blob: 0c2ec1c21434c5ea79b36b51c700d7b2cd110081 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
* influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
/* Define max times to check status register before we give up. */
/*
* For everything but full-chip erase; probably could be much smaller, but kept
* around for safety for now
*/
#define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
/*
* For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
* for larger flash
*/
#define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
#define SPI_NOR_MAX_ID_LEN 6
#define SPI_NOR_MAX_ADDR_WIDTH 4
struct spi_nor_read_command {
u8 num_mode_clocks;
u8 num_wait_states;
u8 opcode;
enum spi_nor_protocol proto;
};
struct spi_nor_pp_command {
u8 opcode;
enum spi_nor_protocol proto;
};
enum spi_nor_read_command_index {
SNOR_CMD_READ,
SNOR_CMD_READ_FAST,
SNOR_CMD_READ_1_1_1_DTR,
/* Dual SPI */
SNOR_CMD_READ_1_1_2,
SNOR_CMD_READ_1_2_2,
SNOR_CMD_READ_2_2_2,
SNOR_CMD_READ_1_2_2_DTR,
/* Quad SPI */
SNOR_CMD_READ_1_1_4,
SNOR_CMD_READ_1_4_4,
SNOR_CMD_READ_4_4_4,
SNOR_CMD_READ_1_4_4_DTR,
/* Octal SPI */
SNOR_CMD_READ_1_1_8,
SNOR_CMD_READ_1_8_8,
SNOR_CMD_READ_8_8_8,
SNOR_CMD_READ_1_8_8_DTR,
SNOR_CMD_READ_MAX
};
enum spi_nor_pp_command_index {
SNOR_CMD_PP,
/* Quad SPI */
SNOR_CMD_PP_1_1_4,
SNOR_CMD_PP_1_4_4,
SNOR_CMD_PP_4_4_4,
/* Octal SPI */
SNOR_CMD_PP_1_1_8,
SNOR_CMD_PP_1_8_8,
SNOR_CMD_PP_8_8_8,
SNOR_CMD_PP_MAX
};
struct spi_nor_flash_parameter {
u64 size;
u32 page_size;
struct spi_nor_hwcaps hwcaps;
struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
int (*quad_enable)(struct spi_nor *nor);
};
struct sfdp_parameter_header {
u8 id_lsb;
u8 minor;
u8 major;
u8 length; /* in double words */
u8 parameter_table_pointer[3]; /* byte address */
u8 id_msb;
};
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
(((p)->parameter_table_pointer[2] << 16) | \
((p)->parameter_table_pointer[1] << 8) | \
((p)->parameter_table_pointer[0] << 0))
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
#define SFDP_SIGNATURE 0x50444653U
#define SFDP_JESD216_MAJOR 1
#define SFDP_JESD216_MINOR 0
#define SFDP_JESD216A_MINOR 5
#define SFDP_JESD216B_MINOR 6
struct sfdp_header {
u32 signature; /* Ox50444653U <=> "SFDP" */
u8 minor;
u8 major;
u8 nph; /* 0-base number of parameter headers */
u8 unused;
/* Basic Flash Parameter Table. */
struct sfdp_parameter_header bfpt_header;
};
/* Basic Flash Parameter Table */
/*
* JESD216 rev B defines a Basic Flash Parameter Table of 16 DWORDs.
* They are indexed from 1 but C arrays are indexed from 0.
*/
#define BFPT_DWORD(i) ((i) - 1)
#define BFPT_DWORD_MAX 16
/* The first version of JESB216 defined only 9 DWORDs. */
#define BFPT_DWORD_MAX_JESD216 9
/* 1st DWORD. */
#define BFPT_DWORD1_FAST_READ_1_1_2 BIT(16)
#define BFPT_DWORD1_ADDRESS_BYTES_MASK GENMASK(18, 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_ONLY (0x0UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_3_OR_4 (0x1UL << 17)
#define BFPT_DWORD1_ADDRESS_BYTES_4_ONLY (0x2UL << 17)
#define BFPT_DWORD1_DTR BIT(19)
#define BFPT_DWORD1_FAST_READ_1_2_2 BIT(20)
#define BFPT_DWORD1_FAST_READ_1_4_4 BIT(21)
#define BFPT_DWORD1_FAST_READ_1_1_4 BIT(22)
/* 5th DWORD. */
#define BFPT_DWORD5_FAST_READ_2_2_2 BIT(0)
#define BFPT_DWORD5_FAST_READ_4_4_4 BIT(4)
/* 11th DWORD. */
#define BFPT_DWORD11_PAGE_SIZE_SHIFT 4
#define BFPT_DWORD11_PAGE_SIZE_MASK GENMASK(7, 4)
/* 15th DWORD. */
/*
* (from JESD216 rev B)
* Quad Enable Requirements (QER):
* - 000b: Device does not have a QE bit. Device detects 1-1-4 and 1-4-4
* reads based on instruction. DQ3/HOLD# functions are hold during
* instruction phase.
* - 001b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* Writing only one byte to the status register has the side-effect of
* clearing status register 2, including the QE bit. The 100b code is
* used if writing one byte to the status register does not modify
* status register 2.
* - 010b: QE is bit 6 of status register 1. It is set via Write Status with
* one data byte where bit 6 is one.
* [...]
* - 011b: QE is bit 7 of status register 2. It is set via Write status
* register 2 instruction 3Eh with one data byte where bit 7 is one.
* [...]
* The status register 2 is read using instruction 3Fh.
* - 100b: QE is bit 1 of status register 2. It is set via Write Status with
* two data bytes where bit 1 of the second byte is one.
* [...]
* In contrast to the 001b code, writing one byte to the status
* register does not modify status register 2.
* - 101b: QE is bit 1 of status register 2. Status register 1 is read using
* Read Status instruction 05h. Status register2 is read using
* instruction 35h. QE is set via Writ Status instruction 01h with
* two data bytes where bit 1 of the second byte is one.
* [...]
*/
#define BFPT_DWORD15_QER_MASK GENMASK(22, 20)
#define BFPT_DWORD15_QER_NONE (0x0UL << 20) /* Micron */
#define BFPT_DWORD15_QER_SR2_BIT1_BUGGY (0x1UL << 20)
#define BFPT_DWORD15_QER_SR1_BIT6 (0x2UL << 20) /* Macronix */
#define BFPT_DWORD15_QER_SR2_BIT7 (0x3UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1_NO_RD (0x4UL << 20)
#define BFPT_DWORD15_QER_SR2_BIT1 (0x5UL << 20) /* Spansion */
struct sfdp_bfpt {
u32 dwords[BFPT_DWORD_MAX];
};
/**
* struct spi_nor_fixups - SPI NOR fixup hooks
* @post_bfpt: called after the BFPT table has been parsed
*
* Those hooks can be used to tweak the SPI NOR configuration when the SFDP
* table is broken or not available.
*/
struct spi_nor_fixups {
int (*post_bfpt)(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
};
struct flash_info {
char *name;
/*
* This array stores the ID bytes.
* The first three bytes are the JEDIC ID.
* JEDEC ID zero means "no ID" (mostly older chips).
*/
u8 id[SPI_NOR_MAX_ID_LEN];
u8 id_len;
/* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 page_size;
u16 addr_width;
u16 flags;
#define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */
#define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */
#define SST_WRITE BIT(2) /* use SST byte programming */
#define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */
#define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */
#define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */
#define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */
#define USE_FSR BIT(7) /* use flag status register */
#define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */
#define SPI_NOR_HAS_TB BIT(9) /*
* Flash SR has Top/Bottom (TB) protect
* bit. Must be used with
* SPI_NOR_HAS_LOCK.
*/
#define SPI_S3AN BIT(10) /*
* Xilinx Spartan 3AN In-System Flash
* (MFR cannot be used for probing
* because it has the same value as
* ATMEL flashes)
*/
#define SPI_NOR_4B_OPCODES BIT(11) /*
* Use dedicated 4byte address op codes
* to support memory size above 128Mib.
*/
#define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */
#define SPI_NOR_SKIP_SFDP BIT(13) /* Skip parsing of SFDP tables */
#define USE_CLSR BIT(14) /* use CLSR command */
#define SPI_NOR_OCTAL_READ BIT(15) /* Flash supports Octal Read */
/* Part specific fixup hooks. */
const struct spi_nor_fixups *fixups;
int (*quad_enable)(struct spi_nor *nor);
};
#define JEDEC_MFR(info) ((info)->id[0])
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
if (ret < 0) {
pr_err("error %d reading SR\n", (int) ret);
return ret;
}
return val;
}
/*
* Read the flag status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_fsr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
if (ret < 0) {
pr_err("error %d reading FSR\n", ret);
return ret;
}
return val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occurred.
*/
static int read_cr(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct spi_nor *nor, u8 val)
{
nor->cmd_buf[0] = val;
return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static int write_enable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
}
/*
* Send write disable instruction to the chip.
*/
static int write_disable(struct spi_nor *nor)
{
return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
}
static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
{
return mtd->priv;
}
static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == opcode)
return table[i][1];
/* No conversion found, keep input op code. */
return opcode;
}
static u8 spi_nor_convert_3to4_read(u8 opcode)
{
static const u8 spi_nor_3to4_read[][2] = {
{ SPINOR_OP_READ, SPINOR_OP_READ_4B },
{ SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
{ SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
{ SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
{ SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
{ SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
{ SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
{ SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
{ SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
{ SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
{ SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
ARRAY_SIZE(spi_nor_3to4_read));
}
static u8 spi_nor_convert_3to4_program(u8 opcode)
{
static const u8 spi_nor_3to4_program[][2] = {
{ SPINOR_OP_PP, SPINOR_OP_PP_4B },
{ SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
{ SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
{ SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
{ SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
ARRAY_SIZE(spi_nor_3to4_program));
}
static u8 spi_nor_convert_3to4_erase(u8 opcode)
{
static const u8 spi_nor_3to4_erase[][2] = {
{ SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
{ SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
{ SPINOR_OP_SE, SPINOR_OP_SE_4B },
};
return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
ARRAY_SIZE(spi_nor_3to4_erase));
}
static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
{
/* Do some manufacturer fixups first */
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_SPANSION:
/* No small sector erase for 4-byte command set */
nor->erase_opcode = SPINOR_OP_SE;
nor->mtd.erasesize = nor->info->sector_size;
break;
default:
break;
}
nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
if (!spi_nor_has_uniform_erase(nor)) {
struct spi_nor_erase_map *map = &nor->erase_map;
struct spi_nor_erase_type *erase;
int i;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
erase = &map->erase_type[i];
erase->opcode =
spi_nor_convert_3to4_erase(erase->opcode);
}
}
}
/* Enable/disable 4-byte addressing mode. */
static int set_4byte(struct spi_nor *nor, bool enable)
{
int status;
bool need_wren = false;
u8 cmd;
switch (JEDEC_MFR(nor->info)) {
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
/* Some Micron need WREN command; all will accept it */
need_wren = true;
/* fall through */
case SNOR_MFR_MACRONIX:
case SNOR_MFR_WINBOND:
if (need_wren)
write_enable(nor);
cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
status = nor->write_reg(nor, cmd, NULL, 0);
if (need_wren)
write_disable(nor);
if (!status && !enable &&
JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
/*
* On Winbond W25Q256FV, leaving 4byte mode causes
* the Extended Address Register to be set to 1, so all
* 3-byte-address reads come from the second 16M.
