| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| * Copyright (C) 2018-2021 Linaro Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/bits.h> |
| #include <linux/bitops.h> |
| #include <linux/bitfield.h> |
| #include <linux/io.h> |
| #include <linux/build_bug.h> |
| #include <linux/device.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "ipa.h" |
| #include "ipa_version.h" |
| #include "ipa_endpoint.h" |
| #include "ipa_table.h" |
| #include "ipa_reg.h" |
| #include "ipa_mem.h" |
| #include "ipa_cmd.h" |
| #include "gsi.h" |
| #include "gsi_trans.h" |
| |
| /** |
| * DOC: IPA Filter and Route Tables |
| * |
| * The IPA has tables defined in its local (IPA-resident) memory that define |
| * filter and routing rules. An entry in either of these tables is a little |
| * endian 64-bit "slot" that holds the address of a rule definition. (The |
| * size of these slots is 64 bits regardless of the host DMA address size.) |
| * |
| * Separate tables (both filter and route) used for IPv4 and IPv6. There |
| * are normally another set of "hashed" filter and route tables, which are |
| * used with a hash of message metadata. Hashed operation is not supported |
| * by all IPA hardware (IPA v4.2 doesn't support hashed tables). |
| * |
| * Rules can be in local memory or in DRAM (system memory). The offset of |
| * an object (such as a route or filter table) in IPA-resident memory must |
| * 128-byte aligned. An object in system memory (such as a route or filter |
| * rule) must be at an 8-byte aligned address. We currently only place |
| * route or filter rules in system memory. |
| * |
| * A rule consists of a contiguous block of 32-bit values terminated with |
| * 32 zero bits. A special "zero entry" rule consisting of 64 zero bits |
| * represents "no filtering" or "no routing," and is the reset value for |
| * filter or route table rules. |
| * |
| * Each filter rule is associated with an AP or modem TX endpoint, though |
| * not all TX endpoints support filtering. The first 64-bit slot in a |
| * filter table is a bitmap indicating which endpoints have entries in |
| * the table. The low-order bit (bit 0) in this bitmap represents a |
| * special global filter, which applies to all traffic. This is not |
| * used in the current code. Bit 1, if set, indicates that there is an |
| * entry (i.e. slot containing a system address referring to a rule) for |
| * endpoint 0 in the table. Bit 3, if set, indicates there is an entry |
| * for endpoint 2, and so on. Space is set aside in IPA local memory to |
| * hold as many filter table entries as might be required, but typically |
| * they are not all used. |
| * |
| * The AP initializes all entries in a filter table to refer to a "zero" |
| * entry. Once initialized the modem and AP update the entries for |
| * endpoints they "own" directly. Currently the AP does not use the |
| * IPA filtering functionality. |
| * |
| * IPA Filter Table |
| * ---------------------- |
| * endpoint bitmap | 0x0000000000000048 | Bits 3 and 6 set (endpoints 2 and 5) |
| * |--------------------| |
| * 1st endpoint | 0x000123456789abc0 | DMA address for modem endpoint 2 rule |
| * |--------------------| |
| * 2nd endpoint | 0x000123456789abf0 | DMA address for AP endpoint 5 rule |
| * |--------------------| |
| * (unused) | | (Unused space in filter table) |
| * |--------------------| |
| * . . . |
| * |--------------------| |
| * (unused) | | (Unused space in filter table) |
| * ---------------------- |
| * |
| * The set of available route rules is divided about equally between the AP |
| * and modem. The AP initializes all entries in a route table to refer to |
| * a "zero entry". Once initialized, the modem and AP are responsible for |
| * updating their own entries. All entries in a route table are usable, |
| * though the AP currently does not use the IPA routing functionality. |
| * |
| * IPA Route Table |
