| /* |
| * Copyright © 2008-2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Eric Anholt <eric@anholt.net> |
| * |
| */ |
| |
| #include <drm/drmP.h> |
| #include <drm/drm_vma_manager.h> |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| #include "i915_vgpu.h" |
| #include "i915_trace.h" |
| #include "intel_drv.h" |
| #include "intel_frontbuffer.h" |
| #include "intel_mocs.h" |
| #include <linux/dma-fence-array.h> |
| #include <linux/reservation.h> |
| #include <linux/shmem_fs.h> |
| #include <linux/slab.h> |
| #include <linux/stop_machine.h> |
| #include <linux/swap.h> |
| #include <linux/pci.h> |
| #include <linux/dma-buf.h> |
| |
| static void i915_gem_flush_free_objects(struct drm_i915_private *i915); |
| static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj); |
| static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj); |
| |
| static bool cpu_cache_is_coherent(struct drm_device *dev, |
| enum i915_cache_level level) |
| { |
| return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE; |
| } |
| |
| static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj) |
| { |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) |
| return false; |
| |
| if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) |
| return true; |
| |
| return obj->pin_display; |
| } |
| |
| static int |
| insert_mappable_node(struct i915_ggtt *ggtt, |
| struct drm_mm_node *node, u32 size) |
| { |
| memset(node, 0, sizeof(*node)); |
| return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node, |
| size, 0, |
| I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_SEARCH_DEFAULT, |
| DRM_MM_CREATE_DEFAULT); |
| } |
| |
| static void |
| remove_mappable_node(struct drm_mm_node *node) |
| { |
| drm_mm_remove_node(node); |
| } |
| |
| /* some bookkeeping */ |
| static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv, |
| u64 size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count++; |
| dev_priv->mm.object_memory += size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv, |
| u64 size) |
| { |
| spin_lock(&dev_priv->mm.object_stat_lock); |
| dev_priv->mm.object_count--; |
| dev_priv->mm.object_memory -= size; |
| spin_unlock(&dev_priv->mm.object_stat_lock); |
| } |
| |
| static int |
| i915_gem_wait_for_error(struct i915_gpu_error *error) |
| { |
| int ret; |
| |
| might_sleep(); |
| |
| if (!i915_reset_in_progress(error)) |
| return 0; |
| |
| /* |
| * Only wait 10 seconds for the gpu reset to complete to avoid hanging |
| * userspace. If it takes that long something really bad is going on and |
| * we should simply try to bail out and fail as gracefully as possible. |
| */ |
| ret = wait_event_interruptible_timeout(error->reset_queue, |
| !i915_reset_in_progress(error), |
| I915_RESET_TIMEOUT); |
| if (ret == 0) { |
| DRM_ERROR("Timed out waiting for the gpu reset to complete\n"); |
| return -EIO; |
| } else if (ret < 0) { |
| return ret; |
| } else { |
| return 0; |
| } |
| } |
| |
| int i915_mutex_lock_interruptible(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| int ret; |
| |
| ret = i915_gem_wait_for_error(&dev_priv->gpu_error); |
| if (ret) |
| return ret; |
| |
| ret = mutex_lock_interruptible(&dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| int |
| i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| struct drm_i915_gem_get_aperture *args = data; |
| struct i915_vma *vma; |
| size_t pinned; |
| |
| pinned = 0; |
| mutex_lock(&dev->struct_mutex); |
| list_for_each_entry(vma, &ggtt->base.active_list, vm_link) |
| if (i915_vma_is_pinned(vma)) |
| pinned += vma->node.size; |
| list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link) |
| if (i915_vma_is_pinned(vma)) |
| pinned += vma->node.size; |
| mutex_unlock(&dev->struct_mutex); |
| |
| args->aper_size = ggtt->base.total; |
| args->aper_available_size = args->aper_size - pinned; |
| |
| return 0; |
| } |
| |
| static struct sg_table * |
| i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| char *vaddr = obj->phys_handle->vaddr; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| int i; |
| |
| if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj))) |
| return ERR_PTR(-EINVAL); |
| |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *src; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| return ERR_CAST(page); |
| |
| src = kmap_atomic(page); |
| memcpy(vaddr, src, PAGE_SIZE); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| kunmap_atomic(src); |
| |
| put_page(page); |
| vaddr += PAGE_SIZE; |
| } |
| |
| i915_gem_chipset_flush(to_i915(obj->base.dev)); |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (st == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| if (sg_alloc_table(st, 1, GFP_KERNEL)) { |
| kfree(st); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| sg = st->sgl; |
| sg->offset = 0; |
| sg->length = obj->base.size; |
| |
| sg_dma_address(sg) = obj->phys_handle->busaddr; |
| sg_dma_len(sg) = obj->base.size; |
| |
| return st; |
| } |
| |
| static void |
| __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED); |
| |
| if (obj->mm.madv == I915_MADV_DONTNEED) |
| obj->mm.dirty = false; |
| |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 && |
| !cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) |
| drm_clflush_sg(pages); |
| |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| static void |
| i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| __i915_gem_object_release_shmem(obj, pages); |
| |
| if (obj->mm.dirty) { |
| struct address_space *mapping = obj->base.filp->f_mapping; |
| char *vaddr = obj->phys_handle->vaddr; |
| int i; |
| |
| for (i = 0; i < obj->base.size / PAGE_SIZE; i++) { |
| struct page *page; |
| char *dst; |
| |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) |
| continue; |
| |
| dst = kmap_atomic(page); |
| drm_clflush_virt_range(vaddr, PAGE_SIZE); |
| memcpy(dst, vaddr, PAGE_SIZE); |
| kunmap_atomic(dst); |
| |
| set_page_dirty(page); |
| if (obj->mm.madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| put_page(page); |
| vaddr += PAGE_SIZE; |
| } |
| obj->mm.dirty = false; |
| } |
| |
| sg_free_table(pages); |
| kfree(pages); |
| } |
| |
| static void |
| i915_gem_object_release_phys(struct drm_i915_gem_object *obj) |
| { |
| drm_pci_free(obj->base.dev, obj->phys_handle); |
| i915_gem_object_unpin_pages(obj); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_phys_ops = { |
| .get_pages = i915_gem_object_get_pages_phys, |
| .put_pages = i915_gem_object_put_pages_phys, |
| .release = i915_gem_object_release_phys, |
| }; |
| |
| int i915_gem_object_unbind(struct drm_i915_gem_object *obj) |
| { |
| struct i915_vma *vma; |
| LIST_HEAD(still_in_list); |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| /* Closed vma are removed from the obj->vma_list - but they may |
| * still have an active binding on the object. To remove those we |
| * must wait for all rendering to complete to the object (as unbinding |
| * must anyway), and retire the requests. |
| */ |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| i915_gem_retire_requests(to_i915(obj->base.dev)); |
| |
| while ((vma = list_first_entry_or_null(&obj->vma_list, |
| struct i915_vma, |
| obj_link))) { |
| list_move_tail(&vma->obj_link, &still_in_list); |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| break; |
| } |
| list_splice(&still_in_list, &obj->vma_list); |
| |
| return ret; |
| } |
| |
| static long |
| i915_gem_object_wait_fence(struct dma_fence *fence, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps) |
| { |
| struct drm_i915_gem_request *rq; |
| |
| BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1); |
| |
| if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) |
| return timeout; |
| |
| if (!dma_fence_is_i915(fence)) |
| return dma_fence_wait_timeout(fence, |
| flags & I915_WAIT_INTERRUPTIBLE, |
| timeout); |
| |
| rq = to_request(fence); |
| if (i915_gem_request_completed(rq)) |
| goto out; |
| |
| /* This client is about to stall waiting for the GPU. In many cases |
| * this is undesirable and limits the throughput of the system, as |
| * many clients cannot continue processing user input/output whilst |
| * blocked. RPS autotuning may take tens of milliseconds to respond |
| * to the GPU load and thus incurs additional latency for the client. |
| * We can circumvent that by promoting the GPU frequency to maximum |
| * before we wait. This makes the GPU throttle up much more quickly |
| * (good for benchmarks and user experience, e.g. window animations), |
| * but at a cost of spending more power processing the workload |
| * (bad for battery). Not all clients even want their results |
| * immediately and for them we should just let the GPU select its own |
| * frequency to maximise efficiency. To prevent a single client from |
| * forcing the clocks too high for the whole system, we only allow |
| * each client to waitboost once in a busy period. |
| */ |
| if (rps) { |
| if (INTEL_GEN(rq->i915) >= 6) |
| gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies); |
| else |
| rps = NULL; |
| } |
| |
| timeout = i915_wait_request(rq, flags, timeout); |
| |
| out: |
| if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq)) |
| i915_gem_request_retire_upto(rq); |
| |
| if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) { |
| /* The GPU is now idle and this client has stalled. |
| * Since no other client has submitted a request in the |
| * meantime, assume that this client is the only one |
| * supplying work to the GPU but is unable to keep that |
| * work supplied because it is waiting. Since the GPU is |
| * then never kept fully busy, RPS autoclocking will |
| * keep the clocks relatively low, causing further delays. |
| * Compensate by giving the synchronous client credit for |
| * a waitboost next time. |
| */ |
| spin_lock(&rq->i915->rps.client_lock); |
| list_del_init(&rps->link); |
| spin_unlock(&rq->i915->rps.client_lock); |
| } |
| |
| return timeout; |
| } |
| |
| static long |
| i915_gem_object_wait_reservation(struct reservation_object *resv, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps) |
| { |
| struct dma_fence *excl; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| timeout = i915_gem_object_wait_fence(shared[i], |
| flags, timeout, |
| rps); |
| if (timeout <= 0) |
| break; |
| |
| dma_fence_put(shared[i]); |
| } |
| |
| for (; i < count; i++) |
| dma_fence_put(shared[i]); |
| kfree(shared); |
| } else { |
| excl = reservation_object_get_excl_rcu(resv); |
| } |
| |
| if (excl && timeout > 0) |
| timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps); |
| |
| dma_fence_put(excl); |
| |
| return timeout; |
| } |
| |
| static void __fence_set_priority(struct dma_fence *fence, int prio) |
| { |
| struct drm_i915_gem_request *rq; |
| struct intel_engine_cs *engine; |
| |
| if (!dma_fence_is_i915(fence)) |
| return; |
| |
| rq = to_request(fence); |
| engine = rq->engine; |
| if (!engine->schedule) |
| return; |
| |
| engine->schedule(rq, prio); |
| } |
| |
| static void fence_set_priority(struct dma_fence *fence, int prio) |
| { |
| /* Recurse once into a fence-array */ |
| if (dma_fence_is_array(fence)) { |
| struct dma_fence_array *array = to_dma_fence_array(fence); |
| int i; |
| |
| for (i = 0; i < array->num_fences; i++) |
| __fence_set_priority(array->fences[i], prio); |
| } else { |
| __fence_set_priority(fence, prio); |
| } |
| } |
| |
| int |
| i915_gem_object_wait_priority(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| int prio) |
| { |
| struct dma_fence *excl; |
| |
| if (flags & I915_WAIT_ALL) { |
| struct dma_fence **shared; |
| unsigned int count, i; |
| int ret; |
| |
| ret = reservation_object_get_fences_rcu(obj->resv, |
| &excl, &count, &shared); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < count; i++) { |
| fence_set_priority(shared[i], prio); |
| dma_fence_put(shared[i]); |
| } |
| |
| kfree(shared); |
| } else { |
| excl = reservation_object_get_excl_rcu(obj->resv); |
| } |
| |
| if (excl) { |
| fence_set_priority(excl, prio); |
| dma_fence_put(excl); |
| } |
| return 0; |
| } |
| |
| /** |
| * Waits for rendering to the object to be completed |
| * @obj: i915 gem object |
| * @flags: how to wait (under a lock, for all rendering or just for writes etc) |
| * @timeout: how long to wait |
| * @rps: client (user process) to charge for any waitboosting |
| */ |
| int |
| i915_gem_object_wait(struct drm_i915_gem_object *obj, |
| unsigned int flags, |
| long timeout, |
| struct intel_rps_client *rps) |
| { |
| might_sleep(); |
| #if IS_ENABLED(CONFIG_LOCKDEP) |
| GEM_BUG_ON(debug_locks && |
| !!lockdep_is_held(&obj->base.dev->struct_mutex) != |
| !!(flags & I915_WAIT_LOCKED)); |
| #endif |
| GEM_BUG_ON(timeout < 0); |
| |
| timeout = i915_gem_object_wait_reservation(obj->resv, |
| flags, timeout, |
| rps); |
| return timeout < 0 ? timeout : 0; |
| } |
| |
| static struct intel_rps_client *to_rps_client(struct drm_file *file) |
| { |
| struct drm_i915_file_private *fpriv = file->driver_priv; |
| |
| return &fpriv->rps; |
| } |
| |
| int |
| i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, |
| int align) |
| { |
| drm_dma_handle_t *phys; |
| int ret; |
| |
| if (obj->phys_handle) { |
| if ((unsigned long)obj->phys_handle->vaddr & (align -1)) |
| return -EBUSY; |
| |
| return 0; |
| } |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| return -EFAULT; |
| |
| if (obj->base.filp == NULL) |
| return -EINVAL; |
| |
| ret = i915_gem_object_unbind(obj); |
| if (ret) |
| return ret; |
| |
| __i915_gem_object_put_pages(obj, I915_MM_NORMAL); |
| if (obj->mm.pages) |
| return -EBUSY; |
| |
| /* create a new object */ |
| phys = drm_pci_alloc(obj->base.dev, obj->base.size, align); |
| if (!phys) |
| return -ENOMEM; |
| |
| obj->phys_handle = phys; |
| obj->ops = &i915_gem_phys_ops; |
| |
| return i915_gem_object_pin_pages(obj); |
| } |
| |
| static int |
| i915_gem_phys_pwrite(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pwrite *args, |
| struct drm_file *file) |
| { |
| struct drm_device *dev = obj->base.dev; |
| void *vaddr = obj->phys_handle->vaddr + args->offset; |
| char __user *user_data = u64_to_user_ptr(args->data_ptr); |
| int ret; |
| |
| /* We manually control the domain here and pretend that it |
| * remains coherent i.e. in the GTT domain, like shmem_pwrite. |
| */ |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| return ret; |
| |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) { |
| unsigned long unwritten; |
| |
| /* The physical object once assigned is fixed for the lifetime |
| * of the obj, so we can safely drop the lock and continue |
| * to access vaddr. |
| */ |
| mutex_unlock(&dev->struct_mutex); |
| unwritten = copy_from_user(vaddr, user_data, args->size); |
| mutex_lock(&dev->struct_mutex); |
| if (unwritten) { |
| ret = -EFAULT; |
| goto out; |
| } |
| } |
| |
| drm_clflush_virt_range(vaddr, args->size); |
| i915_gem_chipset_flush(to_i915(dev)); |
| |
| out: |
| intel_fb_obj_flush(obj, false, ORIGIN_CPU); |
| return ret; |
| } |
| |
| void *i915_gem_object_alloc(struct drm_i915_private *dev_priv) |
| { |
| return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL); |
| } |
| |
| void i915_gem_object_free(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| kmem_cache_free(dev_priv->objects, obj); |
| } |
| |
| static int |
| i915_gem_create(struct drm_file *file, |
| struct drm_i915_private *dev_priv, |
| uint64_t size, |
| uint32_t *handle_p) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| u32 handle; |
| |
| size = roundup(size, PAGE_SIZE); |
| if (size == 0) |
| return -EINVAL; |
| |
| /* Allocate the new object */ |
| obj = i915_gem_object_create(dev_priv, size); |
| if (IS_ERR(obj)) |
| return PTR_ERR(obj); |
| |
| ret = drm_gem_handle_create(file, &obj->base, &handle); |
| /* drop reference from allocate - handle holds it now */ |
| i915_gem_object_put(obj); |
| if (ret) |
| return ret; |
| |
| *handle_p = handle; |
| return 0; |
| } |
| |
| int |
| i915_gem_dumb_create(struct drm_file *file, |
| struct drm_device *dev, |
| struct drm_mode_create_dumb *args) |
| { |
| /* have to work out size/pitch and return them */ |
| args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64); |
| args->size = args->pitch * args->height; |
| return i915_gem_create(file, to_i915(dev), |
| args->size, &args->handle); |
| } |
| |
| /** |
| * Creates a new mm object and returns a handle to it. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| */ |
| int |
| i915_gem_create_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_create *args = data; |
| |
| i915_gem_flush_free_objects(dev_priv); |
| |
| return i915_gem_create(file, dev_priv, |