* We must clear the register to enable normal behavior.
*/
write_enable(nor);
nor->cmd_buf[0] = 0;
nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
write_disable(nor);
}
return status;
default:
/* Spansion style */
nor->cmd_buf[0] = enable << 7;
return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
}
}
static int s3an_sr_ready(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
return ret;
}
return !!(val & XSR_RDY);
}
static int spi_nor_sr_ready(struct spi_nor *nor)
{
int sr = read_sr(nor);
if (sr < 0)
return sr;
if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
if (sr & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
return -EIO;
}
return !(sr & SR_WIP);
}
static int spi_nor_fsr_ready(struct spi_nor *nor)
{
int fsr = read_fsr(nor);
if (fsr < 0)
return fsr;
if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
if (fsr & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
if (fsr & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
return -EIO;
}
return fsr & FSR_READY;
}
static int spi_nor_ready(struct spi_nor *nor)
{
int sr, fsr;
if (nor->flags & SNOR_F_READY_XSR_RDY)
sr = s3an_sr_ready(nor);
else
sr = spi_nor_sr_ready(nor);
if (sr < 0)
return sr;
fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
if (fsr < 0)
return fsr;
return sr && fsr;
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout_jiffies)
{
unsigned long deadline;
int timeout = 0, ret;
deadline = jiffies + timeout_jiffies;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
ret = spi_nor_ready(nor);
if (ret < 0)
return ret;
if (ret)
return 0;
cond_resched();
}
dev_err(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct spi_nor *nor)
{
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
}
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
int ret = 0;
mutex_lock(&nor->lock);
if (nor->prepare) {
ret = nor->prepare(nor, ops);
if (ret) {
dev_err(nor->dev, "failed in the preparation.\n");
mutex_unlock(&nor->lock);
return ret;
}
}
return ret;
}
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
if (nor->unprepare)
nor->unprepare(nor, ops);
mutex_unlock(&nor->lock);
}
/*
* This code converts an address to the Default Address Mode, that has non
* power of two page sizes. We must support this mode because it is the default
* mode supported by Xilinx tools, it can access the whole flash area and
* changing over to the Power-of-two mode is irreversible and corrupts the
* original data.
* Addr can safely be unsigned int, the biggest S3AN device is smaller than
* 4 MiB.
*/
static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
{
unsigned int offset;
unsigned int page;
offset = addr % nor->page_size;
page = addr / nor->page_size;
page <<= (nor->page_size > 512) ? 10 : 9;
return page | offset;
}
/*
* Initiate the erasure of a single sector
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
int i;
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
addr = spi_nor_s3an_addr_convert(nor, addr);
if (nor->erase)
return nor->erase(nor, addr);
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
for (i = nor->addr_width - 1; i >= 0; i--) {
buf[i] = addr & 0xff;
addr >>= 8;
}
return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
}
/**
* spi_nor_div_by_erase_size() - calculate remainder and update new dividend
* @erase: pointer to a structure that describes a SPI NOR erase type
* @dividend: dividend value
* @remainder: pointer to u32 remainder (will be updated)
*
* Return: the result of the division
*/
static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
u64 dividend, u32 *remainder)
{
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
*remainder = (u32)dividend & erase->size_mask;
return dividend >> erase->size_shift;
}
/**
* spi_nor_find_best_erase_type() - find the best erase type for the given
* offset in the serial flash memory and the
* number of bytes to erase. The region in
* which the address fits is expected to be
* provided.
* @map: the erase map of the SPI NOR
* @region: pointer to a structure that describes a SPI NOR erase region
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Return: a pointer to the best fitted erase type, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
const struct spi_nor_erase_region *region,
u64 addr, u32 len)
{
const struct spi_nor_erase_type *erase;
u32 rem;
int i;
u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
/*
* Erase types are ordered by size, with the smallest erase type at
* index 0.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
/* Does the erase region support the tested erase type? */
if (!(erase_mask & BIT(i)))
continue;
erase = &map->erase_type[i];
/* Don't erase more than what the user has asked for. */
if (erase->size > len)
continue;
/* Alignment is not mandatory for overlaid regions */
if (region->offset & SNOR_OVERLAID_REGION)
return erase;
spi_nor_div_by_erase_size(erase, addr, &rem);
if (rem)
continue;
else
return erase;
}
return NULL;
}
/**
* spi_nor_region_next() - get the next spi nor region
* @region: pointer to a structure that describes a SPI NOR erase region
*
* Return: the next spi nor region or NULL if last region.
*/
static struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region *region)
{
if (spi_nor_region_is_last(region))
return NULL;
region++;
return region;
}
/**
* spi_nor_find_erase_region() - find the region of the serial flash memory in
* which the offset fits
* @map: the erase map of the SPI NOR
* @addr: offset in the serial flash memory
*
* Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
{
struct spi_nor_erase_region *region = map->regions;
u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
u64 region_end = region_start + region->size;
while (addr < region_start || addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
return ERR_PTR(-EINVAL);
region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
region_end = region_start + region->size;
}
return region;
}
/**
* spi_nor_init_erase_cmd() - initialize an erase command
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
*
* Return: the pointer to the allocated erase command, ERR_PTR(-errno)
* otherwise.
*/
static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
const struct spi_nor_erase_type *erase)
{
struct spi_nor_erase_command *cmd;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&cmd->list);
cmd->opcode = erase->opcode;
cmd->count = 1;
if (region->offset & SNOR_OVERLAID_REGION)
cmd->size = region->size;
else
cmd->size = erase->size;
return cmd;
}
/**
* spi_nor_destroy_erase_cmd_list() - destroy erase command list
* @erase_list: list of erase commands
*/
static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
{
struct spi_nor_erase_command *cmd, *next;
list_for_each_entry_safe(cmd, next, erase_list, list) {
list_del(&cmd->list);
kfree(cmd);
}
}
/**
* spi_nor_init_erase_cmd_list() - initialize erase command list
* @nor: pointer to a 'struct spi_nor'
* @erase_list: list of erase commands to be executed once we validate that the
* erase can be performed
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Builds the list of best fitted erase commands and verifies if the erase can
* be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
struct list_head *erase_list,
u64 addr, u32 len)
{
const struct spi_nor_erase_map *map = &nor->erase_map;
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
struct spi_nor_erase_region *region;
struct spi_nor_erase_command *cmd = NULL;
u64 region_end;
int ret = -EINVAL;
region = spi_nor_find_erase_region(map, addr);
if (IS_ERR(region))
return PTR_ERR(region);
region_end = spi_nor_region_end(region);
while (len) {
erase = spi_nor_find_best_erase_type(map, region, addr, len);
if (!erase)
goto destroy_erase_cmd_list;
if (prev_erase != erase ||
region->offset & SNOR_OVERLAID_REGION) {
cmd = spi_nor_init_erase_cmd(region, erase);
if (IS_ERR(cmd)) {
ret = PTR_ERR(cmd);
goto destroy_erase_cmd_list;
}
list_add_tail(&cmd->list, erase_list);
} else {
cmd->count++;
}
addr += cmd->size;
len -= cmd->size;
if (len && addr >= region_end) {
region = spi_nor_region_next(region);
if (!region)
goto destroy_erase_cmd_list;
region_end = spi_nor_region_end(region);
}
prev_erase = erase;
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(erase_list);
return ret;
}
/**
* spi_nor_erase_multi_sectors() - perform a non-uniform erase
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to erase
*
* Build a list of best fitted erase commands and execute it once we validate
* that the erase can be performed.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
{
LIST_HEAD(erase_list);
struct spi_nor_erase_command *cmd, *next;
int ret;
ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
if (ret)
return ret;
list_for_each_entry_safe(cmd, next, &erase_list, list) {
nor->erase_opcode = cmd->opcode;
while (cmd->count) {
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto destroy_erase_cmd_list;
addr += cmd->size;
cmd->count--;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto destroy_erase_cmd_list;
}
list_del(&cmd->list);
kfree(cmd);
}
return 0;
destroy_erase_cmd_list:
spi_nor_destroy_erase_cmd_list(&erase_list);
return ret;
}
/*
* Erase an address range on the nor chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
u32 addr, len;
uint32_t rem;
int ret;
dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
(long long)instr->len);
if (spi_nor_has_uniform_erase(nor)) {
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
}
addr = instr->addr;
len = instr->len;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
if (ret)
return ret;
/* whole-chip erase? */
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
unsigned long timeout;
write_enable(nor);
if (erase_chip(nor)) {
ret = -EIO;
goto erase_err;
}
/*
* Scale the timeout linearly with the size of the flash, with
* a minimum calibrated to an old 2MB flash. We could try to
* pull these from CFI/SFDP, but these values should be good
* enough for now.