| * ---------------------- |
| * 1st modem route | 0x0001234500001100 | DMA address for first route rule |
| * |--------------------| |
| * 2nd modem route | 0x0001234500001140 | DMA address for second route rule |
| * |--------------------| |
| * . . . |
| * |--------------------| |
| * Last modem route| 0x0001234500002280 | DMA address for Nth route rule |
| * |--------------------| |
| * 1st AP route | 0x0001234500001100 | DMA address for route rule (N+1) |
| * |--------------------| |
| * 2nd AP route | 0x0001234500001140 | DMA address for next route rule |
| * |--------------------| |
| * . . . |
| * |--------------------| |
| * Last AP route | 0x0001234500002280 | DMA address for last route rule |
| * ---------------------- |
| */ |
| |
| /* Assignment of route table entries to the modem and AP */ |
| #define IPA_ROUTE_MODEM_MIN 0 |
| #define IPA_ROUTE_MODEM_COUNT 8 |
| |
| #define IPA_ROUTE_AP_MIN IPA_ROUTE_MODEM_COUNT |
| #define IPA_ROUTE_AP_COUNT \ |
| (IPA_ROUTE_COUNT_MAX - IPA_ROUTE_MODEM_COUNT) |
| |
| /* Filter or route rules consist of a set of 32-bit values followed by a |
| * 32-bit all-zero rule list terminator. The "zero rule" is simply an |
| * all-zero rule followed by the list terminator. |
| */ |
| #define IPA_ZERO_RULE_SIZE (2 * sizeof(__le32)) |
| |
| /* Check things that can be validated at build time. */ |
| static void ipa_table_validate_build(void) |
| { |
| /* Filter and route tables contain DMA addresses that refer |
| * to filter or route rules. But the size of a table entry |
| * is 64 bits regardless of what the size of an AP DMA address |
| * is. A fixed constant defines the size of an entry, and |
| * code in ipa_table_init() uses a pointer to __le64 to |
| * initialize tables. |
| */ |
| BUILD_BUG_ON(sizeof(dma_addr_t) > sizeof(__le64)); |
| |
| /* A "zero rule" is used to represent no filtering or no routing. |
| * It is a 64-bit block of zeroed memory. Code in ipa_table_init() |
| * assumes that it can be written using a pointer to __le64. |
| */ |
| BUILD_BUG_ON(IPA_ZERO_RULE_SIZE != sizeof(__le64)); |
| |
| /* Impose a practical limit on the number of routes */ |
| BUILD_BUG_ON(IPA_ROUTE_COUNT_MAX > 32); |
| /* The modem must be allotted at least one route table entry */ |
| BUILD_BUG_ON(!IPA_ROUTE_MODEM_COUNT); |
| /* But it can't have more than what is available */ |
| BUILD_BUG_ON(IPA_ROUTE_MODEM_COUNT > IPA_ROUTE_COUNT_MAX); |
| |
| } |
| |
| static bool |
| ipa_table_valid_one(struct ipa *ipa, enum ipa_mem_id mem_id, bool route) |
| { |
| const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id); |
| struct device *dev = &ipa->pdev->dev; |
| u32 size; |
| |
| if (route) |
| size = IPA_ROUTE_COUNT_MAX * sizeof(__le64); |
| else |
| size = (1 + IPA_FILTER_COUNT_MAX) * sizeof(__le64); |
| |
| if (!ipa_cmd_table_valid(ipa, mem, route)) |
| return false; |
| |
| /* mem->size >= size is sufficient, but we'll demand more */ |
| if (mem->size == size) |
| return true; |
| |
| /* Hashed table regions can be zero size if hashing is not supported */ |
| if (ipa_table_hash_support(ipa) && !mem->size) |
| return true; |
| |
| dev_err(dev, "%s table region %u size 0x%02x, expected 0x%02x\n", |
| route ? "route" : "filter", mem_id, mem->size, size); |
| |
| return false; |
| } |
| |
| /* Verify the filter and route table memory regions are the expected size */ |
| bool ipa_table_valid(struct ipa *ipa) |
| { |
| bool valid; |
| |
| valid = ipa_table_valid_one(ipa, IPA_MEM_V4_FILTER, false); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V6_FILTER, false); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V4_ROUTE, true); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V6_ROUTE, true); |
| |
| if (!ipa_table_hash_support(ipa)) |
| return valid; |
| |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V4_FILTER_HASHED, |
| false); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V6_FILTER_HASHED, |
