| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/huge_mm.h> |
| #include <linux/mount.h> |
| #include <linux/seq_file.h> |
| #include <linux/highmem.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/mempolicy.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/mmu_notifier.h> |
| |
| #include <asm/elf.h> |
| #include <asm/uaccess.h> |
| #include <asm/tlbflush.h> |
| #include "internal.h" |
| |
| void task_mem(struct seq_file *m, struct mm_struct *mm) |
| { |
| unsigned long data, text, lib, swap; |
| unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; |
| |
| /* |
| * Note: to minimize their overhead, mm maintains hiwater_vm and |
| * hiwater_rss only when about to *lower* total_vm or rss. Any |
| * collector of these hiwater stats must therefore get total_vm |
| * and rss too, which will usually be the higher. Barriers? not |
| * worth the effort, such snapshots can always be inconsistent. |
| */ |
| hiwater_vm = total_vm = mm->total_vm; |
| if (hiwater_vm < mm->hiwater_vm) |
| hiwater_vm = mm->hiwater_vm; |
| hiwater_rss = total_rss = get_mm_rss(mm); |
| if (hiwater_rss < mm->hiwater_rss) |
| hiwater_rss = mm->hiwater_rss; |
| |
| data = mm->total_vm - mm->shared_vm - mm->stack_vm; |
| text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; |
| lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; |
| swap = get_mm_counter(mm, MM_SWAPENTS); |
| seq_printf(m, |
| "VmPeak:\t%8lu kB\n" |
| "VmSize:\t%8lu kB\n" |
| "VmLck:\t%8lu kB\n" |
| "VmPin:\t%8lu kB\n" |
| "VmHWM:\t%8lu kB\n" |
| "VmRSS:\t%8lu kB\n" |
| "VmData:\t%8lu kB\n" |
| "VmStk:\t%8lu kB\n" |
| "VmExe:\t%8lu kB\n" |
| "VmLib:\t%8lu kB\n" |
| "VmPTE:\t%8lu kB\n" |
| "VmSwap:\t%8lu kB\n", |
| hiwater_vm << (PAGE_SHIFT-10), |
| total_vm << (PAGE_SHIFT-10), |
| mm->locked_vm << (PAGE_SHIFT-10), |
| mm->pinned_vm << (PAGE_SHIFT-10), |
| hiwater_rss << (PAGE_SHIFT-10), |
| total_rss << (PAGE_SHIFT-10), |
| data << (PAGE_SHIFT-10), |
| mm->stack_vm << (PAGE_SHIFT-10), text, lib, |
| (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10, |
| swap << (PAGE_SHIFT-10)); |
| } |
| |
| unsigned long task_vsize(struct mm_struct *mm) |
| { |
| return PAGE_SIZE * mm->total_vm; |
| } |
| |
| unsigned long task_statm(struct mm_struct *mm, |
| unsigned long *shared, unsigned long *text, |
| unsigned long *data, unsigned long *resident) |
| { |
| *shared = get_mm_counter(mm, MM_FILEPAGES); |
| *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) |
| >> PAGE_SHIFT; |
| *data = mm->total_vm - mm->shared_vm; |
| *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); |
| return mm->total_vm; |
| } |
| |
| static void pad_len_spaces(struct seq_file *m, int len) |
| { |
| len = 25 + sizeof(void*) * 6 - len; |
| if (len < 1) |
| len = 1; |
| seq_printf(m, "%*c", len, ' '); |
| } |
| |
| #ifdef CONFIG_NUMA |
| /* |
| * These functions are for numa_maps but called in generic **maps seq_file |
| * ->start(), ->stop() ops. |
| * |
| * numa_maps scans all vmas under mmap_sem and checks their mempolicy. |
| * Each mempolicy object is controlled by reference counting. The problem here |
| * is how to avoid accessing dead mempolicy object. |
| * |
| * Because we're holding mmap_sem while reading seq_file, it's safe to access |
| * each vma's mempolicy, no vma objects will never drop refs to mempolicy. |
| * |
| * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy |
| * is set and replaced under mmap_sem but unrefed and cleared under task_lock(). |
| * So, without task_lock(), we cannot trust get_vma_policy() because we cannot |
| * gurantee the task never exits under us. But taking task_lock() around |
| * get_vma_plicy() causes lock order problem. |
| * |
| * To access task->mempolicy without lock, we hold a reference count of an |
| * object pointed by task->mempolicy and remember it. This will guarantee |
| * that task->mempolicy points to an alive object or NULL in numa_maps accesses. |
| */ |
| static void hold_task_mempolicy(struct proc_maps_private *priv) |
| { |
| struct task_struct *task = priv->task; |
| |
| task_lock(task); |
| priv->task_mempolicy = task->mempolicy; |
| mpol_get(priv->task_mempolicy); |
| task_unlock(task); |
| } |
| static void release_task_mempolicy(struct proc_maps_private *priv) |
| { |
| mpol_put(priv->task_mempolicy); |
| } |
| #else |
| static void hold_task_mempolicy(struct proc_maps_private *priv) |
| { |
| } |
| static void release_task_mempolicy(struct proc_maps_private *priv) |
| { |
| } |
| #endif |
| |
| static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma) |
| { |
| if (vma && vma != priv->tail_vma) { |
| struct mm_struct *mm = vma->vm_mm; |
| release_task_mempolicy(priv); |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| } |
| } |
| |
| static void *m_start(struct seq_file *m, loff_t *pos) |
| { |
| struct proc_maps_private *priv = m->private; |
| unsigned long last_addr = m->version; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma, *tail_vma = NULL; |
| loff_t l = *pos; |
| |
| /* Clear the per syscall fields in priv */ |
| priv->task = NULL; |
| priv->tail_vma = NULL; |
| |
| /* |
| * We remember last_addr rather than next_addr to hit with |