*/
timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
(unsigned long)(mtd->size / SZ_2M));
ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
if (ret)
goto erase_err;
/* REVISIT in some cases we could speed up erasing large regions
* by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */
} else if (spi_nor_has_uniform_erase(nor)) {
while (len) {
write_enable(nor);
ret = spi_nor_erase_sector(nor, addr);
if (ret)
goto erase_err;
addr += mtd->erasesize;
len -= mtd->erasesize;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto erase_err;
}
/* erase multiple sectors */
} else {
ret = spi_nor_erase_multi_sectors(nor, addr, len);
if (ret)
goto erase_err;
}
write_disable(nor);
erase_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
return ret;
}
/* Write status register and ensure bits in mask match written values */
static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
{
int ret;
write_enable(nor);
ret = write_sr(nor, status_new);
if (ret)
return ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (ret < 0)
return ret;
return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
}
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
struct mtd_info *mtd = &nor->mtd;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
int shift = ffs(mask) - 1;
int pow;
if (!(sr & mask)) {
/* No protection */
*ofs = 0;
*len = 0;
} else {
pow = ((sr & mask) ^ mask) >> shift;
*len = mtd->size >> pow;
if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB)
*ofs = 0;
else
*ofs = mtd->size - *len;
}
}
/*
* Return 1 if the entire region is locked (if @locked is true) or unlocked (if
* @locked is false); 0 otherwise
*/
static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr, bool locked)
{
loff_t lock_offs;
uint64_t lock_len;
if (!len)
return 1;
stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
if (locked)
/* Requested range is a sub-range of locked range */
return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
else
/* Requested range does not overlap with locked range */
return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
}
static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, true);
}
static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
u8 sr)
{
return stm_check_lock_status_sr(nor, ofs, len, sr, false);
}
/*
* Lock a region of the flash. Compatible with ST Micro and similar flash.
* Supports the block protection bits BP{0,1,2} in the status register
* (SR). Does not support these features found in newer SR bitfields:
* - SEC: sector/block protect - only handle SEC=0 (block protect)
* - CMP: complement protect - only support CMP=0 (range is not complemented)
*
* Support for the following is provided conditionally for some flash:
* - TB: top/bottom protect
*
* Sample table portion for 8MB flash (Winbond w25q64fw):
*
* SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
* --------------------------------------------------------------------------
* X | X | 0 | 0 | 0 | NONE | NONE
* 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
* 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
* 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
* 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
* 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
* 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
* X | X | 1 | 1 | 1 | 8 MB | ALL
* ------|-------|-------|-------|-------|---------------|-------------------
* 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64
* 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32
* 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16
* 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8
* 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4
* 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2
*
* Returns negative on errors, 0 on success.
*/
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is unlocked, we don't need to do anything */
if (stm_is_locked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is unlocked, we can't use 'bottom' protection */
if (!stm_is_locked_sr(nor, 0, ofs, status_old))
can_be_bottom = false;
/* If anything above us is unlocked, we can't use 'top' protection */
if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_top = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should end up locked */
if (use_top)
lock_len = mtd->size - ofs;
else
lock_len = ofs + len;
/*
* Need smallest pow such that:
*
* 1 / (2^pow) <= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
*/
pow = ilog2(mtd->size) - ilog2(lock_len);
val = mask - (pow << shift);
if (val & ~mask)
return -EINVAL;
/* Don't "lock" with no region! */
if (!(val & mask))
return -EINVAL;
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Disallow further writes if WP pin is asserted */
status_new |= SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not unlock other areas */
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Unlock a region of the flash. See stm_lock() for more info
*
* Returns negative on errors, 0 on success.
*/
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
int status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
status_old = read_sr(nor);
if (status_old < 0)
return status_old;
/* If nothing in our range is locked, we don't need to do anything */
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
return 0;
/* If anything below us is locked, we can't use 'top' protection */
if (!stm_is_unlocked_sr(nor, 0, ofs, status_old))
can_be_top = false;
/* If anything above us is locked, we can't use 'bottom' protection */
if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
status_old))
can_be_bottom = false;
if (!can_be_bottom && !can_be_top)
return -EINVAL;
/* Prefer top, if both are valid */
use_top = can_be_top;
/* lock_len: length of region that should remain locked */
if (use_top)
lock_len = mtd->size - (ofs + len);
else
lock_len = ofs;
/*
* Need largest pow such that:
*
* 1 / (2^pow) >= (len / size)
*
* so (assuming power-of-2 size) we do:
*
* pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
*/
pow = ilog2(mtd->size) - order_base_2(lock_len);
if (lock_len == 0) {
val = 0; /* fully unlocked */
} else {
val = mask - (pow << shift);
/* Some power-of-two sizes are not supported */
if (val & ~mask)
return -EINVAL;
}
status_new = (status_old & ~mask & ~SR_TB) | val;
/* Don't protect status register if we're fully unlocked */
if (lock_len == 0)
status_new &= ~SR_SRWD;
if (!use_top)
status_new |= SR_TB;
/* Don't bother if they're the same */
if (status_new == status_old)
return 0;
/* Only modify protection if it will not lock other areas */
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
return write_sr_and_check(nor, status_new, mask);
}
/*
* Check if a region of the flash is (completely) locked. See stm_lock() for
* more info.
*
* Returns 1 if entire region is locked, 0 if any portion is unlocked, and
* negative on errors.
*/
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
int status;
status = read_sr(nor);
if (status < 0)
return status;
return stm_is_locked_sr(nor, ofs, len, status);
}
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
if (ret)
return ret;
ret = nor->flash_lock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
return ret;
}
static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
if (ret)
return ret;
ret = nor->flash_unlock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
if (ret)
return ret;
ret = nor->flash_is_locked(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occurred.
*/
static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
{
int ret;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
if (ret < 0) {
dev_err(nor->dev,
"error while writing configuration register\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret) {
dev_err(nor->dev,
"timeout while writing configuration register\n");
return ret;
}
return 0;
}
/**
* macronix_quad_enable() - set QE bit in Status Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register.
*
* bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int macronix_quad_enable(struct spi_nor *nor)
{
int ret, val;
val = read_sr(nor);
if (val < 0)
return val;
if (val & SR_QUAD_EN_MX)
return 0;
write_enable(nor);
write_sr(nor, val | SR_QUAD_EN_MX);
ret = spi_nor_wait_till_ready(nor);
if (ret)
return ret;
ret = read_sr(nor);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(nor->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
/**
* spansion_quad_enable() - set QE bit in Configuraiton Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function is kept for legacy purpose because it has been used for a
* long time without anybody complaining but it should be considered as
* deprecated and maybe buggy.
* First, this function doesn't care about the previous values of the Status
* and Configuration Registers when it sets the QE bit (bit 1) in the
* Configuration Register: all other bits are cleared, which may have unwanted
* side effects like removing some block protections.
* Secondly, it uses the Read Configuration Register (35h) instruction though
* some very old and few memories don't support this instruction. If a pull-up
* resistor is present on the MISO/IO1 line, we might still be able to pass the
* "read back" test because the QSPI memory doesn't recognize the command,
* so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
int ret;
ret = write_sr_cr(nor, sr_cr);
if (ret)
return ret;
/* read back and check it */
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_err(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
/**
* spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories not supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
{
u8 sr_cr[2];
int ret;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_err(nor->dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
sr_cr[1] = CR_QUAD_EN_SPAN;
return write_sr_cr(nor, sr_cr);
}
/**
* spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Configuration Register.
* This function should be used with QSPI memories supporting the Read
* Configuration Register (35h) instruction.
*
* bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
* memories.
*
* Return: 0 on success, -errno otherwise.
*/
static int spansion_read_cr_quad_enable(struct spi_nor *nor)
{
struct device *dev = nor->dev;
u8 sr_cr[2];
int ret;
/* Check current Quad Enable bit value. */
ret = read_cr(nor);
if (ret < 0) {
dev_err(dev, "error while reading configuration register\n");
return -EINVAL;
}
if (ret & CR_QUAD_EN_SPAN)
return 0;
sr_cr[1] = ret | CR_QUAD_EN_SPAN;
/* Keep the current value of the Status Register. */
ret = read_sr(nor);
if (ret < 0) {
dev_err(dev, "error while reading status register\n");
return -EINVAL;
}
sr_cr[0] = ret;
ret = write_sr_cr(nor, sr_cr);
if (ret)
return ret;
/* Read back and check it. */
ret = read_cr(nor);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_err(nor->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
/**
* sr2_bit7_quad_enable() - set QE bit in Status Register 2.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register 2.
*
* This is one of the procedures to set the QE bit described in the SFDP
* (JESD216 rev B) specification but no manufacturer using this procedure has
* been identified yet, hence the name of the function.
*
* Return: 0 on success, -errno otherwise.
*/
static int sr2_bit7_quad_enable(struct spi_nor *nor)
{
u8 sr2;
int ret;
/* Check current Quad Enable bit value. */
ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
if (ret)
return ret;
if (sr2 & SR2_QUAD_EN_BIT7)
return 0;
/* Update the Quad Enable bit. */
sr2 |= SR2_QUAD_EN_BIT7;
write_enable(nor);
ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
if (ret < 0) {
dev_err(nor->dev, "error while writing status register 2\n");
return -EINVAL;
}
ret = spi_nor_wait_till_ready(nor);
if (ret < 0) {
dev_err(nor->dev, "timeout while writing status register 2\n");
return ret;
}
/* Read back and check it. */
ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
dev_err(nor->dev, "SR2 Quad bit not set\n");
return -EINVAL;
}
return 0;
}
/**
* spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits.
* @nor: pointer to a 'struct spi_nor'
*
* Read-modify-write function that clears the Block Protection bits from the
* Status Register without affecting other bits.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_clear_sr_bp(struct spi_nor *nor)
{
int ret;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
ret = read_sr(nor);
if (ret < 0) {
dev_err(nor->dev, "error while reading status register\n");
return ret;
}
write_enable(nor);
ret = write_sr(nor, ret & ~mask);
if (ret) {
dev_err(nor->dev, "write to status register failed\n");
return ret;
}
ret = spi_nor_wait_till_ready(nor);
if (ret)
dev_err(nor->dev, "timeout while writing status register\n");
return ret;
}
/**
* spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection
* bits on spansion flashes.
* @nor: pointer to a 'struct spi_nor'
*
* Read-modify-write function that clears the Block Protection bits from the
* Status Register without affecting other bits. The function is tightly
* coupled with the spansion_quad_enable() function. Both assume that the Write
* Register with 16 bits, together with the Read Configuration Register (35h)
* instructions are supported.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor)
{
int ret;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 sr_cr[2] = {0};
/* Check current Quad Enable bit value. */
ret = read_cr(nor);
if (ret < 0) {
dev_err(nor->dev,
"error while reading configuration register\n");
return ret;
}
/*
* When the configuration register Quad Enable bit is one, only the
* Write Status (01h) command with two data bytes may be used.
