| /* |
| * Copyright (C) 2010-2011 Neil Brown |
| * Copyright (C) 2010-2016 Red Hat, Inc. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| |
| #include "md.h" |
| #include "raid1.h" |
| #include "raid5.h" |
| #include "raid10.h" |
| #include "bitmap.h" |
| |
| #include <linux/device-mapper.h> |
| |
| #define DM_MSG_PREFIX "raid" |
| #define MAX_RAID_DEVICES 253 /* md-raid kernel limit */ |
| |
| static bool devices_handle_discard_safely = false; |
| |
| /* |
| * The following flags are used by dm-raid.c to set up the array state. |
| * They must be cleared before md_run is called. |
| */ |
| #define FirstUse 10 /* rdev flag */ |
| |
| struct raid_dev { |
| /* |
| * Two DM devices, one to hold metadata and one to hold the |
| * actual data/parity. The reason for this is to not confuse |
| * ti->len and give more flexibility in altering size and |
| * characteristics. |
| * |
| * While it is possible for this device to be associated |
| * with a different physical device than the data_dev, it |
| * is intended for it to be the same. |
| * |--------- Physical Device ---------| |
| * |- meta_dev -|------ data_dev ------| |
| */ |
| struct dm_dev *meta_dev; |
| struct dm_dev *data_dev; |
| struct md_rdev rdev; |
| }; |
| |
| /* |
| * Flags for rs->ctr_flags field. |
| * |
| * 1 = no flag value |
| * 2 = flag with value |
| */ |
| #define CTR_FLAG_SYNC 0x1 /* 1 */ /* Not with raid0! */ |
| #define CTR_FLAG_NOSYNC 0x2 /* 1 */ /* Not with raid0! */ |
| #define CTR_FLAG_REBUILD 0x4 /* 2 */ /* Not with raid0! */ |
| #define CTR_FLAG_DAEMON_SLEEP 0x8 /* 2 */ /* Not with raid0! */ |
| #define CTR_FLAG_MIN_RECOVERY_RATE 0x10 /* 2 */ /* Not with raid0! */ |
| #define CTR_FLAG_MAX_RECOVERY_RATE 0x20 /* 2 */ /* Not with raid0! */ |
| #define CTR_FLAG_MAX_WRITE_BEHIND 0x40 /* 2 */ /* Only with raid1! */ |
| #define CTR_FLAG_WRITE_MOSTLY 0x80 /* 2 */ /* Only with raid1! */ |
| #define CTR_FLAG_STRIPE_CACHE 0x100 /* 2 */ /* Only with raid4/5/6! */ |
| #define CTR_FLAG_REGION_SIZE 0x200 /* 2 */ /* Not with raid0! */ |
| #define CTR_FLAG_RAID10_COPIES 0x400 /* 2 */ /* Only with raid10 */ |
| #define CTR_FLAG_RAID10_FORMAT 0x800 /* 2 */ /* Only with raid10 */ |
| /* New for v1.9.0 */ |
| #define CTR_FLAG_DELTA_DISKS 0x1000 /* 2 */ /* Only with reshapable raid4/5/6/10! */ |
| #define CTR_FLAG_DATA_OFFSET 0x2000 /* 2 */ /* Only with reshapable raid4/5/6/10! */ |
| #define CTR_FLAG_RAID10_USE_NEAR_SETS 0x4000 /* 2 */ /* Only with raid10! */ |
| |
| /* |
| * Definitions of various constructor flags to |
| * be used in checks of valid / invalid flags |
| * per raid level. |
| */ |
| /* Define all any sync flags */ |
| #define CTR_FLAGS_ANY_SYNC (CTR_FLAG_SYNC | CTR_FLAG_NOSYNC) |
| |
| /* Define flags for options without argument (e.g. 'nosync') */ |
| #define CTR_FLAG_OPTIONS_NO_ARGS (CTR_FLAGS_ANY_SYNC | \ |
| CTR_FLAG_RAID10_USE_NEAR_SETS) |
| |
| /* Define flags for options with one argument (e.g. 'delta_disks +2') */ |
| #define CTR_FLAG_OPTIONS_ONE_ARG (CTR_FLAG_REBUILD | \ |
| CTR_FLAG_WRITE_MOSTLY | \ |
| CTR_FLAG_DAEMON_SLEEP | \ |
| CTR_FLAG_MIN_RECOVERY_RATE | \ |
| CTR_FLAG_MAX_RECOVERY_RATE | \ |
| CTR_FLAG_MAX_WRITE_BEHIND | \ |
| CTR_FLAG_STRIPE_CACHE | \ |
| CTR_FLAG_REGION_SIZE | \ |
| CTR_FLAG_RAID10_COPIES | \ |
| CTR_FLAG_RAID10_FORMAT | \ |
| CTR_FLAG_DELTA_DISKS | \ |
| CTR_FLAG_DATA_OFFSET) |
| |
| /* All ctr optional arguments */ |
| #define ALL_CTR_FLAGS (CTR_FLAG_OPTIONS_NO_ARGS | \ |
| CTR_FLAG_OPTIONS_ONE_ARG) |
| |
| /* Invalid options definitions per raid level... */ |
| |
| /* "raid0" does not accept any options */ |
| #define RAID0_INVALID_FLAGS ALL_CTR_FLAGS |
| |
| /* "raid1" does not accept stripe cache or any raid10 options */ |
| #define RAID1_INVALID_FLAGS (CTR_FLAG_STRIPE_CACHE | \ |
| CTR_FLAG_RAID10_COPIES | \ |
| CTR_FLAG_RAID10_FORMAT | \ |
| CTR_FLAG_DELTA_DISKS | \ |
| CTR_FLAG_DATA_OFFSET) |
| |
| /* "raid10" does not accept any raid1 or stripe cache options */ |
| #define RAID10_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \ |
| CTR_FLAG_MAX_WRITE_BEHIND | \ |
| CTR_FLAG_STRIPE_CACHE) |
| /* |
| * "raid4/5/6" do not accept any raid1 or raid10 specific options |
| * |
| * "raid6" does not accept "nosync", because it is not guaranteed |
| * that both parity and q-syndrome are being written properly with |
| * any writes |
| */ |
| #define RAID45_INVALID_FLAGS (CTR_FLAG_WRITE_MOSTLY | \ |
| CTR_FLAG_MAX_WRITE_BEHIND | \ |
| CTR_FLAG_RAID10_FORMAT | \ |
| CTR_FLAG_RAID10_COPIES | \ |
| CTR_FLAG_RAID10_USE_NEAR_SETS) |
| #define RAID6_INVALID_FLAGS (CTR_FLAG_NOSYNC | RAID45_INVALID_FLAGS) |
| /* ...invalid options definitions per raid level */ |
| |
| /* |
| * Flags for rs->runtime_flags field |
| * (RT_FLAG prefix meaning "runtime flag") |
| * |
| * These are all internal and used to define runtime state, |
| * e.g. to prevent another resume from preresume processing |
| * the raid set all over again. |
| */ |
| #define RT_FLAG_RS_PRERESUMED 0x1 |
| #define RT_FLAG_RS_RESUMED 0x2 |
| #define RT_FLAG_RS_BITMAP_LOADED 0x4 |
| #define RT_FLAG_UPDATE_SBS 0x8 |
| |
| /* Array elements of 64 bit needed for rebuild/write_mostly bits */ |
| #define DISKS_ARRAY_ELEMS ((MAX_RAID_DEVICES + (sizeof(uint64_t) * 8 - 1)) / sizeof(uint64_t) / 8) |
| |
| /* |
| * raid set level, layout and chunk sectors backup/restore |
| */ |
| struct rs_layout { |
| int new_level; |
| int new_layout; |
| int new_chunk_sectors; |
| }; |
| |
| struct raid_set { |
| struct dm_target *ti; |
| |
| uint32_t bitmap_loaded; |
| uint32_t ctr_flags; |
| uint32_t runtime_flags; |
| |
| uint64_t rebuild_disks[DISKS_ARRAY_ELEMS]; |
| |
| int raid_disks; |
| int delta_disks; |
| int data_offset; |
| int raid10_copies; |
| |
| struct mddev md; |
| struct raid_type *raid_type; |
| struct dm_target_callbacks callbacks; |
| struct rs_layout rs_layout; |
| |
| struct raid_dev dev[0]; |
| }; |
| |
| /* Backup/restore raid set configuration helpers */ |
| static void _rs_config_backup(struct raid_set *rs, struct rs_layout *l) |
| { |
| struct mddev *mddev = &rs->md; |
| |
| l->new_level = mddev->new_level; |
| l->new_layout = mddev->new_layout; |
| l->new_chunk_sectors = mddev->new_chunk_sectors; |
| } |
| |
| static void rs_config_backup(struct raid_set *rs) |
| { |
| return _rs_config_backup(rs, &rs->rs_layout); |
| } |
| |
| static void _rs_config_restore(struct raid_set *rs, struct rs_layout *l) |
| { |
| struct mddev *mddev = &rs->md; |
| |
| mddev->new_level = l->new_level; |
| mddev->new_layout = l->new_layout; |
| mddev->new_chunk_sectors = l->new_chunk_sectors; |
| } |
| |
| static void rs_config_restore(struct raid_set *rs) |
| { |
| return _rs_config_restore(rs, &rs->rs_layout); |
| } |
| /* END: backup/restore raid set configuration helpers */ |
| |
| /* raid10 algorithms (i.e. formats) */ |
| #define ALGORITHM_RAID10_DEFAULT 0 |
| #define ALGORITHM_RAID10_NEAR 1 |
| #define ALGORITHM_RAID10_OFFSET 2 |
| #define ALGORITHM_RAID10_FAR 3 |
| |
| /* Supported raid types and properties. */ |
| static struct raid_type { |
| const char *name; /* RAID algorithm. */ |
| const char *descr; /* Descriptor text for logging. */ |
| const unsigned parity_devs; /* # of parity devices. */ |
| const unsigned minimal_devs; /* minimal # of devices in set. */ |
| const unsigned level; /* RAID level. */ |
| const unsigned algorithm; /* RAID algorithm. */ |
| } raid_types[] = { |
| {"raid0", "raid0 (striping)", 0, 2, 0, 0 /* NONE */}, |
| {"raid1", "raid1 (mirroring)", 0, 2, 1, 0 /* NONE */}, |
| {"raid10_far", "raid10 far (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_FAR}, |
| {"raid10_offset", "raid10 offset (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_OFFSET}, |
| {"raid10_near", "raid10 near (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_NEAR}, |
| {"raid10", "raid10 (striped mirrors)", 0, 2, 10, ALGORITHM_RAID10_DEFAULT}, |
| {"raid4", "raid4 (dedicated last parity disk)", 1, 2, 4, ALGORITHM_PARITY_N}, /* raid4 layout = raid5_n */ |
| {"raid5_n", "raid5 (dedicated last parity disk)", 1, 2, 5, ALGORITHM_PARITY_N}, |
| {"raid5_ls", "raid5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC}, |
| {"raid5_rs", "raid5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC}, |
| {"raid5_la", "raid5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC}, |
| {"raid5_ra", "raid5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC}, |
| {"raid6_zr", "raid6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART}, |
| {"raid6_nr", "raid6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART}, |
| {"raid6_nc", "raid6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}, |
| {"raid6_n_6", "raid6 (dedicated parity/Q n/6)", 2, 4, 6, ALGORITHM_PARITY_N_6}, |