| * mmap_cache most of the time. We have zero last_addr at |
| * the beginning and also after lseek. We will have -1 last_addr |
| * after the end of the vmas. |
| */ |
| |
| if (last_addr == -1UL) |
| return NULL; |
| |
| priv->task = get_pid_task(priv->pid, PIDTYPE_PID); |
| if (!priv->task) |
| return ERR_PTR(-ESRCH); |
| |
| mm = mm_access(priv->task, PTRACE_MODE_READ); |
| if (!mm || IS_ERR(mm)) |
| return mm; |
| down_read(&mm->mmap_sem); |
| |
| tail_vma = get_gate_vma(priv->task->mm); |
| priv->tail_vma = tail_vma; |
| hold_task_mempolicy(priv); |
| /* Start with last addr hint */ |
| vma = find_vma(mm, last_addr); |
| if (last_addr && vma) { |
| vma = vma->vm_next; |
| goto out; |
| } |
| |
| /* |
| * Check the vma index is within the range and do |
| * sequential scan until m_index. |
| */ |
| vma = NULL; |
| if ((unsigned long)l < mm->map_count) { |
| vma = mm->mmap; |
| while (l-- && vma) |
| vma = vma->vm_next; |
| goto out; |
| } |
| |
| if (l != mm->map_count) |
| tail_vma = NULL; /* After gate vma */ |
| |
| out: |
| if (vma) |
| return vma; |
| |
| release_task_mempolicy(priv); |
| /* End of vmas has been reached */ |
| m->version = (tail_vma != NULL)? 0: -1UL; |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| return tail_vma; |
| } |
| |
| static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct vm_area_struct *vma = v; |
| struct vm_area_struct *tail_vma = priv->tail_vma; |
| |
| (*pos)++; |
| if (vma && (vma != tail_vma) && vma->vm_next) |
| return vma->vm_next; |
| vma_stop(priv, vma); |
| return (vma != tail_vma)? tail_vma: NULL; |
| } |
| |
| static void m_stop(struct seq_file *m, void *v) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct vm_area_struct *vma = v; |
| |
| if (!IS_ERR(vma)) |
| vma_stop(priv, vma); |
| if (priv->task) |
| put_task_struct(priv->task); |
| } |
| |
| static int do_maps_open(struct inode *inode, struct file *file, |
| const struct seq_operations *ops) |
| { |
| struct proc_maps_private *priv; |
| int ret = -ENOMEM; |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (priv) { |
| priv->pid = proc_pid(inode); |
| ret = seq_open(file, ops); |
| if (!ret) { |
| struct seq_file *m = file->private_data; |
| m->private = priv; |
| } else { |
| kfree(priv); |
| } |
| } |
| return ret; |
| } |
| |
| static void |
| show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| struct file *file = vma->vm_file; |
| struct proc_maps_private *priv = m->private; |
| struct task_struct *task = priv->task; |
| vm_flags_t flags = vma->vm_flags; |
| unsigned long ino = 0; |
| unsigned long long pgoff = 0; |
| unsigned long start, end; |
| dev_t dev = 0; |
| int len; |
| const char *name = NULL; |
| |
| if (file) { |
| struct inode *inode = file_inode(vma->vm_file); |
| dev = inode->i_sb->s_dev; |
| ino = inode->i_ino; |
| pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; |
| } |
| |
| /* We don't show the stack guard page in /proc/maps */ |
| start = vma->vm_start; |
| if (stack_guard_page_start(vma, start)) |
| start += PAGE_SIZE; |
| end = vma->vm_end; |
| if (stack_guard_page_end(vma, end)) |
| end -= PAGE_SIZE; |
| |
| seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n", |
| start, |
| end, |
| flags & VM_READ ? 'r' : '-', |
| flags & VM_WRITE ? 'w' : '-', |
| flags & VM_EXEC ? 'x' : '-', |
| flags & VM_MAYSHARE ? 's' : 'p', |
| pgoff, |
| MAJOR(dev), MINOR(dev), ino, &len); |
| |
| /* |
| * Print the dentry name for named mappings, and a |
| * special [heap] marker for the heap: |
| */ |
| if (file) { |
| pad_len_spaces(m, len); |
| seq_path(m, &file->f_path, "\n"); |
| goto done; |
| } |
| |
| name = arch_vma_name(vma); |
| if (!name) { |
| pid_t tid; |
| |
| if (!mm) { |
| name = "[vdso]"; |
| goto done; |
| } |
| |
| if (vma->vm_start <= mm->brk && |
| vma->vm_end >= mm->start_brk) { |
| name = "[heap]"; |
| goto done; |
| } |
| |
| tid = vm_is_stack(task, vma, is_pid); |
| |
| if (tid != 0) { |
| /* |
| * Thread stack in /proc/PID/task/TID/maps or |
| * the main process stack. |
| */ |
| if (!is_pid || (vma->vm_start <= mm->start_stack && |
| vma->vm_end >= mm->start_stack)) { |
| name = "[stack]"; |
| } else { |
| /* Thread stack in /proc/PID/maps */ |
| pad_len_spaces(m, len); |
| seq_printf(m, "[stack:%d]", tid); |
| } |
| } |
| } |
| |
| done: |
| if (name) { |
| pad_len_spaces(m, len); |
| seq_puts(m, name); |
| } |
| seq_putc(m, '\n'); |
| } |
| |
| static int show_map(struct seq_file *m, void *v, int is_pid) |
| { |
| struct vm_area_struct *vma = v; |
| struct proc_maps_private *priv = m->private; |
| struct task_struct *task = priv->task; |
| |
| show_map_vma(m, vma, is_pid); |
| |
| if (m->count < m->size) /* vma is copied successfully */ |
| m->version = (vma != get_gate_vma(task->mm)) |
| ? vma->vm_start : 0; |
| return 0; |
| } |
| |
| static int show_pid_map(struct seq_file *m, void *v) |
| { |
| return show_map(m, v, 1); |
| } |
| |
| static int show_tid_map(struct seq_file *m, void *v) |
| { |
| return show_map(m, v, 0); |
| } |
| |
| static const struct seq_operations proc_pid_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_pid_map |