*/
if (ret & CR_QUAD_EN_SPAN) {
sr_cr[1] = ret;
ret = read_sr(nor);
if (ret < 0) {
dev_err(nor->dev,
"error while reading status register\n");
return ret;
}
sr_cr[0] = ret & ~mask;
ret = write_sr_cr(nor, sr_cr);
if (ret)
dev_err(nor->dev, "16-bit write register failed\n");
return ret;
}
/*
* If the Quad Enable bit is zero, use the Write Status (01h) command
* with one data byte.
*/
return spi_nor_clear_sr_bp(nor);
}
/* Used when the "_ext_id" is two bytes at most */
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
#define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff, \
((_ext_id) >> 16) & 0xff, \
((_ext_id) >> 8) & 0xff, \
(_ext_id) & 0xff, \
}, \
.id_len = 6, \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags),
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = (_flags),
#define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \
.id = { \
((_jedec_id) >> 16) & 0xff, \
((_jedec_id) >> 8) & 0xff, \
(_jedec_id) & 0xff \
}, \
.id_len = 3, \
.sector_size = (8*_page_size), \
.n_sectors = (_n_sectors), \
.page_size = _page_size, \
.addr_width = 3, \
.flags = SPI_NOR_NO_FR | SPI_S3AN,
static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
/*
* MX25L25635F supports 4B opcodes but MX25L25635E does not.
* Unfortunately, Macronix has re-used the same JEDEC ID for both
* variants which prevents us from defining a new entry in the parts
* table.
* We need a way to differentiate MX25L25635E and MX25L25635F, and it
* seems that the F version advertises support for Fast Read 4-4-4 in
* its BFPT table.
*/
if (bfpt->dwords[BFPT_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
nor->flags |= SNOR_F_4B_OPCODES;
return 0;
}
static struct spi_nor_fixups mx25l25635_fixups = {
.post_bfpt = mx25l25635_post_bfpt_fixups,
};
/* NOTE: double check command sets and memory organization when you add
* more nor chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*
* All newly added entries should describe *hardware* and should use SECT_4K
* (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
* scenarios excluding small sectors there is config option that can be
* disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
* For historical (and compatibility) reasons (before we got above config) some
* old entries may be missing 4K flag.
*/
static const struct flash_info spi_nor_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
{ "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
{ "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
/* ESMT */
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
{ "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) },
{ "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) },
/* Everspin */
{ "mr25h128", CAT25_INFO( 16 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
/* Fujitsu */
{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
/* GigaDevice */
{
"gd25q16", INFO(0xc84015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q32", INFO(0xc84016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25lq32", INFO(0xc86016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q64", INFO(0xc84017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q128", INFO(0xc84018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
.quad_enable = macronix_quad_enable,
},
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* ISSI */
{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
{ "is25lq040b", INFO(0x9d4013, 0, 64 * 1024, 8,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp016d", INFO(0x9d6015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp080d", INFO(0x9d6014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25lp032", INFO(0x9d6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp064", INFO(0x9d6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp128", INFO(0x9d6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES) },
{ "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* Macronix */
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25u2033e", INFO(0xc22532, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25u3235f", INFO(0xc22536, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "mx25u4035", INFO(0xc22533, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25u8035", INFO(0xc22534, 0, 64 * 1024, 16, SECT_4K) },
{ "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25u12835f", INFO(0xc22538, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
.fixups = &mx25l25635_fixups },
{ "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_4B_OPCODES) },
{ "mx25v8035f", INFO(0xc22314, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "mx66u51235f", INFO(0xc2253a, 0, 64 * 1024, 1024, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "mx66l1g45g", INFO(0xc2201b, 0, 64 * 1024, 2048, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
/* Micron <--> ST Micro */
{ "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
{ "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
/* Micron */
{
"mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512,
SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
SPI_NOR_4B_OPCODES)
},
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
/* Spansion/Cypress -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, USE_CLSR) },
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | USE_CLSR) },
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
{ "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
{ "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) },
{ "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{
"w25q16dw", INFO(0xef6015, 0, 64 * 1024, 32,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{
"w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"w25q32jv", INFO(0xef7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{
"w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{
"w25q128jv", INFO(0xef7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
/* Xilinx S3AN Internal Flash */
{ "3S50AN", S3AN_INFO(0x1f2200, 64, 264) },
{ "3S200AN", S3AN_INFO(0x1f2400, 256, 264) },
{ "3S400AN", S3AN_INFO(0x1f2400, 256, 264) },
{ "3S700AN", S3AN_INFO(0x1f2500, 512, 264) },
{ "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) },
/* XMC (Wuhan Xinxin Semiconductor Manufacturing Corp.) */
{ "XM25QH64A", INFO(0x207017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "XM25QH128A", INFO(0x207018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ },
};
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
u8 id[SPI_NOR_MAX_ID_LEN];
const struct flash_info *info;
tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
if (tmp < 0) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
info = &spi_nor_ids[tmp];
if (info->id_len) {
if (!memcmp(info->id, id, info->id_len))
return &spi_nor_ids[tmp];
}
}
dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
SPI_NOR_MAX_ID_LEN, id);
return ERR_PTR(-ENODEV);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
int ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
if (ret)
return ret;
while (len) {
loff_t addr = from;
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
addr = spi_nor_s3an_addr_convert(nor, addr);
ret = nor->read(nor, addr, len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
goto read_err;
}
if (ret < 0)
goto read_err;
WARN_ON(ret > len);
*retlen += ret;
buf += ret;
from += ret;
len -= ret;
}
ret = 0;
read_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
return ret;
}
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t actual;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
write_enable(nor);
nor->sst_write_second = false;
actual = to % 2;
/* Start write from odd address. */
if (actual) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
ret = nor->write(nor, to, 1, buf);
if (ret < 0)
goto sst_write_err;
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
}
to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
ret = nor->write(nor, to, 2, buf + actual);
if (ret < 0)
goto sst_write_err;
WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
write_disable(nor);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(nor);
nor->program_opcode = SPINOR_OP_BP;
ret = nor->write(nor, to, 1, buf + actual);
if (ret < 0)
goto sst_write_err;
WARN(ret != 1, "While writing 1 byte written %i bytes\n",
(int)ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto sst_write_err;
write_disable(nor);
actual += 1;
}
sst_write_err:
*retlen += actual;
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
}
/*
* Write an address range to the nor chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
size_t page_offset, page_remain, i;
ssize_t ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
if (ret)
return ret;
for (i = 0; i < len; ) {
ssize_t written;
loff_t addr = to + i;
/*
* If page_size is a power of two, the offset can be quickly
* calculated with an AND operation. On the other cases we
* need to do a modulus operation (more expensive).
* Power of two numbers have only one bit set and we can use
* the instruction hweight32 to detect if we need to do a
* modulus (do_div()) or not.
*/
if (hweight32(nor->page_size) == 1) {
page_offset = addr & (nor->page_size - 1);
} else {
uint64_t aux = addr;
page_offset = do_div(aux, nor->page_size);
}
/* the size of data remaining on the first page */
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
addr = spi_nor_s3an_addr_convert(nor, addr);
write_enable(nor);
ret = nor->write(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
ret = spi_nor_wait_till_ready(nor);
if (ret)
goto write_err;
*retlen += written;
i += written;
}
write_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
}
static int spi_nor_check(struct spi_nor *nor)
{
if (!nor->dev || !nor->read || !nor->write ||
!nor->read_reg || !nor->write_reg) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
return 0;
}
static int s3an_nor_scan(struct spi_nor *nor)
{
int ret;
u8 val;
ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
if (ret < 0) {
dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
return ret;
}
nor->erase_opcode = SPINOR_OP_XSE;
nor->program_opcode = SPINOR_OP_XPP;
nor->read_opcode = SPINOR_OP_READ;
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
/*
* This flashes have a page size of 264 or 528 bytes (known as
* Default addressing mode). It can be changed to a more standard
* Power of two mode where the page size is 256/512. This comes
* with a price: there is 3% less of space, the data is corrupted
* and the page size cannot be changed back to default addressing
* mode.
*
* The current addressing mode can be read from the XRDSR register
* and should not be changed, because is a destructive operation.
*/
if (val & XSR_PAGESIZE) {
/* Flash in Power of 2 mode */
nor->page_size = (nor->page_size == 264) ? 256 : 512;
nor->mtd.writebufsize = nor->page_size;
nor->mtd.size = 8 * nor->page_size * nor->info->n_sectors;
nor->mtd.erasesize = 8 * nor->page_size;
} else {
/* Flash in Default addressing mode */
nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
}
return 0;
}
static void
spi_nor_set_read_settings(struct spi_nor_read_command *read,
u8 num_mode_clocks,
u8 num_wait_states,
u8 opcode,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = num_mode_clocks;
read->num_wait_states = num_wait_states;
read->opcode = opcode;
read->proto = proto;
}
static void
spi_nor_set_pp_settings(struct spi_nor_pp_command *pp,
u8 opcode,
enum spi_nor_protocol proto)
{
pp->opcode = opcode;
pp->proto = proto;
}
static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
{
size_t i;
for (i = 0; i < size; i++)
if (table[i][0] == (int)hwcaps)
return table[i][1];
return -EINVAL;
}
static int spi_nor_hwcaps_read2cmd(u32 hwcaps)
{
static const int hwcaps_read2cmd[][2] = {
{ SNOR_HWCAPS_READ, SNOR_CMD_READ },
{ SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
{ SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
{ SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
{ SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
{ SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
{ SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
{ SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
{ SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
{ SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
{ SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
{ SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
{ SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
{ SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
{ SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
ARRAY_SIZE(hwcaps_read2cmd));
}
static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
{
static const int hwcaps_pp2cmd[][2] = {
{ SNOR_HWCAPS_PP, SNOR_CMD_PP },
{ SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
{ SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
{ SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
{ SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
{ SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
{ SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
};
return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
ARRAY_SIZE(hwcaps_pp2cmd));
}
/*
* Serial Flash Discoverable Parameters (SFDP) parsing.
