| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/percpu.h> |
| #include <linux/bootmem.h> |
| #include <linux/err.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/desc.h> |
| #include <asm/nmi.h> |
| #include <asm/irq.h> |
| #include <asm/smp.h> |
| #include <asm/cpu.h> |
| #include <asm/numa.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mtrr.h> |
| #include <asm/nmi.h> |
| #include <asm/vmi.h> |
| #include <linux/mc146818rtc.h> |
| |
| #include <mach_apic.h> |
| #include <mach_wakecpu.h> |
| #include <smpboot_hooks.h> |
| |
| /* Store all idle threads, this can be reused instead of creating |
| * a new thread. Also avoids complicated thread destroy functionality |
| * for idle threads. |
| */ |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* |
| * Needed only for CONFIG_HOTPLUG_CPU because __cpuinitdata is |
| * removed after init for !CONFIG_HOTPLUG_CPU. |
| */ |
| static DEFINE_PER_CPU(struct task_struct *, idle_thread_array); |
| #define get_idle_for_cpu(x) (per_cpu(idle_thread_array, x)) |
| #define set_idle_for_cpu(x, p) (per_cpu(idle_thread_array, x) = (p)) |
| #else |
| struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ; |
| #define get_idle_for_cpu(x) (idle_thread_array[(x)]) |
| #define set_idle_for_cpu(x, p) (idle_thread_array[(x)] = (p)) |
| #endif |
| |
| /* Number of siblings per CPU package */ |
| int smp_num_siblings = 1; |
| EXPORT_SYMBOL(smp_num_siblings); |
| |
| /* Last level cache ID of each logical CPU */ |
| DEFINE_PER_CPU(u16, cpu_llc_id) = BAD_APICID; |
| |
| /* bitmap of online cpus */ |
| cpumask_t cpu_online_map __read_mostly; |
| EXPORT_SYMBOL(cpu_online_map); |
| |
| cpumask_t cpu_callin_map; |
| cpumask_t cpu_callout_map; |
| cpumask_t cpu_possible_map; |
| EXPORT_SYMBOL(cpu_possible_map); |
| |
| /* representing HT siblings of each logical CPU */ |
| DEFINE_PER_CPU(cpumask_t, cpu_sibling_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| |
| /* representing HT and core siblings of each logical CPU */ |
| DEFINE_PER_CPU(cpumask_t, cpu_core_map); |
| EXPORT_PER_CPU_SYMBOL(cpu_core_map); |
| |
| /* Per CPU bogomips and other parameters */ |
| DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info); |
| EXPORT_PER_CPU_SYMBOL(cpu_info); |
| |
| static atomic_t init_deasserted; |
| |
| /* ready for x86_64, no harm for x86, since it will overwrite after alloc */ |
| unsigned char *trampoline_base = __va(SMP_TRAMPOLINE_BASE); |
| |
| /* representing cpus for which sibling maps can be computed */ |
| static cpumask_t cpu_sibling_setup_map; |
| |
| /* Set if we find a B stepping CPU */ |
| int __cpuinitdata smp_b_stepping; |
| |
| #if defined(CONFIG_NUMA) && defined(CONFIG_X86_32) |
| |
| /* which logical CPUs are on which nodes */ |
| cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly = |
| { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; |
| EXPORT_SYMBOL(node_to_cpumask_map); |
| /* which node each logical CPU is on */ |
| int cpu_to_node_map[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 }; |
| EXPORT_SYMBOL(cpu_to_node_map); |
| |
| /* set up a mapping between cpu and node. */ |
| static void map_cpu_to_node(int cpu, int node) |
| { |
| printk(KERN_INFO "Mapping cpu %d to node %d\n", cpu, node); |
| cpu_set(cpu, node_to_cpumask_map[node]); |
| cpu_to_node_map[cpu] = node; |
| } |
| |
| /* undo a mapping between cpu and node. */ |
| static void unmap_cpu_to_node(int cpu) |
| { |
| int node; |
| |
| printk(KERN_INFO "Unmapping cpu %d from all nodes\n", cpu); |
| for (node = 0; node < MAX_NUMNODES; node++) |
| cpu_clear(cpu, node_to_cpumask_map[node]); |
| cpu_to_node_map[cpu] = 0; |
| } |
| #else /* !(CONFIG_NUMA && CONFIG_X86_32) */ |
| #define map_cpu_to_node(cpu, node) ({}) |
| #define unmap_cpu_to_node(cpu) ({}) |
| #endif |
| |
| #ifdef CONFIG_X86_32 |
