpu, irq, is_uaccess); |
| else |
| irq->pending_latch = false; |
| |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| u32 value = 0; |
| int i; |
| |
| /* Loop over all IRQs affected by this read */ |
| for (i = 0; i < len * 8; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->active) |
| value |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| /* Must be called with irq->irq_lock held */ |
| static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, |
| bool active, bool is_uaccess) |
| { |
| if (is_uaccess) |
| return; |
| |
| irq->active = active; |
| vgic_irq_set_phys_active(irq, active); |
| } |
| |
| static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq, |
| bool active) |
| { |
| unsigned long flags; |
| struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu(); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| /* |
| * If this virtual IRQ was written into a list register, we |
| * have to make sure the CPU that runs the VCPU thread has |
| * synced back the LR state to the struct vgic_irq. |
| * |
| * As long as the conditions below are true, we know the VCPU thread |
| * may be on its way back from the guest (we kicked the VCPU thread in |
| * vgic_change_active_prepare) and still has to sync back this IRQ, |
| * so we release and re-acquire the spin_lock to let the other thread |
| * sync back the IRQ. |
| * |
| * When accessing VGIC state from user space, requester_vcpu is |
| * NULL, which is fine, because we guarantee that no VCPUs are running |
| * when accessing VGIC state from user space so irq->vcpu->cpu is |
| * always -1. |
| */ |
| while (irq->vcpu && /* IRQ may have state in an LR somewhere */ |
| irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */ |
| irq->vcpu->cpu != -1) /* VCPU thread is running */ |
| cond_resched_lock(&irq->irq_lock); |
| |
| if (irq->hw) { |
| vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu); |
| } else { |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| |
| irq->active = active; |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V2 && |
| active && vgic_irq_is_sgi(irq->intid)) |
| irq->active_source = requester_vcpu->vcpu_id; |
| } |
| |
| if (irq->active) |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| else |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| } |
| |
| /* |
| * If we are fiddling with an IRQ's active state, we have to make sure the IRQ |
| * is not queued on some running VCPU's LRs, because then the change to the |
| * active state can be overwritten when the VCPU's state is synced coming back |
| * from the guest. |
| * |
| * For shared interrupts, we have to stop all the VCPUs because interrupts can |
| * be migrated while we don't hold the IRQ locks and we don't want to be |
| * chasing moving targets. |
| * |
| * For private interrupts we don't have to do anything because userspace |
| * accesses to the VGIC state already require all VCPUs to be stopped, and |
| * only the VCPU itself can modify its private interrupts active state, which |
| * guarantees that the VCPU is not running. |
| */ |
| static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid) |
| { |
| if (intid > VGIC_NR_PRIVATE_IRQS) |
| kvm_arm_halt_guest(vcpu->kvm); |
| } |
| |
| /* See vgic_change_active_prepare */ |
| static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid) |
| { |
| if (intid > VGIC_NR_PRIVATE_IRQS) |
| kvm_arm_resume_guest(vcpu->kvm); |
| } |
| |
| static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| vgic_mmio_change_active(vcpu, irq, false); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| |
| mutex_lock(&vcpu->kvm->lock); |
| vgic_change_active_prepare(vcpu, intid); |
| |
| __vgic_mmio_write_cactive(vcpu, addr, len, val); |
| |
| vgic_change_active_finish(vcpu, intid); |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| |
| int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| __vgic_mmio_write_cactive(vcpu, addr, len, val); |
| return 0; |
| } |
| |
| static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| int i; |
| |
| for_each_set_bit(i, &val, len * 8) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| vgic_mmio_change_active(vcpu, irq, true); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 1); |
| |
| mutex_lock(&vcpu->kvm->lock); |
| vgic_change_active_prepare(vcpu, intid); |
| |
| __vgic_mmio_write_sactive(vcpu, addr, len, val); |
| |
| vgic_change_active_finish(vcpu, intid); |
| mutex_unlock(&vcpu->kvm->lock); |
| } |
| |
| int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| __vgic_mmio_write_sactive(vcpu, addr, len, val); |
| return 0; |
| } |
| |
| unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| int i; |
| u64 val = 0; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| val |= (u64)irq->priority << (i * 8); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return val; |
| } |
| |
| /* |
| * We currently don't handle changing the priority of an interrupt that |
| * is already pending on a VCPU. If there is a need for this, we would |
| * need to make this VCPU exit and re-evaluate the priorities, potentially |
| * leading to this interrupt getting presented now to the guest (if it has |