*/
/**
* spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
* addr_width and read_dummy members of the struct spi_nor
* should be previously
* set.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to read
* @buf: buffer where the data is copied into (dma-safe memory)
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
int ret;
while (len) {
ret = nor->read(nor, addr, len, buf);
if (!ret || ret > len)
return -EIO;
if (ret < 0)
return ret;
buf += ret;
addr += ret;
len -= ret;
}
return 0;
}
/**
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
*
* Whatever the actual numbers of bytes for address and dummy cycles are
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
* followed by a 3-byte address and 8 dummy clock cycles.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
u8 addr_width, read_opcode, read_dummy;
int ret;
read_opcode = nor->read_opcode;
addr_width = nor->addr_width;
read_dummy = nor->read_dummy;
nor->read_opcode = SPINOR_OP_RDSFDP;
nor->addr_width = 3;
nor->read_dummy = 8;
ret = spi_nor_read_raw(nor, addr, len, buf);
nor->read_opcode = read_opcode;
nor->addr_width = addr_width;
nor->read_dummy = read_dummy;
return ret;
}
/**
* spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into
*
* Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
* guaranteed to be dma-safe.
*
* Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
* otherwise.
*/
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
size_t len, void *buf)
{
void *dma_safe_buf;
int ret;
dma_safe_buf = kmalloc(len, GFP_KERNEL);
if (!dma_safe_buf)
return -ENOMEM;
ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
memcpy(buf, dma_safe_buf, len);
kfree(dma_safe_buf);
return ret;
}
/* Fast Read settings. */
static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
u16 half,
enum spi_nor_protocol proto)
{
read->num_mode_clocks = (half >> 5) & 0x07;
read->num_wait_states = (half >> 0) & 0x1f;
read->opcode = (half >> 8) & 0xff;
read->proto = proto;
}
struct sfdp_bfpt_read {
/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
u32 hwcaps;
/*
* The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
* whether the Fast Read x-y-z command is supported.
*/
u32 supported_dword;
u32 supported_bit;
/*
* The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
* encodes the op code, the number of mode clocks and the number of wait
* states to be used by Fast Read x-y-z command.
*/
u32 settings_dword;
u32 settings_shift;
/* The SPI protocol for this Fast Read x-y-z command. */
enum spi_nor_protocol proto;
};
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
/* Fast Read 1-1-2 */
{
SNOR_HWCAPS_READ_1_1_2,
BFPT_DWORD(1), BIT(16), /* Supported bit */
BFPT_DWORD(4), 0, /* Settings */
SNOR_PROTO_1_1_2,
},
/* Fast Read 1-2-2 */
{
SNOR_HWCAPS_READ_1_2_2,
BFPT_DWORD(1), BIT(20), /* Supported bit */
BFPT_DWORD(4), 16, /* Settings */
SNOR_PROTO_1_2_2,
},
/* Fast Read 2-2-2 */
{
SNOR_HWCAPS_READ_2_2_2,
BFPT_DWORD(5), BIT(0), /* Supported bit */
BFPT_DWORD(6), 16, /* Settings */
SNOR_PROTO_2_2_2,
},
/* Fast Read 1-1-4 */
{
SNOR_HWCAPS_READ_1_1_4,
BFPT_DWORD(1), BIT(22), /* Supported bit */
BFPT_DWORD(3), 16, /* Settings */
SNOR_PROTO_1_1_4,
},
/* Fast Read 1-4-4 */
{
SNOR_HWCAPS_READ_1_4_4,
BFPT_DWORD(1), BIT(21), /* Supported bit */
BFPT_DWORD(3), 0, /* Settings */
SNOR_PROTO_1_4_4,
},
/* Fast Read 4-4-4 */
{
SNOR_HWCAPS_READ_4_4_4,
BFPT_DWORD(5), BIT(4), /* Supported bit */
BFPT_DWORD(7), 16, /* Settings */
SNOR_PROTO_4_4_4,
},
};
struct sfdp_bfpt_erase {
/*
* The half-word at offset <shift> in DWORD <dwoard> encodes the
* op code and erase sector size to be used by Sector Erase commands.
*/
u32 dword;
u32 shift;
};
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
/* Erase Type 1 in DWORD8 bits[15:0] */
{BFPT_DWORD(8), 0},
/* Erase Type 2 in DWORD8 bits[31:16] */
{BFPT_DWORD(8), 16},
/* Erase Type 3 in DWORD9 bits[15:0] */
{BFPT_DWORD(9), 0},
/* Erase Type 4 in DWORD9 bits[31:16] */
{BFPT_DWORD(9), 16},
};
/**
* spi_nor_set_erase_type() - set a SPI NOR erase type
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
*/
static void spi_nor_set_erase_type(struct spi_nor_erase_type *erase,
u32 size, u8 opcode)
{
erase->size = size;
erase->opcode = opcode;
/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
erase->size_shift = ffs(erase->size) - 1;
erase->size_mask = (1 << erase->size_shift) - 1;
}
/**
* spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
* @i: erase type index as sorted in the Basic Flash Parameter Table
*
* The supported Erase Types will be sorted at init in ascending order, with
* the smallest Erase Type size being the first member in the erase_type array
* of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
* the Basic Flash Parameter Table since it will be used later on to
* synchronize with the supported Erase Types defined in SFDP optional tables.
*/
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
u32 size, u8 opcode, u8 i)
{
erase->idx = i;
spi_nor_set_erase_type(erase, size, opcode);
}
/**
* spi_nor_map_cmp_erase_type() - compare the map's erase types by size
* @l: member in the left half of the map's erase_type array
* @r: member in the right half of the map's erase_type array
*
* Comparison function used in the sort() call to sort in ascending order the
* map's erase types, the smallest erase type size being the first member in the
* sorted erase_type array.
*
* Return: the result of @l->size - @r->size
*/
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
const struct spi_nor_erase_type *left = l, *right = r;
return left->size - right->size;
}
/**
* spi_nor_sort_erase_mask() - sort erase mask
* @map: the erase map of the SPI NOR
* @erase_mask: the erase type mask to be sorted
*
* Replicate the sort done for the map's erase types in BFPT: sort the erase
* mask in ascending order with the smallest erase type size starting from
* BIT(0) in the sorted erase mask.
*
* Return: sorted erase mask.
*/
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
struct spi_nor_erase_type *erase_type = map->erase_type;
int i;
u8 sorted_erase_mask = 0;
if (!erase_mask)
return 0;
/* Replicate the sort done for the map's erase types. */
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
sorted_erase_mask |= BIT(i);
return sorted_erase_mask;
}
/**
* spi_nor_regions_sort_erase_types() - sort erase types in each region
* @map: the erase map of the SPI NOR
*
* Function assumes that the erase types defined in the erase map are already
* sorted in ascending order, with the smallest erase type size being the first
* member in the erase_type array. It replicates the sort done for the map's
* erase types. Each region's erase bitmask will indicate which erase types are
* supported from the sorted erase types defined in the erase map.
* Sort the all region's erase type at init in order to speed up the process of
* finding the best erase command at runtime.
*/
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
struct spi_nor_erase_region *region = map->regions;
u8 region_erase_mask, sorted_erase_mask;
while (region) {
region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
sorted_erase_mask = spi_nor_sort_erase_mask(map,
region_erase_mask);
/* Overwrite erase mask. */
region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
sorted_erase_mask;
region = spi_nor_region_next(region);
}
}
/**
* spi_nor_init_uniform_erase_map() - Initialize uniform erase map
* @map: the erase map of the SPI NOR
* @erase_mask: bitmask encoding erase types that can erase the entire
* flash memory
* @flash_size: the spi nor flash memory size
*/
static void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
u8 erase_mask, u64 flash_size)
{
/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
SNOR_LAST_REGION;
map->uniform_region.size = flash_size;
map->regions = &map->uniform_region;
map->uniform_erase_type = erase_mask;
}
static int
spi_nor_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params)
{
if (nor->info->fixups && nor->info->fixups->post_bfpt)
return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
params);
return 0;
}
/**
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
* @nor: pointer to a 'struct spi_nor'
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
* the Basic Flash Parameter Table length and version
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Basic Flash Parameter Table is the main and only mandatory table as
* defined by the SFDP (JESD216) specification.
* It provides us with the total size (memory density) of the data array and
* the number of address bytes for Fast Read, Page Program and Sector Erase
* commands.
* For Fast READ commands, it also gives the number of mode clock cycles and
* wait states (regrouped in the number of dummy clock cycles) for each
* supported instruction op code.
* For Page Program, the page size is now available since JESD216 rev A, however
* the supported instruction op codes are still not provided.
* For Sector Erase commands, this table stores the supported instruction op
* codes and the associated sector sizes.
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
* rev A. The QER bits encode the manufacturer dependent procedure to be
* executed to set the Quad Enable (QE) bit in some internal register of the
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
* sending any Quad SPI command to the memory. Actually, setting the QE bit
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
* and IO3 hence enabling 4 (Quad) I/O lines.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
struct spi_nor_flash_parameter *params)
{
struct spi_nor_erase_map *map = &nor->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
struct sfdp_bfpt bfpt;
size_t len;
int i, cmd, err;
u32 addr;
u16 half;
u8 erase_mask;
/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
return -EINVAL;
/* Read the Basic Flash Parameter Table. */
len = min_t(size_t, sizeof(bfpt),
bfpt_header->length * sizeof(u32));
addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
memset(&bfpt, 0, sizeof(bfpt));
err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
if (err < 0)
return err;
/* Fix endianness of the BFPT DWORDs. */
for (i = 0; i < BFPT_DWORD_MAX; i++)
bfpt.dwords[i] = le32_to_cpu(bfpt.dwords[i]);
/* Number of address bytes. */
switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
nor->addr_width = 3;
break;
case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
nor->addr_width = 4;
break;
default:
break;
}
/* Flash Memory Density (in bits). */
params->size = bfpt.dwords[BFPT_DWORD(2)];
if (params->size & BIT(31)) {
params->size &= ~BIT(31);
/*
* Prevent overflows on params->size. Anyway, a NOR of 2^64
* bits is unlikely to exist so this error probably means
* the BFPT we are reading is corrupted/wrong.
*/
if (params->size > 63)
return -EINVAL;
params->size = 1ULL << params->size;
} else {
params->size++;
}
params->size >>= 3; /* Convert to bytes. */
/* Fast Read settings. */
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
struct spi_nor_read_command *read;
if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
params->hwcaps.mask &= ~rd->hwcaps;
continue;
}
params->hwcaps.mask |= rd->hwcaps;
cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
read = &params->reads[cmd];
half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
}
/*
* Sector Erase settings. Reinitialize the uniform erase map using the
* Erase Types defined in the bfpt table.