| u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = |
| { [0 ... NR_CPUS-1] = BAD_APICID }; |
| |
| void map_cpu_to_logical_apicid(void) |
| { |
| int cpu = smp_processor_id(); |
| int apicid = logical_smp_processor_id(); |
| int node = apicid_to_node(apicid); |
| |
| if (!node_online(node)) |
| node = first_online_node; |
| |
| cpu_2_logical_apicid[cpu] = apicid; |
| map_cpu_to_node(cpu, node); |
| } |
| |
| void unmap_cpu_to_logical_apicid(int cpu) |
| { |
| cpu_2_logical_apicid[cpu] = BAD_APICID; |
| unmap_cpu_to_node(cpu); |
| } |
| #else |
| #define unmap_cpu_to_logical_apicid(cpu) do {} while (0) |
| #define map_cpu_to_logical_apicid() do {} while (0) |
| #endif |
| |
| /* |
| * Report back to the Boot Processor. |
| * Running on AP. |
| */ |
| void __cpuinit smp_callin(void) |
| { |
| int cpuid, phys_id; |
| unsigned long timeout; |
| |
| /* |
| * If waken up by an INIT in an 82489DX configuration |
| * we may get here before an INIT-deassert IPI reaches |
| * our local APIC. We have to wait for the IPI or we'll |
| * lock up on an APIC access. |
| */ |
| wait_for_init_deassert(&init_deasserted); |
| |
| /* |
| * (This works even if the APIC is not enabled.) |
| */ |
| phys_id = GET_APIC_ID(apic_read(APIC_ID)); |
| cpuid = smp_processor_id(); |
| if (cpu_isset(cpuid, cpu_callin_map)) { |
| panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__, |
| phys_id, cpuid); |
| } |
| Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); |
| |
| /* |
| * STARTUP IPIs are fragile beasts as they might sometimes |
| * trigger some glue motherboard logic. Complete APIC bus |
| * silence for 1 second, this overestimates the time the |
| * boot CPU is spending to send the up to 2 STARTUP IPIs |
| * by a factor of two. This should be enough. |
| */ |
| |
| /* |
| * Waiting 2s total for startup (udelay is not yet working) |
| */ |
| timeout = jiffies + 2*HZ; |
| while (time_before(jiffies, timeout)) { |
| /* |
| * Has the boot CPU finished it's STARTUP sequence? |
| */ |
| if (cpu_isset(cpuid, cpu_callout_map)) |
| break; |
| cpu_relax(); |
| } |
| |
| if (!time_before(jiffies, timeout)) { |
| panic("%s: CPU%d started up but did not get a callout!\n", |
| __func__, cpuid); |
| } |
| |
| /* |
| * the boot CPU has finished the init stage and is spinning |
| * on callin_map until we finish. We are free to set up this |
| * CPU, first the APIC. (this is probably redundant on most |
| * boards) |
| */ |
| |
| Dprintk("CALLIN, before setup_local_APIC().\n"); |
| smp_callin_clear_local_apic(); |
| setup_local_APIC(); |
| end_local_APIC_setup(); |
| map_cpu_to_logical_apicid(); |
| |
| /* |
| * Get our bogomips. |
| * |
| * Need to enable IRQs because it can take longer and then |
| * the NMI watchdog might kill us. |
| */ |
| local_irq_enable(); |
| calibrate_delay(); |
| local_irq_disable(); |
| Dprintk("Stack at about %p\n", &cpuid); |
| |
| /* |
| * Save our processor parameters |
| */ |
| smp_store_cpu_info(cpuid); |
| |
| /* |
| * Allow the master to continue. |
| */ |
| cpu_set(cpuid, cpu_callin_map); |
| } |
| |
| /* |
| * Activate a secondary processor. |
| */ |
| void __cpuinit start_secondary(void *unused) |
| { |
| /* |
| * Don't put *anything* before cpu_init(), SMP booting is too |
| * fragile that we want to limit the things done here to the |
| * most necessary things. |
| */ |
| #ifdef CONFIG_VMI |
| vmi_bringup(); |
| #endif |
| cpu_init(); |
| preempt_disable(); |
| smp_callin(); |
| |
| /* otherwise gcc will move up smp_processor_id before the cpu_init */ |
| barrier(); |
| /* |
| * Check TSC synchronization with the BP: |
| */ |
| check_tsc_sync_target(); |
| |
| if (nmi_watchdog == NMI_IO_APIC) { |
| disable_8259A_irq(0); |
| enable_NMI_through_LVT0(); |
| enable_8259A_irq(0); |
| } |
| |
| /* This must be done before setting cpu_online_map */ |