| false); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V4_ROUTE_HASHED, |
| true); |
| valid = valid && ipa_table_valid_one(ipa, IPA_MEM_V6_ROUTE_HASHED, |
| true); |
| |
| return valid; |
| } |
| |
| bool ipa_filter_map_valid(struct ipa *ipa, u32 filter_map) |
| { |
| struct device *dev = &ipa->pdev->dev; |
| u32 count; |
| |
| if (!filter_map) { |
| dev_err(dev, "at least one filtering endpoint is required\n"); |
| |
| return false; |
| } |
| |
| count = hweight32(filter_map); |
| if (count > IPA_FILTER_COUNT_MAX) { |
| dev_err(dev, "too many filtering endpoints (%u, max %u)\n", |
| count, IPA_FILTER_COUNT_MAX); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Zero entry count means no table, so just return a 0 address */ |
| static dma_addr_t ipa_table_addr(struct ipa *ipa, bool filter_mask, u16 count) |
| { |
| u32 skip; |
| |
| if (!count) |
| return 0; |
| |
| WARN_ON(count > max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX)); |
| |
| /* Skip over the zero rule and possibly the filter mask */ |
| skip = filter_mask ? 1 : 2; |
| |
| return ipa->table_addr + skip * sizeof(*ipa->table_virt); |
| } |
| |
| static void ipa_table_reset_add(struct gsi_trans *trans, bool filter, |
| u16 first, u16 count, enum ipa_mem_id mem_id) |
| { |
| struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); |
| const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id); |
| dma_addr_t addr; |
| u32 offset; |
| u16 size; |
| |
| /* Nothing to do if the table memory region is empty */ |
| if (!mem->size) |
| return; |
| |
| if (filter) |
| first++; /* skip over bitmap */ |
| |
| offset = mem->offset + first * sizeof(__le64); |
| size = count * sizeof(__le64); |
| addr = ipa_table_addr(ipa, false, count); |
| |
| ipa_cmd_dma_shared_mem_add(trans, offset, size, addr, true); |
| } |
| |
| /* Reset entries in a single filter table belonging to either the AP or |
| * modem to refer to the zero entry. The memory region supplied will be |
| * for the IPv4 and IPv6 non-hashed and hashed filter tables. |
| */ |
| static int |
| ipa_filter_reset_table(struct ipa *ipa, enum ipa_mem_id mem_id, bool modem) |
| { |
| u32 ep_mask = ipa->filter_map; |
| u32 count = hweight32(ep_mask); |
| struct gsi_trans *trans; |
| enum gsi_ee_id ee_id; |
| |
| trans = ipa_cmd_trans_alloc(ipa, count); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, |
| "no transaction for %s filter reset\n", |
| modem ? "modem" : "AP"); |
| return -EBUSY; |
| } |
| |
| ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; |
| while (ep_mask) { |
| u32 endpoint_id = __ffs(ep_mask); |
| struct ipa_endpoint *endpoint; |
| |
| ep_mask ^= BIT(endpoint_id); |
| |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if (endpoint->ee_id != ee_id) |
| continue; |
| |
| ipa_table_reset_add(trans, true, endpoint_id, 1, mem_id); |
| } |
| |
| gsi_trans_commit_wait(trans); |
| |
| return 0; |
| } |
| |
| /* Theoretically, each filter table could have more filter slots to |
| * update than the maximum number of commands in a transaction. So |
| * we do each table separately. |
| */ |
| static int ipa_filter_reset(struct ipa *ipa, bool modem) |
| { |
| int ret; |
| |
| ret = ipa_filter_reset_table(ipa, IPA_MEM_V4_FILTER, modem); |
| if (ret) |
| return ret; |
| |
| ret = ipa_filter_reset_table(ipa, IPA_MEM_V4_FILTER_HASHED, modem); |
| if (ret) |
| return ret; |
| |
| ret = ipa_filter_reset_table(ipa, IPA_MEM_V6_FILTER, modem); |
| if (ret) |
| return ret; |
| ret = ipa_filter_reset_table(ipa, IPA_MEM_V6_FILTER_HASHED, modem); |
| |
| return ret; |
| } |
| |
| /* The AP routes and modem routes are each contiguous within the |
| * table. We can update each table with a single command, and we |
| * won't exceed the per-transaction command limit. |
| * */ |
| static int ipa_route_reset(struct ipa *ipa, bool modem) |
| { |
| struct gsi_trans *trans; |
| u16 first; |
| u16 count; |
| |