*/
erase_mask = 0;
memset(&nor->erase_map, 0, sizeof(nor->erase_map));
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
u8 opcode;
half = bfpt.dwords[er->dword] >> er->shift;
erasesize = half & 0xff;
/* erasesize == 0 means this Erase Type is not supported. */
if (!erasesize)
continue;
erasesize = 1U << erasesize;
opcode = (half >> 8) & 0xff;
erase_mask |= BIT(i);
spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
opcode, i);
}
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
/*
* Sort all the map's Erase Types in ascending order with the smallest
* erase size being the first member in the erase_type array.
*/
sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
spi_nor_map_cmp_erase_type, NULL);
/*
* Sort the erase types in the uniform region in order to update the
* uniform_erase_type bitmask. The bitmask will be used later on when
* selecting the uniform erase.
*/
spi_nor_regions_sort_erase_types(map);
map->uniform_erase_type = map->uniform_region.offset &
SNOR_ERASE_TYPE_MASK;
/* Stop here if not JESD216 rev A or later. */
if (bfpt_header->length < BFPT_DWORD_MAX)
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
params);
/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
params->page_size = bfpt.dwords[BFPT_DWORD(11)];
params->page_size &= BFPT_DWORD11_PAGE_SIZE_MASK;
params->page_size >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
params->page_size = 1U << params->page_size;
/* Quad Enable Requirements. */
switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
case BFPT_DWORD15_QER_NONE:
params->quad_enable = NULL;
break;
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
params->quad_enable = spansion_no_read_cr_quad_enable;
break;
case BFPT_DWORD15_QER_SR1_BIT6:
params->quad_enable = macronix_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT7:
params->quad_enable = sr2_bit7_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT1:
params->quad_enable = spansion_read_cr_quad_enable;
break;
default:
return -EINVAL;
}
return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
}
#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT 16
#define SMPT_CMD_READ_DUMMY(_cmd) \
(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT 24
#define SMPT_CMD_READ_DATA(_cmd) \
(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT 8
#define SMPT_CMD_OPCODE(_cmd) \
(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT 16
#define SMPT_MAP_REGION_COUNT(_header) \
((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
SMPT_MAP_REGION_COUNT_SHIFT) + 1)
#define SMPT_MAP_ID_MASK GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT 8
#define SMPT_MAP_ID(_header) \
(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT 8
#define SMPT_MAP_REGION_SIZE(_region) \
(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
#define SMPT_DESC_TYPE_MAP BIT(1)
#define SMPT_DESC_END BIT(0)
/**
* spi_nor_smpt_addr_width() - return the address width used in the
* configuration detection command.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*/
static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
{
switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
case SMPT_CMD_ADDRESS_LEN_0:
return 0;
case SMPT_CMD_ADDRESS_LEN_3:
return 3;
case SMPT_CMD_ADDRESS_LEN_4:
return 4;
case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
/* fall through */
default:
return nor->addr_width;
}
}
/**
* spi_nor_smpt_read_dummy() - return the configuration detection command read
* latency, in clock cycles.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*
* Return: the number of dummy cycles for an SMPT read
*/
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
return nor->read_dummy;
return read_dummy;
}
/**
* spi_nor_get_map_in_use() - get the configuration map in use
* @nor: pointer to a 'struct spi_nor'
* @smpt: pointer to the sector map parameter table
* @smpt_len: sector map parameter table length
*
* Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
*/
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
u8 smpt_len)
{
const u32 *ret;
u8 *buf;
u32 addr;
int err;
u8 i;
u8 addr_width, read_opcode, read_dummy;
u8 read_data_mask, map_id;
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
buf = kmalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
addr_width = nor->addr_width;
read_dummy = nor->read_dummy;
read_opcode = nor->read_opcode;
map_id = 0;
/* Determine if there are any optional Detection Command Descriptors */
for (i = 0; i < smpt_len; i += 2) {
if (smpt[i] & SMPT_DESC_TYPE_MAP)
break;
read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
addr = smpt[i + 1];
err = spi_nor_read_raw(nor, addr, 1, buf);
if (err) {
ret = ERR_PTR(err);
goto out;
}
/*
* Build an index value that is used to select the Sector Map
* Configuration that is currently in use.
*/
map_id = map_id << 1 | !!(*buf & read_data_mask);
}
/*
* If command descriptors are provided, they always precede map
* descriptors in the table. There is no need to start the iteration
* over smpt array all over again.
*
* Find the matching configuration map.
*/
ret = ERR_PTR(-EINVAL);
while (i < smpt_len) {
if (SMPT_MAP_ID(smpt[i]) == map_id) {
ret = smpt + i;
break;
}
/*
* If there are no more configuration map descriptors and no
* configuration ID matched the configuration identifier, the
* sector address map is unknown.
*/
if (smpt[i] & SMPT_DESC_END)
break;
/* increment the table index to the next map */
i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
}
/* fall through */
out:
kfree(buf);
nor->addr_width = addr_width;
nor->read_dummy = read_dummy;
nor->read_opcode = read_opcode;
return ret;
}
/**
* spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
* @erase_type: erase type bitmask
*/
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
const struct spi_nor_erase_type *erase,
const u8 erase_type)
{
int i;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
if (!(erase_type & BIT(i)))
continue;
if (region->size & erase[i].size_mask) {
spi_nor_region_mark_overlay(region);
return;
}
}
}
/**
* spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
* @nor: pointer to a 'struct spi_nor'
* @smpt: pointer to the sector map parameter table
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
const u32 *smpt)
{
struct spi_nor_erase_map *map = &nor->erase_map;
struct spi_nor_erase_type *erase = map->erase_type;
struct spi_nor_erase_region *region;
u64 offset;
u32 region_count;
int i, j;
u8 uniform_erase_type, save_uniform_erase_type;
u8 erase_type, regions_erase_type;
region_count = SMPT_MAP_REGION_COUNT(*smpt);
/*
* The regions will be freed when the driver detaches from the
* device.
*/
region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
GFP_KERNEL);
if (!region)
return -ENOMEM;
map->regions = region;
uniform_erase_type = 0xff;
regions_erase_type = 0;
offset = 0;
/* Populate regions. */
for (i = 0; i < region_count; i++) {
j = i + 1; /* index for the region dword */
region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
region[i].offset = offset | erase_type;
spi_nor_region_check_overlay(&region[i], erase, erase_type);
/*
* Save the erase types that are supported in all regions and
* can erase the entire flash memory.
*/
uniform_erase_type &= erase_type;
/*
* regions_erase_type mask will indicate all the erase types
* supported in this configuration map.
*/
regions_erase_type |= erase_type;
offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
region[i].size;
}
save_uniform_erase_type = map->uniform_erase_type;
map->uniform_erase_type = spi_nor_sort_erase_mask(map,
uniform_erase_type);
if (!regions_erase_type) {
/*
* Roll back to the previous uniform_erase_type mask, SMPT is
* broken.
*/
map->uniform_erase_type = save_uniform_erase_type;
return -EINVAL;
}
/*
* BFPT advertises all the erase types supported by all the possible
* map configurations. Mask out the erase types that are not supported
* by the current map configuration.
*/
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
if (!(regions_erase_type & BIT(erase[i].idx)))
spi_nor_set_erase_type(&erase[i], 0, 0xFF);
spi_nor_region_mark_end(&region[i - 1]);
return 0;
}
/**
* spi_nor_parse_smpt() - parse Sector Map Parameter Table
* @nor: pointer to a 'struct spi_nor'
* @smpt_header: sector map parameter table header
*
* This table is optional, but when available, we parse it to identify the
* location and size of sectors within the main data array of the flash memory
* device and to identify which Erase Types are supported by each sector.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_smpt(struct spi_nor *nor,
const struct sfdp_parameter_header *smpt_header)
{
const u32 *sector_map;
u32 *smpt;
size_t len;
u32 addr;
int i, ret;
/* Read the Sector Map Parameter Table. */
len = smpt_header->length * sizeof(*smpt);
smpt = kmalloc(len, GFP_KERNEL);
if (!smpt)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(smpt_header);
ret = spi_nor_read_sfdp(nor, addr, len, smpt);
if (ret)
goto out;
/* Fix endianness of the SMPT DWORDs. */
for (i = 0; i < smpt_header->length; i++)
smpt[i] = le32_to_cpu(smpt[i]);
sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
if (IS_ERR(sector_map)) {
ret = PTR_ERR(sector_map);
goto out;
}
ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
if (ret)
goto out;
spi_nor_regions_sort_erase_types(&nor->erase_map);
/* fall through */
out:
kfree(smpt);
return ret;
}
#define SFDP_4BAIT_DWORD_MAX 2
struct sfdp_4bait {
/* The hardware capability. */
u32 hwcaps;
/*
* The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
* the associated 4-byte address op code is supported.
*/
u32 supported_bit;
};
/**
* spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
* @nor: pointer to a 'struct spi_nor'.
* @param_header: pointer to the 'struct sfdp_parameter_header' describing
* the 4-Byte Address Instruction Table length and version.
* @params: pointer to the 'struct spi_nor_flash_parameter' to be.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_4bait(struct spi_nor *nor,
const struct sfdp_parameter_header *param_header,
struct spi_nor_flash_parameter *params)
{
static const struct sfdp_4bait reads[] = {
{ SNOR_HWCAPS_READ, BIT(0) },
{ SNOR_HWCAPS_READ_FAST, BIT(1) },
{ SNOR_HWCAPS_READ_1_1_2, BIT(2) },
{ SNOR_HWCAPS_READ_1_2_2, BIT(3) },
{ SNOR_HWCAPS_READ_1_1_4, BIT(4) },
{ SNOR_HWCAPS_READ_1_4_4, BIT(5) },
{ SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
{ SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
{ SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
};
static const struct sfdp_4bait programs[] = {
{ SNOR_HWCAPS_PP, BIT(6) },
{ SNOR_HWCAPS_PP_1_1_4, BIT(7) },
{ SNOR_HWCAPS_PP_1_4_4, BIT(8) },
};
static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
{ 0u /* not used */, BIT(9) },
{ 0u /* not used */, BIT(10) },
{ 0u /* not used */, BIT(11) },
{ 0u /* not used */, BIT(12) },
};
struct spi_nor_pp_command *params_pp = params->page_programs;
struct spi_nor_erase_map *map = &nor->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
u32 *dwords;
size_t len;
u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
int i, ret;
if (param_header->major != SFDP_JESD216_MAJOR ||
param_header->length < SFDP_4BAIT_DWORD_MAX)
return -EINVAL;
/* Read the 4-byte Address Instruction Table. */
len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
dwords = kmalloc(len, GFP_KERNEL);
if (!dwords)
return -ENOMEM;
addr = SFDP_PARAM_HEADER_PTP(param_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
return ret;
/* Fix endianness of the 4BAIT DWORDs. */
for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++)
dwords[i] = le32_to_cpu(dwords[i]);
/*
* Compute the subset of (Fast) Read commands for which the 4-byte
* version is supported.