| set_cpu_sibling_map(raw_smp_processor_id()); |
| wmb(); |
| |
| /* |
| * We need to hold call_lock, so there is no inconsistency |
| * between the time smp_call_function() determines number of |
| * IPI recipients, and the time when the determination is made |
| * for which cpus receive the IPI. Holding this |
| * lock helps us to not include this cpu in a currently in progress |
| * smp_call_function(). |
| */ |
| lock_ipi_call_lock(); |
| #ifdef CONFIG_X86_64 |
| spin_lock(&vector_lock); |
| |
| /* Setup the per cpu irq handling data structures */ |
| __setup_vector_irq(smp_processor_id()); |
| /* |
| * Allow the master to continue. |
| */ |
| spin_unlock(&vector_lock); |
| #endif |
| cpu_set(smp_processor_id(), cpu_online_map); |
| unlock_ipi_call_lock(); |
| per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; |
| |
| setup_secondary_clock(); |
| |
| wmb(); |
| cpu_idle(); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Everything has been set up for the secondary |
| * CPUs - they just need to reload everything |
| * from the task structure |
| * This function must not return. |
| */ |
| void __devinit initialize_secondary(void) |
| { |
| /* |
| * We don't actually need to load the full TSS, |
| * basically just the stack pointer and the ip. |
| */ |
| |
| asm volatile( |
| "movl %0,%%esp\n\t" |
| "jmp *%1" |
| : |
| :"m" (current->thread.sp), "m" (current->thread.ip)); |
| } |
| #endif |
| |
| static void __cpuinit smp_apply_quirks(struct cpuinfo_x86 *c) |
| { |
| #ifdef CONFIG_X86_32 |
| /* |
| * Mask B, Pentium, but not Pentium MMX |
| */ |
| if (c->x86_vendor == X86_VENDOR_INTEL && |
| c->x86 == 5 && |
| c->x86_mask >= 1 && c->x86_mask <= 4 && |
| c->x86_model <= 3) |
| /* |
| * Remember we have B step Pentia with bugs |
| */ |
| smp_b_stepping = 1; |
| |
| /* |
| * Certain Athlons might work (for various values of 'work') in SMP |
| * but they are not certified as MP capable. |
| */ |
| if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { |
| |
| if (num_possible_cpus() == 1) |
| goto valid_k7; |
| |
| /* Athlon 660/661 is valid. */ |
| if ((c->x86_model == 6) && ((c->x86_mask == 0) || |
| (c->x86_mask == 1))) |
| goto valid_k7; |
| |
| /* Duron 670 is valid */ |
| if ((c->x86_model == 7) && (c->x86_mask == 0)) |
| goto valid_k7; |
| |
| /* |
| * Athlon 662, Duron 671, and Athlon >model 7 have capability |
| * bit. It's worth noting that the A5 stepping (662) of some |
| * Athlon XP's have the MP bit set. |
| * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for |
| * more. |
| */ |
| if (((c->x86_model == 6) && (c->x86_mask >= 2)) || |
| ((c->x86_model == 7) && (c->x86_mask >= 1)) || |
| (c->x86_model > 7)) |
| if (cpu_has_mp) |
| goto valid_k7; |
| |
| /* If we get here, not a certified SMP capable AMD system. */ |
| add_taint(TAINT_UNSAFE_SMP); |
| } |
| |
| valid_k7: |
| ; |
| #endif |
| } |
| |
| void smp_checks(void) |
| { |
| if (smp_b_stepping) |
| printk(KERN_WARNING "WARNING: SMP operation may be unreliable" |
| "with B stepping processors.\n"); |
| |
| /* |
| * Don't taint if we are running SMP kernel on a single non-MP |
| * approved Athlon |
| */ |
| if (tainted & TAINT_UNSAFE_SMP) { |
| if (num_online_cpus()) |
| printk(KERN_INFO "WARNING: This combination of AMD" |
| "processors is not suitable for SMP.\n"); |
| else |
| tainted &= ~TAINT_UNSAFE_SMP; |
| } |
| } |
| |
| /* |
| * The bootstrap kernel entry code has set these up. Save them for |
| * a given CPU |
| */ |
| |
| void __cpuinit smp_store_cpu_info(int id) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(id); |
| |
| *c = boot_cpu_data; |
| c->cpu_index = id; |
| if (id != 0) |
| identify_secondary_cpu(c); |
| smp_apply_quirks(c); |
| } |
| |
| |
| void __cpuinit set_cpu_sibling_map(int cpu) |
| { |