| }; |
| |
| static const struct seq_operations proc_tid_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_tid_map |
| }; |
| |
| static int pid_maps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_maps_op); |
| } |
| |
| static int tid_maps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_tid_maps_op); |
| } |
| |
| const struct file_operations proc_pid_maps_operations = { |
| .open = pid_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| const struct file_operations proc_tid_maps_operations = { |
| .open = tid_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| /* |
| * Proportional Set Size(PSS): my share of RSS. |
| * |
| * PSS of a process is the count of pages it has in memory, where each |
| * page is divided by the number of processes sharing it. So if a |
| * process has 1000 pages all to itself, and 1000 shared with one other |
| * process, its PSS will be 1500. |
| * |
| * To keep (accumulated) division errors low, we adopt a 64bit |
| * fixed-point pss counter to minimize division errors. So (pss >> |
| * PSS_SHIFT) would be the real byte count. |
| * |
| * A shift of 12 before division means (assuming 4K page size): |
| * - 1M 3-user-pages add up to 8KB errors; |
| * - supports mapcount up to 2^24, or 16M; |
| * - supports PSS up to 2^52 bytes, or 4PB. |
| */ |
| #define PSS_SHIFT 12 |
| |
| #ifdef CONFIG_PROC_PAGE_MONITOR |
| struct mem_size_stats { |
| struct vm_area_struct *vma; |
| unsigned long resident; |
| unsigned long shared_clean; |
| unsigned long shared_dirty; |
| unsigned long private_clean; |
| unsigned long private_dirty; |
| unsigned long referenced; |
| unsigned long anonymous; |
| unsigned long anonymous_thp; |
| unsigned long swap; |
| unsigned long nonlinear; |
| u64 pss; |
| }; |
| |
| |
| static void smaps_pte_entry(pte_t ptent, unsigned long addr, |
| unsigned long ptent_size, struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = mss->vma; |
| pgoff_t pgoff = linear_page_index(vma, addr); |
| struct page *page = NULL; |
| int mapcount; |
| |
| if (pte_present(ptent)) { |
| page = vm_normal_page(vma, addr, ptent); |
| } else if (is_swap_pte(ptent)) { |
| swp_entry_t swpent = pte_to_swp_entry(ptent); |
| |
| if (!non_swap_entry(swpent)) |
| mss->swap += ptent_size; |
| else if (is_migration_entry(swpent)) |
| page = migration_entry_to_page(swpent); |
| } else if (pte_file(ptent)) { |
| if (pte_to_pgoff(ptent) != pgoff) |
| mss->nonlinear += ptent_size; |
| } |
| |
| if (!page) |
| return; |
| |
| if (PageAnon(page)) |
| mss->anonymous += ptent_size; |
| |
| if (page->index != pgoff) |
| mss->nonlinear += ptent_size; |
| |
| mss->resident += ptent_size; |
| /* Accumulate the size in pages that have been accessed. */ |
| if (pte_young(ptent) || PageReferenced(page)) |
| mss->referenced += ptent_size; |
| mapcount = page_mapcount(page); |
| if (mapcount >= 2) { |
| if (pte_dirty(ptent) || PageDirty(page)) |
| mss->shared_dirty += ptent_size; |
| else |
| mss->shared_clean += ptent_size; |
| mss->pss += (ptent_size << PSS_SHIFT) / mapcount; |
| } else { |
| if (pte_dirty(ptent) || PageDirty(page)) |
| mss->private_dirty += ptent_size; |
| else |
| mss->private_clean += ptent_size; |
| mss->pss += (ptent_size << PSS_SHIFT); |
| } |
| } |
| |
| static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct mem_size_stats *mss = walk->private; |
| struct vm_area_struct *vma = mss->vma; |
| pte_t *pte; |
| spinlock_t *ptl; |
| |
| if (pmd_trans_huge_lock(pmd, vma) == 1) { |
| smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk); |
| spin_unlock(&walk->mm->page_table_lock); |
| mss->anonymous_thp += HPAGE_PMD_SIZE; |
| return 0; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| /* |
| * The mmap_sem held all the way back in m_start() is what |
| * keeps khugepaged out of here and from collapsing things |
| * in here. |
| */ |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) |
| smaps_pte_entry(*pte, addr, PAGE_SIZE, walk); |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| return 0; |
| } |
| |
| static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) |
| { |
| /* |
| * Don't forget to update Documentation/ on changes. |
| */ |
| static const char mnemonics[BITS_PER_LONG][2] = { |
| /* |
| * In case if we meet a flag we don't know about. |
| */ |
| [0 ... (BITS_PER_LONG-1)] = "??", |
| |
| [ilog2(VM_READ)] = "rd", |
| [ilog2(VM_WRITE)] = "wr", |
| [ilog2(VM_EXEC)] = "ex", |
| [ilog2(VM_SHARED)] = "sh", |
| [ilog2(VM_MAYREAD)] = "mr", |
| [ilog2(VM_MAYWRITE)] = "mw", |
| [ilog2(VM_MAYEXEC)] = "me", |
| [ilog2(VM_MAYSHARE)] = "ms", |
| [ilog2(VM_GROWSDOWN)] = "gd", |
| [ilog2(VM_PFNMAP)] = "pf", |
| [ilog2(VM_DENYWRITE)] = "dw", |
| [ilog2(VM_LOCKED)] = "lo", |
| [ilog2(VM_IO)] = "io", |
| [ilog2(VM_SEQ_READ)] = "sr", |
| [ilog2(VM_RAND_READ)] = "rr", |
| [ilog2(VM_DONTCOPY)] = "dc", |
| [ilog2(VM_DONTEXPAND)] = "de", |
| [ilog2(VM_ACCOUNT)] = "ac", |
| [ilog2(VM_NORESERVE)] = "nr", |
| [ilog2(VM_HUGETLB)] = "ht", |
| [ilog2(VM_NONLINEAR)] = "nl", |
| [ilog2(VM_ARCH_1)] = "ar", |
| [ilog2(VM_DONTDUMP)] = "dd", |
| [ilog2(VM_MIXEDMAP)] = "mm", |