| args->size, &args->handle); |
| } |
| |
| static inline int |
| __copy_to_user_swizzled(char __user *cpu_vaddr, |
| const char *gpu_vaddr, int gpu_offset, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_to_user(cpu_vaddr + cpu_offset, |
| gpu_vaddr + swizzled_gpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| static inline int |
| __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset, |
| const char __user *cpu_vaddr, |
| int length) |
| { |
| int ret, cpu_offset = 0; |
| |
| while (length > 0) { |
| int cacheline_end = ALIGN(gpu_offset + 1, 64); |
| int this_length = min(cacheline_end - gpu_offset, length); |
| int swizzled_gpu_offset = gpu_offset ^ 64; |
| |
| ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset, |
| cpu_vaddr + cpu_offset, |
| this_length); |
| if (ret) |
| return ret + length; |
| |
| cpu_offset += this_length; |
| gpu_offset += this_length; |
| length -= this_length; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Pins the specified object's pages and synchronizes the object with |
| * GPU accesses. Sets needs_clflush to non-zero if the caller should |
| * flush the object from the CPU cache. |
| */ |
| int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj, |
| unsigned int *needs_clflush) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| *needs_clflush = 0; |
| if (!i915_gem_object_has_struct_page(obj)) |
| return -ENODEV; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_gtt_write_domain(obj); |
| |
| /* If we're not in the cpu read domain, set ourself into the gtt |
| * read domain and manually flush cachelines (if required). This |
| * optimizes for the case when the gpu will dirty the data |
| * anyway again before the next pread happens. |
| */ |
| if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) |
| *needs_clflush = !cpu_cache_is_coherent(obj->base.dev, |
| obj->cache_level); |
| |
| if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { |
| ret = i915_gem_object_set_to_cpu_domain(obj, false); |
| if (ret) |
| goto err_unpin; |
| |
| *needs_clflush = 0; |
| } |
| |
| /* return with the pages pinned */ |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| } |
| |
| int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj, |
| unsigned int *needs_clflush) |
| { |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| *needs_clflush = 0; |
| if (!i915_gem_object_has_struct_page(obj)) |
| return -ENODEV; |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_gtt_write_domain(obj); |
| |
| /* If we're not in the cpu write domain, set ourself into the |
| * gtt write domain and manually flush cachelines (as required). |
| * This optimizes for the case when the gpu will use the data |
| * right away and we therefore have to clflush anyway. |
| */ |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) |
| *needs_clflush |= cpu_write_needs_clflush(obj) << 1; |
| |
| /* Same trick applies to invalidate partially written cachelines read |
| * before writing. |
| */ |
| if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) |
| *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev, |
| obj->cache_level); |
| |
| if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) { |
| ret = i915_gem_object_set_to_cpu_domain(obj, true); |
| if (ret) |
| goto err_unpin; |
| |
| *needs_clflush = 0; |
| } |
| |
| if ((*needs_clflush & CLFLUSH_AFTER) == 0) |
| obj->cache_dirty = true; |
| |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| obj->mm.dirty = true; |
| /* return with the pages pinned */ |
| return 0; |
| |
| err_unpin: |
| i915_gem_object_unpin_pages(obj); |
| return ret; |
| } |
| |
| static void |
| shmem_clflush_swizzled_range(char *addr, unsigned long length, |
| bool swizzled) |
| { |
| if (unlikely(swizzled)) { |
| unsigned long start = (unsigned long) addr; |
| unsigned long end = (unsigned long) addr + length; |
| |
| /* For swizzling simply ensure that we always flush both |
| * channels. Lame, but simple and it works. Swizzled |
| * pwrite/pread is far from a hotpath - current userspace |
| * doesn't use it at all. */ |
| start = round_down(start, 128); |
| end = round_up(end, 128); |
| |
| drm_clflush_virt_range((void *)start, end - start); |
| } else { |
| drm_clflush_virt_range(addr, length); |
| } |
| |
| } |
| |
| /* Only difference to the fast-path function is that this can handle bit17 |
| * and uses non-atomic copy and kmap functions. */ |
| static int |
| shmem_pread_slow(struct page *page, int offset, int length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (needs_clflush) |
| shmem_clflush_swizzled_range(vaddr + offset, length, |
| page_do_bit17_swizzling); |
| |
| if (page_do_bit17_swizzling) |
| ret = __copy_to_user_swizzled(user_data, vaddr, offset, length); |
| else |
| ret = __copy_to_user(user_data, vaddr + offset, length); |
| kunmap(page); |
| |
| return ret ? - EFAULT : 0; |
| } |
| |
| static int |
| shmem_pread(struct page *page, int offset, int length, char __user *user_data, |
| bool page_do_bit17_swizzling, bool needs_clflush) |
| { |
| int ret; |
| |
| ret = -ENODEV; |
| if (!page_do_bit17_swizzling) { |
| char *vaddr = kmap_atomic(page); |
| |
| if (needs_clflush) |
| drm_clflush_virt_range(vaddr + offset, length); |
| ret = __copy_to_user_inatomic(user_data, vaddr + offset, length); |
| kunmap_atomic(vaddr); |
| } |
| if (ret == 0) |
| return 0; |
| |
| return shmem_pread_slow(page, offset, length, user_data, |
| page_do_bit17_swizzling, needs_clflush); |
| } |
| |
| static int |
| i915_gem_shmem_pread(struct drm_i915_gem_object *obj, |
| struct drm_i915_gem_pread *args) |
| { |
| char __user *user_data; |
| u64 remain; |
| unsigned int obj_do_bit17_swizzling; |
| unsigned int needs_clflush; |
| unsigned int idx, offset; |
| int ret; |
| |
| obj_do_bit17_swizzling = 0; |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| obj_do_bit17_swizzling = BIT(17); |
| |
| ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush); |
| mutex_unlock(&obj->base.dev->struct_mutex); |
| if (ret) |
| return ret; |
| |
| remain = args->size; |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| int length; |
| |
| length = remain; |
| if (offset + length > PAGE_SIZE) |
| length = PAGE_SIZE - offset; |
| |
| ret = shmem_pread(page, offset, length, user_data, |
| page_to_phys(page) & obj_do_bit17_swizzling, |
| needs_clflush); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| i915_gem_obj_finish_shmem_access(obj); |
| return ret; |
| } |
| |
| static inline bool |
| gtt_user_read(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = (void __force *) |
| io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_to_user(user_data, vaddr + offset, length); |
| io_mapping_unmap(vaddr); |
| } |
| return unwritten; |
| } |
| |
| static int |
| i915_gem_gtt_pread(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pread *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| void __user *user_data; |
| u64 remain, offset; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| intel_runtime_pm_get(i915); |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_unlock; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, false); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = args->offset; |
| |
| while (remain > 0) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned page_offset = offset_in_page(offset); |
| unsigned page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); |
| ggtt->base.insert_page(&ggtt->base, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| |
| if (gtt_user_read(&ggtt->mappable, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->base.clear_range(&ggtt->base, |
| node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_unlock: |
| intel_runtime_pm_put(i915); |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| return ret; |
| } |
| |
| /** |
| * Reads data from the object referenced by handle. |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * On error, the contents of *data are undefined. |
| */ |
| int |
| i915_gem_pread_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pread *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_WRITE, |
| u64_to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check source. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| trace_i915_gem_object_pread(obj, args->offset, args->size); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto out; |
| |
| ret = i915_gem_shmem_pread(obj, args); |
| if (ret == -EFAULT || ret == -ENODEV) |
| ret = i915_gem_gtt_pread(obj, args); |
| |
| i915_gem_object_unpin_pages(obj); |
| out: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /* This is the fast write path which cannot handle |
| * page faults in the source data |
| */ |
| |
| static inline bool |
| ggtt_write(struct io_mapping *mapping, |
| loff_t base, int offset, |
| char __user *user_data, int length) |
| { |
| void *vaddr; |
| unsigned long unwritten; |
| |
| /* We can use the cpu mem copy function because this is X86. */ |
| vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base); |
| unwritten = __copy_from_user_inatomic_nocache(vaddr + offset, |
| user_data, length); |
| io_mapping_unmap_atomic(vaddr); |
| if (unwritten) { |
| vaddr = (void __force *) |
| io_mapping_map_wc(mapping, base, PAGE_SIZE); |
| unwritten = copy_from_user(vaddr + offset, user_data, length); |
| io_mapping_unmap(vaddr); |
| } |
| |
| return unwritten; |
| } |
| |
| /** |
| * This is the fast pwrite path, where we copy the data directly from the |
| * user into the GTT, uncached. |
| * @obj: i915 GEM object |
| * @args: pwrite arguments structure |
| */ |
| static int |
| i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| struct i915_ggtt *ggtt = &i915->ggtt; |
| struct drm_mm_node node; |
| struct i915_vma *vma; |
| u64 remain, offset; |
| void __user *user_data; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| intel_runtime_pm_get(i915); |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, |
| PIN_MAPPABLE | PIN_NONBLOCK); |
| if (!IS_ERR(vma)) { |
| node.start = i915_ggtt_offset(vma); |
| node.allocated = false; |
| ret = i915_vma_put_fence(vma); |
| if (ret) { |
| i915_vma_unpin(vma); |
| vma = ERR_PTR(ret); |
| } |
| } |
| if (IS_ERR(vma)) { |
| ret = insert_mappable_node(ggtt, &node, PAGE_SIZE); |
| if (ret) |
| goto out_unlock; |
| GEM_BUG_ON(!node.allocated); |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (ret) |
| goto out_unpin; |
| |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| intel_fb_obj_invalidate(obj, ORIGIN_CPU); |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| offset = args->offset; |
| remain = args->size; |
| while (remain) { |
| /* Operation in this page |
| * |
| * page_base = page offset within aperture |
| * page_offset = offset within page |
| * page_length = bytes to copy for this page |
| */ |
| u32 page_base = node.start; |
| unsigned int page_offset = offset_in_page(offset); |
| unsigned int page_length = PAGE_SIZE - page_offset; |
| page_length = remain < page_length ? remain : page_length; |
| if (node.allocated) { |
| wmb(); /* flush the write before we modify the GGTT */ |
| ggtt->base.insert_page(&ggtt->base, |
| i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT), |
| node.start, I915_CACHE_NONE, 0); |
| wmb(); /* flush modifications to the GGTT (insert_page) */ |
| } else { |
| page_base += offset & PAGE_MASK; |
| } |
| /* If we get a fault while copying data, then (presumably) our |
| * source page isn't available. Return the error and we'll |
| * retry in the slow path. |
| * If the object is non-shmem backed, we retry again with the |
| * path that handles page fault. |
| */ |
| if (ggtt_write(&ggtt->mappable, page_base, page_offset, |
| user_data, page_length)) { |
| ret = -EFAULT; |
| break; |
| } |
| |
| remain -= page_length; |
| user_data += page_length; |
| offset += page_length; |
| } |
| intel_fb_obj_flush(obj, false, ORIGIN_CPU); |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| out_unpin: |
| if (node.allocated) { |
| wmb(); |
| ggtt->base.clear_range(&ggtt->base, |
| node.start, node.size); |
| remove_mappable_node(&node); |
| } else { |
| i915_vma_unpin(vma); |
| } |
| out_unlock: |
| intel_runtime_pm_put(i915); |
| mutex_unlock(&i915->drm.struct_mutex); |
| return ret; |
| } |
| |
| static int |
| shmem_pwrite_slow(struct page *page, int offset, int length, |
| char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| char *vaddr; |
| int ret; |
| |
| vaddr = kmap(page); |
| if (unlikely(needs_clflush_before || page_do_bit17_swizzling)) |
| shmem_clflush_swizzled_range(vaddr + offset, length, |
| page_do_bit17_swizzling); |
| if (page_do_bit17_swizzling) |
| ret = __copy_from_user_swizzled(vaddr, offset, user_data, |
| length); |
| else |
| ret = __copy_from_user(vaddr + offset, user_data, length); |
| if (needs_clflush_after) |
| shmem_clflush_swizzled_range(vaddr + offset, length, |
| page_do_bit17_swizzling); |
| kunmap(page); |
| |
| return ret ? -EFAULT : 0; |
| } |
| |
| /* Per-page copy function for the shmem pwrite fastpath. |
| * Flushes invalid cachelines before writing to the target if |
| * needs_clflush_before is set and flushes out any written cachelines after |
| * writing if needs_clflush is set. |
| */ |
| static int |
| shmem_pwrite(struct page *page, int offset, int len, char __user *user_data, |
| bool page_do_bit17_swizzling, |
| bool needs_clflush_before, |
| bool needs_clflush_after) |
| { |
| int ret; |
| |
| ret = -ENODEV; |
| if (!page_do_bit17_swizzling) { |
| char *vaddr = kmap_atomic(page); |
| |
| if (needs_clflush_before) |
| drm_clflush_virt_range(vaddr + offset, len); |
| ret = __copy_from_user_inatomic(vaddr + offset, user_data, len); |
| if (needs_clflush_after) |
| drm_clflush_virt_range(vaddr + offset, len); |
| |
| kunmap_atomic(vaddr); |
| } |
| if (ret == 0) |
| return ret; |
| |
| return shmem_pwrite_slow(page, offset, len, user_data, |
| page_do_bit17_swizzling, |
| needs_clflush_before, |
| needs_clflush_after); |
| } |
| |
| static int |
| i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_pwrite *args) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| void __user *user_data; |
| u64 remain; |
| unsigned int obj_do_bit17_swizzling; |
| unsigned int partial_cacheline_write; |
| unsigned int needs_clflush; |
| unsigned int offset, idx; |
| int ret; |
| |
| ret = mutex_lock_interruptible(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush); |
| mutex_unlock(&i915->drm.struct_mutex); |
| if (ret) |
| return ret; |
| |
| obj_do_bit17_swizzling = 0; |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| obj_do_bit17_swizzling = BIT(17); |
| |
| /* If we don't overwrite a cacheline completely we need to be |
| * careful to have up-to-date data by first clflushing. Don't |
| * overcomplicate things and flush the entire patch. |
| */ |
| partial_cacheline_write = 0; |
| if (needs_clflush & CLFLUSH_BEFORE) |
| partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1; |
| |
| user_data = u64_to_user_ptr(args->data_ptr); |
| remain = args->size; |
| offset = offset_in_page(args->offset); |
| for (idx = args->offset >> PAGE_SHIFT; remain; idx++) { |
| struct page *page = i915_gem_object_get_page(obj, idx); |
| int length; |
| |
| length = remain; |
| if (offset + length > PAGE_SIZE) |
| length = PAGE_SIZE - offset; |
| |
| ret = shmem_pwrite(page, offset, length, user_data, |
| page_to_phys(page) & obj_do_bit17_swizzling, |
| (offset | length) & partial_cacheline_write, |
| needs_clflush & CLFLUSH_AFTER); |
| if (ret) |
| break; |
| |
| remain -= length; |
| user_data += length; |
| offset = 0; |
| } |
| |
| intel_fb_obj_flush(obj, false, ORIGIN_CPU); |
| i915_gem_obj_finish_shmem_access(obj); |
| return ret; |
| } |
| |
| /** |
| * Writes data to the object referenced by handle. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * On error, the contents of the buffer that were to be modified are undefined. |
| */ |
| int |
| i915_gem_pwrite_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_pwrite *args = data; |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| if (args->size == 0) |
| return 0; |
| |
| if (!access_ok(VERIFY_READ, |
| u64_to_user_ptr(args->data_ptr), |
| args->size)) |
| return -EFAULT; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Bounds check destination. */ |
| if (args->offset > obj->base.size || |
| args->size > obj->base.size - args->offset) { |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| trace_i915_gem_object_pwrite(obj, args->offset, args->size); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err; |
| |
| ret = -EFAULT; |
| /* We can only do the GTT pwrite on untiled buffers, as otherwise |