| int i; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| cpu_set(cpu, cpu_sibling_setup_map); |
| |
| if (smp_num_siblings > 1) { |
| for_each_cpu_mask(i, cpu_sibling_setup_map) { |
| if (c->phys_proc_id == cpu_data(i).phys_proc_id && |
| c->cpu_core_id == cpu_data(i).cpu_core_id) { |
| cpu_set(i, per_cpu(cpu_sibling_map, cpu)); |
| cpu_set(cpu, per_cpu(cpu_sibling_map, i)); |
| cpu_set(i, per_cpu(cpu_core_map, cpu)); |
| cpu_set(cpu, per_cpu(cpu_core_map, i)); |
| cpu_set(i, c->llc_shared_map); |
| cpu_set(cpu, cpu_data(i).llc_shared_map); |
| } |
| } |
| } else { |
| cpu_set(cpu, per_cpu(cpu_sibling_map, cpu)); |
| } |
| |
| cpu_set(cpu, c->llc_shared_map); |
| |
| if (current_cpu_data.x86_max_cores == 1) { |
| per_cpu(cpu_core_map, cpu) = per_cpu(cpu_sibling_map, cpu); |
| c->booted_cores = 1; |
| return; |
| } |
| |
| for_each_cpu_mask(i, cpu_sibling_setup_map) { |
| if (per_cpu(cpu_llc_id, cpu) != BAD_APICID && |
| per_cpu(cpu_llc_id, cpu) == per_cpu(cpu_llc_id, i)) { |
| cpu_set(i, c->llc_shared_map); |
| cpu_set(cpu, cpu_data(i).llc_shared_map); |
| } |
| if (c->phys_proc_id == cpu_data(i).phys_proc_id) { |
| cpu_set(i, per_cpu(cpu_core_map, cpu)); |
| cpu_set(cpu, per_cpu(cpu_core_map, i)); |
| /* |
| * Does this new cpu bringup a new core? |
| */ |
| if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) { |
| /* |
| * for each core in package, increment |
| * the booted_cores for this new cpu |
| */ |
| if (first_cpu(per_cpu(cpu_sibling_map, i)) == i) |
| c->booted_cores++; |
| /* |
| * increment the core count for all |
| * the other cpus in this package |
| */ |
| if (i != cpu) |
| cpu_data(i).booted_cores++; |
| } else if (i != cpu && !c->booted_cores) |
| c->booted_cores = cpu_data(i).booted_cores; |
| } |
| } |
| } |
| |
| /* maps the cpu to the sched domain representing multi-core */ |
| cpumask_t cpu_coregroup_map(int cpu) |
| { |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| /* |
| * For perf, we return last level cache shared map. |
| * And for power savings, we return cpu_core_map |
| */ |
| if (sched_mc_power_savings || sched_smt_power_savings) |
| return per_cpu(cpu_core_map, cpu); |
| else |
| return c->llc_shared_map; |
| } |
| |
| /* |
| * Currently trivial. Write the real->protected mode |
| * bootstrap into the page concerned. The caller |
| * has made sure it's suitably aligned. |
| */ |
| |
| unsigned long __cpuinit setup_trampoline(void) |
| { |
| memcpy(trampoline_base, trampoline_data, |
| trampoline_end - trampoline_data); |
| return virt_to_phys(trampoline_base); |
| } |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * We are called very early to get the low memory for the |
| * SMP bootup trampoline page. |
| */ |
| void __init smp_alloc_memory(void) |
| { |
| trampoline_base = alloc_bootmem_low_pages(PAGE_SIZE); |
| /* |
| * Has to be in very low memory so we can execute |
| * real-mode AP code. |
| */ |
| if (__pa(trampoline_base) >= 0x9F000) |
| BUG(); |
| } |
| #endif |
| |
| void impress_friends(void) |
| { |
| int cpu; |
| unsigned long bogosum = 0; |
| /* |
| * Allow the user to impress friends. |
| */ |
| Dprintk("Before bogomips.\n"); |
| for_each_possible_cpu(cpu) |
| if (cpu_isset(cpu, cpu_callout_map)) |
| bogosum += cpu_data(cpu).loops_per_jiffy; |
| printk(KERN_INFO |
| "Total of %d processors activated (%lu.%02lu BogoMIPS).\n", |
| num_online_cpus(), |
| bogosum/(500000/HZ), |
| (bogosum/(5000/HZ))%100); |
| |
| Dprintk("Before bogocount - setting activated=1.\n"); |
| } |
| |
| static inline void __inquire_remote_apic(int apicid) |
| { |
| unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; |
| char *names[] = { "ID", "VERSION", "SPIV" }; |
| int timeout; |
| u32 status; |
| |
| printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid); |
| |
| for (i = 0; i < ARRAY_SIZE(regs); i++) { |