| [ilog2(VM_HUGEPAGE)] = "hg", |
| [ilog2(VM_NOHUGEPAGE)] = "nh", |
| [ilog2(VM_MERGEABLE)] = "mg", |
| }; |
| size_t i; |
| |
| seq_puts(m, "VmFlags: "); |
| for (i = 0; i < BITS_PER_LONG; i++) { |
| if (vma->vm_flags & (1UL << i)) { |
| seq_printf(m, "%c%c ", |
| mnemonics[i][0], mnemonics[i][1]); |
| } |
| } |
| seq_putc(m, '\n'); |
| } |
| |
| static int show_smap(struct seq_file *m, void *v, int is_pid) |
| { |
| struct proc_maps_private *priv = m->private; |
| struct task_struct *task = priv->task; |
| struct vm_area_struct *vma = v; |
| struct mem_size_stats mss; |
| struct mm_walk smaps_walk = { |
| .pmd_entry = smaps_pte_range, |
| .mm = vma->vm_mm, |
| .private = &mss, |
| }; |
| |
| memset(&mss, 0, sizeof mss); |
| mss.vma = vma; |
| /* mmap_sem is held in m_start */ |
| if (vma->vm_mm && !is_vm_hugetlb_page(vma)) |
| walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk); |
| |
| show_map_vma(m, vma, is_pid); |
| |
| seq_printf(m, |
| "Size: %8lu kB\n" |
| "Rss: %8lu kB\n" |
| "Pss: %8lu kB\n" |
| "Shared_Clean: %8lu kB\n" |
| "Shared_Dirty: %8lu kB\n" |
| "Private_Clean: %8lu kB\n" |
| "Private_Dirty: %8lu kB\n" |
| "Referenced: %8lu kB\n" |
| "Anonymous: %8lu kB\n" |
| "AnonHugePages: %8lu kB\n" |
| "Swap: %8lu kB\n" |
| "KernelPageSize: %8lu kB\n" |
| "MMUPageSize: %8lu kB\n" |
| "Locked: %8lu kB\n", |
| (vma->vm_end - vma->vm_start) >> 10, |
| mss.resident >> 10, |
| (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), |
| mss.shared_clean >> 10, |
| mss.shared_dirty >> 10, |
| mss.private_clean >> 10, |
| mss.private_dirty >> 10, |
| mss.referenced >> 10, |
| mss.anonymous >> 10, |
| mss.anonymous_thp >> 10, |
| mss.swap >> 10, |
| vma_kernel_pagesize(vma) >> 10, |
| vma_mmu_pagesize(vma) >> 10, |
| (vma->vm_flags & VM_LOCKED) ? |
| (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); |
| |
| if (vma->vm_flags & VM_NONLINEAR) |
| seq_printf(m, "Nonlinear: %8lu kB\n", |
| mss.nonlinear >> 10); |
| |
| show_smap_vma_flags(m, vma); |
| |
| if (m->count < m->size) /* vma is copied successfully */ |
| m->version = (vma != get_gate_vma(task->mm)) |
| ? vma->vm_start : 0; |
| return 0; |
| } |
| |
| static int show_pid_smap(struct seq_file *m, void *v) |
| { |
| return show_smap(m, v, 1); |
| } |
| |
| static int show_tid_smap(struct seq_file *m, void *v) |
| { |
| return show_smap(m, v, 0); |
| } |
| |
| static const struct seq_operations proc_pid_smaps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_pid_smap |
| }; |
| |
| static const struct seq_operations proc_tid_smaps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_tid_smap |
| }; |
| |
| static int pid_smaps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_pid_smaps_op); |
| } |
| |
| static int tid_smaps_open(struct inode *inode, struct file *file) |
| { |
| return do_maps_open(inode, file, &proc_tid_smaps_op); |
| } |
| |
| const struct file_operations proc_pid_smaps_operations = { |
| .open = pid_smaps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| const struct file_operations proc_tid_smaps_operations = { |
| .open = tid_smaps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| /* |
| * We do not want to have constant page-shift bits sitting in |
| * pagemap entries and are about to reuse them some time soon. |
| * |
| * Here's the "migration strategy": |
| * 1. when the system boots these bits remain what they are, |
| * but a warning about future change is printed in log; |
| * 2. once anyone clears soft-dirty bits via clear_refs file, |
| * these flag is set to denote, that user is aware of the |
| * new API and those page-shift bits change their meaning. |
| * The respective warning is printed in dmesg; |
| * 3. In a couple of releases we will remove all the mentions |
| * of page-shift in pagemap entries. |
| */ |
| |
| static bool soft_dirty_cleared __read_mostly; |
| |
| enum clear_refs_types { |
| CLEAR_REFS_ALL = 1, |
| CLEAR_REFS_ANON, |
| CLEAR_REFS_MAPPED, |
| CLEAR_REFS_SOFT_DIRTY, |
| CLEAR_REFS_LAST, |
| }; |
| |
| struct clear_refs_private { |
| struct vm_area_struct *vma; |
| enum clear_refs_types type; |
| }; |
| |
| static inline void clear_soft_dirty(struct vm_area_struct *vma, |
| unsigned long addr, pte_t *pte) |
| { |
| #ifdef CONFIG_MEM_SOFT_DIRTY |
| /* |
| * The soft-dirty tracker uses #PF-s to catch writes |
| * to pages, so write-protect the pte as well. See the |
| * Documentation/vm/soft-dirty.txt for full description |
| * of how soft-dirty works. |
| */ |
| pte_t ptent = *pte; |
| |
| if (pte_present(ptent)) { |
| ptent = pte_wrprotect(ptent); |
| ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY); |
| } else if (is_swap_pte(ptent)) { |
| ptent = pte_swp_clear_soft_dirty(ptent); |
| } else if (pte_file(ptent)) { |
| ptent = pte_file_clear_soft_dirty(ptent); |
| } |
| |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| vma->vm_flags &= ~VM_SOFTDIRTY; |
| |
| set_pte_at(vma->vm_mm, addr, pte, ptent); |
| #endif |
| } |
| |
| static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct clear_refs_private *cp = walk->private; |
| struct vm_area_struct *vma = cp->vma; |
| pte_t *pte, ptent; |
| spinlock_t *ptl; |