| * it would end up going through the fenced access, and we'll get |
| * different detiling behavior between reading and writing. |
| * pread/pwrite currently are reading and writing from the CPU |
| * perspective, requiring manual detiling by the client. |
| */ |
| if (!i915_gem_object_has_struct_page(obj) || |
| cpu_write_needs_clflush(obj)) |
| /* Note that the gtt paths might fail with non-page-backed user |
| * pointers (e.g. gtt mappings when moving data between |
| * textures). Fallback to the shmem path in that case. |
| */ |
| ret = i915_gem_gtt_pwrite_fast(obj, args); |
| |
| if (ret == -EFAULT || ret == -ENOSPC) { |
| if (obj->phys_handle) |
| ret = i915_gem_phys_pwrite(obj, args, file); |
| else |
| ret = i915_gem_shmem_pwrite(obj, args); |
| } |
| |
| i915_gem_object_unpin_pages(obj); |
| err: |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static inline enum fb_op_origin |
| write_origin(struct drm_i915_gem_object *obj, unsigned domain) |
| { |
| return (domain == I915_GEM_DOMAIN_GTT ? |
| obj->frontbuffer_ggtt_origin : ORIGIN_CPU); |
| } |
| |
| static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915; |
| struct list_head *list; |
| struct i915_vma *vma; |
| |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| if (!i915_vma_is_ggtt(vma)) |
| continue; |
| |
| if (i915_vma_is_active(vma)) |
| continue; |
| |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| list_move_tail(&vma->vm_link, &vma->vm->inactive_list); |
| } |
| |
| i915 = to_i915(obj->base.dev); |
| list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list; |
| list_move_tail(&obj->global_link, list); |
| } |
| |
| /** |
| * Called when user space prepares to use an object with the CPU, either |
| * through the mmap ioctl's mapping or a GTT mapping. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_set_domain_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_set_domain *args = data; |
| struct drm_i915_gem_object *obj; |
| uint32_t read_domains = args->read_domains; |
| uint32_t write_domain = args->write_domain; |
| int err; |
| |
| /* Only handle setting domains to types used by the CPU. */ |
| if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS) |
| return -EINVAL; |
| |
| /* Having something in the write domain implies it's in the read |
| * domain, and only that read domain. Enforce that in the request. |
| */ |
| if (write_domain != 0 && read_domains != write_domain) |
| return -EINVAL; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Try to flush the object off the GPU without holding the lock. |
| * We will repeat the flush holding the lock in the normal manner |
| * to catch cases where we are gazumped. |
| */ |
| err = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| (write_domain ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| to_rps_client(file)); |
| if (err) |
| goto out; |
| |
| /* Flush and acquire obj->pages so that we are coherent through |
| * direct access in memory with previous cached writes through |
| * shmemfs and that our cache domain tracking remains valid. |
| * For example, if the obj->filp was moved to swap without us |
| * being notified and releasing the pages, we would mistakenly |
| * continue to assume that the obj remained out of the CPU cached |
| * domain. |
| */ |
| err = i915_gem_object_pin_pages(obj); |
| if (err) |
| goto out; |
| |
| err = i915_mutex_lock_interruptible(dev); |
| if (err) |
| goto out_unpin; |
| |
| if (read_domains & I915_GEM_DOMAIN_GTT) |
| err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0); |
| else |
| err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0); |
| |
| /* And bump the LRU for this access */ |
| i915_gem_object_bump_inactive_ggtt(obj); |
| |
| mutex_unlock(&dev->struct_mutex); |
| |
| if (write_domain != 0) |
| intel_fb_obj_invalidate(obj, write_origin(obj, write_domain)); |
| |
| out_unpin: |
| i915_gem_object_unpin_pages(obj); |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| /** |
| * Called when user space has done writes to this buffer |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| */ |
| int |
| i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_sw_finish *args = data; |
| struct drm_i915_gem_object *obj; |
| int err = 0; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* Pinned buffers may be scanout, so flush the cache */ |
| if (READ_ONCE(obj->pin_display)) { |
| err = i915_mutex_lock_interruptible(dev); |
| if (!err) { |
| i915_gem_object_flush_cpu_write_domain(obj); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| } |
| |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| /** |
| * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address |
| * it is mapped to. |
| * @dev: drm device |
| * @data: ioctl data blob |
| * @file: drm file |
| * |
| * While the mapping holds a reference on the contents of the object, it doesn't |
| * imply a ref on the object itself. |
| * |
| * IMPORTANT: |
| * |
| * DRM driver writers who look a this function as an example for how to do GEM |
| * mmap support, please don't implement mmap support like here. The modern way |
| * to implement DRM mmap support is with an mmap offset ioctl (like |
| * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly. |
| * That way debug tooling like valgrind will understand what's going on, hiding |
| * the mmap call in a driver private ioctl will break that. The i915 driver only |
| * does cpu mmaps this way because we didn't know better. |
| */ |
| int |
| i915_gem_mmap_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap *args = data; |
| struct drm_i915_gem_object *obj; |
| unsigned long addr; |
| |
| if (args->flags & ~(I915_MMAP_WC)) |
| return -EINVAL; |
| |
| if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT)) |
| return -ENODEV; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| /* prime objects have no backing filp to GEM mmap |
| * pages from. |
| */ |
| if (!obj->base.filp) { |
| i915_gem_object_put(obj); |
| return -EINVAL; |
| } |
| |
| addr = vm_mmap(obj->base.filp, 0, args->size, |
| PROT_READ | PROT_WRITE, MAP_SHARED, |
| args->offset); |
| if (args->flags & I915_MMAP_WC) { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| |
| if (down_write_killable(&mm->mmap_sem)) { |
| i915_gem_object_put(obj); |
| return -EINTR; |
| } |
| vma = find_vma(mm, addr); |
| if (vma) |
| vma->vm_page_prot = |
| pgprot_writecombine(vm_get_page_prot(vma->vm_flags)); |
| else |
| addr = -ENOMEM; |
| up_write(&mm->mmap_sem); |
| |
| /* This may race, but that's ok, it only gets set */ |
| WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU); |
| } |
| i915_gem_object_put(obj); |
| if (IS_ERR((void *)addr)) |
| return addr; |
| |
| args->addr_ptr = (uint64_t) addr; |
| |
| return 0; |
| } |
| |
| static unsigned int tile_row_pages(struct drm_i915_gem_object *obj) |
| { |
| u64 size; |
| |
| size = i915_gem_object_get_stride(obj); |
| size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8; |
| |
| return size >> PAGE_SHIFT; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps |
| * |
| * A history of the GTT mmap interface: |
| * |
| * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to |
| * aligned and suitable for fencing, and still fit into the available |
| * mappable space left by the pinned display objects. A classic problem |
| * we called the page-fault-of-doom where we would ping-pong between |
| * two objects that could not fit inside the GTT and so the memcpy |
| * would page one object in at the expense of the other between every |
| * single byte. |
| * |
| * 1 - Objects can be any size, and have any compatible fencing (X Y, or none |
| * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the |
| * object is too large for the available space (or simply too large |
| * for the mappable aperture!), a view is created instead and faulted |
| * into userspace. (This view is aligned and sized appropriately for |
| * fenced access.) |
| * |
| * Restrictions: |
| * |
| * * snoopable objects cannot be accessed via the GTT. It can cause machine |
| * hangs on some architectures, corruption on others. An attempt to service |
| * a GTT page fault from a snoopable object will generate a SIGBUS. |
| * |
| * * the object must be able to fit into RAM (physical memory, though no |
| * limited to the mappable aperture). |
| * |
| * |
| * Caveats: |
| * |
| * * a new GTT page fault will synchronize rendering from the GPU and flush |
| * all data to system memory. Subsequent access will not be synchronized. |
| * |
| * * all mappings are revoked on runtime device suspend. |
| * |
| * * there are only 8, 16 or 32 fence registers to share between all users |
| * (older machines require fence register for display and blitter access |
| * as well). Contention of the fence registers will cause the previous users |
| * to be unmapped and any new access will generate new page faults. |
| * |
| * * running out of memory while servicing a fault may generate a SIGBUS, |
| * rather than the expected SIGSEGV. |
| */ |
| int i915_gem_mmap_gtt_version(void) |
| { |
| return 1; |
| } |
| |
| /** |
| * i915_gem_fault - fault a page into the GTT |
| * @area: CPU VMA in question |
| * @vmf: fault info |
| * |
| * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped |
| * from userspace. The fault handler takes care of binding the object to |
| * the GTT (if needed), allocating and programming a fence register (again, |
| * only if needed based on whether the old reg is still valid or the object |
| * is tiled) and inserting a new PTE into the faulting process. |
| * |
| * Note that the faulting process may involve evicting existing objects |
| * from the GTT and/or fence registers to make room. So performance may |
| * suffer if the GTT working set is large or there are few fence registers |
| * left. |
| * |
| * The current feature set supported by i915_gem_fault() and thus GTT mmaps |
| * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version). |
| */ |
| int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf) |
| { |
| #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */ |
| struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data); |
| struct drm_device *dev = obj->base.dev; |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct i915_ggtt *ggtt = &dev_priv->ggtt; |
| bool write = !!(vmf->flags & FAULT_FLAG_WRITE); |
| struct i915_vma *vma; |
| pgoff_t page_offset; |
| unsigned int flags; |
| int ret; |
| |
| /* We don't use vmf->pgoff since that has the fake offset */ |
| page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >> |
| PAGE_SHIFT; |
| |
| trace_i915_gem_object_fault(obj, page_offset, true, write); |
| |
| /* Try to flush the object off the GPU first without holding the lock. |
| * Upon acquiring the lock, we will perform our sanity checks and then |
| * repeat the flush holding the lock in the normal manner to catch cases |
| * where we are gazumped. |
| */ |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto err; |
| |
| intel_runtime_pm_get(dev_priv); |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| goto err_rpm; |
| |
| /* Access to snoopable pages through the GTT is incoherent. */ |
| if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) { |
| ret = -EFAULT; |
| goto err_unlock; |
| } |
| |
| /* If the object is smaller than a couple of partial vma, it is |
| * not worth only creating a single partial vma - we may as well |
| * clear enough space for the full object. |
| */ |
| flags = PIN_MAPPABLE; |
| if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT) |
| flags |= PIN_NONBLOCK | PIN_NONFAULT; |
| |
| /* Now pin it into the GTT as needed */ |
| vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags); |
| if (IS_ERR(vma)) { |
| struct i915_ggtt_view view; |
| unsigned int chunk_size; |
| |
| /* Use a partial view if it is bigger than available space */ |
| chunk_size = MIN_CHUNK_PAGES; |
| if (i915_gem_object_is_tiled(obj)) |
| chunk_size = roundup(chunk_size, tile_row_pages(obj)); |
| |
| memset(&view, 0, sizeof(view)); |
| view.type = I915_GGTT_VIEW_PARTIAL; |
| view.params.partial.offset = rounddown(page_offset, chunk_size); |
| view.params.partial.size = |
| min_t(unsigned int, chunk_size, |
| vma_pages(area) - view.params.partial.offset); |
| |
| /* If the partial covers the entire object, just create a |
| * normal VMA. |
| */ |
| if (chunk_size >= obj->base.size >> PAGE_SHIFT) |
| view.type = I915_GGTT_VIEW_NORMAL; |
| |
| /* Userspace is now writing through an untracked VMA, abandon |
| * all hope that the hardware is able to track future writes. |
| */ |
| obj->frontbuffer_ggtt_origin = ORIGIN_CPU; |
| |
| vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE); |
| } |
| if (IS_ERR(vma)) { |
| ret = PTR_ERR(vma); |
| goto err_unlock; |
| } |
| |
| ret = i915_gem_object_set_to_gtt_domain(obj, write); |
| if (ret) |
| goto err_unpin; |
| |
| ret = i915_vma_get_fence(vma); |
| if (ret) |
| goto err_unpin; |
| |
| /* Mark as being mmapped into userspace for later revocation */ |
| assert_rpm_wakelock_held(dev_priv); |
| if (list_empty(&obj->userfault_link)) |
| list_add(&obj->userfault_link, &dev_priv->mm.userfault_list); |
| |
| /* Finally, remap it using the new GTT offset */ |
| ret = remap_io_mapping(area, |
| area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT), |
| (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT, |
| min_t(u64, vma->size, area->vm_end - area->vm_start), |
| &ggtt->mappable); |
| |
| err_unpin: |
| __i915_vma_unpin(vma); |
| err_unlock: |
| mutex_unlock(&dev->struct_mutex); |
| err_rpm: |
| intel_runtime_pm_put(dev_priv); |
| i915_gem_object_unpin_pages(obj); |
| err: |
| switch (ret) { |
| case -EIO: |
| /* |
| * We eat errors when the gpu is terminally wedged to avoid |
| * userspace unduly crashing (gl has no provisions for mmaps to |
| * fail). But any other -EIO isn't ours (e.g. swap in failure) |
| * and so needs to be reported. |
| */ |
| if (!i915_terminally_wedged(&dev_priv->gpu_error)) { |
| ret = VM_FAULT_SIGBUS; |
| break; |
| } |
| case -EAGAIN: |
| /* |
| * EAGAIN means the gpu is hung and we'll wait for the error |
| * handler to reset everything when re-faulting in |
| * i915_mutex_lock_interruptible. |
| */ |
| case 0: |
| case -ERESTARTSYS: |
| case -EINTR: |
| case -EBUSY: |
| /* |
| * EBUSY is ok: this just means that another thread |
| * already did the job. |
| */ |
| ret = VM_FAULT_NOPAGE; |
| break; |
| case -ENOMEM: |
| ret = VM_FAULT_OOM; |
| break; |
| case -ENOSPC: |
| case -EFAULT: |
| ret = VM_FAULT_SIGBUS; |
| break; |
| default: |
| WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret); |
| ret = VM_FAULT_SIGBUS; |
| break; |
| } |
| return ret; |
| } |
| |
| /** |
| * i915_gem_release_mmap - remove physical page mappings |
| * @obj: obj in question |
| * |
| * Preserve the reservation of the mmapping with the DRM core code, but |
| * relinquish ownership of the pages back to the system. |
| * |
| * It is vital that we remove the page mapping if we have mapped a tiled |
| * object through the GTT and then lose the fence register due to |
| * resource pressure. Similarly if the object has been moved out of the |
| * aperture, than pages mapped into userspace must be revoked. Removing the |
| * mapping will then trigger a page fault on the next user access, allowing |
| * fixup by i915_gem_fault(). |
| */ |
| void |
| i915_gem_release_mmap(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| |
| /* Serialisation between user GTT access and our code depends upon |
| * revoking the CPU's PTE whilst the mutex is held. The next user |
| * pagefault then has to wait until we release the mutex. |
| * |
| * Note that RPM complicates somewhat by adding an additional |
| * requirement that operations to the GGTT be made holding the RPM |
| * wakeref. |
| */ |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| intel_runtime_pm_get(i915); |
| |
| if (list_empty(&obj->userfault_link)) |
| goto out; |
| |
| list_del_init(&obj->userfault_link); |
| drm_vma_node_unmap(&obj->base.vma_node, |
| obj->base.dev->anon_inode->i_mapping); |
| |
| /* Ensure that the CPU's PTE are revoked and there are not outstanding |
| * memory transactions from userspace before we return. The TLB |
| * flushing implied above by changing the PTE above *should* be |
| * sufficient, an extra barrier here just provides us with a bit |
| * of paranoid documentation about our requirement to serialise |
| * memory writes before touching registers / GSM. |
| */ |
| wmb(); |
| |
| out: |
| intel_runtime_pm_put(i915); |
| } |
| |
| void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| int i; |
| |
| /* |