| {"raid6_ls_6", "raid6 (left symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_SYMMETRIC_6}, |
| {"raid6_rs_6", "raid6 (right symmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_SYMMETRIC_6}, |
| {"raid6_la_6", "raid6 (left asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_LEFT_ASYMMETRIC_6}, |
| {"raid6_ra_6", "raid6 (right asymmetric dedicated Q 6)", 2, 4, 6, ALGORITHM_RIGHT_ASYMMETRIC_6} |
| }; |
| |
| /* True, if @v is in inclusive range [@min, @max] */ |
| static bool __within_range(long v, long min, long max) |
| { |
| return v >= min && v <= max; |
| } |
| |
| /* ctr flag bit manipulation... */ |
| /* Set single @flag in @flags */ |
| static void _set_flag(uint32_t flag, uint32_t *flags) |
| { |
| WARN_ON_ONCE(hweight32(flag) != 1); |
| *flags |= flag; |
| } |
| |
| /* Clear single @flag in @flags */ |
| static void _clear_flag(uint32_t flag, uint32_t *flags) |
| { |
| WARN_ON_ONCE(hweight32(flag) != 1); |
| *flags &= ~flag; |
| } |
| |
| /* Test single @flag in @flags */ |
| static bool _test_flag(uint32_t flag, uint32_t flags) |
| { |
| WARN_ON_ONCE(hweight32(flag) != 1); |
| return (flag & flags) ? true : false; |
| } |
| |
| /* Test multiple @flags in @all_flags */ |
| static bool _test_flags(uint32_t flags, uint32_t all_flags) |
| { |
| return (flags & all_flags) ? true : false; |
| } |
| |
| /* Clear (multiple) @flags in @all_flags */ |
| static void _clear_flags(uint32_t flags, uint32_t *all_flags) |
| { |
| *all_flags &= ~flags; |
| } |
| |
| /* Return true if single @flag is set in @*flags, else set it and return false */ |
| static bool _test_and_set_flag(uint32_t flag, uint32_t *flags) |
| { |
| if (_test_flag(flag, *flags)) |
| return true; |
| |
| _set_flag(flag, flags); |
| return false; |
| } |
| |
| /* Return true if single @flag is set in @*flags and clear it, else return false */ |
| static bool _test_and_clear_flag(uint32_t flag, uint32_t *flags) |
| { |
| if (_test_flag(flag, *flags)) { |
| _clear_flag(flag, flags); |
| return true; |
| } |
| |
| return false; |
| } |
| /* ...ctr and runtime flag bit manipulation */ |
| |
| /* All table line arguments are defined here */ |
| static struct arg_name_flag { |
| const uint32_t flag; |
| const char *name; |
| } _arg_name_flags[] = { |
| { CTR_FLAG_SYNC, "sync"}, |
| { CTR_FLAG_NOSYNC, "nosync"}, |
| { CTR_FLAG_REBUILD, "rebuild"}, |
| { CTR_FLAG_DAEMON_SLEEP, "daemon_sleep"}, |
| { CTR_FLAG_MIN_RECOVERY_RATE, "min_recovery_rate"}, |
| { CTR_FLAG_MAX_RECOVERY_RATE, "max_recovery_rate"}, |
| { CTR_FLAG_MAX_WRITE_BEHIND, "max_write_behind"}, |
| { CTR_FLAG_WRITE_MOSTLY, "writemostly"}, |
| { CTR_FLAG_STRIPE_CACHE, "stripe_cache"}, |
| { CTR_FLAG_REGION_SIZE, "region_size"}, |
| { CTR_FLAG_RAID10_COPIES, "raid10_copies"}, |
| { CTR_FLAG_RAID10_FORMAT, "raid10_format"}, |
| { CTR_FLAG_DATA_OFFSET, "data_offset"}, |
| { CTR_FLAG_DELTA_DISKS, "delta_disks"}, |
| { CTR_FLAG_RAID10_USE_NEAR_SETS, "raid10_use_near_sets"}, |
| }; |
| |
| /* Return argument name string for given @flag */ |
| static const char *dm_raid_arg_name_by_flag(const uint32_t flag) |
| { |
| if (hweight32(flag) == 1) { |
| struct arg_name_flag *anf = _arg_name_flags + ARRAY_SIZE(_arg_name_flags); |
| |
| while (anf-- > _arg_name_flags) |
| if (_test_flag(flag, anf->flag)) |
| return anf->name; |
| |
| } else |
| DMERR("%s called with more than one flag!", __func__); |
| |
| return NULL; |
| } |
| |
| /* |
| * bool helpers to test for various raid levels of a raid set, |
| * is. it's level as reported by the superblock rather than |
| * the requested raid_type passed to the constructor. |
| */ |
| /* Return true, if raid set in @rs is raid0 */ |
| static bool rs_is_raid0(struct raid_set *rs) |
| { |
| return !rs->md.level; |
| } |
| |
| /* Return true, if raid set in @rs is raid10 */ |
| static bool rs_is_raid10(struct raid_set *rs) |
| { |
| return rs->md.level == 10; |
| } |
| |
| /* |
| * bool helpers to test for various raid levels of a raid type |
| */ |
| |
| /* Return true, if raid type in @rt is raid0 */ |
| static bool rt_is_raid0(struct raid_type *rt) |
| { |
| return !rt->level; |
| } |
| |
| /* Return true, if raid type in @rt is raid1 */ |
| static bool rt_is_raid1(struct raid_type *rt) |
| { |
| return rt->level == 1; |
| } |
| |
| /* Return true, if raid type in @rt is raid10 */ |
| static bool rt_is_raid10(struct raid_type *rt) |
| { |
| return rt->level == 10; |
| } |
| |
| /* Return true, if raid type in @rt is raid4/5 */ |
| static bool rt_is_raid45(struct raid_type *rt) |
| { |
| return __within_range(rt->level, 4, 5); |
| } |
| |
| /* Return true, if raid type in @rt is raid6 */ |
| static bool rt_is_raid6(struct raid_type *rt) |
| { |
| return rt->level == 6; |
| } |
| |
| /* Return true, if raid type in @rt is raid4/5/6 */ |
| static bool rt_is_raid456(struct raid_type *rt) |
| { |
| return __within_range(rt->level, 4, 6); |
| } |
| /* END: raid level bools */ |
| |
| /* Return invalid ctr flags for the raid level of @rs */ |
| static uint32_t _invalid_flags(struct raid_set *rs) |
| { |
| if (rt_is_raid0(rs->raid_type)) |
| return RAID0_INVALID_FLAGS; |
| else if (rt_is_raid1(rs->raid_type)) |
| return RAID1_INVALID_FLAGS; |
| else if (rt_is_raid10(rs->raid_type)) |
| return RAID10_INVALID_FLAGS; |
| else if (rt_is_raid45(rs->raid_type)) |
| return RAID45_INVALID_FLAGS; |
| else if (rt_is_raid6(rs->raid_type)) |
| return RAID6_INVALID_FLAGS; |
| |
| return ~0; |
| } |
| |
| /* |
| * Check for any invalid flags set on @rs defined by bitset @invalid_flags |
| * |
| * Has to be called after parsing of the ctr flags! |
| */ |
| static int rs_check_for_invalid_flags(struct raid_set *rs) |
| { |
| if (_test_flags(rs->ctr_flags, _invalid_flags(rs))) { |
| rs->ti->error = "Invalid flag combined"; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* MD raid10 bit definitions and helpers */ |
| #define RAID10_OFFSET (1 << 16) /* stripes with data copies area adjacent on devices */ |
| #define RAID10_BROCKEN_USE_FAR_SETS (1 << 17) /* Broken in raid10.c: use sets instead of whole stripe rotation */ |
| #define RAID10_USE_FAR_SETS (1 << 18) /* Use sets instead of whole stripe rotation */ |
| #define RAID10_FAR_COPIES_SHIFT 8 /* raid10 # far copies shift (2nd byte of layout) */ |
| |
| /* Return md raid10 near copies for @layout */ |
| static unsigned int _raid10_near_copies(int layout) |
| { |
| return layout & 0xFF; |
| } |
| |
| /* Return md raid10 far copies for @layout */ |
| static unsigned int _raid10_far_copies(int layout) |
| { |
| return _raid10_near_copies(layout >> RAID10_FAR_COPIES_SHIFT); |
| } |
| |
| /* Return true if md raid10 offset for @layout */ |
| static unsigned int _is_raid10_offset(int layout) |
| { |
| return layout & RAID10_OFFSET; |
| } |
| |
| /* Return true if md raid10 near for @layout */ |
| static unsigned int _is_raid10_near(int layout) |
| { |
| return !_is_raid10_offset(layout) && _raid10_near_copies(layout) > 1; |
| } |
| |
| /* Return true if md raid10 far for @layout */ |
| static unsigned int _is_raid10_far(int layout) |
| { |
| return !_is_raid10_offset(layout) && _raid10_far_copies(layout) > 1; |
| } |
| |
| /* Return md raid10 layout string for @layout */ |
| static const char *raid10_md_layout_to_format(int layout) |
| { |
| /* |
| * Bit 16 stands for "offset" |
| * (i.e. adjacent stripes hold copies) |
| * |
| * Refer to MD's raid10.c for details |
| */ |
| if (_is_raid10_offset(layout)) |
| return "offset"; |
| |
| if (_raid10_near_copies(layout) > 1) |
| return "near"; |
| |
| WARN_ON(_raid10_far_copies(layout) < 2); |
| |
| return "far"; |
| } |
| |
| /* Return md raid10 algorithm for @name */ |
| static const int raid10_name_to_format(const char *name) |
| { |
| if (!strcasecmp(name, "near")) |
| return ALGORITHM_RAID10_NEAR; |
| else if (!strcasecmp(name, "offset")) |
| return ALGORITHM_RAID10_OFFSET; |
| else if (!strcasecmp(name, "far")) |
| return ALGORITHM_RAID10_FAR; |
| |
| return -EINVAL; |
| } |
| |
| |
| /* Return md raid10 copies for @layout */ |
| static unsigned int raid10_md_layout_to_copies(int layout) |
| { |
| return _raid10_near_copies(layout) > 1 ? |
| _raid10_near_copies(layout) : _raid10_far_copies(layout); |
| } |
| |
| /* Return md raid10 format id for @format string */ |
| static int raid10_format_to_md_layout(struct raid_set *rs, |
| unsigned int algorithm, |
| unsigned int copies) |
| { |
| unsigned int n = 1, f = 1, r = 0; |
| |
| /* |
| * MD resilienece flaw: |
| * |
| * enabling use_far_sets for far/offset formats causes copies |
| * to be colocated on the same devs together with their origins! |
| * |
| * -> disable it for now in the definition above |
| */ |
| if (algorithm == ALGORITHM_RAID10_DEFAULT || |