| printk(KERN_INFO "... APIC #%d %s: ", apicid, names[i]); |
| |
| /* |
| * Wait for idle. |
| */ |
| status = safe_apic_wait_icr_idle(); |
| if (status) |
| printk(KERN_CONT |
| "a previous APIC delivery may have failed\n"); |
| |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); |
| apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); |
| |
| timeout = 0; |
| do { |
| udelay(100); |
| status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; |
| } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); |
| |
| switch (status) { |
| case APIC_ICR_RR_VALID: |
| status = apic_read(APIC_RRR); |
| printk(KERN_CONT "%08x\n", status); |
| break; |
| default: |
| printk(KERN_CONT "failed\n"); |
| } |
| } |
| } |
| |
| #ifdef WAKE_SECONDARY_VIA_NMI |
| /* |
| * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal |
| * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this |
| * won't ... remember to clear down the APIC, etc later. |
| */ |
| static int __devinit |
| wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status, accept_status = 0; |
| int maxlvt; |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| maxlvt = lapic_get_maxlvt(); |
| if (maxlvt > 3) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| Dprintk("NMI sent.\n"); |
| |
| if (send_status) |
| printk(KERN_ERR "APIC never delivered???\n"); |
| if (accept_status) |
| printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| #endif /* WAKE_SECONDARY_VIA_NMI */ |
| |
| #ifdef WAKE_SECONDARY_VIA_INIT |
| static int __devinit |
| wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) |
| { |
| unsigned long send_status, accept_status = 0; |
| int maxlvt, num_starts, j; |
| |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| } |
| |
| Dprintk("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* |
| * Send IPI |
| */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT |
| | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| mdelay(10); |
| |
| Dprintk("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Send IPI */ |
| apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| mb(); |
| atomic_set(&init_deasserted, 1); |
| |
| /* |
| * Should we send STARTUP IPIs ? |
| * |
| * Determine this based on the APIC version. |
| * If we don't have an integrated APIC, don't send the STARTUP IPIs. |
| */ |
| if (APIC_INTEGRATED(apic_version[phys_apicid])) |
| num_starts = 2; |
| else |
| num_starts = 0; |
| |
| /* |
| * Paravirt / VMI wants a startup IPI hook here to set up the |
| * target processor state. |
| */ |
| startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, |
| #ifdef CONFIG_X86_64 |
| (unsigned long)init_rsp); |
| #else |
| (unsigned long)stack_start.sp); |
| #endif |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| Dprintk("#startup loops: %d.\n", num_starts); |
| |
| maxlvt = lapic_get_maxlvt(); |
| |
| for (j = 1; j <= num_starts; j++) { |
| Dprintk("Sending STARTUP #%d.\n", j); |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| Dprintk("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| apic_write_around(APIC_ICR, APIC_DM_STARTUP |
| | (start_eip >> 12)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| Dprintk("Startup point 1.\n"); |
| |
| Dprintk("Waiting for send to finish...\n"); |
| send_status = safe_apic_wait_icr_idle(); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| if (maxlvt > 3) { |
| apic_read_around(APIC_SPIV); |
| apic_write(APIC_ESR, 0); |
| } |
| accept_status = (apic_read(APIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| Dprintk("After Startup.\n"); |
| |
| if (send_status) |
| printk(KERN_ERR "APIC never delivered???\n"); |
| if (accept_status) |
| printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status); |
| |
| return (send_status | accept_status); |
| } |
| #endif /* WAKE_SECONDARY_VIA_INIT */ |