| * Only called during RPM suspend. All users of the userfault_list |
| * must be holding an RPM wakeref to ensure that this can not |
| * run concurrently with themselves (and use the struct_mutex for |
| * protection between themselves). |
| */ |
| |
| list_for_each_entry_safe(obj, on, |
| &dev_priv->mm.userfault_list, userfault_link) { |
| list_del_init(&obj->userfault_link); |
| drm_vma_node_unmap(&obj->base.vma_node, |
| obj->base.dev->anon_inode->i_mapping); |
| } |
| |
| /* The fence will be lost when the device powers down. If any were |
| * in use by hardware (i.e. they are pinned), we should not be powering |
| * down! All other fences will be reacquired by the user upon waking. |
| */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i]; |
| |
| if (WARN_ON(reg->pin_count)) |
| continue; |
| |
| if (!reg->vma) |
| continue; |
| |
| GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link)); |
| reg->dirty = true; |
| } |
| } |
| |
| /** |
| * i915_gem_get_ggtt_size - return required global GTT size for an object |
| * @dev_priv: i915 device |
| * @size: object size |
| * @tiling_mode: tiling mode |
| * |
| * Return the required global GTT size for an object, taking into account |
| * potential fence register mapping. |
| */ |
| u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, |
| u64 size, int tiling_mode) |
| { |
| u64 ggtt_size; |
| |
| GEM_BUG_ON(size == 0); |
| |
| if (INTEL_GEN(dev_priv) >= 4 || |
| tiling_mode == I915_TILING_NONE) |
| return size; |
| |
| /* Previous chips need a power-of-two fence region when tiling */ |
| if (IS_GEN3(dev_priv)) |
| ggtt_size = 1024*1024; |
| else |
| ggtt_size = 512*1024; |
| |
| while (ggtt_size < size) |
| ggtt_size <<= 1; |
| |
| return ggtt_size; |
| } |
| |
| /** |
| * i915_gem_get_ggtt_alignment - return required global GTT alignment |
| * @dev_priv: i915 device |
| * @size: object size |
| * @tiling_mode: tiling mode |
| * @fenced: is fenced alignment required or not |
| * |
| * Return the required global GTT alignment for an object, taking into account |
| * potential fence register mapping. |
| */ |
| u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size, |
| int tiling_mode, bool fenced) |
| { |
| GEM_BUG_ON(size == 0); |
| |
| /* |
| * Minimum alignment is 4k (GTT page size), but might be greater |
| * if a fence register is needed for the object. |
| */ |
| if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) || |
| tiling_mode == I915_TILING_NONE) |
| return 4096; |
| |
| /* |
| * Previous chips need to be aligned to the size of the smallest |
| * fence register that can contain the object. |
| */ |
| return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode); |
| } |
| |
| static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| int err; |
| |
| err = drm_gem_create_mmap_offset(&obj->base); |
| if (!err) |
| return 0; |
| |
| /* We can idle the GPU locklessly to flush stale objects, but in order |
| * to claim that space for ourselves, we need to take the big |
| * struct_mutex to free the requests+objects and allocate our slot. |
| */ |
| err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE); |
| if (err) |
| return err; |
| |
| err = i915_mutex_lock_interruptible(&dev_priv->drm); |
| if (!err) { |
| i915_gem_retire_requests(dev_priv); |
| err = drm_gem_create_mmap_offset(&obj->base); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| } |
| |
| return err; |
| } |
| |
| static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj) |
| { |
| drm_gem_free_mmap_offset(&obj->base); |
| } |
| |
| int |
| i915_gem_mmap_gtt(struct drm_file *file, |
| struct drm_device *dev, |
| uint32_t handle, |
| uint64_t *offset) |
| { |
| struct drm_i915_gem_object *obj; |
| int ret; |
| |
| obj = i915_gem_object_lookup(file, handle); |
| if (!obj) |
| return -ENOENT; |
| |
| ret = i915_gem_object_create_mmap_offset(obj); |
| if (ret == 0) |
| *offset = drm_vma_node_offset_addr(&obj->base.vma_node); |
| |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| /** |
| * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing |
| * @dev: DRM device |
| * @data: GTT mapping ioctl data |
| * @file: GEM object info |
| * |
| * Simply returns the fake offset to userspace so it can mmap it. |
| * The mmap call will end up in drm_gem_mmap(), which will set things |
| * up so we can get faults in the handler above. |
| * |
| * The fault handler will take care of binding the object into the GTT |
| * (since it may have been evicted to make room for something), allocating |
| * a fence register, and mapping the appropriate aperture address into |
| * userspace. |
| */ |
| int |
| i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_mmap_gtt *args = data; |
| |
| return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset); |
| } |
| |
| /* Immediately discard the backing storage */ |
| static void |
| i915_gem_object_truncate(struct drm_i915_gem_object *obj) |
| { |
| i915_gem_object_free_mmap_offset(obj); |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| /* Our goal here is to return as much of the memory as |
| * is possible back to the system as we are called from OOM. |
| * To do this we must instruct the shmfs to drop all of its |
| * backing pages, *now*. |
| */ |
| shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1); |
| obj->mm.madv = __I915_MADV_PURGED; |
| } |
| |
| /* Try to discard unwanted pages */ |
| void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj) |
| { |
| struct address_space *mapping; |
| |
| lockdep_assert_held(&obj->mm.lock); |
| GEM_BUG_ON(obj->mm.pages); |
| |
| switch (obj->mm.madv) { |
| case I915_MADV_DONTNEED: |
| i915_gem_object_truncate(obj); |
| case __I915_MADV_PURGED: |
| return; |
| } |
| |
| if (obj->base.filp == NULL) |
| return; |
| |
| mapping = obj->base.filp->f_mapping, |
| invalidate_mapping_pages(mapping, 0, (loff_t)-1); |
| } |
| |
| static void |
| i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| |
| __i915_gem_object_release_shmem(obj, pages); |
| |
| i915_gem_gtt_finish_pages(obj, pages); |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_save_bit_17_swizzle(obj, pages); |
| |
| for_each_sgt_page(page, sgt_iter, pages) { |
| if (obj->mm.dirty) |
| set_page_dirty(page); |
| |
| if (obj->mm.madv == I915_MADV_WILLNEED) |
| mark_page_accessed(page); |
| |
| put_page(page); |
| } |
| obj->mm.dirty = false; |
| |
| sg_free_table(pages); |
| kfree(pages); |
| } |
| |
| static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj) |
| { |
| struct radix_tree_iter iter; |
| void **slot; |
| |
| radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0) |
| radix_tree_delete(&obj->mm.get_page.radix, iter.index); |
| } |
| |
| void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj, |
| enum i915_mm_subclass subclass) |
| { |
| struct sg_table *pages; |
| |
| if (i915_gem_object_has_pinned_pages(obj)) |
| return; |
| |
| GEM_BUG_ON(obj->bind_count); |
| if (!READ_ONCE(obj->mm.pages)) |
| return; |
| |
| /* May be called by shrinker from within get_pages() (on another bo) */ |
| mutex_lock_nested(&obj->mm.lock, subclass); |
| if (unlikely(atomic_read(&obj->mm.pages_pin_count))) |
| goto unlock; |
| |
| /* ->put_pages might need to allocate memory for the bit17 swizzle |
| * array, hence protect them from being reaped by removing them from gtt |
| * lists early. */ |
| pages = fetch_and_zero(&obj->mm.pages); |
| GEM_BUG_ON(!pages); |
| |
| if (obj->mm.mapping) { |
| void *ptr; |
| |
| ptr = ptr_mask_bits(obj->mm.mapping); |
| if (is_vmalloc_addr(ptr)) |
| vunmap(ptr); |
| else |
| kunmap(kmap_to_page(ptr)); |
| |
| obj->mm.mapping = NULL; |
| } |
| |
| __i915_gem_object_reset_page_iter(obj); |
| |
| obj->ops->put_pages(obj, pages); |
| unlock: |
| mutex_unlock(&obj->mm.lock); |
| } |
| |
| static unsigned int swiotlb_max_size(void) |
| { |
| #if IS_ENABLED(CONFIG_SWIOTLB) |
| return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE); |
| #else |
| return 0; |
| #endif |
| } |
| |
| static void i915_sg_trim(struct sg_table *orig_st) |
| { |
| struct sg_table new_st; |
| struct scatterlist *sg, *new_sg; |
| unsigned int i; |
| |
| if (orig_st->nents == orig_st->orig_nents) |
| return; |
| |
| if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL)) |
| return; |
| |
| new_sg = new_st.sgl; |
| for_each_sg(orig_st->sgl, sg, orig_st->nents, i) { |
| sg_set_page(new_sg, sg_page(sg), sg->length, 0); |
| /* called before being DMA mapped, no need to copy sg->dma_* */ |
| new_sg = sg_next(new_sg); |
| } |
| |
| sg_free_table(orig_st); |
| |
| *orig_st = new_st; |
| } |
| |
| static struct sg_table * |
| i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| int page_count, i; |
| struct address_space *mapping; |
| struct sg_table *st; |
| struct scatterlist *sg; |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| unsigned long last_pfn = 0; /* suppress gcc warning */ |
| unsigned int max_segment; |
| int ret; |
| gfp_t gfp; |
| |
| /* Assert that the object is not currently in any GPU domain. As it |
| * wasn't in the GTT, there shouldn't be any way it could have been in |
| * a GPU cache |
| */ |
| GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS); |
| GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS); |
| |
| max_segment = swiotlb_max_size(); |
| if (!max_segment) |
| max_segment = rounddown(UINT_MAX, PAGE_SIZE); |
| |
| st = kmalloc(sizeof(*st), GFP_KERNEL); |
| if (st == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| page_count = obj->base.size / PAGE_SIZE; |
| if (sg_alloc_table(st, page_count, GFP_KERNEL)) { |
| kfree(st); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* Get the list of pages out of our struct file. They'll be pinned |
| * at this point until we release them. |
| * |
| * Fail silently without starting the shrinker |
| */ |
| mapping = obj->base.filp->f_mapping; |
| gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM)); |
| gfp |= __GFP_NORETRY | __GFP_NOWARN; |
| sg = st->sgl; |
| st->nents = 0; |
| for (i = 0; i < page_count; i++) { |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| if (IS_ERR(page)) { |
| i915_gem_shrink(dev_priv, |
| page_count, |
| I915_SHRINK_BOUND | |
| I915_SHRINK_UNBOUND | |
| I915_SHRINK_PURGEABLE); |
| page = shmem_read_mapping_page_gfp(mapping, i, gfp); |
| } |
| if (IS_ERR(page)) { |
| /* We've tried hard to allocate the memory by reaping |
| * our own buffer, now let the real VM do its job and |
| * go down in flames if truly OOM. |
| */ |
| page = shmem_read_mapping_page(mapping, i); |
| if (IS_ERR(page)) { |
| ret = PTR_ERR(page); |
| goto err_sg; |
| } |
| } |
| if (!i || |
| sg->length >= max_segment || |
| page_to_pfn(page) != last_pfn + 1) { |
| if (i) |
| sg = sg_next(sg); |
| st->nents++; |
| sg_set_page(sg, page, PAGE_SIZE, 0); |
| } else { |
| sg->length += PAGE_SIZE; |
| } |
| last_pfn = page_to_pfn(page); |
| |
| /* Check that the i965g/gm workaround works. */ |
| WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL)); |
| } |
| if (sg) /* loop terminated early; short sg table */ |
| sg_mark_end(sg); |
| |
| /* Trim unused sg entries to avoid wasting memory. */ |
| i915_sg_trim(st); |
| |
| ret = i915_gem_gtt_prepare_pages(obj, st); |
| if (ret) |
| goto err_pages; |
| |
| if (i915_gem_object_needs_bit17_swizzle(obj)) |
| i915_gem_object_do_bit_17_swizzle(obj, st); |
| |
| return st; |
| |
| err_sg: |
| sg_mark_end(sg); |
| err_pages: |
| for_each_sgt_page(page, sgt_iter, st) |
| put_page(page); |
| sg_free_table(st); |
| kfree(st); |
| |
| /* shmemfs first checks if there is enough memory to allocate the page |
| * and reports ENOSPC should there be insufficient, along with the usual |
| * ENOMEM for a genuine allocation failure. |
| * |
| * We use ENOSPC in our driver to mean that we have run out of aperture |
| * space and so want to translate the error from shmemfs back to our |
| * usual understanding of ENOMEM. |
| */ |
| if (ret == -ENOSPC) |
| ret = -ENOMEM; |
| |
| return ERR_PTR(ret); |
| } |
| |
| void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj, |
| struct sg_table *pages) |
| { |
| lockdep_assert_held(&obj->mm.lock); |
| |
| obj->mm.get_page.sg_pos = pages->sgl; |
| obj->mm.get_page.sg_idx = 0; |
| |
| obj->mm.pages = pages; |
| |
| if (i915_gem_object_is_tiled(obj) && |
| to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| GEM_BUG_ON(obj->mm.quirked); |
| __i915_gem_object_pin_pages(obj); |
| obj->mm.quirked = true; |
| } |
| } |
| |
| static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| struct sg_table *pages; |
| |
| GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj)); |
| |
| if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) { |
| DRM_DEBUG("Attempting to obtain a purgeable object\n"); |
| return -EFAULT; |
| } |
| |
| pages = obj->ops->get_pages(obj); |
| if (unlikely(IS_ERR(pages))) |
| return PTR_ERR(pages); |
| |
| __i915_gem_object_set_pages(obj, pages); |
| return 0; |
| } |
| |
| /* Ensure that the associated pages are gathered from the backing storage |
| * and pinned into our object. i915_gem_object_pin_pages() may be called |
| * multiple times before they are released by a single call to |
| * i915_gem_object_unpin_pages() - once the pages are no longer referenced |
| * either as a result of memory pressure (reaping pages under the shrinker) |
| * or as the object is itself released. |
| */ |
| int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj) |
| { |
| int err; |
| |
| err = mutex_lock_interruptible(&obj->mm.lock); |
| if (err) |
| return err; |
| |
| if (unlikely(!obj->mm.pages)) { |
| err = ____i915_gem_object_get_pages(obj); |
| if (err) |
| goto unlock; |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| |
| unlock: |
| mutex_unlock(&obj->mm.lock); |
| return err; |
| } |
| |
| /* The 'mapping' part of i915_gem_object_pin_map() below */ |
| static void *i915_gem_object_map(const struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| unsigned long n_pages = obj->base.size >> PAGE_SHIFT; |
| struct sg_table *sgt = obj->mm.pages; |
| struct sgt_iter sgt_iter; |
| struct page *page; |
| struct page *stack_pages[32]; |
| struct page **pages = stack_pages; |
| unsigned long i = 0; |
| pgprot_t pgprot; |
| void *addr; |
| |
| /* A single page can always be kmapped */ |
| if (n_pages == 1 && type == I915_MAP_WB) |
| return kmap(sg_page(sgt->sgl)); |
| |
| if (n_pages > ARRAY_SIZE(stack_pages)) { |
| /* Too big for stack -- allocate temporary array instead */ |
| pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY); |
| if (!pages) |
| return NULL; |
| } |
| |
| for_each_sgt_page(page, sgt_iter, sgt) |
| pages[i++] = page; |
| |
| /* Check that we have the expected number of pages */ |
| GEM_BUG_ON(i != n_pages); |
| |
| switch (type) { |
| case I915_MAP_WB: |
| pgprot = PAGE_KERNEL; |
| break; |
| case I915_MAP_WC: |
| pgprot = pgprot_writecombine(PAGE_KERNEL_IO); |
| break; |
| } |
| addr = vmap(pages, n_pages, 0, pgprot); |
| |
| if (pages != stack_pages) |
| drm_free_large(pages); |
| |
| return addr; |
| } |
| |
| /* get, pin, and map the pages of the object into kernel space */ |
| void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj, |
| enum i915_map_type type) |
| { |
| enum i915_map_type has_type; |
| bool pinned; |
| void *ptr; |
| int ret; |
| |
| GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); |
| |
| ret = mutex_lock_interruptible(&obj->mm.lock); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| pinned = true; |
| if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) { |
| if (unlikely(!obj->mm.pages)) { |
| ret = ____i915_gem_object_get_pages(obj); |
| if (ret) |
| goto err_unlock; |
| |
| smp_mb__before_atomic(); |
| } |
| atomic_inc(&obj->mm.pages_pin_count); |
| pinned = false; |
| } |
| GEM_BUG_ON(!obj->mm.pages); |
| |
| ptr = ptr_unpack_bits(obj->mm.mapping, has_type); |
| if (ptr && has_type != type) { |
| if (pinned) { |
| ret = -EBUSY; |
| goto err_unpin; |
| } |
| |
| if (is_vmalloc_addr(ptr)) |
| vunmap(ptr); |
| else |
| kunmap(kmap_to_page(ptr)); |
| |
| ptr = obj->mm.mapping = NULL; |
| } |
| |
| if (!ptr) { |
| ptr = i915_gem_object_map(obj, type); |
| if (!ptr) { |
| ret = -ENOMEM; |
| goto err_unpin; |
| } |
| |
| obj->mm.mapping = ptr_pack_bits(ptr, type); |
| } |
| |
| out_unlock: |
| mutex_unlock(&obj->mm.lock); |
| return ptr; |
| |
| err_unpin: |
| atomic_dec(&obj->mm.pages_pin_count); |
| err_unlock: |
| ptr = ERR_PTR(ret); |
| goto out_unlock; |
| } |
| |
| static bool i915_context_is_banned(const struct i915_gem_context *ctx) |
| { |
| if (ctx->banned) |
| return true; |
| |
| if (!ctx->bannable) |
| return false; |
| |
| if (ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD) { |