| algorithm == ALGORITHM_RAID10_NEAR) |
| n = copies; |
| |
| else if (algorithm == ALGORITHM_RAID10_OFFSET) { |
| f = copies; |
| r = RAID10_OFFSET; |
| if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) |
| r |= RAID10_USE_FAR_SETS; |
| |
| } else if (algorithm == ALGORITHM_RAID10_FAR) { |
| f = copies; |
| r = !RAID10_OFFSET; |
| if (!_test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) |
| r |= RAID10_USE_FAR_SETS; |
| |
| } else |
| return -EINVAL; |
| |
| return r | (f << RAID10_FAR_COPIES_SHIFT) | n; |
| } |
| /* END: MD raid10 bit definitions and helpers */ |
| |
| /* Check for any of the raid10 algorithms */ |
| static int _got_raid10(struct raid_type *rtp, const int layout) |
| { |
| if (rtp->level == 10) { |
| switch (rtp->algorithm) { |
| case ALGORITHM_RAID10_DEFAULT: |
| case ALGORITHM_RAID10_NEAR: |
| return _is_raid10_near(layout); |
| case ALGORITHM_RAID10_OFFSET: |
| return _is_raid10_offset(layout); |
| case ALGORITHM_RAID10_FAR: |
| return _is_raid10_far(layout); |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return raid_type for @name */ |
| static struct raid_type *get_raid_type(const char *name) |
| { |
| struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); |
| |
| while (rtp-- > raid_types) |
| if (!strcasecmp(rtp->name, name)) |
| return rtp; |
| |
| return NULL; |
| } |
| |
| /* Return raid_type for @name based derived from @level and @layout */ |
| static struct raid_type *get_raid_type_by_ll(const int level, const int layout) |
| { |
| struct raid_type *rtp = raid_types + ARRAY_SIZE(raid_types); |
| |
| while (rtp-- > raid_types) { |
| /* RAID10 special checks based on @layout flags/properties */ |
| if (rtp->level == level && |
| (_got_raid10(rtp, layout) || rtp->algorithm == layout)) |
| return rtp; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Set the mddev properties in @rs to the current |
| * ones retrieved from the freshest superblock |
| */ |
| static void rs_set_cur(struct raid_set *rs) |
| { |
| struct mddev *mddev = &rs->md; |
| |
| mddev->new_level = mddev->level; |
| mddev->new_layout = mddev->layout; |
| mddev->new_chunk_sectors = mddev->chunk_sectors; |
| } |
| |
| /* |
| * Set the mddev properties in @rs to the new |
| * ones requested by the ctr |
| */ |
| static void rs_set_new(struct raid_set *rs) |
| { |
| struct mddev *mddev = &rs->md; |
| |
| mddev->level = mddev->new_level; |
| mddev->layout = mddev->new_layout; |
| mddev->chunk_sectors = mddev->new_chunk_sectors; |
| mddev->raid_disks = rs->raid_disks; |
| mddev->delta_disks = 0; |
| } |
| |
| |
| static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs) |
| { |
| unsigned i; |
| struct raid_set *rs; |
| |
| if (raid_devs <= raid_type->parity_devs) { |
| ti->error = "Insufficient number of devices"; |
| return ERR_PTR(-EINVAL); |
| } |
| |
| rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL); |
| if (!rs) { |
| ti->error = "Cannot allocate raid context"; |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| mddev_init(&rs->md); |
| |
| rs->raid_disks = raid_devs; |
| rs->delta_disks = 0; |
| |
| rs->ti = ti; |
| rs->raid_type = raid_type; |
| rs->md.raid_disks = raid_devs; |
| rs->md.level = raid_type->level; |
| rs->md.new_level = rs->md.level; |
| rs->md.layout = raid_type->algorithm; |
| rs->md.new_layout = rs->md.layout; |
| rs->md.delta_disks = 0; |
| rs->md.recovery_cp = rs_is_raid0(rs) ? MaxSector : 0; |
| |
| for (i = 0; i < raid_devs; i++) |
| md_rdev_init(&rs->dev[i].rdev); |
| |
| /* |
| * Remaining items to be initialized by further RAID params: |
| * rs->md.persistent |
| * rs->md.external |
| * rs->md.chunk_sectors |
| * rs->md.new_chunk_sectors |
| * rs->md.dev_sectors |
| */ |
| |
| return rs; |
| } |
| |
| static void context_free(struct raid_set *rs) |
| { |
| int i; |
| |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| if (rs->dev[i].meta_dev) |
| dm_put_device(rs->ti, rs->dev[i].meta_dev); |
| md_rdev_clear(&rs->dev[i].rdev); |
| if (rs->dev[i].data_dev) |
| dm_put_device(rs->ti, rs->dev[i].data_dev); |
| } |
| |
| kfree(rs); |
| } |
| |
| /* |
| * For every device we have two words |
| * <meta_dev>: meta device name or '-' if missing |
| * <data_dev>: data device name or '-' if missing |
| * |
| * The following are permitted: |
| * - - |
| * - <data_dev> |
| * <meta_dev> <data_dev> |
| * |
| * The following is not allowed: |
| * <meta_dev> - |
| * |
| * This code parses those words. If there is a failure, |
| * the caller must use context_free to unwind the operations. |
| */ |
| static int parse_dev_params(struct raid_set *rs, struct dm_arg_set *as) |
| { |
| int i; |
| int rebuild = 0; |
| int metadata_available = 0; |
| int r = 0; |
| const char *arg; |
| |
| /* Put off the number of raid devices argument to get to dev pairs */ |
| arg = dm_shift_arg(as); |
| if (!arg) |
| return -EINVAL; |
| |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| rs->dev[i].rdev.raid_disk = i; |
| |
| rs->dev[i].meta_dev = NULL; |
| rs->dev[i].data_dev = NULL; |
| |
| /* |
| * There are no offsets, since there is a separate device |
| * for data and metadata. |
| */ |
| rs->dev[i].rdev.data_offset = 0; |
| rs->dev[i].rdev.mddev = &rs->md; |
| |
| arg = dm_shift_arg(as); |
| if (!arg) |
| return -EINVAL; |
| |
| if (strcmp(arg, "-")) { |
| r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), |
| &rs->dev[i].meta_dev); |
| if (r) { |
| rs->ti->error = "RAID metadata device lookup failure"; |
| return r; |
| } |
| |
| rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL); |
| if (!rs->dev[i].rdev.sb_page) { |
| rs->ti->error = "Failed to allocate superblock page"; |
| return -ENOMEM; |
| } |
| } |
| |
| arg = dm_shift_arg(as); |
| if (!arg) |
| return -EINVAL; |
| |
| if (!strcmp(arg, "-")) { |
| if (!test_bit(In_sync, &rs->dev[i].rdev.flags) && |
| (!rs->dev[i].rdev.recovery_offset)) { |
| rs->ti->error = "Drive designated for rebuild not specified"; |
| return -EINVAL; |
| } |
| |
| if (rs->dev[i].meta_dev) { |
| rs->ti->error = "No data device supplied with metadata device"; |
| return -EINVAL; |
| } |
| |
| continue; |
| } |
| |
| r = dm_get_device(rs->ti, arg, dm_table_get_mode(rs->ti->table), |
| &rs->dev[i].data_dev); |
| if (r) { |
| rs->ti->error = "RAID device lookup failure"; |
| return r; |
| } |
| |
| if (rs->dev[i].meta_dev) { |
| metadata_available = 1; |
| rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev; |
| } |
| rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev; |
| list_add_tail(&rs->dev[i].rdev.same_set, &rs->md.disks); |
| if (!test_bit(In_sync, &rs->dev[i].rdev.flags)) |
| rebuild++; |
| } |
| |
| if (metadata_available) { |
| rs->md.external = 0; |
| rs->md.persistent = 1; |
| rs->md.major_version = 2; |
| } else if (rebuild && !rs->md.recovery_cp) { |
| /* |
| * Without metadata, we will not be able to tell if the array |
| * is in-sync or not - we must assume it is not. Therefore, |
| * it is impossible to rebuild a drive. |
| * |
| * Even if there is metadata, the on-disk information may |
| * indicate that the array is not in-sync and it will then |
| * fail at that time. |
| * |
| * User could specify 'nosync' option if desperate. |
| */ |
| rs->ti->error = "Unable to rebuild drive while array is not in-sync"; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * validate_region_size |
| * @rs |
| * @region_size: region size in sectors. If 0, pick a size (4MiB default). |
| * |
| * Set rs->md.bitmap_info.chunksize (which really refers to 'region size'). |
| * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap. |
| * |
| * Returns: 0 on success, -EINVAL on failure. |
| */ |
| static int validate_region_size(struct raid_set *rs, unsigned long region_size) |
| { |
| unsigned long min_region_size = rs->ti->len / (1 << 21); |
| |
| if (!region_size) { |
| /* |
| * Choose a reasonable default. All figures in sectors. |
| */ |
| if (min_region_size > (1 << 13)) { |
| /* If not a power of 2, make it the next power of 2 */ |
| region_size = roundup_pow_of_two(min_region_size); |
| DMINFO("Choosing default region size of %lu sectors", |
| region_size); |
| } else { |
| DMINFO("Choosing default region size of 4MiB"); |
| region_size = 1 << 13; /* sectors */ |
| } |
| } else { |
| /* |
| * Validate user-supplied value. |
| */ |
| if (region_size > rs->ti->len) { |
| rs->ti->error = "Supplied region size is too large"; |
| return -EINVAL; |
| } |
| |
| if (region_size < min_region_size) { |
| DMERR("Supplied region_size (%lu sectors) below minimum (%lu)", |
| region_size, min_region_size); |
| rs->ti->error = "Supplied region size is too small"; |
| return -EINVAL; |
| } |
| |
| if (!is_power_of_2(region_size)) { |