| |
| struct create_idle { |
| struct work_struct work; |
| struct task_struct *idle; |
| struct completion done; |
| int cpu; |
| }; |
| |
| static void __cpuinit do_fork_idle(struct work_struct *work) |
| { |
| struct create_idle *c_idle = |
| container_of(work, struct create_idle, work); |
| |
| c_idle->idle = fork_idle(c_idle->cpu); |
| complete(&c_idle->done); |
| } |
| |
| static int __cpuinit do_boot_cpu(int apicid, int cpu) |
| /* |
| * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad |
| * (ie clustered apic addressing mode), this is a LOGICAL apic ID. |
| * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. |
| */ |
| { |
| unsigned long boot_error = 0; |
| int timeout; |
| unsigned long start_ip; |
| unsigned short nmi_high = 0, nmi_low = 0; |
| struct create_idle c_idle = { |
| .cpu = cpu, |
| .done = COMPLETION_INITIALIZER_ONSTACK(c_idle.done), |
| }; |
| INIT_WORK(&c_idle.work, do_fork_idle); |
| #ifdef CONFIG_X86_64 |
| /* allocate memory for gdts of secondary cpus. Hotplug is considered */ |
| if (!cpu_gdt_descr[cpu].address && |
| !(cpu_gdt_descr[cpu].address = get_zeroed_page(GFP_KERNEL))) { |
| printk(KERN_ERR "Failed to allocate GDT for CPU %d\n", cpu); |
| return -1; |
| } |
| |
| /* Allocate node local memory for AP pdas */ |
| if (cpu_pda(cpu) == &boot_cpu_pda[cpu]) { |
| struct x8664_pda *newpda, *pda; |
| int node = cpu_to_node(cpu); |
| pda = cpu_pda(cpu); |
| newpda = kmalloc_node(sizeof(struct x8664_pda), GFP_ATOMIC, |
| node); |
| if (newpda) { |
| memcpy(newpda, pda, sizeof(struct x8664_pda)); |
| cpu_pda(cpu) = newpda; |
| } else |
| printk(KERN_ERR |
| "Could not allocate node local PDA for CPU %d on node %d\n", |
| cpu, node); |
| } |
| #endif |
| |
| alternatives_smp_switch(1); |
| |
| c_idle.idle = get_idle_for_cpu(cpu); |
| |
| /* |
| * We can't use kernel_thread since we must avoid to |
| * reschedule the child. |
| */ |
| if (c_idle.idle) { |
| c_idle.idle->thread.sp = (unsigned long) (((struct pt_regs *) |
| (THREAD_SIZE + task_stack_page(c_idle.idle))) - 1); |
| init_idle(c_idle.idle, cpu); |
| goto do_rest; |
| } |
| |
| if (!keventd_up() || current_is_keventd()) |
| c_idle.work.func(&c_idle.work); |
| else { |
| schedule_work(&c_idle.work); |
| wait_for_completion(&c_idle.done); |
| } |
| |
| if (IS_ERR(c_idle.idle)) { |
| printk("failed fork for CPU %d\n", cpu); |
| return PTR_ERR(c_idle.idle); |
| } |
| |
| set_idle_for_cpu(cpu, c_idle.idle); |
| do_rest: |
| #ifdef CONFIG_X86_32 |
| per_cpu(current_task, cpu) = c_idle.idle; |
| init_gdt(cpu); |
| early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); |
| c_idle.idle->thread.ip = (unsigned long) start_secondary; |
| /* Stack for startup_32 can be just as for start_secondary onwards */ |
| stack_start.sp = (void *) c_idle.idle->thread.sp; |
| irq_ctx_init(cpu); |
| #else |
| cpu_pda(cpu)->pcurrent = c_idle.idle; |
| init_rsp = c_idle.idle->thread.sp; |
| load_sp0(&per_cpu(init_tss, cpu), &c_idle.idle->thread); |
| initial_code = (unsigned long)start_secondary; |
| clear_tsk_thread_flag(c_idle.idle, TIF_FORK); |
| #endif |
| |
| /* start_ip had better be page-aligned! */ |
| start_ip = setup_trampoline(); |
| |
| /* So we see what's up */ |
| printk(KERN_INFO "Booting processor %d/%d ip %lx\n", |
| cpu, apicid, start_ip); |
| |
| /* |
| * This grunge runs the startup process for |
| * the targeted processor. |
| */ |
| |
| atomic_set(&init_deasserted, 0); |
| |
| Dprintk("Setting warm reset code and vector.\n"); |
| |
| store_NMI_vector(&nmi_high, &nmi_low); |
| |
| smpboot_setup_warm_reset_vector(start_ip); |
| /* |
| * Be paranoid about clearing APIC errors. |
| */ |
| apic_write(APIC_ESR, 0); |
| apic_read(APIC_ESR); |
| |
| |
| /* |
| * Starting actual IPI sequence... |
| */ |
| boot_error = wakeup_secondary_cpu(apicid, start_ip); |
| |