| DRM_DEBUG("context hanging too often, banning!\n"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx) |
| { |
| ctx->ban_score += CONTEXT_SCORE_GUILTY; |
| |
| ctx->banned = i915_context_is_banned(ctx); |
| ctx->guilty_count++; |
| |
| DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n", |
| ctx->name, ctx->ban_score, |
| yesno(ctx->banned)); |
| |
| if (!ctx->banned || IS_ERR_OR_NULL(ctx->file_priv)) |
| return; |
| |
| ctx->file_priv->context_bans++; |
| DRM_DEBUG_DRIVER("client %s has had %d context banned\n", |
| ctx->name, ctx->file_priv->context_bans); |
| } |
| |
| static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx) |
| { |
| ctx->active_count++; |
| } |
| |
| struct drm_i915_gem_request * |
| i915_gem_find_active_request(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_request *request; |
| |
| /* We are called by the error capture and reset at a random |
| * point in time. In particular, note that neither is crucially |
| * ordered with an interrupt. After a hang, the GPU is dead and we |
| * assume that no more writes can happen (we waited long enough for |
| * all writes that were in transaction to be flushed) - adding an |
| * extra delay for a recent interrupt is pointless. Hence, we do |
| * not need an engine->irq_seqno_barrier() before the seqno reads. |
| */ |
| list_for_each_entry(request, &engine->timeline->requests, link) { |
| if (__i915_gem_request_completed(request)) |
| continue; |
| |
| return request; |
| } |
| |
| return NULL; |
| } |
| |
| static void reset_request(struct drm_i915_gem_request *request) |
| { |
| void *vaddr = request->ring->vaddr; |
| u32 head; |
| |
| /* As this request likely depends on state from the lost |
| * context, clear out all the user operations leaving the |
| * breadcrumb at the end (so we get the fence notifications). |
| */ |
| head = request->head; |
| if (request->postfix < head) { |
| memset(vaddr + head, 0, request->ring->size - head); |
| head = 0; |
| } |
| memset(vaddr + head, 0, request->postfix - head); |
| } |
| |
| static void i915_gem_reset_engine(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_gem_request *request; |
| struct i915_gem_context *incomplete_ctx; |
| struct intel_timeline *timeline; |
| bool ring_hung; |
| |
| if (engine->irq_seqno_barrier) |
| engine->irq_seqno_barrier(engine); |
| |
| request = i915_gem_find_active_request(engine); |
| if (!request) |
| return; |
| |
| ring_hung = engine->hangcheck.stalled; |
| if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) { |
| DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n", |
| engine->name, |
| yesno(ring_hung)); |
| ring_hung = false; |
| } |
| |
| if (ring_hung) |
| i915_gem_context_mark_guilty(request->ctx); |
| else |
| i915_gem_context_mark_innocent(request->ctx); |
| |
| if (!ring_hung) |
| return; |
| |
| DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n", |
| engine->name, request->global_seqno); |
| |
| /* Setup the CS to resume from the breadcrumb of the hung request */ |
| engine->reset_hw(engine, request); |
| |
| /* Users of the default context do not rely on logical state |
| * preserved between batches. They have to emit full state on |
| * every batch and so it is safe to execute queued requests following |
| * the hang. |
| * |
| * Other contexts preserve state, now corrupt. We want to skip all |
| * queued requests that reference the corrupt context. |
| */ |
| incomplete_ctx = request->ctx; |
| if (i915_gem_context_is_default(incomplete_ctx)) |
| return; |
| |
| list_for_each_entry_continue(request, &engine->timeline->requests, link) |
| if (request->ctx == incomplete_ctx) |
| reset_request(request); |
| |
| timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine); |
| list_for_each_entry(request, &timeline->requests, link) |
| reset_request(request); |
| } |
| |
| void i915_gem_reset(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| lockdep_assert_held(&dev_priv->drm.struct_mutex); |
| |
| i915_gem_retire_requests(dev_priv); |
| |
| for_each_engine(engine, dev_priv, id) |
| i915_gem_reset_engine(engine); |
| |
| i915_gem_restore_fences(dev_priv); |
| |
| if (dev_priv->gt.awake) { |
| intel_sanitize_gt_powersave(dev_priv); |
| intel_enable_gt_powersave(dev_priv); |
| if (INTEL_GEN(dev_priv) >= 6) |
| gen6_rps_busy(dev_priv); |
| } |
| } |
| |
| static void nop_submit_request(struct drm_i915_gem_request *request) |
| { |
| i915_gem_request_submit(request); |
| intel_engine_init_global_seqno(request->engine, request->global_seqno); |
| } |
| |
| static void i915_gem_cleanup_engine(struct intel_engine_cs *engine) |
| { |
| /* We need to be sure that no thread is running the old callback as |
| * we install the nop handler (otherwise we would submit a request |
| * to hardware that will never complete). In order to prevent this |
| * race, we wait until the machine is idle before making the swap |
| * (using stop_machine()). |
| */ |
| engine->submit_request = nop_submit_request; |
| |
| /* Mark all pending requests as complete so that any concurrent |
| * (lockless) lookup doesn't try and wait upon the request as we |
| * reset it. |
| */ |
| intel_engine_init_global_seqno(engine, |
| intel_engine_last_submit(engine)); |
| |
| /* |
| * Clear the execlists queue up before freeing the requests, as those |
| * are the ones that keep the context and ringbuffer backing objects |
| * pinned in place. |
| */ |
| |
| if (i915.enable_execlists) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&engine->timeline->lock, flags); |
| |
| i915_gem_request_put(engine->execlist_port[0].request); |
| i915_gem_request_put(engine->execlist_port[1].request); |
| memset(engine->execlist_port, 0, sizeof(engine->execlist_port)); |
| engine->execlist_queue = RB_ROOT; |
| engine->execlist_first = NULL; |
| |
| spin_unlock_irqrestore(&engine->timeline->lock, flags); |
| } |
| } |
| |
| static int __i915_gem_set_wedged_BKL(void *data) |
| { |
| struct drm_i915_private *i915 = data; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, i915, id) |
| i915_gem_cleanup_engine(engine); |
| |
| return 0; |
| } |
| |
| void i915_gem_set_wedged(struct drm_i915_private *dev_priv) |
| { |
| lockdep_assert_held(&dev_priv->drm.struct_mutex); |
| set_bit(I915_WEDGED, &dev_priv->gpu_error.flags); |
| |
| stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL); |
| |
| i915_gem_context_lost(dev_priv); |
| i915_gem_retire_requests(dev_priv); |
| |
| mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0); |
| } |
| |
| static void |
| i915_gem_retire_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), gt.retire_work.work); |
| struct drm_device *dev = &dev_priv->drm; |
| |
| /* Come back later if the device is busy... */ |
| if (mutex_trylock(&dev->struct_mutex)) { |
| i915_gem_retire_requests(dev_priv); |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| /* Keep the retire handler running until we are finally idle. |
| * We do not need to do this test under locking as in the worst-case |
| * we queue the retire worker once too often. |
| */ |
| if (READ_ONCE(dev_priv->gt.awake)) { |
| i915_queue_hangcheck(dev_priv); |
| queue_delayed_work(dev_priv->wq, |
| &dev_priv->gt.retire_work, |
| round_jiffies_up_relative(HZ)); |
| } |
| } |
| |
| static void |
| i915_gem_idle_work_handler(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), gt.idle_work.work); |
| struct drm_device *dev = &dev_priv->drm; |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| bool rearm_hangcheck; |
| |
| if (!READ_ONCE(dev_priv->gt.awake)) |
| return; |
| |
| /* |
| * Wait for last execlists context complete, but bail out in case a |
| * new request is submitted. |
| */ |
| wait_for(READ_ONCE(dev_priv->gt.active_requests) || |
| intel_execlists_idle(dev_priv), 10); |
| |
| if (READ_ONCE(dev_priv->gt.active_requests)) |
| return; |
| |
| rearm_hangcheck = |
| cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); |
| |
| if (!mutex_trylock(&dev->struct_mutex)) { |
| /* Currently busy, come back later */ |
| mod_delayed_work(dev_priv->wq, |
| &dev_priv->gt.idle_work, |
| msecs_to_jiffies(50)); |
| goto out_rearm; |
| } |
| |
| /* |
| * New request retired after this work handler started, extend active |
| * period until next instance of the work. |
| */ |
| if (work_pending(work)) |
| goto out_unlock; |
| |
| if (dev_priv->gt.active_requests) |
| goto out_unlock; |
| |
| if (wait_for(intel_execlists_idle(dev_priv), 10)) |
| DRM_ERROR("Timeout waiting for engines to idle\n"); |
| |
| for_each_engine(engine, dev_priv, id) |
| i915_gem_batch_pool_fini(&engine->batch_pool); |
| |
| GEM_BUG_ON(!dev_priv->gt.awake); |
| dev_priv->gt.awake = false; |
| rearm_hangcheck = false; |
| |
| if (INTEL_GEN(dev_priv) >= 6) |
| gen6_rps_idle(dev_priv); |
| intel_runtime_pm_put(dev_priv); |
| out_unlock: |
| mutex_unlock(&dev->struct_mutex); |
| |
| out_rearm: |
| if (rearm_hangcheck) { |
| GEM_BUG_ON(!dev_priv->gt.awake); |
| i915_queue_hangcheck(dev_priv); |
| } |
| } |
| |
| void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(gem); |
| struct drm_i915_file_private *fpriv = file->driver_priv; |
| struct i915_vma *vma, *vn; |
| |
| mutex_lock(&obj->base.dev->struct_mutex); |
| list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link) |
| if (vma->vm->file == fpriv) |
| i915_vma_close(vma); |
| |
| if (i915_gem_object_is_active(obj) && |
| !i915_gem_object_has_active_reference(obj)) { |
| i915_gem_object_set_active_reference(obj); |
| i915_gem_object_get(obj); |
| } |
| mutex_unlock(&obj->base.dev->struct_mutex); |
| } |
| |
| static unsigned long to_wait_timeout(s64 timeout_ns) |
| { |
| if (timeout_ns < 0) |
| return MAX_SCHEDULE_TIMEOUT; |
| |
| if (timeout_ns == 0) |
| return 0; |
| |
| return nsecs_to_jiffies_timeout(timeout_ns); |
| } |
| |
| /** |
| * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT |
| * @dev: drm device pointer |
| * @data: ioctl data blob |
| * @file: drm file pointer |
| * |
| * Returns 0 if successful, else an error is returned with the remaining time in |
| * the timeout parameter. |
| * -ETIME: object is still busy after timeout |
| * -ERESTARTSYS: signal interrupted the wait |
| * -ENONENT: object doesn't exist |
| * Also possible, but rare: |
| * -EAGAIN: GPU wedged |
| * -ENOMEM: damn |
| * -ENODEV: Internal IRQ fail |
| * -E?: The add request failed |
| * |
| * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any |
| * non-zero timeout parameter the wait ioctl will wait for the given number of |
| * nanoseconds on an object becoming unbusy. Since the wait itself does so |
| * without holding struct_mutex the object may become re-busied before this |
| * function completes. A similar but shorter * race condition exists in the busy |
| * ioctl |
| */ |
| int |
| i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) |
| { |
| struct drm_i915_gem_wait *args = data; |
| struct drm_i915_gem_object *obj; |
| ktime_t start; |
| long ret; |
| |
| if (args->flags != 0) |
| return -EINVAL; |
| |
| obj = i915_gem_object_lookup(file, args->bo_handle); |
| if (!obj) |
| return -ENOENT; |
| |
| start = ktime_get(); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL, |
| to_wait_timeout(args->timeout_ns), |
| to_rps_client(file)); |
| |
| if (args->timeout_ns > 0) { |
| args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start)); |
| if (args->timeout_ns < 0) |
| args->timeout_ns = 0; |
| } |
| |
| i915_gem_object_put(obj); |
| return ret; |
| } |
| |
| static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags) |
| { |
| int ret, i; |
| |
| for (i = 0; i < ARRAY_SIZE(tl->engine); i++) { |
| ret = i915_gem_active_wait(&tl->engine[i].last_request, flags); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags) |
| { |
| int ret; |
| |
| if (flags & I915_WAIT_LOCKED) { |
| struct i915_gem_timeline *tl; |
| |
| lockdep_assert_held(&i915->drm.struct_mutex); |
| |
| list_for_each_entry(tl, &i915->gt.timelines, link) { |
| ret = wait_for_timeline(tl, flags); |
| if (ret) |
| return ret; |
| } |
| } else { |
| ret = wait_for_timeline(&i915->gt.global_timeline, flags); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| void i915_gem_clflush_object(struct drm_i915_gem_object *obj, |
| bool force) |
| { |
| /* If we don't have a page list set up, then we're not pinned |
| * to GPU, and we can ignore the cache flush because it'll happen |
| * again at bind time. |
| */ |
| if (!obj->mm.pages) |
| return; |
| |
| /* |
| * Stolen memory is always coherent with the GPU as it is explicitly |
| * marked as wc by the system, or the system is cache-coherent. |
| */ |
| if (obj->stolen || obj->phys_handle) |
| return; |
| |
| /* If the GPU is snooping the contents of the CPU cache, |
| * we do not need to manually clear the CPU cache lines. However, |
| * the caches are only snooped when the render cache is |
| * flushed/invalidated. As we always have to emit invalidations |
| * and flushes when moving into and out of the RENDER domain, correct |
| * snooping behaviour occurs naturally as the result of our domain |
| * tracking. |
| */ |
| if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) { |
| obj->cache_dirty = true; |
| return; |
| } |
| |
| trace_i915_gem_object_clflush(obj); |
| drm_clflush_sg(obj->mm.pages); |
| obj->cache_dirty = false; |
| } |
| |
| /** Flushes the GTT write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| |
| if (obj->base.write_domain != I915_GEM_DOMAIN_GTT) |
| return; |
| |
| /* No actual flushing is required for the GTT write domain. Writes |
| * to it "immediately" go to main memory as far as we know, so there's |
| * no chipset flush. It also doesn't land in render cache. |
| * |
| * However, we do have to enforce the order so that all writes through |
| * the GTT land before any writes to the device, such as updates to |
| * the GATT itself. |
| * |
| * We also have to wait a bit for the writes to land from the GTT. |
| * An uncached read (i.e. mmio) seems to be ideal for the round-trip |
| * timing. This issue has only been observed when switching quickly |
| * between GTT writes and CPU reads from inside the kernel on recent hw, |
| * and it appears to only affect discrete GTT blocks (i.e. on LLC |
| * system agents we cannot reproduce this behaviour). |
| */ |
| wmb(); |
| if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) |
| POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base)); |
| |
| intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT)); |
| |
| obj->base.write_domain = 0; |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| I915_GEM_DOMAIN_GTT); |
| } |
| |
| /** Flushes the CPU write domain for the object if it's dirty. */ |
| static void |
| i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj) |
| { |
| if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) |
| return; |
| |
| i915_gem_clflush_object(obj, obj->pin_display); |
| intel_fb_obj_flush(obj, false, ORIGIN_CPU); |
| |
| obj->base.write_domain = 0; |
| trace_i915_gem_object_change_domain(obj, |
| obj->base.read_domains, |
| I915_GEM_DOMAIN_CPU); |
| } |
| |
| /** |
| * Moves a single object to the GTT read, and possibly write domain. |
| * @obj: object to act on |
| * @write: ask for write access or read only |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| (write ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_GTT) |
| return 0; |
| |
| /* Flush and acquire obj->pages so that we are coherent through |
| * direct access in memory with previous cached writes through |
| * shmemfs and that our cache domain tracking remains valid. |
| * For example, if the obj->filp was moved to swap without us |
| * being notified and releasing the pages, we would mistakenly |
| * continue to assume that the obj remained out of the CPU cached |
| * domain. |
| */ |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| return ret; |
| |
| i915_gem_object_flush_cpu_write_domain(obj); |
| |
| /* Serialise direct access to this object with the barriers for |
| * coherent writes from the GPU, by effectively invalidating the |
| * GTT domain upon first access. |
| */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) |
| mb(); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0); |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_GTT; |
| obj->base.write_domain = I915_GEM_DOMAIN_GTT; |
| obj->mm.dirty = true; |
| } |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| i915_gem_object_unpin_pages(obj); |
| return 0; |
| } |
| |
| /** |
| * Changes the cache-level of an object across all VMA. |
| * @obj: object to act on |
| * @cache_level: new cache level to set for the object |
| * |
| * After this function returns, the object will be in the new cache-level |