| struct page *page; |
| |
| split_huge_page_pmd(vma, addr, pmd); |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| for (; addr != end; pte++, addr += PAGE_SIZE) { |
| ptent = *pte; |
| |
| if (cp->type == CLEAR_REFS_SOFT_DIRTY) { |
| clear_soft_dirty(vma, addr, pte); |
| continue; |
| } |
| |
| if (!pte_present(ptent)) |
| continue; |
| |
| page = vm_normal_page(vma, addr, ptent); |
| if (!page) |
| continue; |
| |
| /* Clear accessed and referenced bits. */ |
| ptep_test_and_clear_young(vma, addr, pte); |
| ClearPageReferenced(page); |
| } |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| return 0; |
| } |
| |
| static ssize_t clear_refs_write(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct task_struct *task; |
| char buffer[PROC_NUMBUF]; |
| struct mm_struct *mm; |
| struct vm_area_struct *vma; |
| enum clear_refs_types type; |
| int itype; |
| int rv; |
| |
| memset(buffer, 0, sizeof(buffer)); |
| if (count > sizeof(buffer) - 1) |
| count = sizeof(buffer) - 1; |
| if (copy_from_user(buffer, buf, count)) |
| return -EFAULT; |
| rv = kstrtoint(strstrip(buffer), 10, &itype); |
| if (rv < 0) |
| return rv; |
| type = (enum clear_refs_types)itype; |
| if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) |
| return -EINVAL; |
| |
| if (type == CLEAR_REFS_SOFT_DIRTY) { |
| soft_dirty_cleared = true; |
| pr_warn_once("The pagemap bits 55-60 has changed their meaning! " |
| "See the linux/Documentation/vm/pagemap.txt for details.\n"); |
| } |
| |
| task = get_proc_task(file_inode(file)); |
| if (!task) |
| return -ESRCH; |
| mm = get_task_mm(task); |
| if (mm) { |
| struct clear_refs_private cp = { |
| .type = type, |
| }; |
| struct mm_walk clear_refs_walk = { |
| .pmd_entry = clear_refs_pte_range, |
| .mm = mm, |
| .private = &cp, |
| }; |
| down_read(&mm->mmap_sem); |
| if (type == CLEAR_REFS_SOFT_DIRTY) |
| mmu_notifier_invalidate_range_start(mm, 0, -1); |
| for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| cp.vma = vma; |
| if (is_vm_hugetlb_page(vma)) |
| continue; |
| /* |
| * Writing 1 to /proc/pid/clear_refs affects all pages. |
| * |
| * Writing 2 to /proc/pid/clear_refs only affects |
| * Anonymous pages. |
| * |
| * Writing 3 to /proc/pid/clear_refs only affects file |
| * mapped pages. |
| */ |
| if (type == CLEAR_REFS_ANON && vma->vm_file) |
| continue; |
| if (type == CLEAR_REFS_MAPPED && !vma->vm_file) |
| continue; |
| walk_page_range(vma->vm_start, vma->vm_end, |
| &clear_refs_walk); |
| } |
| if (type == CLEAR_REFS_SOFT_DIRTY) |
| mmu_notifier_invalidate_range_end(mm, 0, -1); |
| flush_tlb_mm(mm); |
| up_read(&mm->mmap_sem); |
| mmput(mm); |
| } |
| put_task_struct(task); |
| |
| return count; |
| } |
| |
| const struct file_operations proc_clear_refs_operations = { |
| .write = clear_refs_write, |
| .llseek = noop_llseek, |
| }; |
| |
| typedef struct { |
| u64 pme; |
| } pagemap_entry_t; |
| |
| struct pagemapread { |
| int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ |
| pagemap_entry_t *buffer; |
| bool v2; |
| }; |
| |
| #define PAGEMAP_WALK_SIZE (PMD_SIZE) |
| #define PAGEMAP_WALK_MASK (PMD_MASK) |
| |
| #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) |
| #define PM_STATUS_BITS 3 |
| #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS) |
| #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET) |
| #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK) |
| #define PM_PSHIFT_BITS 6 |
| #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS) |
| #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET) |
| #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK) |
| #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1) |
| #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK) |
| /* in "new" pagemap pshift bits are occupied with more status bits */ |
| #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT)) |
| |
| #define __PM_SOFT_DIRTY (1LL) |
| #define PM_PRESENT PM_STATUS(4LL) |
| #define PM_SWAP PM_STATUS(2LL) |
| #define PM_FILE PM_STATUS(1LL) |
| #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0) |
| #define PM_END_OF_BUFFER 1 |
| |
| static inline pagemap_entry_t make_pme(u64 val) |
| { |
| return (pagemap_entry_t) { .pme = val }; |
| } |
| |
| static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, |
| struct pagemapread *pm) |
| { |
| pm->buffer[pm->pos++] = *pme; |
| if (pm->pos >= pm->len) |
| return PM_END_OF_BUFFER; |
| return 0; |
| } |
| |
| static int pagemap_pte_hole(unsigned long start, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct pagemapread *pm = walk->private; |
| unsigned long addr; |
| int err = 0; |
| pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2)); |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| break; |
| } |
| return err; |
| } |
| |
| static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, |
| struct vm_area_struct *vma, unsigned long addr, pte_t pte) |
| { |
| u64 frame, flags; |
| struct page *page = NULL; |
| int flags2 = 0; |
| |
| if (pte_present(pte)) { |
| frame = pte_pfn(pte); |
| flags = PM_PRESENT; |
| page = vm_normal_page(vma, addr, pte); |
| if (pte_soft_dirty(pte)) |