| if (!boot_error) { |
| /* |
| * allow APs to start initializing. |
| */ |
| Dprintk("Before Callout %d.\n", cpu); |
| cpu_set(cpu, cpu_callout_map); |
| Dprintk("After Callout %d.\n", cpu); |
| |
| /* |
| * Wait 5s total for a response |
| */ |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (cpu_isset(cpu, cpu_callin_map)) |
| break; /* It has booted */ |
| udelay(100); |
| } |
| |
| if (cpu_isset(cpu, cpu_callin_map)) { |
| /* number CPUs logically, starting from 1 (BSP is 0) */ |
| Dprintk("OK.\n"); |
| printk(KERN_INFO "CPU%d: ", cpu); |
| print_cpu_info(&cpu_data(cpu)); |
| Dprintk("CPU has booted.\n"); |
| } else { |
| boot_error = 1; |
| if (*((volatile unsigned char *)trampoline_base) |
| == 0xA5) |
| /* trampoline started but...? */ |
| printk(KERN_ERR "Stuck ??\n"); |
| else |
| /* trampoline code not run */ |
| printk(KERN_ERR "Not responding.\n"); |
| inquire_remote_apic(apicid); |
| } |
| } |
| |
| if (boot_error) { |
| /* Try to put things back the way they were before ... */ |
| unmap_cpu_to_logical_apicid(cpu); |
| #ifdef CONFIG_X86_64 |
| clear_node_cpumask(cpu); /* was set by numa_add_cpu */ |
| #endif |
| cpu_clear(cpu, cpu_callout_map); /* was set by do_boot_cpu() */ |
| cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ |
| cpu_clear(cpu, cpu_possible_map); |
| cpu_clear(cpu, cpu_present_map); |
| per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID; |
| } |
| |
| /* mark "stuck" area as not stuck */ |
| *((volatile unsigned long *)trampoline_base) = 0; |
| |
| return boot_error; |
| } |
| |
| int __cpuinit native_cpu_up(unsigned int cpu) |
| { |
| int apicid = cpu_present_to_apicid(cpu); |
| unsigned long flags; |
| int err; |
| |
| WARN_ON(irqs_disabled()); |
| |
| Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu); |
| |
| if (apicid == BAD_APICID || apicid == boot_cpu_physical_apicid || |
| !physid_isset(apicid, phys_cpu_present_map)) { |
| printk(KERN_ERR "%s: bad cpu %d\n", __func__, cpu); |
| return -EINVAL; |
| } |
| |
| /* |
| * Already booted CPU? |
| */ |
| if (cpu_isset(cpu, cpu_callin_map)) { |
| Dprintk("do_boot_cpu %d Already started\n", cpu); |
| return -ENOSYS; |
| } |
| |
| /* |
| * Save current MTRR state in case it was changed since early boot |
| * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: |
| */ |
| mtrr_save_state(); |
| |
| per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; |
| |
| #ifdef CONFIG_X86_32 |
| /* init low mem mapping */ |
| clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS, |
| min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS)); |
| flush_tlb_all(); |
| #endif |
| |
| err = do_boot_cpu(apicid, cpu); |
| if (err < 0) { |
| Dprintk("do_boot_cpu failed %d\n", err); |
| return err; |
| } |
| |
| /* |
| * Check TSC synchronization with the AP (keep irqs disabled |
| * while doing so): |
| */ |
| local_irq_save(flags); |
| check_tsc_sync_source(cpu); |
| local_irq_restore(flags); |
| |
| while (!cpu_isset(cpu, cpu_online_map)) { |
| cpu_relax(); |
| touch_nmi_watchdog(); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| void remove_siblinginfo(int cpu) |
| { |
| int sibling; |
| struct cpuinfo_x86 *c = &cpu_data(cpu); |
| |
| for_each_cpu_mask(sibling, per_cpu(cpu_core_map, cpu)) { |
| cpu_clear(cpu, per_cpu(cpu_core_map, sibling)); |
| /*/ |
| * last thread sibling in this cpu core going down |
| */ |
| if (cpus_weight(per_cpu(cpu_sibling_map, cpu)) == 1) |
| cpu_data(sibling).booted_cores--; |
| } |
| |
| for_each_cpu_mask(sibling, per_cpu(cpu_sibling_map, cpu)) |
| cpu_clear(cpu, per_cpu(cpu_sibling_map, sibling)); |
| cpus_clear(per_cpu(cpu_sibling_map, cpu)); |
| cpus_clear(per_cpu(cpu_core_map, cpu)); |
| c->phys_proc_id = 0; |
| c->cpu_core_id = 0; |
| cpu_clear(cpu, cpu_sibling_setup_map); |
| } |
| |
| int additional_cpus __initdata = -1; |