| rs->ti->error = "Region size is not a power of 2"; |
| return -EINVAL; |
| } |
| |
| if (region_size < rs->md.chunk_sectors) { |
| rs->ti->error = "Region size is smaller than the chunk size"; |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Convert sectors to bytes. |
| */ |
| rs->md.bitmap_info.chunksize = (region_size << 9); |
| |
| return 0; |
| } |
| |
| /* |
| * validate_raid_redundancy |
| * @rs |
| * |
| * Determine if there are enough devices in the array that haven't |
| * failed (or are being rebuilt) to form a usable array. |
| * |
| * Returns: 0 on success, -EINVAL on failure. |
| */ |
| static int validate_raid_redundancy(struct raid_set *rs) |
| { |
| unsigned i, rebuild_cnt = 0; |
| unsigned rebuilds_per_group = 0, copies, d; |
| unsigned group_size, last_group_start; |
| |
| for (i = 0; i < rs->md.raid_disks; i++) |
| if (!test_bit(In_sync, &rs->dev[i].rdev.flags) || |
| !rs->dev[i].rdev.sb_page) |
| rebuild_cnt++; |
| |
| switch (rs->raid_type->level) { |
| case 1: |
| if (rebuild_cnt >= rs->md.raid_disks) |
| goto too_many; |
| break; |
| case 4: |
| case 5: |
| case 6: |
| if (rebuild_cnt > rs->raid_type->parity_devs) |
| goto too_many; |
| break; |
| case 10: |
| copies = raid10_md_layout_to_copies(rs->md.layout); |
| if (rebuild_cnt < copies) |
| break; |
| |
| /* |
| * It is possible to have a higher rebuild count for RAID10, |
| * as long as the failed devices occur in different mirror |
| * groups (i.e. different stripes). |
| * |
| * When checking "near" format, make sure no adjacent devices |
| * have failed beyond what can be handled. In addition to the |
| * simple case where the number of devices is a multiple of the |
| * number of copies, we must also handle cases where the number |
| * of devices is not a multiple of the number of copies. |
| * E.g. dev1 dev2 dev3 dev4 dev5 |
| * A A B B C |
| * C D D E E |
| */ |
| if (!strcmp("near", raid10_md_layout_to_format(rs->md.layout))) { |
| for (i = 0; i < rs->md.raid_disks * copies; i++) { |
| if (!(i % copies)) |
| rebuilds_per_group = 0; |
| d = i % rs->md.raid_disks; |
| if ((!rs->dev[d].rdev.sb_page || |
| !test_bit(In_sync, &rs->dev[d].rdev.flags)) && |
| (++rebuilds_per_group >= copies)) |
| goto too_many; |
| } |
| break; |
| } |
| |
| /* |
| * When checking "far" and "offset" formats, we need to ensure |
| * that the device that holds its copy is not also dead or |
| * being rebuilt. (Note that "far" and "offset" formats only |
| * support two copies right now. These formats also only ever |
| * use the 'use_far_sets' variant.) |
| * |
| * This check is somewhat complicated by the need to account |
| * for arrays that are not a multiple of (far) copies. This |
| * results in the need to treat the last (potentially larger) |
| * set differently. |
| */ |
| group_size = (rs->md.raid_disks / copies); |
| last_group_start = (rs->md.raid_disks / group_size) - 1; |
| last_group_start *= group_size; |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| if (!(i % copies) && !(i > last_group_start)) |
| rebuilds_per_group = 0; |
| if ((!rs->dev[i].rdev.sb_page || |
| !test_bit(In_sync, &rs->dev[i].rdev.flags)) && |
| (++rebuilds_per_group >= copies)) |
| goto too_many; |
| } |
| break; |
| default: |
| if (rebuild_cnt) |
| return -EINVAL; |
| } |
| |
| return 0; |
| |
| too_many: |
| return -EINVAL; |
| } |
| |
| /* |
| * Possible arguments are... |
| * <chunk_size> [optional_args] |
| * |
| * Argument definitions |
| * <chunk_size> The number of sectors per disk that |
| * will form the "stripe" |
| * [[no]sync] Force or prevent recovery of the |
| * entire array |
| * [rebuild <idx>] Rebuild the drive indicated by the index |
| * [daemon_sleep <ms>] Time between bitmap daemon work to |
| * clear bits |
| * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization |
| * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization |
| * [write_mostly <idx>] Indicate a write mostly drive via index |
| * [max_write_behind <sectors>] See '-write-behind=' (man mdadm) |
| * [stripe_cache <sectors>] Stripe cache size for higher RAIDs |
| * [region_size <sectors>] Defines granularity of bitmap |
| * |
| * RAID10-only options: |
| * [raid10_copies <# copies>] Number of copies. (Default: 2) |
| * [raid10_format <near|far|offset>] Layout algorithm. (Default: near) |
| */ |
| static int parse_raid_params(struct raid_set *rs, struct dm_arg_set *as, |
| unsigned num_raid_params) |
| { |
| int raid10_format = ALGORITHM_RAID10_DEFAULT; |
| unsigned raid10_copies = 2; |
| unsigned i; |
| unsigned value, region_size = 0; |
| sector_t sectors_per_dev = rs->ti->len; |
| sector_t max_io_len; |
| const char *arg, *key; |
| struct raid_dev *rd; |
| struct raid_type *rt = rs->raid_type; |
| |
| arg = dm_shift_arg(as); |
| num_raid_params--; /* Account for chunk_size argument */ |
| |
| if (kstrtouint(arg, 10, &value) < 0) { |
| rs->ti->error = "Bad numerical argument given for chunk_size"; |
| return -EINVAL; |
| } |
| |
| /* |
| * First, parse the in-order required arguments |
| * "chunk_size" is the only argument of this type. |
| */ |
| if (rt_is_raid1(rt)) { |
| if (value) |
| DMERR("Ignoring chunk size parameter for RAID 1"); |
| value = 0; |
| } else if (!is_power_of_2(value)) { |
| rs->ti->error = "Chunk size must be a power of 2"; |
| return -EINVAL; |
| } else if (value < 8) { |
| rs->ti->error = "Chunk size value is too small"; |
| return -EINVAL; |
| } |
| |
| rs->md.new_chunk_sectors = rs->md.chunk_sectors = value; |
| |
| /* |
| * We set each individual device as In_sync with a completed |
| * 'recovery_offset'. If there has been a device failure or |
| * replacement then one of the following cases applies: |
| * |
| * 1) User specifies 'rebuild'. |
| * - Device is reset when param is read. |
| * 2) A new device is supplied. |
| * - No matching superblock found, resets device. |
| * 3) Device failure was transient and returns on reload. |
| * - Failure noticed, resets device for bitmap replay. |
| * 4) Device hadn't completed recovery after previous failure. |
| * - Superblock is read and overrides recovery_offset. |
| * |
| * What is found in the superblocks of the devices is always |
| * authoritative, unless 'rebuild' or '[no]sync' was specified. |
| */ |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| set_bit(In_sync, &rs->dev[i].rdev.flags); |
| rs->dev[i].rdev.recovery_offset = MaxSector; |
| } |
| |
| /* |
| * Second, parse the unordered optional arguments |
| */ |
| for (i = 0; i < num_raid_params; i++) { |
| key = dm_shift_arg(as); |
| if (!key) { |
| rs->ti->error = "Not enough raid parameters given"; |
| return -EINVAL; |
| } |
| |
| if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC))) { |
| if (_test_and_set_flag(CTR_FLAG_NOSYNC, &rs->ctr_flags)) { |
| rs->ti->error = "Only one 'nosync' argument allowed"; |
| return -EINVAL; |
| } |
| rs->md.recovery_cp = MaxSector; |
| continue; |
| } |
| if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_SYNC))) { |
| if (_test_and_set_flag(CTR_FLAG_SYNC, &rs->ctr_flags)) { |
| rs->ti->error = "Only one 'sync' argument allowed"; |
| return -EINVAL; |
| } |
| rs->md.recovery_cp = 0; |
| continue; |
| } |
| if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_USE_NEAR_SETS))) { |
| if (_test_and_set_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, &rs->ctr_flags)) { |
| rs->ti->error = "Only one 'raid10_use_new_sets' argument allowed"; |
| return -EINVAL; |
| } |
| continue; |
| } |
| |
| arg = dm_shift_arg(as); |
| i++; /* Account for the argument pairs */ |
| if (!arg) { |
| rs->ti->error = "Wrong number of raid parameters given"; |
| return -EINVAL; |
| } |
| |
| /* |
| * Parameters that take a string value are checked here. |
| */ |
| |
| if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT))) { |
| if (_test_and_set_flag(CTR_FLAG_RAID10_FORMAT, &rs->ctr_flags)) { |
| rs->ti->error = "Only one 'raid10_format' argument pair allowed"; |
| return -EINVAL; |
| } |
| if (!rt_is_raid10(rt)) { |
| rs->ti->error = "'raid10_format' is an invalid parameter for this RAID type"; |
| return -EINVAL; |
| } |
| raid10_format = raid10_name_to_format(arg); |
| if (raid10_format < 0) { |
| rs->ti->error = "Invalid 'raid10_format' value given"; |
| return raid10_format; |
| } |
| continue; |
| } |
| |
| if (kstrtouint(arg, 10, &value) < 0) { |
| rs->ti->error = "Bad numerical argument given in raid params"; |
| return -EINVAL; |
| } |
| |
| if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD))) { |
| /* |
| * "rebuild" is being passed in by userspace to provide |
| * indexes of replaced devices and to set up additional |
| * devices on raid level takeover. |
| */ |