| flags2 |= __PM_SOFT_DIRTY; |
| } else if (is_swap_pte(pte)) { |
| swp_entry_t entry; |
| if (pte_swp_soft_dirty(pte)) |
| flags2 |= __PM_SOFT_DIRTY; |
| entry = pte_to_swp_entry(pte); |
| frame = swp_type(entry) | |
| (swp_offset(entry) << MAX_SWAPFILES_SHIFT); |
| flags = PM_SWAP; |
| if (is_migration_entry(entry)) |
| page = migration_entry_to_page(entry); |
| } else { |
| if (vma->vm_flags & VM_SOFTDIRTY) |
| flags2 |= __PM_SOFT_DIRTY; |
| *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2)); |
| return; |
| } |
| |
| if (page && !PageAnon(page)) |
| flags |= PM_FILE; |
| if ((vma->vm_flags & VM_SOFTDIRTY)) |
| flags2 |= __PM_SOFT_DIRTY; |
| |
| *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags); |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, |
| pmd_t pmd, int offset, int pmd_flags2) |
| { |
| /* |
| * Currently pmd for thp is always present because thp can not be |
| * swapped-out, migrated, or HWPOISONed (split in such cases instead.) |
| * This if-check is just to prepare for future implementation. |
| */ |
| if (pmd_present(pmd)) |
| *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset) |
| | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT); |
| else |
| *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2)); |
| } |
| #else |
| static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, |
| pmd_t pmd, int offset, int pmd_flags2) |
| { |
| } |
| #endif |
| |
| static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma; |
| struct pagemapread *pm = walk->private; |
| pte_t *pte; |
| int err = 0; |
| pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2)); |
| |
| /* find the first VMA at or above 'addr' */ |
| vma = find_vma(walk->mm, addr); |
| if (vma && pmd_trans_huge_lock(pmd, vma) == 1) { |
| int pmd_flags2; |
| |
| if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd)) |
| pmd_flags2 = __PM_SOFT_DIRTY; |
| else |
| pmd_flags2 = 0; |
| |
| for (; addr != end; addr += PAGE_SIZE) { |
| unsigned long offset; |
| |
| offset = (addr & ~PAGEMAP_WALK_MASK) >> |
| PAGE_SHIFT; |
| thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2); |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| break; |
| } |
| spin_unlock(&walk->mm->page_table_lock); |
| return err; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| for (; addr != end; addr += PAGE_SIZE) { |
| int flags2; |
| |
| /* check to see if we've left 'vma' behind |
| * and need a new, higher one */ |
| if (vma && (addr >= vma->vm_end)) { |
| vma = find_vma(walk->mm, addr); |
| if (vma && (vma->vm_flags & VM_SOFTDIRTY)) |
| flags2 = __PM_SOFT_DIRTY; |
| else |
| flags2 = 0; |
| pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2)); |
| } |
| |
| /* check that 'vma' actually covers this address, |
| * and that it isn't a huge page vma */ |
| if (vma && (vma->vm_start <= addr) && |
| !is_vm_hugetlb_page(vma)) { |
| pte = pte_offset_map(pmd, addr); |
| pte_to_pagemap_entry(&pme, pm, vma, addr, *pte); |
| /* unmap before userspace copy */ |
| pte_unmap(pte); |
| } |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| return err; |
| } |
| |
| cond_resched(); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, |
| pte_t pte, int offset, int flags2) |
| { |
| if (pte_present(pte)) |
| *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) | |
| PM_STATUS2(pm->v2, flags2) | |
| PM_PRESENT); |
| else |
| *pme = make_pme(PM_NOT_PRESENT(pm->v2) | |
| PM_STATUS2(pm->v2, flags2)); |
| } |
| |
| /* This function walks within one hugetlb entry in the single call */ |
| static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct pagemapread *pm = walk->private; |
| struct vm_area_struct *vma; |
| int err = 0; |
| int flags2; |
| pagemap_entry_t pme; |
| |
| vma = find_vma(walk->mm, addr); |
| WARN_ON_ONCE(!vma); |
| |
| if (vma && (vma->vm_flags & VM_SOFTDIRTY)) |
| flags2 = __PM_SOFT_DIRTY; |
| else |
| flags2 = 0; |
| |
| for (; addr != end; addr += PAGE_SIZE) { |
| int offset = (addr & ~hmask) >> PAGE_SHIFT; |
| huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2); |
| err = add_to_pagemap(addr, &pme, pm); |
| if (err) |
| return err; |
| } |
| |
| cond_resched(); |
| |
| return err; |
| } |
| #endif /* HUGETLB_PAGE */ |
| |
| /* |
| * /proc/pid/pagemap - an array mapping virtual pages to pfns |
| * |
| * For each page in the address space, this file contains one 64-bit entry |
| * consisting of the following: |
| * |
| * Bits 0-54 page frame number (PFN) if present |
| * Bits 0-4 swap type if swapped |
| * Bits 5-54 swap offset if swapped |
| * Bits 55-60 page shift (page size = 1<<page shift) |
| * Bit 61 page is file-page or shared-anon |
| * Bit 62 page swapped |
| * Bit 63 page present |
| * |
| * If the page is not present but in swap, then the PFN contains an |
| * encoding of the swap file number and the page's offset into the |
| * swap. Unmapped pages return a null PFN. This allows determining |
| * precisely which pages are mapped (or in swap) and comparing mapped |
| * pages between processes. |
| * |
| * Efficient users of this interface will use /proc/pid/maps to |
| * determine which areas of memory are actually mapped and llseek to |