*/
discard_hwcaps = 0;
read_hwcaps = 0;
for (i = 0; i < ARRAY_SIZE(reads); i++) {
const struct sfdp_4bait *read = &reads[i];
discard_hwcaps |= read->hwcaps;
if ((params->hwcaps.mask & read->hwcaps) &&
(dwords[0] & read->supported_bit))
read_hwcaps |= read->hwcaps;
}
/*
* Compute the subset of Page Program commands for which the 4-byte
* version is supported.
*/
pp_hwcaps = 0;
for (i = 0; i < ARRAY_SIZE(programs); i++) {
const struct sfdp_4bait *program = &programs[i];
/*
* The 4 Byte Address Instruction (Optional) Table is the only
* SFDP table that indicates support for Page Program Commands.
* Bypass the params->hwcaps.mask and consider 4BAIT the biggest
* authority for specifying Page Program support.
*/
discard_hwcaps |= program->hwcaps;
if (dwords[0] & program->supported_bit)
pp_hwcaps |= program->hwcaps;
}
/*
* Compute the subset of Sector Erase commands for which the 4-byte
* version is supported.
*/
erase_mask = 0;
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
const struct sfdp_4bait *erase = &erases[i];
if (dwords[0] & erase->supported_bit)
erase_mask |= BIT(i);
}
/* Replicate the sort done for the map's erase types in BFPT. */
erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
/*
* We need at least one 4-byte op code per read, program and erase
* operation; the .read(), .write() and .erase() hooks share the
* nor->addr_width value.
*/
if (!read_hwcaps || !pp_hwcaps || !erase_mask)
goto out;
/*
* Discard all operations from the 4-byte instruction set which are
* not supported by this memory.
*/
params->hwcaps.mask &= ~discard_hwcaps;
params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
/* Use the 4-byte address instruction set. */
for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
struct spi_nor_read_command *read_cmd = &params->reads[i];
read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
}
/* 4BAIT is the only SFDP table that indicates page program support. */
if (pp_hwcaps & SNOR_HWCAPS_PP)
spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
SPINOR_OP_PP_1_1_4_4B,
SNOR_PROTO_1_1_4);
if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
SPINOR_OP_PP_1_4_4_4B,
SNOR_PROTO_1_4_4);
for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
if (erase_mask & BIT(i))
erase_type[i].opcode = (dwords[1] >>
erase_type[i].idx * 8) & 0xFF;
else
spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
}
/*
* We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
* later because we already did the conversion to 4byte opcodes. Also,
* this latest function implements a legacy quirk for the erase size of
* Spansion memory. However this quirk is no longer needed with new
* SFDP compliant memories.
*/
nor->addr_width = 4;
nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
/* fall through */
out:
kfree(dwords);
return ret;
}
/**
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
* specification. This is a standard which tends to supported by almost all
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
* runtime the main parameters needed to perform basic SPI flash operations such
* as Fast Read, Page Program or Sector Erase commands.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_sfdp(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
const struct sfdp_parameter_header *param_header, *bfpt_header;
struct sfdp_parameter_header *param_headers = NULL;
struct sfdp_header header;
struct device *dev = nor->dev;
size_t psize;
int i, err;
/* Get the SFDP header. */
err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
if (err < 0)
return err;
/* Check the SFDP header version. */
if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
header.major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Verify that the first and only mandatory parameter header is a
* Basic Flash Parameter Table header as specified in JESD216.
*/
bfpt_header = &header.bfpt_header;
if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
bfpt_header->major != SFDP_JESD216_MAJOR)
return -EINVAL;
/*
* Allocate memory then read all parameter headers with a single
* Read SFDP command. These parameter headers will actually be parsed
* twice: a first time to get the latest revision of the basic flash
* parameter table, then a second time to handle the supported optional
* tables.
* Hence we read the parameter headers once for all to reduce the
* processing time. Also we use kmalloc() instead of devm_kmalloc()
* because we don't need to keep these parameter headers: the allocated
* memory is always released with kfree() before exiting this function.
*/
if (header.nph) {
psize = header.nph * sizeof(*param_headers);
param_headers = kmalloc(psize, GFP_KERNEL);
if (!param_headers)
return -ENOMEM;
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
dev_err(dev, "failed to read SFDP parameter headers\n");
goto exit;
}
}
/*
* Check other parameter headers to get the latest revision of
* the basic flash parameter table.
*/
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
param_header->major == SFDP_JESD216_MAJOR &&
(param_header->minor > bfpt_header->minor ||
(param_header->minor == bfpt_header->minor &&
param_header->length > bfpt_header->length)))
bfpt_header = param_header;
}
err = spi_nor_parse_bfpt(nor, bfpt_header, params);
if (err)
goto exit;
/* Parse optional parameter tables. */
for (i = 0; i < header.nph; i++) {
param_header = &param_headers[i];
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
err = spi_nor_parse_smpt(nor, param_header);
break;
case SFDP_4BAIT_ID:
err = spi_nor_parse_4bait(nor, param_header, params);
break;
default:
break;
}
if (err) {
dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
SFDP_PARAM_HEADER_ID(param_header));
/*
* Let's not drop all information we extracted so far
* if optional table parsers fail. In case of failing,
* each optional parser is responsible to roll back to
* the previously known spi_nor data.
*/
err = 0;
}
}
exit:
kfree(param_headers);
return err;
}
static int spi_nor_init_params(struct spi_nor *nor,
struct spi_nor_flash_parameter *params)
{
struct spi_nor_erase_map *map = &nor->erase_map;
const struct flash_info *info = nor->info;
u8 i, erase_mask;
/* Set legacy flash parameters as default. */
memset(params, 0, sizeof(*params));
/* Set SPI NOR sizes. */
params->size = (u64)info->sector_size * info->n_sectors;
params->page_size = info->page_size;
/* (Fast) Read settings. */
params->hwcaps.mask |= SNOR_HWCAPS_READ;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
0, 0, SPINOR_OP_READ,
SNOR_PROTO_1_1_1);
if (!(info->flags & SPI_NOR_NO_FR)) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
0, 8, SPINOR_OP_READ_FAST,
SNOR_PROTO_1_1_1);
}
if (info->flags & SPI_NOR_DUAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
0, 8, SPINOR_OP_READ_1_1_2,
SNOR_PROTO_1_1_2);
}
if (info->flags & SPI_NOR_QUAD_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
0, 8, SPINOR_OP_READ_1_1_4,
SNOR_PROTO_1_1_4);
}
if (info->flags & SPI_NOR_OCTAL_READ) {
params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
0, 8, SPINOR_OP_READ_1_1_8,
SNOR_PROTO_1_1_8);
}
/* Page Program settings. */
params->hwcaps.mask |= SNOR_HWCAPS_PP;
spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
SPINOR_OP_PP, SNOR_PROTO_1_1_1);
/*
* Sector Erase settings. Sort Erase Types in ascending order, with the
* smallest erase size starting at BIT(0).
*/
erase_mask = 0;
i = 0;
if (info->flags & SECT_4K_PMC) {
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
SPINOR_OP_BE_4K_PMC);
i++;
} else if (info->flags & SECT_4K) {
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], 4096u,
SPINOR_OP_BE_4K);
i++;
}
erase_mask |= BIT(i);
spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
SPINOR_OP_SE);
spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
/* Select the procedure to set the Quad Enable bit. */
if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
SNOR_HWCAPS_PP_QUAD)) {
switch (JEDEC_MFR(info)) {
case SNOR_MFR_MACRONIX:
params->quad_enable = macronix_quad_enable;
break;
case SNOR_MFR_ST:
case SNOR_MFR_MICRON:
break;
default:
/* Kept only for backward compatibility purpose. */
params->quad_enable = spansion_quad_enable;
if (nor->clear_sr_bp)
nor->clear_sr_bp = spi_nor_spansion_clear_sr_bp;
break;
}
/*
* Some manufacturer like GigaDevice may use different
* bit to set QE on different memories, so the MFR can't
* indicate the quad_enable method for this case, we need
* set it in flash info list.
*/
if (info->quad_enable)
params->quad_enable = info->quad_enable;
}
if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
!(info->flags & SPI_NOR_SKIP_SFDP)) {
struct spi_nor_flash_parameter sfdp_params;
struct spi_nor_erase_map prev_map;
memcpy(&sfdp_params, params, sizeof(sfdp_params));
memcpy(&prev_map, &nor->erase_map, sizeof(prev_map));
if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
nor->addr_width = 0;
nor->flags &= ~SNOR_F_4B_OPCODES;
/* restore previous erase map */
memcpy(&nor->erase_map, &prev_map,
sizeof(nor->erase_map));
} else {
memcpy(params, &sfdp_params, sizeof(*params));
}
}
return 0;
}
static int spi_nor_select_read(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
const struct spi_nor_read_command *read;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
read = &params->reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
/*
* In the spi-nor framework, we don't need to make the difference
* between mode clock cycles and wait state clock cycles.
* Indeed, the value of the mode clock cycles is used by a QSPI
* flash memory to know whether it should enter or leave its 0-4-4
* (Continuous Read / XIP) mode.
* eXecution In Place is out of the scope of the mtd sub-system.
* Hence we choose to merge both mode and wait state clock cycles
* into the so called dummy clock cycles.
*/
nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
return 0;
}
static int spi_nor_select_pp(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
const struct spi_nor_pp_command *pp;
if (best_match < 0)
return -EINVAL;
cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
if (cmd < 0)
return -EINVAL;
pp = &params->page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
}
/**
* spi_nor_select_uniform_erase() - select optimum uniform erase type
* @map: the erase map of the SPI NOR
* @wanted_size: the erase type size to search for. Contains the value of
* info->sector_size or of the "small sector" size in case
* CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
*
* Once the optimum uniform sector erase command is found, disable all the
* other.