| if (!__within_range(value, 0, rs->raid_disks - 1)) { |
| rs->ti->error = "Invalid rebuild index given"; |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(value, (void *) rs->rebuild_disks)) { |
| rs->ti->error = "rebuild for this index already given"; |
| return -EINVAL; |
| } |
| |
| rd = rs->dev + value; |
| clear_bit(In_sync, &rd->rdev.flags); |
| clear_bit(Faulty, &rd->rdev.flags); |
| rd->rdev.recovery_offset = 0; |
| _set_flag(CTR_FLAG_REBUILD, &rs->ctr_flags); |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY))) { |
| if (!rt_is_raid1(rt)) { |
| rs->ti->error = "write_mostly option is only valid for RAID1"; |
| return -EINVAL; |
| } |
| |
| if (!__within_range(value, 0, rs->md.raid_disks - 1)) { |
| rs->ti->error = "Invalid write_mostly index given"; |
| return -EINVAL; |
| } |
| |
| set_bit(WriteMostly, &rs->dev[value].rdev.flags); |
| _set_flag(CTR_FLAG_WRITE_MOSTLY, &rs->ctr_flags); |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND))) { |
| if (!rt_is_raid1(rt)) { |
| rs->ti->error = "max_write_behind option is only valid for RAID1"; |
| return -EINVAL; |
| } |
| |
| if (_test_and_set_flag(CTR_FLAG_MAX_WRITE_BEHIND, &rs->ctr_flags)) { |
| rs->ti->error = "Only one max_write_behind argument pair allowed"; |
| return -EINVAL; |
| } |
| |
| /* |
| * In device-mapper, we specify things in sectors, but |
| * MD records this value in kB |
| */ |
| value /= 2; |
| if (value > COUNTER_MAX) { |
| rs->ti->error = "Max write-behind limit out of range"; |
| return -EINVAL; |
| } |
| |
| rs->md.bitmap_info.max_write_behind = value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP))) { |
| if (_test_and_set_flag(CTR_FLAG_DAEMON_SLEEP, &rs->ctr_flags)) { |
| rs->ti->error = "Only one daemon_sleep argument pair allowed"; |
| return -EINVAL; |
| } |
| if (!value || (value > MAX_SCHEDULE_TIMEOUT)) { |
| rs->ti->error = "daemon sleep period out of range"; |
| return -EINVAL; |
| } |
| rs->md.bitmap_info.daemon_sleep = value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET))) { |
| /* Userspace passes new data_offset after having extended the the data image LV */ |
| if (_test_and_set_flag(CTR_FLAG_DATA_OFFSET, &rs->ctr_flags)) { |
| rs->ti->error = "Only one data_offset argument pair allowed"; |
| return -EINVAL; |
| } |
| /* Ensure sensible data offset */ |
| if (value < 0) { |
| rs->ti->error = "Bogus data_offset value"; |
| return -EINVAL; |
| } |
| rs->data_offset = value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS))) { |
| /* Define the +/-# of disks to add to/remove from the given raid set */ |
| if (_test_and_set_flag(CTR_FLAG_DELTA_DISKS, &rs->ctr_flags)) { |
| rs->ti->error = "Only one delta_disks argument pair allowed"; |
| return -EINVAL; |
| } |
| /* Ensure MAX_RAID_DEVICES and raid type minimal_devs! */ |
| if (!__within_range(abs(value), 1, MAX_RAID_DEVICES - rt->minimal_devs)) { |
| rs->ti->error = "Too many delta_disk requested"; |
| return -EINVAL; |
| } |
| |
| rs->delta_disks = value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE))) { |
| if (_test_and_set_flag(CTR_FLAG_STRIPE_CACHE, &rs->ctr_flags)) { |
| rs->ti->error = "Only one stripe_cache argument pair allowed"; |
| return -EINVAL; |
| } |
| |
| /* |
| * In device-mapper, we specify things in sectors, but |
| * MD records this value in kB |
| */ |
| value /= 2; |
| |
| if (!rt_is_raid456(rt)) { |
| rs->ti->error = "Inappropriate argument: stripe_cache"; |
| return -EINVAL; |
| } |
| if (raid5_set_cache_size(&rs->md, (int)value)) { |
| rs->ti->error = "Bad stripe_cache size"; |
| return -EINVAL; |
| } |
| |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE))) { |
| if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { |
| rs->ti->error = "Only one min_recovery_rate argument pair allowed"; |
| return -EINVAL; |
| } |
| if (value > INT_MAX) { |
| rs->ti->error = "min_recovery_rate out of range"; |
| return -EINVAL; |
| } |
| rs->md.sync_speed_min = (int)value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE))) { |
| if (_test_and_set_flag(CTR_FLAG_MIN_RECOVERY_RATE, &rs->ctr_flags)) { |
| rs->ti->error = "Only one max_recovery_rate argument pair allowed"; |
| return -EINVAL; |
| } |
| if (value > INT_MAX) { |
| rs->ti->error = "max_recovery_rate out of range"; |
| return -EINVAL; |
| } |
| rs->md.sync_speed_max = (int)value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE))) { |
| if (_test_and_set_flag(CTR_FLAG_REGION_SIZE, &rs->ctr_flags)) { |
| rs->ti->error = "Only one region_size argument pair allowed"; |
| return -EINVAL; |
| } |
| |
| region_size = value; |
| } else if (!strcasecmp(key, dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES))) { |
| if (_test_and_set_flag(CTR_FLAG_RAID10_COPIES, &rs->ctr_flags)) { |
| rs->ti->error = "Only one raid10_copies argument pair allowed"; |
| return -EINVAL; |
| } |
| |
| if (!__within_range(value, 2, rs->md.raid_disks)) { |
| rs->ti->error = "Bad value for 'raid10_copies'"; |
| return -EINVAL; |
| } |
| |
| raid10_copies = value; |
| } else { |
| DMERR("Unable to parse RAID parameter: %s", key); |
| rs->ti->error = "Unable to parse RAID parameter"; |
| return -EINVAL; |
| } |
| } |
| |
| if (validate_region_size(rs, region_size)) |
| return -EINVAL; |
| |
| if (rs->md.chunk_sectors) |
| max_io_len = rs->md.chunk_sectors; |
| else |
| max_io_len = region_size; |
| |
| if (dm_set_target_max_io_len(rs->ti, max_io_len)) |
| return -EINVAL; |
| |
| if (rt_is_raid10(rt)) { |
| if (raid10_copies > rs->md.raid_disks) { |
| rs->ti->error = "Not enough devices to satisfy specification"; |
| return -EINVAL; |
| } |
| |
| rs->md.new_layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); |
| if (rs->md.new_layout < 0) { |
| rs->ti->error = "Error getting raid10 format"; |
| return rs->md.new_layout; |
| } |
| |
| rt = get_raid_type_by_ll(10, rs->md.new_layout); |
| if (!rt) { |
| rs->ti->error = "Failed to recognize new raid10 layout"; |
| return -EINVAL; |
| } |
| |
| if ((rt->algorithm == ALGORITHM_RAID10_DEFAULT || |
| rt->algorithm == ALGORITHM_RAID10_NEAR) && |
| _test_flag(CTR_FLAG_RAID10_USE_NEAR_SETS, rs->ctr_flags)) { |
| rs->ti->error = "RAID10 format 'near' and 'raid10_use_near_sets' are incompatible"; |
| return -EINVAL; |
| } |
| |
| /* (Len * #mirrors) / #devices */ |
| sectors_per_dev = rs->ti->len * raid10_copies; |
| sector_div(sectors_per_dev, rs->md.raid_disks); |
| |
| rs->md.layout = raid10_format_to_md_layout(rs, raid10_format, raid10_copies); |
| rs->md.new_layout = rs->md.layout; |
| } else if (!rt_is_raid1(rt) && |
| sector_div(sectors_per_dev, (rs->md.raid_disks - rt->parity_devs))) { |
| rs->ti->error = "Target length not divisible by number of data devices"; |
| return -EINVAL; |
| } |
| |
| rs->raid10_copies = raid10_copies; |
| rs->md.dev_sectors = sectors_per_dev; |
| |
| /* Assume there are no metadata devices until the drives are parsed */ |
| rs->md.persistent = 0; |
| rs->md.external = 1; |
| |
| /* Check, if any invalid ctr arguments have been passed in for the raid level */ |
| return rs_check_for_invalid_flags(rs); |
| } |
| |
| /* Return # of data stripes as kept in mddev as of @rs (i.e. as of superblock) */ |
| static unsigned int mddev_data_stripes(struct raid_set *rs) |
| { |
| return rs->md.raid_disks - rs->raid_type->parity_devs; |
| } |
| |
| static void do_table_event(struct work_struct *ws) |
| { |
| struct raid_set *rs = container_of(ws, struct raid_set, md.event_work); |
| |
| dm_table_event(rs->ti->table); |
| } |
| |
| static int raid_is_congested(struct dm_target_callbacks *cb, int bits) |
| { |
| struct raid_set *rs = container_of(cb, struct raid_set, callbacks); |
| |
| return mddev_congested(&rs->md, bits); |
| } |
| |
| /* |
| * Make sure a valid takover (level switch) is being requested on @rs |
| * |
| * Conversions of raid sets from one MD personality to another |
| * have to conform to restrictions which are enforced here. |
| * |
| * Degration is already checked for in rs_check_conversion() below. |
| */ |
| static int rs_check_takeover(struct raid_set *rs) |
| { |
| struct mddev *mddev = &rs->md; |
| unsigned int near_copies; |
| |
| switch (mddev->level) { |
| case 0: |
| /* raid0 -> raid1/5 with one disk */ |
| if ((mddev->new_level == 1 || mddev->new_level == 5) && |
| mddev->raid_disks == 1) |
| return 0; |
| |
| /* raid0 -> raid10 */ |
| if (mddev->new_level == 10 && |
| !(rs->raid_disks % 2)) |
| return 0; |
| |
| /* raid0 with multiple disks -> raid4/5/6 */ |
| if (__within_range(mddev->new_level, 4, 6) && |
| mddev->new_layout == ALGORITHM_PARITY_N && |
| mddev->raid_disks > 1) |
| return 0; |
| |
| break; |
| |
| case 10: |
| /* Can't takeover raid10_offset! */ |
| if (_is_raid10_offset(mddev->layout)) |
| break; |
| |