| * skip over unmapped regions. |
| */ |
| static ssize_t pagemap_read(struct file *file, char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| struct task_struct *task = get_proc_task(file_inode(file)); |
| struct mm_struct *mm; |
| struct pagemapread pm; |
| int ret = -ESRCH; |
| struct mm_walk pagemap_walk = {}; |
| unsigned long src; |
| unsigned long svpfn; |
| unsigned long start_vaddr; |
| unsigned long end_vaddr; |
| int copied = 0; |
| |
| if (!task) |
| goto out; |
| |
| ret = -EINVAL; |
| /* file position must be aligned */ |
| if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) |
| goto out_task; |
| |
| ret = 0; |
| if (!count) |
| goto out_task; |
| |
| pm.v2 = soft_dirty_cleared; |
| pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); |
| pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); |
| ret = -ENOMEM; |
| if (!pm.buffer) |
| goto out_task; |
| |
| mm = mm_access(task, PTRACE_MODE_READ); |
| ret = PTR_ERR(mm); |
| if (!mm || IS_ERR(mm)) |
| goto out_free; |
| |
| pagemap_walk.pmd_entry = pagemap_pte_range; |
| pagemap_walk.pte_hole = pagemap_pte_hole; |
| #ifdef CONFIG_HUGETLB_PAGE |
| pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; |
| #endif |
| pagemap_walk.mm = mm; |
| pagemap_walk.private = ± |
| |
| src = *ppos; |
| svpfn = src / PM_ENTRY_BYTES; |
| start_vaddr = svpfn << PAGE_SHIFT; |
| end_vaddr = TASK_SIZE_OF(task); |
| |
| /* watch out for wraparound */ |
| if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT) |
| start_vaddr = end_vaddr; |
| |
| /* |
| * The odds are that this will stop walking way |
| * before end_vaddr, because the length of the |
| * user buffer is tracked in "pm", and the walk |
| * will stop when we hit the end of the buffer. |
| */ |
| ret = 0; |
| while (count && (start_vaddr < end_vaddr)) { |
| int len; |
| unsigned long end; |
| |
| pm.pos = 0; |
| end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; |
| /* overflow ? */ |
| if (end < start_vaddr || end > end_vaddr) |
| end = end_vaddr; |
| down_read(&mm->mmap_sem); |
| ret = walk_page_range(start_vaddr, end, &pagemap_walk); |
| up_read(&mm->mmap_sem); |
| start_vaddr = end; |
| |
| len = min(count, PM_ENTRY_BYTES * pm.pos); |
| if (copy_to_user(buf, pm.buffer, len)) { |
| ret = -EFAULT; |
| goto out_mm; |
| } |
| copied += len; |
| buf += len; |
| count -= len; |
| } |
| *ppos += copied; |
| if (!ret || ret == PM_END_OF_BUFFER) |
| ret = copied; |
| |
| out_mm: |
| mmput(mm); |
| out_free: |
| kfree(pm.buffer); |
| out_task: |
| put_task_struct(task); |
| out: |
| return ret; |
| } |
| |
| static int pagemap_open(struct inode *inode, struct file *file) |
| { |
| pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about " |
| "to stop being page-shift some time soon. See the " |
| "linux/Documentation/vm/pagemap.txt for details.\n"); |
| return 0; |
| } |
| |
| const struct file_operations proc_pagemap_operations = { |
| .llseek = mem_lseek, /* borrow this */ |
| .read = pagemap_read, |
| .open = pagemap_open, |
| }; |
| #endif /* CONFIG_PROC_PAGE_MONITOR */ |
| |
| #ifdef CONFIG_NUMA |
| |
| struct numa_maps { |
| struct vm_area_struct *vma; |
| unsigned long pages; |
| unsigned long anon; |
| unsigned long active; |
| unsigned long writeback; |
| unsigned long mapcount_max; |
| unsigned long dirty; |
| unsigned long swapcache; |
| unsigned long node[MAX_NUMNODES]; |
| }; |
| |
| struct numa_maps_private { |
| struct proc_maps_private proc_maps; |
| struct numa_maps md; |
| }; |
| |
| static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, |
| unsigned long nr_pages) |
| { |
| int count = page_mapcount(page); |
| |
| md->pages += nr_pages; |
| if (pte_dirty || PageDirty(page)) |
| md->dirty += nr_pages; |
| |
| if (PageSwapCache(page)) |
| md->swapcache += nr_pages; |
| |
| if (PageActive(page) || PageUnevictable(page)) |
| md->active += nr_pages; |
| |
| if (PageWriteback(page)) |
| md->writeback += nr_pages; |
| |
| if (PageAnon(page)) |
| md->anon += nr_pages; |
| |
| if (count > md->mapcount_max) |
| md->mapcount_max = count; |
| |
| md->node[page_to_nid(page)] += nr_pages; |
| } |
| |
| static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| struct page *page; |
| int nid; |
| |
| if (!pte_present(pte)) |
| return NULL; |
| |
| page = vm_normal_page(vma, addr, pte); |
| if (!page) |
| return NULL; |
| |
| if (PageReserved(page)) |
| return NULL; |
| |
| nid = page_to_nid(page); |
| if (!node_isset(nid, node_states[N_MEMORY])) |
| return NULL; |
| |
| return page; |
| } |
| |
| static int gather_pte_stats(pmd_t *pmd, unsigned long addr, |
| unsigned long end, struct mm_walk *walk) |
| { |
| struct numa_maps *md; |
| spinlock_t *ptl; |
| pte_t *orig_pte; |
| pte_t *pte; |
| |
| md = walk->private; |
| |
| if (pmd_trans_huge_lock(pmd, md->vma) == 1) { |
| pte_t huge_pte = *(pte_t *)pmd; |
| struct page *page; |
| |
| page = can_gather_numa_stats(huge_pte, md->vma, addr); |
| if (page) |
| gather_stats(page, md, pte_dirty(huge_pte), |
| HPAGE_PMD_SIZE/PAGE_SIZE); |
| spin_unlock(&walk->mm->page_table_lock); |
| return 0; |
| } |
| |
| if (pmd_trans_unstable(pmd)) |