| * across all GTT and the contents of the backing storage will be coherent, |
| * with respect to the new cache-level. In order to keep the backing storage |
| * coherent for all users, we only allow a single cache level to be set |
| * globally on the object and prevent it from being changed whilst the |
| * hardware is reading from the object. That is if the object is currently |
| * on the scanout it will be set to uncached (or equivalent display |
| * cache coherency) and all non-MOCS GPU access will also be uncached so |
| * that all direct access to the scanout remains coherent. |
| */ |
| int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, |
| enum i915_cache_level cache_level) |
| { |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| if (obj->cache_level == cache_level) |
| return 0; |
| |
| /* Inspect the list of currently bound VMA and unbind any that would |
| * be invalid given the new cache-level. This is principally to |
| * catch the issue of the CS prefetch crossing page boundaries and |
| * reading an invalid PTE on older architectures. |
| */ |
| restart: |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| if (i915_vma_is_pinned(vma)) { |
| DRM_DEBUG("can not change the cache level of pinned objects\n"); |
| return -EBUSY; |
| } |
| |
| if (i915_gem_valid_gtt_space(vma, cache_level)) |
| continue; |
| |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ret; |
| |
| /* As unbinding may affect other elements in the |
| * obj->vma_list (due to side-effects from retiring |
| * an active vma), play safe and restart the iterator. |
| */ |
| goto restart; |
| } |
| |
| /* We can reuse the existing drm_mm nodes but need to change the |
| * cache-level on the PTE. We could simply unbind them all and |
| * rebind with the correct cache-level on next use. However since |
| * we already have a valid slot, dma mapping, pages etc, we may as |
| * rewrite the PTE in the belief that doing so tramples upon less |
| * state and so involves less work. |
| */ |
| if (obj->bind_count) { |
| /* Before we change the PTE, the GPU must not be accessing it. |
| * If we wait upon the object, we know that all the bound |
| * VMA are no longer active. |
| */ |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| I915_WAIT_ALL, |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (!HAS_LLC(to_i915(obj->base.dev)) && |
| cache_level != I915_CACHE_NONE) { |
| /* Access to snoopable pages through the GTT is |
| * incoherent and on some machines causes a hard |
| * lockup. Relinquish the CPU mmaping to force |
| * userspace to refault in the pages and we can |
| * then double check if the GTT mapping is still |
| * valid for that pointer access. |
| */ |
| i915_gem_release_mmap(obj); |
| |
| /* As we no longer need a fence for GTT access, |
| * we can relinquish it now (and so prevent having |
| * to steal a fence from someone else on the next |
| * fence request). Note GPU activity would have |
| * dropped the fence as all snoopable access is |
| * supposed to be linear. |
| */ |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| ret = i915_vma_put_fence(vma); |
| if (ret) |
| return ret; |
| } |
| } else { |
| /* We either have incoherent backing store and |
| * so no GTT access or the architecture is fully |
| * coherent. In such cases, existing GTT mmaps |
| * ignore the cache bit in the PTE and we can |
| * rewrite it without confusing the GPU or having |
| * to force userspace to fault back in its mmaps. |
| */ |
| } |
| |
| list_for_each_entry(vma, &obj->vma_list, obj_link) { |
| if (!drm_mm_node_allocated(&vma->node)) |
| continue; |
| |
| ret = i915_vma_bind(vma, cache_level, PIN_UPDATE); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU && |
| cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) |
| obj->cache_dirty = true; |
| |
| list_for_each_entry(vma, &obj->vma_list, obj_link) |
| vma->node.color = cache_level; |
| obj->cache_level = cache_level; |
| |
| return 0; |
| } |
| |
| int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| int err = 0; |
| |
| rcu_read_lock(); |
| obj = i915_gem_object_lookup_rcu(file, args->handle); |
| if (!obj) { |
| err = -ENOENT; |
| goto out; |
| } |
| |
| switch (obj->cache_level) { |
| case I915_CACHE_LLC: |
| case I915_CACHE_L3_LLC: |
| args->caching = I915_CACHING_CACHED; |
| break; |
| |
| case I915_CACHE_WT: |
| args->caching = I915_CACHING_DISPLAY; |
| break; |
| |
| default: |
| args->caching = I915_CACHING_NONE; |
| break; |
| } |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_caching *args = data; |
| struct drm_i915_gem_object *obj; |
| enum i915_cache_level level; |
| int ret; |
| |
| switch (args->caching) { |
| case I915_CACHING_NONE: |
| level = I915_CACHE_NONE; |
| break; |
| case I915_CACHING_CACHED: |
| /* |
| * Due to a HW issue on BXT A stepping, GPU stores via a |
| * snooped mapping may leave stale data in a corresponding CPU |
| * cacheline, whereas normally such cachelines would get |
| * invalidated. |
| */ |
| if (!HAS_LLC(i915) && !HAS_SNOOP(i915)) |
| return -ENODEV; |
| |
| level = I915_CACHE_LLC; |
| break; |
| case I915_CACHING_DISPLAY: |
| level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| ret = i915_mutex_lock_interruptible(dev); |
| if (ret) |
| return ret; |
| |
| obj = i915_gem_object_lookup(file, args->handle); |
| if (!obj) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| ret = i915_gem_object_set_cache_level(obj, level); |
| i915_gem_object_put(obj); |
| unlock: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| /* |
| * Prepare buffer for display plane (scanout, cursors, etc). |
| * Can be called from an uninterruptible phase (modesetting) and allows |
| * any flushes to be pipelined (for pageflips). |
| */ |
| struct i915_vma * |
| i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj, |
| u32 alignment, |
| const struct i915_ggtt_view *view) |
| { |
| struct i915_vma *vma; |
| u32 old_read_domains, old_write_domain; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| /* Mark the pin_display early so that we account for the |
| * display coherency whilst setting up the cache domains. |
| */ |
| obj->pin_display++; |
| |
| /* The display engine is not coherent with the LLC cache on gen6. As |
| * a result, we make sure that the pinning that is about to occur is |
| * done with uncached PTEs. This is lowest common denominator for all |
| * chipsets. |
| * |
| * However for gen6+, we could do better by using the GFDT bit instead |
| * of uncaching, which would allow us to flush all the LLC-cached data |
| * with that bit in the PTE to main memory with just one PIPE_CONTROL. |
| */ |
| ret = i915_gem_object_set_cache_level(obj, |
| HAS_WT(to_i915(obj->base.dev)) ? |
| I915_CACHE_WT : I915_CACHE_NONE); |
| if (ret) { |
| vma = ERR_PTR(ret); |
| goto err_unpin_display; |
| } |
| |
| /* As the user may map the buffer once pinned in the display plane |
| * (e.g. libkms for the bootup splash), we have to ensure that we |
| * always use map_and_fenceable for all scanout buffers. However, |
| * it may simply be too big to fit into mappable, in which case |
| * put it anyway and hope that userspace can cope (but always first |
| * try to preserve the existing ABI). |
| */ |
| vma = ERR_PTR(-ENOSPC); |
| if (view->type == I915_GGTT_VIEW_NORMAL) |
| vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, |
| PIN_MAPPABLE | PIN_NONBLOCK); |
| if (IS_ERR(vma)) { |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| unsigned int flags; |
| |
| /* Valleyview is definitely limited to scanning out the first |
| * 512MiB. Lets presume this behaviour was inherited from the |
| * g4x display engine and that all earlier gen are similarly |
| * limited. Testing suggests that it is a little more |
| * complicated than this. For example, Cherryview appears quite |
| * happy to scanout from anywhere within its global aperture. |
| */ |
| flags = 0; |
| if (HAS_GMCH_DISPLAY(i915)) |
| flags = PIN_MAPPABLE; |
| vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags); |
| } |
| if (IS_ERR(vma)) |
| goto err_unpin_display; |
| |
| vma->display_alignment = max_t(u64, vma->display_alignment, alignment); |
| |
| /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */ |
| if (obj->cache_dirty) { |
| i915_gem_clflush_object(obj, true); |
| intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB); |
| } |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| obj->base.write_domain = 0; |
| obj->base.read_domains |= I915_GEM_DOMAIN_GTT; |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return vma; |
| |
| err_unpin_display: |
| obj->pin_display--; |
| return vma; |
| } |
| |
| void |
| i915_gem_object_unpin_from_display_plane(struct i915_vma *vma) |
| { |
| lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); |
| |
| if (WARN_ON(vma->obj->pin_display == 0)) |
| return; |
| |
| if (--vma->obj->pin_display == 0) |
| vma->display_alignment = 0; |
| |
| /* Bump the LRU to try and avoid premature eviction whilst flipping */ |
| if (!i915_vma_is_active(vma)) |
| list_move_tail(&vma->vm_link, &vma->vm->inactive_list); |
| |
| i915_vma_unpin(vma); |
| } |
| |
| /** |
| * Moves a single object to the CPU read, and possibly write domain. |
| * @obj: object to act on |
| * @write: requesting write or read-only access |
| * |
| * This function returns when the move is complete, including waiting on |
| * flushes to occur. |
| */ |
| int |
| i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write) |
| { |
| uint32_t old_write_domain, old_read_domains; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| ret = i915_gem_object_wait(obj, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED | |
| (write ? I915_WAIT_ALL : 0), |
| MAX_SCHEDULE_TIMEOUT, |
| NULL); |
| if (ret) |
| return ret; |
| |
| if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) |
| return 0; |
| |
| i915_gem_object_flush_gtt_write_domain(obj); |
| |
| old_write_domain = obj->base.write_domain; |
| old_read_domains = obj->base.read_domains; |
| |
| /* Flush the CPU cache if it's still invalid. */ |
| if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) { |
| i915_gem_clflush_object(obj, false); |
| |
| obj->base.read_domains |= I915_GEM_DOMAIN_CPU; |
| } |
| |
| /* It should now be out of any other write domains, and we can update |
| * the domain values for our changes. |
| */ |
| GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0); |
| |
| /* If we're writing through the CPU, then the GPU read domains will |
| * need to be invalidated at next use. |
| */ |
| if (write) { |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| |
| trace_i915_gem_object_change_domain(obj, |
| old_read_domains, |
| old_write_domain); |
| |
| return 0; |
| } |
| |
| /* Throttle our rendering by waiting until the ring has completed our requests |
| * emitted over 20 msec ago. |
| * |
| * Note that if we were to use the current jiffies each time around the loop, |
| * we wouldn't escape the function with any frames outstanding if the time to |
| * render a frame was over 20ms. |
| * |
| * This should get us reasonable parallelism between CPU and GPU but also |
| * relatively low latency when blocking on a particular request to finish. |
| */ |
| static int |
| i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES; |
| struct drm_i915_gem_request *request, *target = NULL; |
| long ret; |
| |
| /* ABI: return -EIO if already wedged */ |
| if (i915_terminally_wedged(&dev_priv->gpu_error)) |
| return -EIO; |
| |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_list) { |
| if (time_after_eq(request->emitted_jiffies, recent_enough)) |
| break; |
| |
| /* |
| * Note that the request might not have been submitted yet. |
| * In which case emitted_jiffies will be zero. |
| */ |
| if (!request->emitted_jiffies) |
| continue; |
| |
| target = request; |
| } |
| if (target) |
| i915_gem_request_get(target); |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (target == NULL) |
| return 0; |
| |
| ret = i915_wait_request(target, |
| I915_WAIT_INTERRUPTIBLE, |
| MAX_SCHEDULE_TIMEOUT); |
| i915_gem_request_put(target); |
| |
| return ret < 0 ? ret : 0; |
| } |
| |
| struct i915_vma * |
| i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, |
| const struct i915_ggtt_view *view, |
| u64 size, |
| u64 alignment, |
| u64 flags) |
| { |
| struct drm_i915_private *dev_priv = to_i915(obj->base.dev); |
| struct i915_address_space *vm = &dev_priv->ggtt.base; |
| struct i915_vma *vma; |
| int ret; |
| |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view); |
| if (IS_ERR(vma)) |
| return vma; |
| |
| if (i915_vma_misplaced(vma, size, alignment, flags)) { |
| if (flags & PIN_NONBLOCK && |
| (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) |
| return ERR_PTR(-ENOSPC); |
| |
| if (flags & PIN_MAPPABLE) { |
| u32 fence_size; |
| |
| fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size, |
| i915_gem_object_get_tiling(obj)); |
| /* If the required space is larger than the available |
| * aperture, we will not able to find a slot for the |
| * object and unbinding the object now will be in |
| * vain. Worse, doing so may cause us to ping-pong |
| * the object in and out of the Global GTT and |
| * waste a lot of cycles under the mutex. |
| */ |
| if (fence_size > dev_priv->ggtt.mappable_end) |
| return ERR_PTR(-E2BIG); |
| |
| /* If NONBLOCK is set the caller is optimistically |
| * trying to cache the full object within the mappable |
| * aperture, and *must* have a fallback in place for |
| * situations where we cannot bind the object. We |
| * can be a little more lax here and use the fallback |
| * more often to avoid costly migrations of ourselves |
| * and other objects within the aperture. |
| * |
| * Half-the-aperture is used as a simple heuristic. |
| * More interesting would to do search for a free |
| * block prior to making the commitment to unbind. |
| * That caters for the self-harm case, and with a |
| * little more heuristics (e.g. NOFAULT, NOEVICT) |
| * we could try to minimise harm to others. |
| */ |
| if (flags & PIN_NONBLOCK && |
| fence_size > dev_priv->ggtt.mappable_end / 2) |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| WARN(i915_vma_is_pinned(vma), |
| "bo is already pinned in ggtt with incorrect alignment:" |
| " offset=%08x, req.alignment=%llx," |
| " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n", |
| i915_ggtt_offset(vma), alignment, |
| !!(flags & PIN_MAPPABLE), |
| i915_vma_is_map_and_fenceable(vma)); |
| ret = i915_vma_unbind(vma); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL); |
| if (ret) |
| return ERR_PTR(ret); |
| |
| return vma; |
| } |
| |
| static __always_inline unsigned int __busy_read_flag(unsigned int id) |
| { |
| /* Note that we could alias engines in the execbuf API, but |
| * that would be very unwise as it prevents userspace from |
| * fine control over engine selection. Ahem. |
| * |
| * This should be something like EXEC_MAX_ENGINE instead of |
| * I915_NUM_ENGINES. |
| */ |
| BUILD_BUG_ON(I915_NUM_ENGINES > 16); |
| return 0x10000 << id; |
| } |
| |
| static __always_inline unsigned int __busy_write_id(unsigned int id) |
| { |
| /* The uABI guarantees an active writer is also amongst the read |
| * engines. This would be true if we accessed the activity tracking |
| * under the lock, but as we perform the lookup of the object and |
| * its activity locklessly we can not guarantee that the last_write |
| * being active implies that we have set the same engine flag from |
| * last_read - hence we always set both read and write busy for |
| * last_write. |
| */ |
| return id | __busy_read_flag(id); |
| } |
| |
| static __always_inline unsigned int |
| __busy_set_if_active(const struct dma_fence *fence, |
| unsigned int (*flag)(unsigned int id)) |
| { |
| struct drm_i915_gem_request *rq; |
| |
| /* We have to check the current hw status of the fence as the uABI |
| * guarantees forward progress. We could rely on the idle worker |
| * to eventually flush us, but to minimise latency just ask the |
| * hardware. |
| * |
| * Note we only report on the status of native fences. |
| */ |
| if (!dma_fence_is_i915(fence)) |
| return 0; |
| |
| /* opencode to_request() in order to avoid const warnings */ |
| rq = container_of(fence, struct drm_i915_gem_request, fence); |
| if (i915_gem_request_completed(rq)) |
| return 0; |
| |
| return flag(rq->engine->exec_id); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_reader(const struct dma_fence *fence) |
| { |
| return __busy_set_if_active(fence, __busy_read_flag); |
| } |
| |
| static __always_inline unsigned int |
| busy_check_writer(const struct dma_fence *fence) |