| near_copies = _raid10_near_copies(mddev->layout); |
| |
| /* raid10* -> raid0 */ |
| if (mddev->new_level == 0) { |
| /* Can takeover raid10_near with raid disks divisable by data copies! */ |
| if (near_copies > 1 && |
| !(mddev->raid_disks % near_copies)) { |
| mddev->raid_disks /= near_copies; |
| mddev->delta_disks = mddev->raid_disks; |
| return 0; |
| } |
| |
| /* Can takeover raid10_far */ |
| if (near_copies == 1 && |
| _raid10_far_copies(mddev->layout) > 1) |
| return 0; |
| |
| break; |
| } |
| |
| /* raid10_{near,far} -> raid1 */ |
| if (mddev->new_level == 1 && |
| max(near_copies, _raid10_far_copies(mddev->layout)) == mddev->raid_disks) |
| return 0; |
| |
| /* raid10_{near,far} with 2 disks -> raid4/5 */ |
| if (__within_range(mddev->new_level, 4, 5) && |
| mddev->raid_disks == 2) |
| return 0; |
| break; |
| |
| case 1: |
| /* raid1 with 2 disks -> raid4/5 */ |
| if (__within_range(mddev->new_level, 4, 5) && |
| mddev->raid_disks == 2) { |
| mddev->degraded = 1; |
| return 0; |
| } |
| |
| /* raid1 -> raid0 */ |
| if (mddev->new_level == 0 && |
| mddev->raid_disks == 1) |
| return 0; |
| |
| /* raid1 -> raid10 */ |
| if (mddev->new_level == 10) |
| return 0; |
| |
| break; |
| |
| case 4: |
| /* raid4 -> raid0 */ |
| if (mddev->new_level == 0) |
| return 0; |
| |
| /* raid4 -> raid1/5 with 2 disks */ |
| if ((mddev->new_level == 1 || mddev->new_level == 5) && |
| mddev->raid_disks == 2) |
| return 0; |
| |
| /* raid4 -> raid5/6 with parity N */ |
| if (__within_range(mddev->new_level, 5, 6) && |
| mddev->layout == ALGORITHM_PARITY_N) |
| return 0; |
| break; |
| |
| case 5: |
| /* raid5 with parity N -> raid0 */ |
| if (mddev->new_level == 0 && |
| mddev->layout == ALGORITHM_PARITY_N) |
| return 0; |
| |
| /* raid5 with parity N -> raid4 */ |
| if (mddev->new_level == 4 && |
| mddev->layout == ALGORITHM_PARITY_N) |
| return 0; |
| |
| /* raid5 with 2 disks -> raid1/4/10 */ |
| if ((mddev->new_level == 1 || mddev->new_level == 4 || mddev->new_level == 10) && |
| mddev->raid_disks == 2) |
| return 0; |
| |
| /* raid5 with parity N -> raid6 with parity N */ |
| if (mddev->new_level == 6 && |
| ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || |
| __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC_6, ALGORITHM_RIGHT_SYMMETRIC_6))) |
| return 0; |
| break; |
| |
| case 6: |
| /* raid6 with parity N -> raid0 */ |
| if (mddev->new_level == 0 && |
| mddev->layout == ALGORITHM_PARITY_N) |
| return 0; |
| |
| /* raid6 with parity N -> raid4 */ |
| if (mddev->new_level == 4 && |
| mddev->layout == ALGORITHM_PARITY_N) |
| return 0; |
| |
| /* raid6_*_n with parity N -> raid5_* */ |
| if (mddev->new_level == 5 && |
| ((mddev->layout == ALGORITHM_PARITY_N && mddev->new_layout == ALGORITHM_PARITY_N) || |
| __within_range(mddev->new_layout, ALGORITHM_LEFT_ASYMMETRIC, ALGORITHM_RIGHT_SYMMETRIC))) |
| return 0; |
| |
| default: |
| break; |
| } |
| |
| rs->ti->error = "takeover not possible"; |
| return -EINVAL; |
| } |
| |
| /* True if @rs requested to be taken over */ |
| static bool rs_takeover_requested(struct raid_set *rs) |
| { |
| return rs->md.new_level != rs->md.level; |
| } |
| |
| /* Features */ |
| #define FEATURE_FLAG_SUPPORTS_V190 0x1 /* Supports extended superblock */ |
| |
| /* State flags for sb->flags */ |
| #define SB_FLAG_RESHAPE_ACTIVE 0x1 |
| #define SB_FLAG_RESHAPE_BACKWARDS 0x2 |
| |
| /* |
| * This structure is never routinely used by userspace, unlike md superblocks. |
| * Devices with this superblock should only ever be accessed via device-mapper. |
| */ |
| #define DM_RAID_MAGIC 0x64526D44 |
| struct dm_raid_superblock { |
| __le32 magic; /* "DmRd" */ |
| __le32 compat_features; /* Used to indicate compatible features (like 1.9.0 ondisk metadata extension) */ |
| |
| __le32 num_devices; /* Number of devices in this raid set. (Max 64) */ |
| __le32 array_position; /* The position of this drive in the raid set */ |
| |
| __le64 events; /* Incremented by md when superblock updated */ |
| __le64 failed_devices; /* Pre 1.9.0 part of bit field of devices to */ |
| /* indicate failures (see extension below) */ |
| |
| /* |
| * This offset tracks the progress of the repair or replacement of |
| * an individual drive. |
| */ |
| __le64 disk_recovery_offset; |
| |
| /* |
| * This offset tracks the progress of the initial raid set |
| * synchronisation/parity calculation. |
| */ |
| __le64 array_resync_offset; |
| |
| /* |
| * raid characteristics |
| */ |
| __le32 level; |
| __le32 layout; |
| __le32 stripe_sectors; |
| |
| /******************************************************************** |
| * BELOW FOLLOW V1.9.0 EXTENSIONS TO THE PRISTINE SUPERBLOCK FORMAT!!! |
| * |
| * FEATURE_FLAG_SUPPORTS_V190 in the features member indicates that those exist |
| */ |
| |
| __le32 flags; /* Flags defining array states for reshaping */ |
| |
| /* |
| * This offset tracks the progress of a raid |
| * set reshape in order to be able to restart it |
| */ |
| __le64 reshape_position; |
| |
| /* |
| * These define the properties of the array in case of an interrupted reshape |
| */ |
| __le32 new_level; |
| __le32 new_layout; |
| __le32 new_stripe_sectors; |
| __le32 delta_disks; |
| |
| __le64 array_sectors; /* Array size in sectors */ |
| |
| /* |
| * Sector offsets to data on devices (reshaping). |
| * Needed to support out of place reshaping, thus |
| * not writing over any stripes whilst converting |
| * them from old to new layout |
| */ |
| __le64 data_offset; |
| __le64 new_data_offset; |
| |
| __le64 sectors; /* Used device size in sectors */ |
| |
| /* |
| * Additonal Bit field of devices indicating failures to support |
| * up to 256 devices with the 1.9.0 on-disk metadata format |
| */ |
| __le64 extended_failed_devices[DISKS_ARRAY_ELEMS - 1]; |
| |
| __le32 incompat_features; /* Used to indicate any incompatible features */ |
| |
| /* Always set rest up to logical block size to 0 when writing (see get_metadata_device() below). */ |
| } __packed; |
| |
| static int read_disk_sb(struct md_rdev *rdev, int size) |
| { |
| BUG_ON(!rdev->sb_page); |
| |
| if (rdev->sb_loaded) |
| return 0; |
| |
| if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, 1)) { |
| DMERR("Failed to read superblock of device at position %d", |
| rdev->raid_disk); |
| md_error(rdev->mddev, rdev); |
| return -EINVAL; |
| } |
| |
| rdev->sb_loaded = 1; |
| |
| return 0; |
| } |
| |
| static void sb_retrieve_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) |
| { |
| failed_devices[0] = le64_to_cpu(sb->failed_devices); |
| memset(failed_devices + 1, 0, sizeof(sb->extended_failed_devices)); |
| |
| if (_test_flag(FEATURE_FLAG_SUPPORTS_V190, le32_to_cpu(sb->compat_features))) { |
| int i = ARRAY_SIZE(sb->extended_failed_devices); |
| |
| while (i--) |
| failed_devices[i+1] = le64_to_cpu(sb->extended_failed_devices[i]); |
| } |
| } |
| |
| static void sb_update_failed_devices(struct dm_raid_superblock *sb, uint64_t *failed_devices) |
| { |
| int i = ARRAY_SIZE(sb->extended_failed_devices); |
| |
| sb->failed_devices = cpu_to_le64(failed_devices[0]); |
| while (i--) |
| sb->extended_failed_devices[i] = cpu_to_le64(failed_devices[i+1]); |
| } |
| |
| /* |
| * Synchronize the superblock members with the raid set properties |
| * |
| * All superblock data is little endian. |
| */ |
| static void super_sync(struct mddev *mddev, struct md_rdev *rdev) |
| { |
| bool update_failed_devices = false; |
| unsigned int i; |
| uint64_t failed_devices[DISKS_ARRAY_ELEMS]; |
| struct dm_raid_superblock *sb; |
| struct raid_set *rs = container_of(mddev, struct raid_set, md); |
| |
| /* No metadata device, no superblock */ |
| if (!rdev->meta_bdev) |
| return; |
| |
| BUG_ON(!rdev->sb_page); |
| |
| sb = page_address(rdev->sb_page); |
| |
| sb_retrieve_failed_devices(sb, failed_devices); |
| |
| for (i = 0; i < rs->raid_disks; i++) |
| if (!rs->dev[i].data_dev || test_bit(Faulty, &rs->dev[i].rdev.flags)) { |
| update_failed_devices = true; |
| set_bit(i, (void *) failed_devices); |
| } |
| |
| if (update_failed_devices) |
| sb_update_failed_devices(sb, failed_devices); |
| |
| sb->magic = cpu_to_le32(DM_RAID_MAGIC); |
| sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); |
| |
| sb->num_devices = cpu_to_le32(mddev->raid_disks); |
| sb->array_position = cpu_to_le32(rdev->raid_disk); |
| |
| sb->events = cpu_to_le64(mddev->events); |
| |
| sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset); |
| sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp); |
| |
| sb->level = cpu_to_le32(mddev->level); |
| sb->layout = cpu_to_le32(mddev->layout); |
| sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors); |
| |
| sb->new_level = cpu_to_le32(mddev->new_level); |