| return 0; |
| orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); |
| do { |
| struct page *page = can_gather_numa_stats(*pte, md->vma, addr); |
| if (!page) |
| continue; |
| gather_stats(page, md, pte_dirty(*pte), 1); |
| |
| } while (pte++, addr += PAGE_SIZE, addr != end); |
| pte_unmap_unlock(orig_pte, ptl); |
| return 0; |
| } |
| #ifdef CONFIG_HUGETLB_PAGE |
| static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, struct mm_walk *walk) |
| { |
| struct numa_maps *md; |
| struct page *page; |
| |
| if (pte_none(*pte)) |
| return 0; |
| |
| page = pte_page(*pte); |
| if (!page) |
| return 0; |
| |
| md = walk->private; |
| gather_stats(page, md, pte_dirty(*pte), 1); |
| return 0; |
| } |
| |
| #else |
| static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask, |
| unsigned long addr, unsigned long end, struct mm_walk *walk) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Display pages allocated per node and memory policy via /proc. |
| */ |
| static int show_numa_map(struct seq_file *m, void *v, int is_pid) |
| { |
| struct numa_maps_private *numa_priv = m->private; |
| struct proc_maps_private *proc_priv = &numa_priv->proc_maps; |
| struct vm_area_struct *vma = v; |
| struct numa_maps *md = &numa_priv->md; |
| struct file *file = vma->vm_file; |
| struct task_struct *task = proc_priv->task; |
| struct mm_struct *mm = vma->vm_mm; |
| struct mm_walk walk = {}; |
| struct mempolicy *pol; |
| char buffer[64]; |
| int nid; |
| |
| if (!mm) |
| return 0; |
| |
| /* Ensure we start with an empty set of numa_maps statistics. */ |
| memset(md, 0, sizeof(*md)); |
| |
| md->vma = vma; |
| |
| walk.hugetlb_entry = gather_hugetbl_stats; |
| walk.pmd_entry = gather_pte_stats; |
| walk.private = md; |
| walk.mm = mm; |
| |
| pol = get_vma_policy(task, vma, vma->vm_start); |
| mpol_to_str(buffer, sizeof(buffer), pol); |
| mpol_cond_put(pol); |
| |
| seq_printf(m, "%08lx %s", vma->vm_start, buffer); |
| |
| if (file) { |
| seq_printf(m, " file="); |
| seq_path(m, &file->f_path, "\n\t= "); |
| } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { |
| seq_printf(m, " heap"); |
| } else { |
| pid_t tid = vm_is_stack(task, vma, is_pid); |
| if (tid != 0) { |
| /* |
| * Thread stack in /proc/PID/task/TID/maps or |
| * the main process stack. |
| */ |
| if (!is_pid || (vma->vm_start <= mm->start_stack && |
| vma->vm_end >= mm->start_stack)) |
| seq_printf(m, " stack"); |
| else |
| seq_printf(m, " stack:%d", tid); |
| } |
| } |
| |
| if (is_vm_hugetlb_page(vma)) |
| seq_printf(m, " huge"); |
| |
| walk_page_range(vma->vm_start, vma->vm_end, &walk); |
| |
| if (!md->pages) |
| goto out; |
| |
| if (md->anon) |
| seq_printf(m, " anon=%lu", md->anon); |
| |
| if (md->dirty) |
| seq_printf(m, " dirty=%lu", md->dirty); |
| |
| if (md->pages != md->anon && md->pages != md->dirty) |
| seq_printf(m, " mapped=%lu", md->pages); |
| |
| if (md->mapcount_max > 1) |
| seq_printf(m, " mapmax=%lu", md->mapcount_max); |
| |
| if (md->swapcache) |
| seq_printf(m, " swapcache=%lu", md->swapcache); |
| |
| if (md->active < md->pages && !is_vm_hugetlb_page(vma)) |
| seq_printf(m, " active=%lu", md->active); |
| |
| if (md->writeback) |
| seq_printf(m, " writeback=%lu", md->writeback); |
| |
| for_each_node_state(nid, N_MEMORY) |
| if (md->node[nid]) |
| seq_printf(m, " N%d=%lu", nid, md->node[nid]); |
| out: |
| seq_putc(m, '\n'); |
| |
| if (m->count < m->size) |
| m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0; |
| return 0; |
| } |
| |
| static int show_pid_numa_map(struct seq_file *m, void *v) |
| { |
| return show_numa_map(m, v, 1); |
| } |
| |
| static int show_tid_numa_map(struct seq_file *m, void *v) |
| { |
| return show_numa_map(m, v, 0); |
| } |
| |
| static const struct seq_operations proc_pid_numa_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_pid_numa_map, |
| }; |
| |
| static const struct seq_operations proc_tid_numa_maps_op = { |
| .start = m_start, |
| .next = m_next, |
| .stop = m_stop, |
| .show = show_tid_numa_map, |
| }; |
| |
| static int numa_maps_open(struct inode *inode, struct file *file, |
| const struct seq_operations *ops) |
| { |
| struct numa_maps_private *priv; |
| int ret = -ENOMEM; |
| priv = kzalloc(sizeof(*priv), GFP_KERNEL); |
| if (priv) { |
| priv->proc_maps.pid = proc_pid(inode); |
| ret = seq_open(file, ops); |
| if (!ret) { |
| struct seq_file *m = file->private_data; |
| m->private = priv; |
| } else { |
| kfree(priv); |
| } |
| } |
| return ret; |
| } |
| |
| static int pid_numa_maps_open(struct inode *inode, struct file *file) |
| { |
| return numa_maps_open(inode, file, &proc_pid_numa_maps_op); |
| } |
| |
| static int tid_numa_maps_open(struct inode *inode, struct file *file) |
| { |
| return numa_maps_open(inode, file, &proc_tid_numa_maps_op); |
| } |
| |
| const struct file_operations proc_pid_numa_maps_operations = { |
| .open = pid_numa_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| |
| const struct file_operations proc_tid_numa_maps_operations = { |
| .open = tid_numa_maps_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release_private, |
| }; |
| #endif /* CONFIG_NUMA */ |