| trans = ipa_cmd_trans_alloc(ipa, 4); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, |
| "no transaction for %s route reset\n", |
| modem ? "modem" : "AP"); |
| return -EBUSY; |
| } |
| |
| if (modem) { |
| first = IPA_ROUTE_MODEM_MIN; |
| count = IPA_ROUTE_MODEM_COUNT; |
| } else { |
| first = IPA_ROUTE_AP_MIN; |
| count = IPA_ROUTE_AP_COUNT; |
| } |
| |
| ipa_table_reset_add(trans, false, first, count, IPA_MEM_V4_ROUTE); |
| ipa_table_reset_add(trans, false, first, count, |
| IPA_MEM_V4_ROUTE_HASHED); |
| |
| ipa_table_reset_add(trans, false, first, count, IPA_MEM_V6_ROUTE); |
| ipa_table_reset_add(trans, false, first, count, |
| IPA_MEM_V6_ROUTE_HASHED); |
| |
| gsi_trans_commit_wait(trans); |
| |
| return 0; |
| } |
| |
| void ipa_table_reset(struct ipa *ipa, bool modem) |
| { |
| struct device *dev = &ipa->pdev->dev; |
| const char *ee_name; |
| int ret; |
| |
| ee_name = modem ? "modem" : "AP"; |
| |
| /* Report errors, but reset filter and route tables */ |
| ret = ipa_filter_reset(ipa, modem); |
| if (ret) |
| dev_err(dev, "error %d resetting filter table for %s\n", |
| ret, ee_name); |
| |
| ret = ipa_route_reset(ipa, modem); |
| if (ret) |
| dev_err(dev, "error %d resetting route table for %s\n", |
| ret, ee_name); |
| } |
| |
| int ipa_table_hash_flush(struct ipa *ipa) |
| { |
| u32 offset = ipa_reg_filt_rout_hash_flush_offset(ipa->version); |
| struct gsi_trans *trans; |
| u32 val; |
| |
| if (!ipa_table_hash_support(ipa)) |
| return 0; |
| |
| trans = ipa_cmd_trans_alloc(ipa, 1); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, "no transaction for hash flush\n"); |
| return -EBUSY; |
| } |
| |
| val = IPV4_FILTER_HASH_FMASK | IPV6_FILTER_HASH_FMASK; |
| val |= IPV6_ROUTER_HASH_FMASK | IPV4_ROUTER_HASH_FMASK; |
| |
| ipa_cmd_register_write_add(trans, offset, val, val, false); |
| |
| gsi_trans_commit_wait(trans); |
| |
| return 0; |
| } |
| |
| static void ipa_table_init_add(struct gsi_trans *trans, bool filter, |
| enum ipa_cmd_opcode opcode, |
| enum ipa_mem_id mem_id, |
| enum ipa_mem_id hash_mem_id) |
| { |
| struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); |
| const struct ipa_mem *hash_mem = ipa_mem_find(ipa, hash_mem_id); |
| const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id); |
| dma_addr_t hash_addr; |
| dma_addr_t addr; |
| u32 zero_offset; |
| u16 hash_count; |
| u32 zero_size; |
| u16 hash_size; |
| u16 count; |
| u16 size; |
| |
| /* Compute the number of table entries to initialize */ |
| if (filter) { |
| /* The number of filtering endpoints determines number of |
| * entries in the filter table; we also add one more "slot" |
| * to hold the bitmap itself. The size of the hashed filter |
| * table is either the same as the non-hashed one, or zero. |
| */ |
| count = 1 + hweight32(ipa->filter_map); |
| hash_count = hash_mem->size ? count : 0; |
| } else { |
| /* The size of a route table region determines the number |
| * of entries it has. |
| */ |
| count = mem->size / sizeof(__le64); |
| hash_count = hash_mem->size / sizeof(__le64); |
| } |
| size = count * sizeof(__le64); |
| hash_size = hash_count * sizeof(__le64); |
| |
| addr = ipa_table_addr(ipa, filter, count); |
| hash_addr = ipa_table_addr(ipa, filter, hash_count); |
| |
| ipa_cmd_table_init_add(trans, opcode, size, mem->offset, addr, |
| hash_size, hash_mem->offset, hash_addr); |
| if (!filter) |
| return; |
| |
| /* Zero the unused space in the filter table */ |
| zero_offset = mem->offset + size; |
| zero_size = mem->size - size; |
| ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size, |
| ipa->zero_addr, true); |
| if (!hash_size) |
| return; |
| |
| /* Zero the unused space in the hashed filter table */ |
| zero_offset = hash_mem->offset + hash_size; |
| zero_size = hash_mem->size - hash_size; |
| ipa_cmd_dma_shared_mem_add(trans, zero_offset, zero_size, |
| ipa->zero_addr, true); |
| } |
| |
| int ipa_table_setup(struct ipa *ipa) |