| sb->new_layout = cpu_to_le32(mddev->new_layout); |
| sb->new_stripe_sectors = cpu_to_le32(mddev->new_chunk_sectors); |
| |
| sb->delta_disks = cpu_to_le32(mddev->delta_disks); |
| |
| smp_rmb(); /* Make sure we access most recent reshape position */ |
| sb->reshape_position = cpu_to_le64(mddev->reshape_position); |
| if (le64_to_cpu(sb->reshape_position) != MaxSector) { |
| /* Flag ongoing reshape */ |
| sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE); |
| |
| if (mddev->delta_disks < 0 || mddev->reshape_backwards) |
| sb->flags |= cpu_to_le32(SB_FLAG_RESHAPE_BACKWARDS); |
| } else |
| /* Flag no reshape */ |
| _clear_flags(cpu_to_le32(SB_FLAG_RESHAPE_ACTIVE|SB_FLAG_RESHAPE_BACKWARDS), &sb->flags); |
| |
| sb->array_sectors = cpu_to_le64(mddev->array_sectors); |
| sb->data_offset = cpu_to_le64(rdev->data_offset); |
| sb->new_data_offset = cpu_to_le64(rdev->new_data_offset); |
| sb->sectors = cpu_to_le64(rdev->sectors); |
| |
| /* Zero out the rest of the payload after the size of the superblock */ |
| memset(sb + 1, 0, rdev->sb_size - sizeof(*sb)); |
| } |
| |
| /* |
| * super_load |
| * |
| * This function creates a superblock if one is not found on the device |
| * and will decide which superblock to use if there's a choice. |
| * |
| * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise |
| */ |
| static int super_load(struct md_rdev *rdev, struct md_rdev *refdev) |
| { |
| int r; |
| struct dm_raid_superblock *sb; |
| struct dm_raid_superblock *refsb; |
| uint64_t events_sb, events_refsb; |
| |
| rdev->sb_start = 0; |
| rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev); |
| if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) { |
| DMERR("superblock size of a logical block is no longer valid"); |
| return -EINVAL; |
| } |
| |
| r = read_disk_sb(rdev, rdev->sb_size); |
| if (r) |
| return r; |
| |
| sb = page_address(rdev->sb_page); |
| |
| /* |
| * Two cases that we want to write new superblocks and rebuild: |
| * 1) New device (no matching magic number) |
| * 2) Device specified for rebuild (!In_sync w/ offset == 0) |
| */ |
| if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) || |
| (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) { |
| super_sync(rdev->mddev, rdev); |
| |
| set_bit(FirstUse, &rdev->flags); |
| sb->compat_features = cpu_to_le32(FEATURE_FLAG_SUPPORTS_V190); |
| |
| /* Force writing of superblocks to disk */ |
| set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags); |
| |
| /* Any superblock is better than none, choose that if given */ |
| return refdev ? 0 : 1; |
| } |
| |
| if (!refdev) |
| return 1; |
| |
| events_sb = le64_to_cpu(sb->events); |
| |
| refsb = page_address(refdev->sb_page); |
| events_refsb = le64_to_cpu(refsb->events); |
| |
| return (events_sb > events_refsb) ? 1 : 0; |
| } |
| |
| static int super_init_validation(struct raid_set *rs, struct md_rdev *rdev) |
| { |
| int role; |
| unsigned int d; |
| struct mddev *mddev = &rs->md; |
| uint64_t events_sb; |
| uint64_t failed_devices[DISKS_ARRAY_ELEMS]; |
| struct dm_raid_superblock *sb; |
| uint32_t new_devs = 0, rebuild_and_new = 0, rebuilds = 0; |
| struct md_rdev *r; |
| struct dm_raid_superblock *sb2; |
| |
| sb = page_address(rdev->sb_page); |
| events_sb = le64_to_cpu(sb->events); |
| |
| /* |
| * Initialise to 1 if this is a new superblock. |
| */ |
| mddev->events = events_sb ? : 1; |
| |
| mddev->reshape_position = MaxSector; |
| |
| /* |
| * Reshaping is supported, e.g. reshape_position is valid |
| * in superblock and superblock content is authoritative. |
| */ |
| if (_test_flag(FEATURE_FLAG_SUPPORTS_V190, le32_to_cpu(sb->compat_features))) { |
| /* Superblock is authoritative wrt given raid set layout! */ |
| mddev->raid_disks = le32_to_cpu(sb->num_devices); |
| mddev->level = le32_to_cpu(sb->level); |
| mddev->layout = le32_to_cpu(sb->layout); |
| mddev->chunk_sectors = le32_to_cpu(sb->stripe_sectors); |
| mddev->new_level = le32_to_cpu(sb->new_level); |
| mddev->new_layout = le32_to_cpu(sb->new_layout); |
| mddev->new_chunk_sectors = le32_to_cpu(sb->new_stripe_sectors); |
| mddev->delta_disks = le32_to_cpu(sb->delta_disks); |
| mddev->array_sectors = le64_to_cpu(sb->array_sectors); |
| |
| /* raid was reshaping and got interrupted */ |
| if (_test_flag(SB_FLAG_RESHAPE_ACTIVE, le32_to_cpu(sb->flags))) { |
| if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags)) { |
| DMERR("Reshape requested but raid set is still reshaping"); |
| return -EINVAL; |
| } |
| |
| if (mddev->delta_disks < 0 || |
| (!mddev->delta_disks && _test_flag(SB_FLAG_RESHAPE_BACKWARDS, le32_to_cpu(sb->flags)))) |
| mddev->reshape_backwards = 1; |
| else |
| mddev->reshape_backwards = 0; |
| |
| mddev->reshape_position = le64_to_cpu(sb->reshape_position); |
| rs->raid_type = get_raid_type_by_ll(mddev->level, mddev->layout); |
| } |
| |
| } else { |
| /* |
| * No takeover/reshaping, because we don't have the extended v1.9.0 metadata |
| */ |
| if (le32_to_cpu(sb->level) != mddev->level) { |
| DMERR("Reshaping/takeover raid sets not yet supported. (raid level/stripes/size change)"); |
| return -EINVAL; |
| } |
| if (le32_to_cpu(sb->layout) != mddev->layout) { |
| DMERR("Reshaping raid sets not yet supported. (raid layout change)"); |
| DMERR(" 0x%X vs 0x%X", le32_to_cpu(sb->layout), mddev->layout); |
| DMERR(" Old layout: %s w/ %d copies", |
| raid10_md_layout_to_format(le32_to_cpu(sb->layout)), |
| raid10_md_layout_to_copies(le32_to_cpu(sb->layout))); |
| DMERR(" New layout: %s w/ %d copies", |
| raid10_md_layout_to_format(mddev->layout), |
| raid10_md_layout_to_copies(mddev->layout)); |
| return -EINVAL; |
| } |
| if (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors) { |
| DMERR("Reshaping raid sets not yet supported. (stripe sectors change)"); |
| return -EINVAL; |
| } |
| |
| /* We can only change the number of devices in raid1 with old (i.e. pre 1.0.7) metadata */ |
| if (!rt_is_raid1(rs->raid_type) && |
| (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) { |
| DMERR("Reshaping raid sets not yet supported. (device count change from %u to %u)", |
| sb->num_devices, mddev->raid_disks); |
| return -EINVAL; |
| } |
| |
| /* Table line is checked vs. authoritative superblock */ |
| rs_set_new(rs); |
| } |
| |
| if (!_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags)) |
| mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset); |
| |
| /* |
| * During load, we set FirstUse if a new superblock was written. |
| * There are two reasons we might not have a superblock: |
| * 1) The raid set is brand new - in which case, all of the |
| * devices must have their In_sync bit set. Also, |
| * recovery_cp must be 0, unless forced. |
| * 2) This is a new device being added to an old raid set |
| * and the new device needs to be rebuilt - in which |
| * case the In_sync bit will /not/ be set and |
| * recovery_cp must be MaxSector. |
| */ |
| d = 0; |
| rdev_for_each(r, mddev) { |
| if (test_bit(FirstUse, &r->flags)) |
| new_devs++; |
| |
| if (!test_bit(In_sync, &r->flags)) { |
| DMINFO("Device %d specified for rebuild; clearing superblock", |
| r->raid_disk); |
| rebuilds++; |
| |
| if (test_bit(FirstUse, &r->flags)) |
| rebuild_and_new++; |
| } |
| |
| d++; |
| } |
| |
| if (new_devs == rs->raid_disks || !rebuilds) { |
| /* Replace a broken device */ |
| if (new_devs == 1 && !rs->delta_disks) |
| ; |
| if (new_devs == rs->raid_disks) { |
| DMINFO("Superblocks created for new raid set"); |
| set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); |
| _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); |
| mddev->recovery_cp = 0; |
| } else if (new_devs && new_devs != rs->raid_disks && !rebuilds) { |
| DMERR("New device injected into existing raid set without " |
| "'delta_disks' or 'rebuild' parameter specified"); |
| return -EINVAL; |
| } |
| } else if (new_devs && new_devs != rebuilds) { |
| DMERR("%u 'rebuild' devices cannot be injected into" |
| " a raid set with %u other first-time devices", |
| rebuilds, new_devs); |
| return -EINVAL; |
| } else if (rebuilds) { |
| if (rebuild_and_new && rebuilds != rebuild_and_new) { |
| DMERR("new device%s provided without 'rebuild'", |
| new_devs > 1 ? "s" : ""); |
| return -EINVAL; |
| } else if (mddev->recovery_cp != MaxSector) { |
| DMERR("'rebuild' specified while raid set is not in-sync (recovery_cp=%llu)", |
| (unsigned long long) mddev->recovery_cp); |
| return -EINVAL; |
| } else if (mddev->reshape_position != MaxSector) { |
| DMERR("'rebuild' specified while raid set is being reshaped"); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Now we set the Faulty bit for those devices that are |
| * recorded in the superblock as failed. |