| |
| static __init int setup_additional_cpus(char *s) |
| { |
| return s && get_option(&s, &additional_cpus) ? 0 : -EINVAL; |
| } |
| early_param("additional_cpus", setup_additional_cpus); |
| |
| /* |
| * cpu_possible_map should be static, it cannot change as cpu's |
| * are onlined, or offlined. The reason is per-cpu data-structures |
| * are allocated by some modules at init time, and dont expect to |
| * do this dynamically on cpu arrival/departure. |
| * cpu_present_map on the other hand can change dynamically. |
| * In case when cpu_hotplug is not compiled, then we resort to current |
| * behaviour, which is cpu_possible == cpu_present. |
| * - Ashok Raj |
| * |
| * Three ways to find out the number of additional hotplug CPUs: |
| * - If the BIOS specified disabled CPUs in ACPI/mptables use that. |
| * - The user can overwrite it with additional_cpus=NUM |
| * - Otherwise don't reserve additional CPUs. |
| * We do this because additional CPUs waste a lot of memory. |
| * -AK |
| */ |
| __init void prefill_possible_map(void) |
| { |
| int i; |
| int possible; |
| |
| if (additional_cpus == -1) { |
| if (disabled_cpus > 0) |
| additional_cpus = disabled_cpus; |
| else |
| additional_cpus = 0; |
| } |
| possible = num_processors + additional_cpus; |
| if (possible > NR_CPUS) |
| possible = NR_CPUS; |
| |
| printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n", |
| possible, max_t(int, possible - num_processors, 0)); |
| |
| for (i = 0; i < possible; i++) |
| cpu_set(i, cpu_possible_map); |
| } |
| |
| static void __ref remove_cpu_from_maps(int cpu) |
| { |
| cpu_clear(cpu, cpu_online_map); |
| #ifdef CONFIG_X86_64 |
| cpu_clear(cpu, cpu_callout_map); |
| cpu_clear(cpu, cpu_callin_map); |
| /* was set by cpu_init() */ |
| clear_bit(cpu, (unsigned long *)&cpu_initialized); |
| clear_node_cpumask(cpu); |
| #endif |
| } |
| |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| /* |
| * Perhaps use cpufreq to drop frequency, but that could go |
| * into generic code. |
| * |
| * We won't take down the boot processor on i386 due to some |
| * interrupts only being able to be serviced by the BSP. |
| * Especially so if we're not using an IOAPIC -zwane |
| */ |
| if (cpu == 0) |
| return -EBUSY; |
| |
| if (nmi_watchdog == NMI_LOCAL_APIC) |
| stop_apic_nmi_watchdog(NULL); |
| clear_local_APIC(); |
| |
| /* |
| * HACK: |
| * Allow any queued timer interrupts to get serviced |
| * This is only a temporary solution until we cleanup |
| * fixup_irqs as we do for IA64. |
| */ |
| local_irq_enable(); |
| mdelay(1); |
| |
| local_irq_disable(); |
| remove_siblinginfo(cpu); |
| |
| /* It's now safe to remove this processor from the online map */ |
| remove_cpu_from_maps(cpu); |
| fixup_irqs(cpu_online_map); |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* We don't do anything here: idle task is faking death itself. */ |
| unsigned int i; |
| |
| for (i = 0; i < 10; i++) { |
| /* They ack this in play_dead by setting CPU_DEAD */ |
| if (per_cpu(cpu_state, cpu) == CPU_DEAD) { |
| printk(KERN_INFO "CPU %d is now offline\n", cpu); |
| if (1 == num_online_cpus()) |
| alternatives_smp_switch(0); |
| return; |
| } |
| msleep(100); |
| } |
| printk(KERN_ERR "CPU %u didn't die...\n", cpu); |
| } |
| #else /* ... !CONFIG_HOTPLUG_CPU */ |
| int __cpu_disable(void) |
| { |
| return -ENOSYS; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| /* We said "no" in __cpu_disable */ |
| BUG(); |
| } |
| #endif |
| |
| /* |
| * If the BIOS enumerates physical processors before logical, |
| * maxcpus=N at enumeration-time can be used to disable HT. |
| */ |
| static int __init parse_maxcpus(char *arg) |
| { |
| extern unsigned int maxcpus; |
| |
| maxcpus = simple_strtoul(arg, NULL, 0); |
| return 0; |
| } |
| early_param("maxcpus", parse_maxcpus); |