| { |
| if (!fence) |
| return 0; |
| |
| return __busy_set_if_active(fence, __busy_write_id); |
| } |
| |
| int |
| i915_gem_busy_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_gem_busy *args = data; |
| struct drm_i915_gem_object *obj; |
| struct reservation_object_list *list; |
| unsigned int seq; |
| int err; |
| |
| err = -ENOENT; |
| rcu_read_lock(); |
| obj = i915_gem_object_lookup_rcu(file, args->handle); |
| if (!obj) |
| goto out; |
| |
| /* A discrepancy here is that we do not report the status of |
| * non-i915 fences, i.e. even though we may report the object as idle, |
| * a call to set-domain may still stall waiting for foreign rendering. |
| * This also means that wait-ioctl may report an object as busy, |
| * where busy-ioctl considers it idle. |
| * |
| * We trade the ability to warn of foreign fences to report on which |
| * i915 engines are active for the object. |
| * |
| * Alternatively, we can trade that extra information on read/write |
| * activity with |
| * args->busy = |
| * !reservation_object_test_signaled_rcu(obj->resv, true); |
| * to report the overall busyness. This is what the wait-ioctl does. |
| * |
| */ |
| retry: |
| seq = raw_read_seqcount(&obj->resv->seq); |
| |
| /* Translate the exclusive fence to the READ *and* WRITE engine */ |
| args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl)); |
| |
| /* Translate shared fences to READ set of engines */ |
| list = rcu_dereference(obj->resv->fence); |
| if (list) { |
| unsigned int shared_count = list->shared_count, i; |
| |
| for (i = 0; i < shared_count; ++i) { |
| struct dma_fence *fence = |
| rcu_dereference(list->shared[i]); |
| |
| args->busy |= busy_check_reader(fence); |
| } |
| } |
| |
| if (args->busy && read_seqcount_retry(&obj->resv->seq, seq)) |
| goto retry; |
| |
| err = 0; |
| out: |
| rcu_read_unlock(); |
| return err; |
| } |
| |
| int |
| i915_gem_throttle_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| return i915_gem_ring_throttle(dev, file_priv); |
| } |
| |
| int |
| i915_gem_madvise_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file_priv) |
| { |
| struct drm_i915_private *dev_priv = to_i915(dev); |
| struct drm_i915_gem_madvise *args = data; |
| struct drm_i915_gem_object *obj; |
| int err; |
| |
| switch (args->madv) { |
| case I915_MADV_DONTNEED: |
| case I915_MADV_WILLNEED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| obj = i915_gem_object_lookup(file_priv, args->handle); |
| if (!obj) |
| return -ENOENT; |
| |
| err = mutex_lock_interruptible(&obj->mm.lock); |
| if (err) |
| goto out; |
| |
| if (obj->mm.pages && |
| i915_gem_object_is_tiled(obj) && |
| dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) { |
| if (obj->mm.madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(!obj->mm.quirked); |
| __i915_gem_object_unpin_pages(obj); |
| obj->mm.quirked = false; |
| } |
| if (args->madv == I915_MADV_WILLNEED) { |
| GEM_BUG_ON(obj->mm.quirked); |
| __i915_gem_object_pin_pages(obj); |
| obj->mm.quirked = true; |
| } |
| } |
| |
| if (obj->mm.madv != __I915_MADV_PURGED) |
| obj->mm.madv = args->madv; |
| |
| /* if the object is no longer attached, discard its backing storage */ |
| if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages) |
| i915_gem_object_truncate(obj); |
| |
| args->retained = obj->mm.madv != __I915_MADV_PURGED; |
| mutex_unlock(&obj->mm.lock); |
| |
| out: |
| i915_gem_object_put(obj); |
| return err; |
| } |
| |
| static void |
| frontbuffer_retire(struct i915_gem_active *active, |
| struct drm_i915_gem_request *request) |
| { |
| struct drm_i915_gem_object *obj = |
| container_of(active, typeof(*obj), frontbuffer_write); |
| |
| intel_fb_obj_flush(obj, true, ORIGIN_CS); |
| } |
| |
| void i915_gem_object_init(struct drm_i915_gem_object *obj, |
| const struct drm_i915_gem_object_ops *ops) |
| { |
| mutex_init(&obj->mm.lock); |
| |
| INIT_LIST_HEAD(&obj->global_link); |
| INIT_LIST_HEAD(&obj->userfault_link); |
| INIT_LIST_HEAD(&obj->obj_exec_link); |
| INIT_LIST_HEAD(&obj->vma_list); |
| INIT_LIST_HEAD(&obj->batch_pool_link); |
| |
| obj->ops = ops; |
| |
| reservation_object_init(&obj->__builtin_resv); |
| obj->resv = &obj->__builtin_resv; |
| |
| obj->frontbuffer_ggtt_origin = ORIGIN_GTT; |
| init_request_active(&obj->frontbuffer_write, frontbuffer_retire); |
| |
| obj->mm.madv = I915_MADV_WILLNEED; |
| INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN); |
| mutex_init(&obj->mm.get_page.lock); |
| |
| i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size); |
| } |
| |
| static const struct drm_i915_gem_object_ops i915_gem_object_ops = { |
| .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE | |
| I915_GEM_OBJECT_IS_SHRINKABLE, |
| .get_pages = i915_gem_object_get_pages_gtt, |
| .put_pages = i915_gem_object_put_pages_gtt, |
| }; |
| |
| /* Note we don't consider signbits :| */ |
| #define overflows_type(x, T) \ |
| (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE)) |
| |
| struct drm_i915_gem_object * |
| i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct address_space *mapping; |
| gfp_t mask; |
| int ret; |
| |
| /* There is a prevalence of the assumption that we fit the object's |
| * page count inside a 32bit _signed_ variable. Let's document this and |
| * catch if we ever need to fix it. In the meantime, if you do spot |
| * such a local variable, please consider fixing! |
| */ |
| if (WARN_ON(size >> PAGE_SHIFT > INT_MAX)) |
| return ERR_PTR(-E2BIG); |
| |
| if (overflows_type(size, obj->base.size)) |
| return ERR_PTR(-E2BIG); |
| |
| obj = i915_gem_object_alloc(dev_priv); |
| if (obj == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size); |
| if (ret) |
| goto fail; |
| |
| mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; |
| if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) { |
| /* 965gm cannot relocate objects above 4GiB. */ |
| mask &= ~__GFP_HIGHMEM; |
| mask |= __GFP_DMA32; |
| } |
| |
| mapping = obj->base.filp->f_mapping; |
| mapping_set_gfp_mask(mapping, mask); |
| |
| i915_gem_object_init(obj, &i915_gem_object_ops); |
| |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| |
| if (HAS_LLC(dev_priv)) { |
| /* On some devices, we can have the GPU use the LLC (the CPU |
| * cache) for about a 10% performance improvement |
| * compared to uncached. Graphics requests other than |
| * display scanout are coherent with the CPU in |
| * accessing this cache. This means in this mode we |
| * don't need to clflush on the CPU side, and on the |
| * GPU side we only need to flush internal caches to |
| * get data visible to the CPU. |
| * |
| * However, we maintain the display planes as UC, and so |
| * need to rebind when first used as such. |
| */ |
| obj->cache_level = I915_CACHE_LLC; |
| } else |
| obj->cache_level = I915_CACHE_NONE; |
| |
| trace_i915_gem_object_create(obj); |
| |
| return obj; |
| |
| fail: |
| i915_gem_object_free(obj); |
| return ERR_PTR(ret); |
| } |
| |
| static bool discard_backing_storage(struct drm_i915_gem_object *obj) |
| { |
| /* If we are the last user of the backing storage (be it shmemfs |
| * pages or stolen etc), we know that the pages are going to be |
| * immediately released. In this case, we can then skip copying |
| * back the contents from the GPU. |
| */ |
| |
| if (obj->mm.madv != I915_MADV_WILLNEED) |
| return false; |
| |
| if (obj->base.filp == NULL) |
| return true; |
| |
| /* At first glance, this looks racy, but then again so would be |
| * userspace racing mmap against close. However, the first external |
| * reference to the filp can only be obtained through the |
| * i915_gem_mmap_ioctl() which safeguards us against the user |
| * acquiring such a reference whilst we are in the middle of |
| * freeing the object. |
| */ |
| return atomic_long_read(&obj->base.filp->f_count) == 1; |
| } |
| |
| static void __i915_gem_free_objects(struct drm_i915_private *i915, |
| struct llist_node *freed) |
| { |
| struct drm_i915_gem_object *obj, *on; |
| |
| mutex_lock(&i915->drm.struct_mutex); |
| intel_runtime_pm_get(i915); |
| llist_for_each_entry(obj, freed, freed) { |
| struct i915_vma *vma, *vn; |
| |
| trace_i915_gem_object_destroy(obj); |
| |
| GEM_BUG_ON(i915_gem_object_is_active(obj)); |
| list_for_each_entry_safe(vma, vn, |
| &obj->vma_list, obj_link) { |
| GEM_BUG_ON(!i915_vma_is_ggtt(vma)); |
| GEM_BUG_ON(i915_vma_is_active(vma)); |
| vma->flags &= ~I915_VMA_PIN_MASK; |
| i915_vma_close(vma); |
| } |
| GEM_BUG_ON(!list_empty(&obj->vma_list)); |
| GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree)); |
| |
| list_del(&obj->global_link); |
| } |
| intel_runtime_pm_put(i915); |
| mutex_unlock(&i915->drm.struct_mutex); |
| |
| llist_for_each_entry_safe(obj, on, freed, freed) { |
| GEM_BUG_ON(obj->bind_count); |
| GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits)); |
| |
| if (obj->ops->release) |
| obj->ops->release(obj); |
| |
| if (WARN_ON(i915_gem_object_has_pinned_pages(obj))) |
| atomic_set(&obj->mm.pages_pin_count, 0); |
| __i915_gem_object_put_pages(obj, I915_MM_NORMAL); |
| GEM_BUG_ON(obj->mm.pages); |
| |
| if (obj->base.import_attach) |
| drm_prime_gem_destroy(&obj->base, NULL); |
| |
| reservation_object_fini(&obj->__builtin_resv); |
| drm_gem_object_release(&obj->base); |
| i915_gem_info_remove_obj(i915, obj->base.size); |
| |
| kfree(obj->bit_17); |
| i915_gem_object_free(obj); |
| } |
| } |
| |
| static void i915_gem_flush_free_objects(struct drm_i915_private *i915) |
| { |
| struct llist_node *freed; |
| |
| freed = llist_del_all(&i915->mm.free_list); |
| if (unlikely(freed)) |
| __i915_gem_free_objects(i915, freed); |
| } |
| |
| static void __i915_gem_free_work(struct work_struct *work) |
| { |
| struct drm_i915_private *i915 = |
| container_of(work, struct drm_i915_private, mm.free_work); |
| struct llist_node *freed; |
| |
| /* All file-owned VMA should have been released by this point through |
| * i915_gem_close_object(), or earlier by i915_gem_context_close(). |
| * However, the object may also be bound into the global GTT (e.g. |
| * older GPUs without per-process support, or for direct access through |
| * the GTT either for the user or for scanout). Those VMA still need to |
| * unbound now. |
| */ |
| |
| while ((freed = llist_del_all(&i915->mm.free_list))) |
| __i915_gem_free_objects(i915, freed); |
| } |
| |
| static void __i915_gem_free_object_rcu(struct rcu_head *head) |
| { |
| struct drm_i915_gem_object *obj = |
| container_of(head, typeof(*obj), rcu); |
| struct drm_i915_private *i915 = to_i915(obj->base.dev); |
| |
| /* We can't simply use call_rcu() from i915_gem_free_object() |
| * as we need to block whilst unbinding, and the call_rcu |
| * task may be called from softirq context. So we take a |
| * detour through a worker. |
| */ |
| if (llist_add(&obj->freed, &i915->mm.free_list)) |
| schedule_work(&i915->mm.free_work); |
| } |
| |
| void i915_gem_free_object(struct drm_gem_object *gem_obj) |
| { |
| struct drm_i915_gem_object *obj = to_intel_bo(gem_obj); |
| |
| if (obj->mm.quirked) |
| __i915_gem_object_unpin_pages(obj); |
| |
| if (discard_backing_storage(obj)) |
| obj->mm.madv = I915_MADV_DONTNEED; |
| |
| /* Before we free the object, make sure any pure RCU-only |
| * read-side critical sections are complete, e.g. |
| * i915_gem_busy_ioctl(). For the corresponding synchronized |
| * lookup see i915_gem_object_lookup_rcu(). |
| */ |
| call_rcu(&obj->rcu, __i915_gem_free_object_rcu); |
| } |
| |
| void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj) |
| { |
| lockdep_assert_held(&obj->base.dev->struct_mutex); |
| |
| GEM_BUG_ON(i915_gem_object_has_active_reference(obj)); |
| if (i915_gem_object_is_active(obj)) |
| i915_gem_object_set_active_reference(obj); |
| else |
| i915_gem_object_put(obj); |
| } |
| |
| static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, dev_priv, id) |
| GEM_BUG_ON(engine->last_context != dev_priv->kernel_context); |
| } |
| |
| int i915_gem_suspend(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| int ret; |
| |
| intel_suspend_gt_powersave(dev_priv); |
| |
| mutex_lock(&dev->struct_mutex); |
| |
| /* We have to flush all the executing contexts to main memory so |
| * that they can saved in the hibernation image. To ensure the last |
| * context image is coherent, we have to switch away from it. That |
| * leaves the dev_priv->kernel_context still active when |
| * we actually suspend, and its image in memory may not match the GPU |
| * state. Fortunately, the kernel_context is disposable and we do |
| * not rely on its state. |
| */ |
| ret = i915_gem_switch_to_kernel_context(dev_priv); |
| if (ret) |
| goto err; |
| |
| ret = i915_gem_wait_for_idle(dev_priv, |
| I915_WAIT_INTERRUPTIBLE | |
| I915_WAIT_LOCKED); |
| if (ret) |
| goto err; |
| |
| i915_gem_retire_requests(dev_priv); |
| GEM_BUG_ON(dev_priv->gt.active_requests); |
| |
| assert_kernel_context_is_current(dev_priv); |
| i915_gem_context_lost(dev_priv); |
| mutex_unlock(&dev->struct_mutex); |
| |
| cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work); |
| cancel_delayed_work_sync(&dev_priv->gt.retire_work); |
| flush_delayed_work(&dev_priv->gt.idle_work); |
| flush_work(&dev_priv->mm.free_work); |
| |
| /* Assert that we sucessfully flushed all the work and |
| * reset the GPU back to its idle, low power state. |
| */ |
| WARN_ON(dev_priv->gt.awake); |
| WARN_ON(!intel_execlists_idle(dev_priv)); |
| |
| /* |
| * Neither the BIOS, ourselves or any other kernel |
| * expects the system to be in execlists mode on startup, |
| * so we need to reset the GPU back to legacy mode. And the only |
| * known way to disable logical contexts is through a GPU reset. |
| * |
| * So in order to leave the system in a known default configuration, |
| * always reset the GPU upon unload and suspend. Afterwards we then |
| * clean up the GEM state tracking, flushing off the requests and |
| * leaving the system in a known idle state. |
| * |
| * Note that is of the upmost importance that the GPU is idle and |
| * all stray writes are flushed *before* we dismantle the backing |
| * storage for the pinned objects. |
| * |
| * However, since we are uncertain that resetting the GPU on older |
| * machines is a good idea, we don't - just in case it leaves the |
| * machine in an unusable condition. |
| */ |
| if (HAS_HW_CONTEXTS(dev_priv)) { |
| int reset = intel_gpu_reset(dev_priv, ALL_ENGINES); |
| WARN_ON(reset && reset != -ENODEV); |
| } |
| |
| return 0; |
| |
| err: |
| mutex_unlock(&dev->struct_mutex); |
| return ret; |
| } |
| |
| void i915_gem_resume(struct drm_i915_private *dev_priv) |
| { |
| struct drm_device *dev = &dev_priv->drm; |
| |
| WARN_ON(dev_priv->gt.awake); |
| |
| mutex_lock(&dev->struct_mutex); |
| i915_gem_restore_gtt_mappings(dev_priv); |
| |
| /* As we didn't flush the kernel context before suspend, we cannot |
| * guarantee that the context image is complete. So let's just reset |
| * it and start again. |
| */ |
| dev_priv->gt.resume(dev_priv); |
| |
| mutex_unlock(&dev->struct_mutex); |
| } |
| |
| void i915_gem_init_swizzling(struct drm_i915_private *dev_priv) |
| { |
| if (INTEL_GEN(dev_priv) < 5 || |
| dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) |
| return; |
| |
| I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | |
| DISP_TILE_SURFACE_SWIZZLING); |
| |
| if (IS_GEN5(dev_priv)) |
| return; |
| |
| I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL); |
| if (IS_GEN6(dev_priv)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); |
| else if (IS_GEN7(dev_priv)) |
| I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); |
| else if (IS_GEN8(dev_priv)) |
| I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); |
| else |
| BUG(); |
| } |
| |
| static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base) |
| { |
| I915_WRITE(RING_CTL(base), 0); |
| I915_WRITE(RING_HEAD(base), 0); |
| I915_WRITE(RING_TAIL(base), 0); |
| I915_WRITE(RING_START(base), 0); |
| } |
| |
| static void init_unused_rings(struct drm_i915_private *dev_priv) |
| { |
| if (IS_I830(dev_priv)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| init_unused_ring(dev_priv, SRB2_BASE); |
| init_unused_ring(dev_priv, SRB3_BASE); |
| } else if (IS_GEN2(dev_priv)) { |
| init_unused_ring(dev_priv, SRB0_BASE); |
| init_unused_ring(dev_priv, SRB1_BASE); |
| } else if (IS_GEN3(dev_priv)) { |
| init_unused_ring(dev_priv, PRB1_BASE); |
| init_unused_ring(dev_priv, PRB2_BASE); |
| } |
| } |
| |
| int |
| i915_gem_init_hw(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| int ret; |
| |
| dev_priv->gt.last_init_time = ktime_get(); |
| |