*
* Return: pointer to erase type on success, NULL otherwise.
*/
static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
const u32 wanted_size)
{
const struct spi_nor_erase_type *tested_erase, *erase = NULL;
int i;
u8 uniform_erase_type = map->uniform_erase_type;
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (!(uniform_erase_type & BIT(i)))
continue;
tested_erase = &map->erase_type[i];
/*
* If the current erase size is the one, stop here:
* we have found the right uniform Sector Erase command.
*/
if (tested_erase->size == wanted_size) {
erase = tested_erase;
break;
}
/*
* Otherwise, the current erase size is still a valid canditate.
* Select the biggest valid candidate.
*/
if (!erase && tested_erase->size)
erase = tested_erase;
/* keep iterating to find the wanted_size */
}
if (!erase)
return NULL;
/* Disable all other Sector Erase commands. */
map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
map->uniform_erase_type |= BIT(erase - map->erase_type);
return erase;
}
static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
{
struct spi_nor_erase_map *map = &nor->erase_map;
const struct spi_nor_erase_type *erase = NULL;
struct mtd_info *mtd = &nor->mtd;
int i;
/*
* The previous implementation handling Sector Erase commands assumed
* that the SPI flash memory has an uniform layout then used only one
* of the supported erase sizes for all Sector Erase commands.
* So to be backward compatible, the new implementation also tries to
* manage the SPI flash memory as uniform with a single erase sector
* size, when possible.
*/
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
wanted_size = 4096u;
#endif
if (spi_nor_has_uniform_erase(nor)) {
erase = spi_nor_select_uniform_erase(map, wanted_size);
if (!erase)
return -EINVAL;
nor->erase_opcode = erase->opcode;
mtd->erasesize = erase->size;
return 0;
}
/*
* For non-uniform SPI flash memory, set mtd->erasesize to the
* maximum erase sector size. No need to set nor->erase_opcode.
*/
for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
if (map->erase_type[i].size) {
erase = &map->erase_type[i];
break;
}
}
if (!erase)
return -EINVAL;
mtd->erasesize = erase->size;
return 0;
}
static int spi_nor_setup(struct spi_nor *nor,
const struct spi_nor_flash_parameter *params,
const struct spi_nor_hwcaps *hwcaps)
{
u32 ignored_mask, shared_mask;
bool enable_quad_io;
int err;
/*
* Keep only the hardware capabilities supported by both the SPI
* controller and the SPI flash memory.
*/
shared_mask = hwcaps->mask & params->hwcaps.mask;
/* SPI n-n-n protocols are not supported yet. */
ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
SNOR_HWCAPS_READ_4_4_4 |
SNOR_HWCAPS_READ_8_8_8 |
SNOR_HWCAPS_PP_4_4_4 |
SNOR_HWCAPS_PP_8_8_8);
if (shared_mask & ignored_mask) {
dev_dbg(nor->dev,
"SPI n-n-n protocols are not supported yet.\n");
shared_mask &= ~ignored_mask;
}
/* Select the (Fast) Read command. */
err = spi_nor_select_read(nor, params, shared_mask);
if (err) {
dev_err(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
err = spi_nor_select_pp(nor, params, shared_mask);
if (err) {
dev_err(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
err = spi_nor_select_erase(nor, nor->info->sector_size);
if (err) {
dev_err(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
/* Enable Quad I/O if needed. */
enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
spi_nor_get_protocol_width(nor->write_proto) == 4);
if (enable_quad_io && params->quad_enable)
nor->quad_enable = params->quad_enable;
else
nor->quad_enable = NULL;
return 0;
}
static int spi_nor_init(struct spi_nor *nor)
{
int err;
if (nor->clear_sr_bp) {
err = nor->clear_sr_bp(nor);
if (err) {
dev_err(nor->dev,
"fail to clear block protection bits\n");
return err;
}
}
if (nor->quad_enable) {
err = nor->quad_enable(nor);
if (err) {
dev_err(nor->dev, "quad mode not supported\n");
return err;
}
}
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
/*
* If the RESET# pin isn't hooked up properly, or the system
* otherwise doesn't perform a reset command in the boot
* sequence, it's impossible to 100% protect against unexpected
* reboots (e.g., crashes). Warn the user (or hopefully, system
* designer) that this is bad.
*/
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
"enabling reset hack; may not recover from unexpected reboots\n");
set_4byte(nor, true);
}
return 0;
}
/* mtd resume handler */
static void spi_nor_resume(struct mtd_info *mtd)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
struct device *dev = nor->dev;
int ret;
/* re-initialize the nor chip */
ret = spi_nor_init(nor);
if (ret)
dev_err(dev, "resume() failed\n");
}
void spi_nor_restore(struct spi_nor *nor)
{
/* restore the addressing mode */
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
nor->flags & SNOR_F_BROKEN_RESET)
set_4byte(nor, false);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);
static const struct flash_info *spi_nor_match_id(const char *name)
{
const struct flash_info *id = spi_nor_ids;
while (id->name) {
if (!strcmp(name, id->name))
return id;
id++;
}
return NULL;
}
int spi_nor_scan(struct spi_nor *nor, const char *name,
const struct spi_nor_hwcaps *hwcaps)
{
struct spi_nor_flash_parameter params;
const struct flash_info *info = NULL;
struct device *dev = nor->dev;
struct mtd_info *mtd = &nor->mtd;
struct device_node *np = spi_nor_get_flash_node(nor);
int ret;
int i;
ret = spi_nor_check(nor);
if (ret)
return ret;
/* Reset SPI protocol for all commands. */
nor->reg_proto = SNOR_PROTO_1_1_1;
nor->read_proto = SNOR_PROTO_1_1_1;
nor->write_proto = SNOR_PROTO_1_1_1;
if (name)
info = spi_nor_match_id(name);
/* Try to auto-detect if chip name wasn't specified or not found */
if (!info)
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
return -ENOENT;
/*
* If caller has specified name of flash model that can normally be
* detected using JEDEC, let's verify it.
*/
if (name && info->id_len) {
const struct flash_info *jinfo;
jinfo = spi_nor_read_id(nor);
if (IS_ERR(jinfo)) {
return PTR_ERR(jinfo);
} else if (jinfo != info) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(dev, "found %s, expected %s\n",
jinfo->name, info->name);
info = jinfo;
}
}
nor->info = info;
mutex_init(&nor->lock);
/*
* Make sure the XSR_RDY flag is set before calling
* spi_nor_wait_till_ready(). Xilinx S3AN share MFR
* with Atmel spi-nor
*/
if (info->flags & SPI_S3AN)
nor->flags |= SNOR_F_READY_XSR_RDY;
/*
* Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
* with the software protection bits set.
*/
if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
nor->info->flags & SPI_NOR_HAS_LOCK)
nor->clear_sr_bp = spi_nor_clear_sr_bp;
/* Parse the Serial Flash Discoverable Parameters table. */
ret = spi_nor_init_params(nor, &params);
if (ret)
return ret;
if (!mtd->name)
mtd->name = dev_name(dev);
mtd->priv = nor;
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
mtd->size = params.size;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
mtd->_resume = spi_nor_resume;
/* NOR protection support for STmicro/Micron chips and similar */
if (JEDEC_MFR(info) == SNOR_MFR_ST ||
JEDEC_MFR(info) == SNOR_MFR_MICRON ||
info->flags & SPI_NOR_HAS_LOCK) {
nor->flash_lock = stm_lock;
nor->flash_unlock = stm_unlock;
nor->flash_is_locked = stm_is_locked;
}
if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
mtd->_is_locked = spi_nor_is_locked;
}
/* sst nor chips use AAI word program */
if (info->flags & SST_WRITE)
mtd->_write = sst_write;
else
mtd->_write = spi_nor_write;
if (info->flags & USE_FSR)
nor->flags |= SNOR_F_USE_FSR;
if (info->flags & SPI_NOR_HAS_TB)
nor->flags |= SNOR_F_HAS_SR_TB;
if (info->flags & NO_CHIP_ERASE)
nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
if (info->flags & USE_CLSR)
nor->flags |= SNOR_F_USE_CLSR;
if (info->flags & SPI_NOR_NO_ERASE)
mtd->flags |= MTD_NO_ERASE;
mtd->dev.parent = dev;
nor->page_size = params.page_size;
mtd->writebufsize = nor->page_size;
if (np) {
/* If we were instantiated by DT, use it */
if (of_property_read_bool(np, "m25p,fast-read"))
params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
else
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
} else {
/* If we weren't instantiated by DT, default to fast-read */
params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
}
if (of_property_read_bool(np, "broken-flash-reset"))
nor->flags |= SNOR_F_BROKEN_RESET;
/* Some devices cannot do fast-read, no matter what DT tells us */
if (info->flags & SPI_NOR_NO_FR)
params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
* - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
*/
ret = spi_nor_setup(nor, &params, hwcaps);
if (ret)
return ret;
if (nor->addr_width) {
/* already configured from SFDP */
} else if (info->addr_width) {
nor->addr_width = info->addr_width;
} else if (mtd->size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
nor->addr_width = 4;
} else {
nor->addr_width = 3;
}
if (info->flags & SPI_NOR_4B_OPCODES ||
(JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M))
nor->flags |= SNOR_F_4B_OPCODES;
if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
!(nor->flags & SNOR_F_HAS_4BAIT))
spi_nor_set_4byte_opcodes(nor);
if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
dev_err(dev, "address width is too large: %u\n",
nor->addr_width);
return -EINVAL;
}
if (info->flags & SPI_S3AN) {
ret = s3an_nor_scan(nor);
if (ret)
return ret;
}
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
if (ret)
return ret;
dev_info(dev, "%s (%lld Kbytes)\n", info->name,
(long long)mtd->size >> 10);
dev_dbg(dev,
"mtd .name = %s, .size = 0x%llx (%lldMiB), "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
if (mtd->numeraseregions)
for (i = 0; i < mtd->numeraseregions; i++)
dev_dbg(dev,
"mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].erasesize / 1024,
mtd->eraseregions[i].numblocks);
return 0;
}
EXPORT_SYMBOL_GPL(spi_nor_scan);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("framework for SPI NOR");