| { |
| struct gsi_trans *trans; |
| |
| /* We will need at most 8 TREs: |
| * - IPv4: |
| * - One for route table initialization (non-hashed and hashed) |
| * - One for filter table initialization (non-hashed and hashed) |
| * - One to zero unused entries in the non-hashed filter table |
| * - One to zero unused entries in the hashed filter table |
| * - IPv6: |
| * - One for route table initialization (non-hashed and hashed) |
| * - One for filter table initialization (non-hashed and hashed) |
| * - One to zero unused entries in the non-hashed filter table |
| * - One to zero unused entries in the hashed filter table |
| * All platforms support at least 8 TREs in a transaction. |
| */ |
| trans = ipa_cmd_trans_alloc(ipa, 8); |
| if (!trans) { |
| dev_err(&ipa->pdev->dev, "no transaction for table setup\n"); |
| return -EBUSY; |
| } |
| |
| ipa_table_init_add(trans, false, IPA_CMD_IP_V4_ROUTING_INIT, |
| IPA_MEM_V4_ROUTE, IPA_MEM_V4_ROUTE_HASHED); |
| |
| ipa_table_init_add(trans, false, IPA_CMD_IP_V6_ROUTING_INIT, |
| IPA_MEM_V6_ROUTE, IPA_MEM_V6_ROUTE_HASHED); |
| |
| ipa_table_init_add(trans, true, IPA_CMD_IP_V4_FILTER_INIT, |
| IPA_MEM_V4_FILTER, IPA_MEM_V4_FILTER_HASHED); |
| |
| ipa_table_init_add(trans, true, IPA_CMD_IP_V6_FILTER_INIT, |
| IPA_MEM_V6_FILTER, IPA_MEM_V6_FILTER_HASHED); |
| |
| gsi_trans_commit_wait(trans); |
| |
| return 0; |
| } |
| |
| /** |
| * ipa_filter_tuple_zero() - Zero an endpoint's hashed filter tuple |
| * @endpoint: Endpoint whose filter hash tuple should be zeroed |
| * |
| * Endpoint must be for the AP (not modem) and support filtering. Updates |
| * the filter hash values without changing route ones. |
| */ |
| static void ipa_filter_tuple_zero(struct ipa_endpoint *endpoint) |
| { |
| u32 endpoint_id = endpoint->endpoint_id; |
| u32 offset; |
| u32 val; |
| |
| offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(endpoint_id); |
| |
| val = ioread32(endpoint->ipa->reg_virt + offset); |
| |
| /* Zero all filter-related fields, preserving the rest */ |
| u32p_replace_bits(&val, 0, IPA_REG_ENDP_FILTER_HASH_MSK_ALL); |
| |
| iowrite32(val, endpoint->ipa->reg_virt + offset); |
| } |
| |
| /* Configure a hashed filter table; there is no ipa_filter_deconfig() */ |
| static void ipa_filter_config(struct ipa *ipa, bool modem) |
| { |
| enum gsi_ee_id ee_id = modem ? GSI_EE_MODEM : GSI_EE_AP; |
| u32 ep_mask = ipa->filter_map; |
| |
| if (!ipa_table_hash_support(ipa)) |
| return; |
| |
| while (ep_mask) { |
| u32 endpoint_id = __ffs(ep_mask); |
| struct ipa_endpoint *endpoint; |
| |
| ep_mask ^= BIT(endpoint_id); |
| |
| endpoint = &ipa->endpoint[endpoint_id]; |
| if (endpoint->ee_id == ee_id) |
| ipa_filter_tuple_zero(endpoint); |
| } |
| } |
| |
| static bool ipa_route_id_modem(u32 route_id) |
| { |
| return route_id >= IPA_ROUTE_MODEM_MIN && |
| route_id <= IPA_ROUTE_MODEM_MIN + IPA_ROUTE_MODEM_COUNT - 1; |
| } |
| |
| /** |
| * ipa_route_tuple_zero() - Zero a hashed route table entry tuple |
| * @ipa: IPA pointer |
| * @route_id: Route table entry whose hash tuple should be zeroed |
| * |
| * Updates the route hash values without changing filter ones. |
| */ |
| static void ipa_route_tuple_zero(struct ipa *ipa, u32 route_id) |
| { |
| u32 offset = IPA_REG_ENDP_FILTER_ROUTER_HSH_CFG_N_OFFSET(route_id); |
| u32 val; |
| |
| val = ioread32(ipa->reg_virt + offset); |
| |
| /* Zero all route-related fields, preserving the rest */ |
| u32p_replace_bits(&val, 0, IPA_REG_ENDP_ROUTER_HASH_MSK_ALL); |
| |
| iowrite32(val, ipa->reg_virt + offset); |
| } |
| |
| /* Configure a hashed route table; there is no ipa_route_deconfig() */ |
| static void ipa_route_config(struct ipa *ipa, bool modem) |
| { |
| u32 route_id; |
| |
| if (!ipa_table_hash_support(ipa)) |
| return; |
| |
| for (route_id = 0; route_id < IPA_ROUTE_COUNT_MAX; route_id++) |
| if (ipa_route_id_modem(route_id) == modem) |