| /* Double layer security blanket, see i915_gem_init() */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9) |
| I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf)); |
| |
| if (IS_HASWELL(dev_priv)) |
| I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ? |
| LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); |
| |
| if (HAS_PCH_NOP(dev_priv)) { |
| if (IS_IVYBRIDGE(dev_priv)) { |
| u32 temp = I915_READ(GEN7_MSG_CTL); |
| temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK); |
| I915_WRITE(GEN7_MSG_CTL, temp); |
| } else if (INTEL_GEN(dev_priv) >= 7) { |
| u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT); |
| temp &= ~RESET_PCH_HANDSHAKE_ENABLE; |
| I915_WRITE(HSW_NDE_RSTWRN_OPT, temp); |
| } |
| } |
| |
| i915_gem_init_swizzling(dev_priv); |
| |
| /* |
| * At least 830 can leave some of the unused rings |
| * "active" (ie. head != tail) after resume which |
| * will prevent c3 entry. Makes sure all unused rings |
| * are totally idle. |
| */ |
| init_unused_rings(dev_priv); |
| |
| BUG_ON(!dev_priv->kernel_context); |
| |
| ret = i915_ppgtt_init_hw(dev_priv); |
| if (ret) { |
| DRM_ERROR("PPGTT enable HW failed %d\n", ret); |
| goto out; |
| } |
| |
| /* Need to do basic initialisation of all rings first: */ |
| for_each_engine(engine, dev_priv, id) { |
| ret = engine->init_hw(engine); |
| if (ret) |
| goto out; |
| } |
| |
| intel_mocs_init_l3cc_table(dev_priv); |
| |
| /* We can't enable contexts until all firmware is loaded */ |
| ret = intel_guc_setup(dev_priv); |
| if (ret) |
| goto out; |
| |
| out: |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| return ret; |
| } |
| |
| bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value) |
| { |
| if (INTEL_INFO(dev_priv)->gen < 6) |
| return false; |
| |
| /* TODO: make semaphores and Execlists play nicely together */ |
| if (i915.enable_execlists) |
| return false; |
| |
| if (value >= 0) |
| return value; |
| |
| #ifdef CONFIG_INTEL_IOMMU |
| /* Enable semaphores on SNB when IO remapping is off */ |
| if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped) |
| return false; |
| #endif |
| |
| return true; |
| } |
| |
| int i915_gem_init(struct drm_i915_private *dev_priv) |
| { |
| int ret; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| |
| if (!i915.enable_execlists) { |
| dev_priv->gt.resume = intel_legacy_submission_resume; |
| dev_priv->gt.cleanup_engine = intel_engine_cleanup; |
| } else { |
| dev_priv->gt.resume = intel_lr_context_resume; |
| dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup; |
| } |
| |
| /* This is just a security blanket to placate dragons. |
| * On some systems, we very sporadically observe that the first TLBs |
| * used by the CS may be stale, despite us poking the TLB reset. If |
| * we hold the forcewake during initialisation these problems |
| * just magically go away. |
| */ |
| intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); |
| |
| i915_gem_init_userptr(dev_priv); |
| |
| ret = i915_gem_init_ggtt(dev_priv); |
| if (ret) |
| goto out_unlock; |
| |
| ret = i915_gem_context_init(dev_priv); |
| if (ret) |
| goto out_unlock; |
| |
| ret = intel_engines_init(dev_priv); |
| if (ret) |
| goto out_unlock; |
| |
| ret = i915_gem_init_hw(dev_priv); |
| if (ret == -EIO) { |
| /* Allow engine initialisation to fail by marking the GPU as |
| * wedged. But we only want to do this where the GPU is angry, |
| * for all other failure, such as an allocation failure, bail. |
| */ |
| DRM_ERROR("Failed to initialize GPU, declaring it wedged\n"); |
| i915_gem_set_wedged(dev_priv); |
| ret = 0; |
| } |
| |
| out_unlock: |
| intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| return ret; |
| } |
| |
| void |
| i915_gem_cleanup_engines(struct drm_i915_private *dev_priv) |
| { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| for_each_engine(engine, dev_priv, id) |
| dev_priv->gt.cleanup_engine(engine); |
| } |
| |
| void |
| i915_gem_load_init_fences(struct drm_i915_private *dev_priv) |
| { |
| int i; |
| |
| if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) && |
| !IS_CHERRYVIEW(dev_priv)) |
| dev_priv->num_fence_regs = 32; |
| else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) || |
| IS_I945GM(dev_priv) || IS_G33(dev_priv)) |
| dev_priv->num_fence_regs = 16; |
| else |
| dev_priv->num_fence_regs = 8; |
| |
| if (intel_vgpu_active(dev_priv)) |
| dev_priv->num_fence_regs = |
| I915_READ(vgtif_reg(avail_rs.fence_num)); |
| |
| /* Initialize fence registers to zero */ |
| for (i = 0; i < dev_priv->num_fence_regs; i++) { |
| struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i]; |
| |
| fence->i915 = dev_priv; |
| fence->id = i; |
| list_add_tail(&fence->link, &dev_priv->mm.fence_list); |
| } |
| i915_gem_restore_fences(dev_priv); |
| |
| i915_gem_detect_bit_6_swizzle(dev_priv); |
| } |
| |
| int |
| i915_gem_load_init(struct drm_i915_private *dev_priv) |
| { |
| int err = -ENOMEM; |
| |
| dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN); |
| if (!dev_priv->objects) |
| goto err_out; |
| |
| dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); |
| if (!dev_priv->vmas) |
| goto err_objects; |
| |
| dev_priv->requests = KMEM_CACHE(drm_i915_gem_request, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT | |
| SLAB_DESTROY_BY_RCU); |
| if (!dev_priv->requests) |
| goto err_vmas; |
| |
| dev_priv->dependencies = KMEM_CACHE(i915_dependency, |
| SLAB_HWCACHE_ALIGN | |
| SLAB_RECLAIM_ACCOUNT); |
| if (!dev_priv->dependencies) |
| goto err_requests; |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| INIT_LIST_HEAD(&dev_priv->gt.timelines); |
| err = i915_gem_timeline_init__global(dev_priv); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| if (err) |
| goto err_dependencies; |
| |
| INIT_LIST_HEAD(&dev_priv->context_list); |
| INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work); |
| init_llist_head(&dev_priv->mm.free_list); |
| INIT_LIST_HEAD(&dev_priv->mm.unbound_list); |
| INIT_LIST_HEAD(&dev_priv->mm.bound_list); |
| INIT_LIST_HEAD(&dev_priv->mm.fence_list); |
| INIT_LIST_HEAD(&dev_priv->mm.userfault_list); |
| INIT_DELAYED_WORK(&dev_priv->gt.retire_work, |
| i915_gem_retire_work_handler); |
| INIT_DELAYED_WORK(&dev_priv->gt.idle_work, |
| i915_gem_idle_work_handler); |
| init_waitqueue_head(&dev_priv->gpu_error.wait_queue); |
| init_waitqueue_head(&dev_priv->gpu_error.reset_queue); |
| |
| dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL; |
| |
| init_waitqueue_head(&dev_priv->pending_flip_queue); |
| |
| dev_priv->mm.interruptible = true; |
| |
| atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0); |
| |
| spin_lock_init(&dev_priv->fb_tracking.lock); |
| |
| return 0; |
| |
| err_dependencies: |
| kmem_cache_destroy(dev_priv->dependencies); |
| err_requests: |
| kmem_cache_destroy(dev_priv->requests); |
| err_vmas: |
| kmem_cache_destroy(dev_priv->vmas); |
| err_objects: |
| kmem_cache_destroy(dev_priv->objects); |
| err_out: |
| return err; |
| } |
| |
| void i915_gem_load_cleanup(struct drm_i915_private *dev_priv) |
| { |
| WARN_ON(!llist_empty(&dev_priv->mm.free_list)); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_gem_timeline_fini(&dev_priv->gt.global_timeline); |
| WARN_ON(!list_empty(&dev_priv->gt.timelines)); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| kmem_cache_destroy(dev_priv->dependencies); |
| kmem_cache_destroy(dev_priv->requests); |
| kmem_cache_destroy(dev_priv->vmas); |
| kmem_cache_destroy(dev_priv->objects); |
| |
| /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */ |
| rcu_barrier(); |
| } |
| |
| int i915_gem_freeze(struct drm_i915_private *dev_priv) |
| { |
| intel_runtime_pm_get(dev_priv); |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_gem_shrink_all(dev_priv); |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| intel_runtime_pm_put(dev_priv); |
| |
| return 0; |
| } |
| |
| int i915_gem_freeze_late(struct drm_i915_private *dev_priv) |
| { |
| struct drm_i915_gem_object *obj; |
| struct list_head *phases[] = { |
| &dev_priv->mm.unbound_list, |
| &dev_priv->mm.bound_list, |
| NULL |
| }, **p; |
| |
| /* Called just before we write the hibernation image. |
| * |
| * We need to update the domain tracking to reflect that the CPU |
| * will be accessing all the pages to create and restore from the |
| * hibernation, and so upon restoration those pages will be in the |
| * CPU domain. |
| * |
| * To make sure the hibernation image contains the latest state, |
| * we update that state just before writing out the image. |
| * |
| * To try and reduce the hibernation image, we manually shrink |
| * the objects as well. |
| */ |
| |
| mutex_lock(&dev_priv->drm.struct_mutex); |
| i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND); |
| |
| for (p = phases; *p; p++) { |
| list_for_each_entry(obj, *p, global_link) { |
| obj->base.read_domains = I915_GEM_DOMAIN_CPU; |
| obj->base.write_domain = I915_GEM_DOMAIN_CPU; |
| } |
| } |
| mutex_unlock(&dev_priv->drm.struct_mutex); |
| |
| return 0; |
| } |
| |
| void i915_gem_release(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| struct drm_i915_gem_request *request; |
| |
| /* Clean up our request list when the client is going away, so that |
| * later retire_requests won't dereference our soon-to-be-gone |
| * file_priv. |
| */ |
| spin_lock(&file_priv->mm.lock); |
| list_for_each_entry(request, &file_priv->mm.request_list, client_list) |
| request->file_priv = NULL; |
| spin_unlock(&file_priv->mm.lock); |
| |
| if (!list_empty(&file_priv->rps.link)) { |
| spin_lock(&to_i915(dev)->rps.client_lock); |
| list_del(&file_priv->rps.link); |
| spin_unlock(&to_i915(dev)->rps.client_lock); |
| } |
| } |
| |
| int i915_gem_open(struct drm_device *dev, struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv; |
| int ret; |
| |
| DRM_DEBUG("\n"); |
| |
| file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL); |
| if (!file_priv) |
| return -ENOMEM; |
| |
| file->driver_priv = file_priv; |
| file_priv->dev_priv = to_i915(dev); |
| file_priv->file = file; |
| INIT_LIST_HEAD(&file_priv->rps.link); |
| |
| spin_lock_init(&file_priv->mm.lock); |
| INIT_LIST_HEAD(&file_priv->mm.request_list); |
| |
| file_priv->bsd_engine = -1; |
| |
| ret = i915_gem_context_open(dev, file); |
| if (ret) |
| kfree(file_priv); |
| |
| return ret; |
| } |
| |
| /** |
| * i915_gem_track_fb - update frontbuffer tracking |
| * @old: current GEM buffer for the frontbuffer slots |
| * @new: new GEM buffer for the frontbuffer slots |
| * @frontbuffer_bits: bitmask of frontbuffer slots |
| * |
| * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them |
| * from @old and setting them in @new. Both @old and @new can be NULL. |
| */ |
| void i915_gem_track_fb(struct drm_i915_gem_object *old, |
| struct drm_i915_gem_object *new, |
| unsigned frontbuffer_bits) |
| { |
| /* Control of individual bits within the mask are guarded by |
| * the owning plane->mutex, i.e. we can never see concurrent |
| * manipulation of individual bits. But since the bitfield as a whole |
| * is updated using RMW, we need to use atomics in order to update |
| * the bits. |
| */ |
| BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > |
| sizeof(atomic_t) * BITS_PER_BYTE); |
| |
| if (old) { |
| WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits)); |
| atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits); |
| } |
| |
| if (new) { |
| WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits); |
| atomic_or(frontbuffer_bits, &new->frontbuffer_bits); |
| } |
| } |
| |
| /* Allocate a new GEM object and fill it with the supplied data */ |
| struct drm_i915_gem_object * |
| i915_gem_object_create_from_data(struct drm_i915_private *dev_priv, |
| const void *data, size_t size) |
| { |
| struct drm_i915_gem_object *obj; |
| struct sg_table *sg; |
| size_t bytes; |
| int ret; |
| |
| obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE)); |
| if (IS_ERR(obj)) |
| return obj; |
| |
| ret = i915_gem_object_set_to_cpu_domain(obj, true); |
| if (ret) |
| goto fail; |
| |
| ret = i915_gem_object_pin_pages(obj); |
| if (ret) |
| goto fail; |
| |
| sg = obj->mm.pages; |
| bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size); |
| obj->mm.dirty = true; /* Backing store is now out of date */ |
| i915_gem_object_unpin_pages(obj); |
| |
| if (WARN_ON(bytes != size)) { |
| DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size); |
| ret = -EFAULT; |
| goto fail; |
| } |
| |
| return obj; |
| |
| fail: |
| i915_gem_object_put(obj); |
| return ERR_PTR(ret); |
| } |
| |
| struct scatterlist * |
| i915_gem_object_get_sg(struct drm_i915_gem_object *obj, |
| unsigned int n, |
| unsigned int *offset) |
| { |
| struct i915_gem_object_page_iter *iter = &obj->mm.get_page; |
| struct scatterlist *sg; |
| unsigned int idx, count; |
| |
| might_sleep(); |
| GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT); |
| GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); |
| |
| /* As we iterate forward through the sg, we record each entry in a |
| * radixtree for quick repeated (backwards) lookups. If we have seen |
| * this index previously, we will have an entry for it. |
| * |
| * Initial lookup is O(N), but this is amortized to O(1) for |
| * sequential page access (where each new request is consecutive |
| * to the previous one). Repeated lookups are O(lg(obj->base.size)), |
| * i.e. O(1) with a large constant! |
| */ |
| if (n < READ_ONCE(iter->sg_idx)) |
| goto lookup; |
| |
| mutex_lock(&iter->lock); |
| |
| /* We prefer to reuse the last sg so that repeated lookup of this |
| * (or the subsequent) sg are fast - comparing against the last |
| * sg is faster than going through the radixtree. |
| */ |
| |
| sg = iter->sg_pos; |
| idx = iter->sg_idx; |
| count = __sg_page_count(sg); |
| |
| while (idx + count <= n) { |
| unsigned long exception, i; |
| int ret; |
| |
| /* If we cannot allocate and insert this entry, or the |
| * individual pages from this range, cancel updating the |
| * sg_idx so that on this lookup we are forced to linearly |
| * scan onwards, but on future lookups we will try the |
| * insertion again (in which case we need to be careful of |
| * the error return reporting that we have already inserted |
| * this index). |
| */ |
| ret = radix_tree_insert(&iter->radix, idx, sg); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| |
| exception = |
| RADIX_TREE_EXCEPTIONAL_ENTRY | |
| idx << RADIX_TREE_EXCEPTIONAL_SHIFT; |
| for (i = 1; i < count; i++) { |
| ret = radix_tree_insert(&iter->radix, idx + i, |
| (void *)exception); |
| if (ret && ret != -EEXIST) |
| goto scan; |
| } |
| |
| idx += count; |
| sg = ____sg_next(sg); |
| count = __sg_page_count(sg); |
| } |
| |
| scan: |
| iter->sg_pos = sg; |
| iter->sg_idx = idx; |
| |
| mutex_unlock(&iter->lock); |
| |
| if (unlikely(n < idx)) /* insertion completed by another thread */ |
| goto lookup; |
| |
| /* In case we failed to insert the entry into the radixtree, we need |
| * to look beyond the current sg. |
| */ |
| while (idx + count <= n) { |
| idx += count; |
| sg = ____sg_next(sg); |
| count = __sg_page_count(sg); |
| } |
| |
| *offset = n - idx; |
| return sg; |
| |
| lookup: |
| rcu_read_lock(); |
| |
| sg = radix_tree_lookup(&iter->radix, n); |
| GEM_BUG_ON(!sg); |
| |
| /* If this index is in the middle of multi-page sg entry, |
| * the radixtree will contain an exceptional entry that points |
| * to the start of that range. We will return the pointer to |
| * the base page and the offset of this page within the |
| * sg entry's range. |
| */ |
| *offset = 0; |
| if (unlikely(radix_tree_exception(sg))) { |
| unsigned long base = |
| (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT; |
| |
| sg = radix_tree_lookup(&iter->radix, base); |
| GEM_BUG_ON(!sg); |
| |
| *offset = n - base; |
| } |
| |
| rcu_read_unlock(); |
| |
| return sg; |
| } |
| |
| struct page * |
| i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| GEM_BUG_ON(!i915_gem_object_has_struct_page(obj)); |
| |
| sg = i915_gem_object_get_sg(obj, n, &offset); |
| return nth_page(sg_page(sg), offset); |
| } |
| |
| /* Like i915_gem_object_get_page(), but mark the returned page dirty */ |
| struct page * |
| i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, |
| unsigned int n) |
| { |
| struct page *page; |
| |
| page = i915_gem_object_get_page(obj, n); |
| if (!obj->mm.dirty) |
| set_page_dirty(page); |
| |
| return page; |
| } |
| |
| dma_addr_t |
| i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, |
| unsigned long n) |
| { |
| struct scatterlist *sg; |
| unsigned int offset; |
| |
| sg = i915_gem_object_get_sg(obj, n, &offset); |
| return sg_dma_address(sg) + (offset << PAGE_SHIFT); |
| } |