| * been masked by the priority mask before). |
| */ |
| void vgic_mmio_write_priority(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 8); |
| int i; |
| unsigned long flags; |
| |
| for (i = 0; i < len; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| /* Narrow the priority range to what we actually support */ |
| irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS); |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 2); |
| u32 value = 0; |
| int i; |
| |
| for (i = 0; i < len * 4; i++) { |
| struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| if (irq->config == VGIC_CONFIG_EDGE) |
| value |= (2U << (i * 2)); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return value; |
| } |
| |
| void vgic_mmio_write_config(struct kvm_vcpu *vcpu, |
| gpa_t addr, unsigned int len, |
| unsigned long val) |
| { |
| u32 intid = VGIC_ADDR_TO_INTID(addr, 2); |
| int i; |
| unsigned long flags; |
| |
| for (i = 0; i < len * 4; i++) { |
| struct vgic_irq *irq; |
| |
| /* |
| * The configuration cannot be changed for SGIs in general, |
| * for PPIs this is IMPLEMENTATION DEFINED. The arch timer |
| * code relies on PPIs being level triggered, so we also |
| * make them read-only here. |
| */ |
| if (intid + i < VGIC_NR_PRIVATE_IRQS) |
| continue; |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| |
| if (test_bit(i * 2 + 1, &val)) |
| irq->config = VGIC_CONFIG_EDGE; |
| else |
| irq->config = VGIC_CONFIG_LEVEL; |
| |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid) |
| { |
| int i; |
| u64 val = 0; |
| int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; |
| |
| for (i = 0; i < 32; i++) { |
| struct vgic_irq *irq; |
| |
| if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs) |
| continue; |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level) |
| val |= (1U << i); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| return val; |
| } |
| |
| void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid, |
| const u64 val) |
| { |
| int i; |
| int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; |
| unsigned long flags; |
| |
| for (i = 0; i < 32; i++) { |
| struct vgic_irq *irq; |
| bool new_level; |
| |
| if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs) |
| continue; |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); |
| |
| /* |
| * Line level is set irrespective of irq type |
| * (level or edge) to avoid dependency that VM should |
| * restore irq config before line level. |
| */ |
| new_level = !!(val & (1U << i)); |
| spin_lock_irqsave(&irq->irq_lock, flags); |
| irq->line_level = new_level; |
| if (new_level) |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| else |
| spin_unlock_irqrestore(&irq->irq_lock, flags); |
| |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| } |
| |
| static int match_region(const void *key, const void *elt) |
| { |
| const unsigned int offset = (unsigned long)key; |
| const struct vgic_register_region *region = elt; |
| |
| if (offset < region->reg_offset) |
| return -1; |
| |
| if (offset >= region->reg_offset + region->len) |
| return 1; |
| |
| return 0; |
| } |
| |
| const struct vgic_register_region * |
| vgic_find_mmio_region(const struct vgic_register_region *regions, |
| int nr_regions, unsigned int offset) |
| { |
| return bsearch((void *)(uintptr_t)offset, regions, nr_regions, |
| sizeof(regions[0]), match_region); |
| } |
| |
| void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| { |
| if (kvm_vgic_global_state.type == VGIC_V2) |
| vgic_v2_set_vmcr(vcpu, vmcr); |
| else |
| vgic_v3_set_vmcr(vcpu, vmcr); |
| } |
| |
| void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| { |
| if (kvm_vgic_global_state.type == VGIC_V2) |
| vgic_v2_get_vmcr(vcpu, vmcr); |
| else |
| vgic_v3_get_vmcr(vcpu, vmcr); |
| } |
| |
| /* |
| * kvm_mmio_read_buf() returns a value in a format where it can be converted |
| * to a byte array and be directly observed as the guest wanted it to appear |
| * in memory if it had done the store itself, which is LE for the GIC, as the |
| * guest knows the GIC is always LE. |
| * |
| * We convert this value to the CPUs native format to deal with it as a data |
| * value. |
| */ |
| unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len) |
| { |
| unsigned long data = kvm_mmio_read_buf(val, len); |
| |
| switch (len) { |
| case 1: |
| return data; |
| case 2: |
| return le16_to_cpu(data); |
| case 4: |
| return le32_to_cpu(data); |
| default: |
| return le64_to_cpu(data); |
| } |
| } |
| |
| /* |
| * kvm_mmio_write_buf() expects a value in a format such that if converted to |
| * a byte array it is observed as the guest would see it if it could perform |
| * the load directly. Since the GIC is LE, and the guest knows this, the |
| * guest expects a value in little endian format. |
| * |
| * We convert the data value from the CPUs native format to LE so that the |
| * value is returned in the proper format. |
| */ |
| void vgic_data_host_to_mmio_bus(void *buf, unsigned int len, |
| unsigned long data) |
| { |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| data = cpu_to_le16(data); |
| break; |