| ipa_route_tuple_zero(ipa, route_id); |
| } |
| |
| /* Configure a filter and route tables; there is no ipa_table_deconfig() */ |
| void ipa_table_config(struct ipa *ipa) |
| { |
| ipa_filter_config(ipa, false); |
| ipa_filter_config(ipa, true); |
| ipa_route_config(ipa, false); |
| ipa_route_config(ipa, true); |
| } |
| |
| /* |
| * Initialize a coherent DMA allocation containing initialized filter and |
| * route table data. This is used when initializing or resetting the IPA |
| * filter or route table. |
| * |
| * The first entry in a filter table contains a bitmap indicating which |
| * endpoints contain entries in the table. In addition to that first entry, |
| * there are at most IPA_FILTER_COUNT_MAX entries that follow. Filter table |
| * entries are 64 bits wide, and (other than the bitmap) contain the DMA |
| * address of a filter rule. A "zero rule" indicates no filtering, and |
| * consists of 64 bits of zeroes. When a filter table is initialized (or |
| * reset) its entries are made to refer to the zero rule. |
| * |
| * Each entry in a route table is the DMA address of a routing rule. For |
| * routing there is also a 64-bit "zero rule" that means no routing, and |
| * when a route table is initialized or reset, its entries are made to refer |
| * to the zero rule. The zero rule is shared for route and filter tables. |
| * |
| * Note that the IPA hardware requires a filter or route rule address to be |
| * aligned on a 128 byte boundary. The coherent DMA buffer we allocate here |
| * has a minimum alignment, and we place the zero rule at the base of that |
| * allocated space. In ipa_table_init() we verify the minimum DMA allocation |
| * meets our requirement. |
| * |
| * +-------------------+ |
| * --> | zero rule | |
| * / |-------------------| |
| * | | filter mask | |
| * |\ |-------------------| |
| * | ---- zero rule address | \ |
| * |\ |-------------------| | |
| * | ---- zero rule address | | IPA_FILTER_COUNT_MAX |
| * | |-------------------| > or IPA_ROUTE_COUNT_MAX, |
| * | ... | whichever is greater |
| * \ |-------------------| | |
| * ---- zero rule address | / |
| * +-------------------+ |
| */ |
| int ipa_table_init(struct ipa *ipa) |
| { |
| u32 count = max_t(u32, IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX); |
| struct device *dev = &ipa->pdev->dev; |
| dma_addr_t addr; |
| __le64 le_addr; |
| __le64 *virt; |
| size_t size; |
| |
| ipa_table_validate_build(); |
| |
| /* The IPA hardware requires route and filter table rules to be |
| * aligned on a 128-byte boundary. We put the "zero rule" at the |
| * base of the table area allocated here. The DMA address returned |
| * by dma_alloc_coherent() is guaranteed to be a power-of-2 number |
| * of pages, which satisfies the rule alignment requirement. |
| */ |
| size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64); |
| virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); |
| if (!virt) |
| return -ENOMEM; |
| |
| ipa->table_virt = virt; |
| ipa->table_addr = addr; |
| |
| /* First slot is the zero rule */ |
| *virt++ = 0; |
| |
| /* Next is the filter table bitmap. The "soft" bitmap value |
| * must be converted to the hardware representation by shifting |
| * it left one position. (Bit 0 repesents global filtering, |
| * which is possible but not used.) |
| */ |
| *virt++ = cpu_to_le64((u64)ipa->filter_map << 1); |
| |
| /* All the rest contain the DMA address of the zero rule */ |
| le_addr = cpu_to_le64(addr); |
| while (count--) |
| *virt++ = le_addr; |
| |
| return 0; |
| } |
| |
| void ipa_table_exit(struct ipa *ipa) |
| { |
| u32 count = max_t(u32, 1 + IPA_FILTER_COUNT_MAX, IPA_ROUTE_COUNT_MAX); |
| struct device *dev = &ipa->pdev->dev; |
| size_t size; |
| |
| size = IPA_ZERO_RULE_SIZE + (1 + count) * sizeof(__le64); |
| |
| dma_free_coherent(dev, size, ipa->table_virt, ipa->table_addr); |
| ipa->table_addr = 0; |
| ipa->table_virt = NULL; |
| } |