| case 4: |
| data = cpu_to_le32(data); |
| break; |
| default: |
| data = cpu_to_le64(data); |
| } |
| |
| kvm_mmio_write_buf(buf, len, data); |
| } |
| |
| static |
| struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev) |
| { |
| return container_of(dev, struct vgic_io_device, dev); |
| } |
| |
| static bool check_region(const struct kvm *kvm, |
| const struct vgic_register_region *region, |
| gpa_t addr, int len) |
| { |
| int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS; |
| |
| switch (len) { |
| case sizeof(u8): |
| flags = VGIC_ACCESS_8bit; |
| break; |
| case sizeof(u32): |
| flags = VGIC_ACCESS_32bit; |
| break; |
| case sizeof(u64): |
| flags = VGIC_ACCESS_64bit; |
| break; |
| default: |
| return false; |
| } |
| |
| if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) { |
| if (!region->bits_per_irq) |
| return true; |
| |
| /* Do we access a non-allocated IRQ? */ |
| return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs; |
| } |
| |
| return false; |
| } |
| |
| const struct vgic_register_region * |
| vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev, |
| gpa_t addr, int len) |
| { |
| const struct vgic_register_region *region; |
| |
| region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions, |
| addr - iodev->base_addr); |
| if (!region || !check_region(vcpu->kvm, region, addr, len)) |
| return NULL; |
| |
| return region; |
| } |
| |
| static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, u32 *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| struct kvm_vcpu *r_vcpu; |
| |
| region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32)); |
| if (!region) { |
| *val = 0; |
| return 0; |
| } |
| |
| r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; |
| if (region->uaccess_read) |
| *val = region->uaccess_read(r_vcpu, addr, sizeof(u32)); |
| else |
| *val = region->read(r_vcpu, addr, sizeof(u32)); |
| |
| return 0; |
| } |
| |
| static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, const u32 *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| struct kvm_vcpu *r_vcpu; |
| |
| region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32)); |
| if (!region) |
| return 0; |
| |
| r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu; |
| if (region->uaccess_write) |
| return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val); |
| |
| region->write(r_vcpu, addr, sizeof(u32), *val); |
| return 0; |
| } |
| |
| /* |
| * Userland access to VGIC registers. |
| */ |
| int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev, |
| bool is_write, int offset, u32 *val) |
| { |
| if (is_write) |
| return vgic_uaccess_write(vcpu, &dev->dev, offset, val); |
| else |
| return vgic_uaccess_read(vcpu, &dev->dev, offset, val); |
| } |
| |
| static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, int len, void *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| unsigned long data = 0; |
| |
| region = vgic_get_mmio_region(vcpu, iodev, addr, len); |
| if (!region) { |
| memset(val, 0, len); |
| return 0; |
| } |
| |
| switch (iodev->iodev_type) { |
| case IODEV_CPUIF: |
| data = region->read(vcpu, addr, len); |
| break; |
| case IODEV_DIST: |
| data = region->read(vcpu, addr, len); |
| break; |
| case IODEV_REDIST: |
| data = region->read(iodev->redist_vcpu, addr, len); |
| break; |
| case IODEV_ITS: |
| data = region->its_read(vcpu->kvm, iodev->its, addr, len); |
| break; |
| } |
| |
| vgic_data_host_to_mmio_bus(val, len, data); |
| return 0; |
| } |
| |
| static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev, |
| gpa_t addr, int len, const void *val) |
| { |
| struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev); |
| const struct vgic_register_region *region; |
| unsigned long data = vgic_data_mmio_bus_to_host(val, len); |
| |
| region = vgic_get_mmio_region(vcpu, iodev, addr, len); |
| if (!region) |
| return 0; |
| |
| switch (iodev->iodev_type) { |
| case IODEV_CPUIF: |
| region->write(vcpu, addr, len, data); |
| break; |
| case IODEV_DIST: |
| region->write(vcpu, addr, len, data); |
| break; |
| case IODEV_REDIST: |
| region->write(iodev->redist_vcpu, addr, len, data); |
| break; |
| case IODEV_ITS: |
| region->its_write(vcpu->kvm, iodev->its, addr, len, data); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| struct kvm_io_device_ops kvm_io_gic_ops = { |
| .read = dispatch_mmio_read, |
| .write = dispatch_mmio_write, |
| }; |
| |
| int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address, |
| enum vgic_type type) |
| { |
| struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev; |
| int ret = 0; |
| unsigned int len; |
| |
| switch (type) { |
| case VGIC_V2: |
| len = vgic_v2_init_dist_iodev(io_device); |
| break; |
| case VGIC_V3: |
| len = vgic_v3_init_dist_iodev(io_device); |
| break; |
| default: |
| BUG_ON(1); |
| } |
| |
| io_device->base_addr = dist_base_address; |
| io_device->iodev_type = IODEV_DIST; |
| io_device->redist_vcpu = NULL; |
| |
| mutex_lock(&kvm->slots_lock); |
| ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address, |
| len, &io_device->dev); |
| mutex_unlock(&kvm->slots_lock); |
| |
| return ret; |
| } |