| */ |
| sb_retrieve_failed_devices(sb, failed_devices); |
| rdev_for_each(r, mddev) { |
| if (!r->sb_page) |
| continue; |
| sb2 = page_address(r->sb_page); |
| sb2->failed_devices = 0; |
| memset(sb2->extended_failed_devices, 0, sizeof(sb2->extended_failed_devices)); |
| |
| /* |
| * Check for any device re-ordering. |
| */ |
| if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) { |
| role = le32_to_cpu(sb2->array_position); |
| if (role < 0) |
| continue; |
| |
| if (role != r->raid_disk) { |
| if (_is_raid10_near(mddev->layout)) { |
| if (mddev->raid_disks % _raid10_near_copies(mddev->layout) || |
| rs->raid_disks % rs->raid10_copies) { |
| rs->ti->error = |
| "Cannot change raid10 near set to odd # of devices!"; |
| return -EINVAL; |
| } |
| |
| sb2->array_position = cpu_to_le32(r->raid_disk); |
| |
| } else if (!(rs_is_raid10(rs) && rt_is_raid0(rs->raid_type)) && |
| !(rs_is_raid0(rs) && rt_is_raid10(rs->raid_type)) && |
| !rt_is_raid1(rs->raid_type)) { |
| rs->ti->error = "Cannot change device positions in raid set"; |
| return -EINVAL; |
| } |
| |
| DMINFO("raid device #%d now at position #%d", role, r->raid_disk); |
| } |
| |
| /* |
| * Partial recovery is performed on |
| * returning failed devices. |
| */ |
| if (test_bit(role, (void *) failed_devices)) |
| set_bit(Faulty, &r->flags); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int super_validate(struct raid_set *rs, struct md_rdev *rdev) |
| { |
| struct mddev *mddev = &rs->md; |
| struct dm_raid_superblock *sb; |
| |
| if (rs_is_raid0(rs) || !rdev->sb_page) |
| return 0; |
| |
| sb = page_address(rdev->sb_page); |
| |
| /* |
| * If mddev->events is not set, we know we have not yet initialized |
| * the array. |
| */ |
| if (!mddev->events && super_init_validation(rs, rdev)) |
| return -EINVAL; |
| |
| if (le32_to_cpu(sb->compat_features) != FEATURE_FLAG_SUPPORTS_V190) { |
| rs->ti->error = "Unable to assemble array: Unknown flag(s) in compatible feature flags"; |
| return -EINVAL; |
| } |
| |
| if (sb->incompat_features) { |
| rs->ti->error = "Unable to assemble array: No incompatible feature flags supported yet"; |
| return -EINVAL; |
| } |
| |
| /* Enable bitmap creation for RAID levels != 0 */ |
| mddev->bitmap_info.offset = rt_is_raid0(rs->raid_type) ? 0 : to_sector(4096); |
| rdev->mddev->bitmap_info.default_offset = mddev->bitmap_info.offset; |
| |
| if (!test_and_clear_bit(FirstUse, &rdev->flags)) { |
| /* Retrieve device size stored in superblock to be prepared for shrink */ |
| rdev->sectors = le64_to_cpu(sb->sectors); |
| rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset); |
| if (rdev->recovery_offset == MaxSector) |
| set_bit(In_sync, &rdev->flags); |
| /* |
| * If no reshape in progress -> we're recovering single |
| * disk(s) and have to set the device(s) to out-of-sync |
| */ |
| else if (rs->md.reshape_position == MaxSector) |
| clear_bit(In_sync, &rdev->flags); /* Mandatory for recovery */ |
| } |
| |
| /* |
| * If a device comes back, set it as not In_sync and no longer faulty. |
| */ |
| if (test_and_clear_bit(Faulty, &rdev->flags)) { |
| rdev->recovery_offset = 0; |
| clear_bit(In_sync, &rdev->flags); |
| rdev->saved_raid_disk = rdev->raid_disk; |
| } |
| |
| /* Reshape support -> restore repective data offsets */ |
| rdev->data_offset = le64_to_cpu(sb->data_offset); |
| rdev->new_data_offset = le64_to_cpu(sb->new_data_offset); |
| |
| return 0; |
| } |
| |
| /* |
| * Analyse superblocks and select the freshest. |
| */ |
| static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs) |
| { |
| int r; |
| struct raid_dev *dev; |
| struct md_rdev *rdev, *tmp, *freshest; |
| struct mddev *mddev = &rs->md; |
| |
| freshest = NULL; |
| rdev_for_each_safe(rdev, tmp, mddev) { |
| /* |
| * Skipping super_load due to CTR_FLAG_SYNC will cause |
| * the array to undergo initialization again as |
| * though it were new. This is the intended effect |
| * of the "sync" directive. |
| * |
| * When reshaping capability is added, we must ensure |
| * that the "sync" directive is disallowed during the |
| * reshape. |
| */ |
| if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags)) |
| continue; |
| |
| if (!rdev->meta_bdev) |
| continue; |
| |
| r = super_load(rdev, freshest); |
| |
| switch (r) { |
| case 1: |
| freshest = rdev; |
| break; |
| case 0: |
| break; |
| default: |
| dev = container_of(rdev, struct raid_dev, rdev); |
| if (dev->meta_dev) |
| dm_put_device(ti, dev->meta_dev); |
| |
| dev->meta_dev = NULL; |
| rdev->meta_bdev = NULL; |
| |
| if (rdev->sb_page) |
| put_page(rdev->sb_page); |
| |
| rdev->sb_page = NULL; |
| |
| rdev->sb_loaded = 0; |
| |
| /* |
| * We might be able to salvage the data device |
| * even though the meta device has failed. For |
| * now, we behave as though '- -' had been |
| * set for this device in the table. |
| */ |
| if (dev->data_dev) |
| dm_put_device(ti, dev->data_dev); |
| |
| dev->data_dev = NULL; |
| rdev->bdev = NULL; |
| |
| list_del(&rdev->same_set); |
| } |
| } |
| |
| if (!freshest) |
| return 0; |
| |
| if (validate_raid_redundancy(rs)) { |
| rs->ti->error = "Insufficient redundancy to activate array"; |
| return -EINVAL; |
| } |
| |
| /* |
| * Validation of the freshest device provides the source of |
| * validation for the remaining devices. |
| */ |
| if (super_validate(rs, freshest)) { |
| rs->ti->error = "Unable to assemble array: Invalid superblocks"; |
| return -EINVAL; |
| } |
| |
| rdev_for_each(rdev, mddev) |
| if ((rdev != freshest) && super_validate(rs, rdev)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* Userpace reordered disks -> adjust raid_disk indexes in @rs */ |
| static void _reorder_raid_disk_indexes(struct raid_set *rs) |
| { |
| int i = 0; |
| struct md_rdev *rdev; |
| |
| rdev_for_each(rdev, &rs->md) { |
| rdev->raid_disk = i++; |
| rdev->saved_raid_disk = rdev->new_raid_disk = -1; |
| } |
| } |
| |
| /* |
| * Setup @rs for takeover by a different raid level |
| */ |
| static int rs_setup_takeover(struct raid_set *rs) |
| { |
| struct mddev *mddev = &rs->md; |
| struct md_rdev *rdev; |
| unsigned int d = mddev->raid_disks = rs->raid_disks; |
| sector_t new_data_offset = rs->dev[0].rdev.data_offset ? 0 : rs->data_offset; |
| |
| if (rt_is_raid10(rs->raid_type)) { |
| if (mddev->level == 0) { |
| /* Userpace reordered disks -> adjust raid_disk indexes */ |
| _reorder_raid_disk_indexes(rs); |
| |
| /* raid0 -> raid10_far layout */ |
| mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_FAR, |
| rs->raid10_copies); |
| } else if (mddev->level == 1) |
| /* raid1 -> raid10_near layout */ |
| mddev->layout = raid10_format_to_md_layout(rs, ALGORITHM_RAID10_NEAR, |
| rs->raid_disks); |
| else |
| return -EINVAL; |
| |
| } |
| |
| clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags); |
| mddev->recovery_cp = MaxSector; |
| |
| while (d--) { |
| rdev = &rs->dev[d].rdev; |
| |
| if (test_bit(d, (void *) rs->rebuild_disks)) { |
| clear_bit(In_sync, &rdev->flags); |
| clear_bit(Faulty, &rdev->flags); |
| mddev->recovery_cp = rdev->recovery_offset = 0; |
| /* Bitmap has to be created when we do an "up" takeover */ |
| set_bit(MD_ARRAY_FIRST_USE, &mddev->flags); |
| } |
| |
| rdev->new_data_offset = new_data_offset; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Enable/disable discard support on RAID set depending on |
| * RAID level and discard properties of underlying RAID members. |
| */ |
| static void configure_discard_support(struct raid_set *rs) |
| { |
| int i; |
| bool raid456; |
| struct dm_target *ti = rs->ti; |
| |
| /* Assume discards not supported until after checks below. */ |
| ti->discards_supported = false; |
| |
| /* RAID level 4,5,6 require discard_zeroes_data for data integrity! */ |
| raid456 = (rs->md.level == 4 || rs->md.level == 5 || rs->md.level == 6); |
| |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| struct request_queue *q; |
| |
| if (!rs->dev[i].rdev.bdev) |
| continue; |
| |
| q = bdev_get_queue(rs->dev[i].rdev.bdev); |
| if (!q || !blk_queue_discard(q)) |
| return; |
| |
| if (raid456) { |
| if (!q->limits.discard_zeroes_data) |
| return; |
| if (!devices_handle_discard_safely) { |
| DMERR("raid456 discard support disabled due to discard_zeroes_data uncertainty."); |
| DMERR("Set dm-raid.devices_handle_discard_safely=Y to override."); |
| return; |
| } |
| } |
| } |
| |
| /* All RAID members properly support discards */ |
| ti->discards_supported = true; |
| |
| /* |
| * RAID1 and RAID10 personalities require bio splitting, |
| * RAID0/4/5/6 don't and process large discard bios properly. |
| */ |
| ti->split_discard_bios = !!(rs->md.level == 1 || rs->md.level == 10); |
| ti->num_discard_bios = 1; |
| } |
| |
| /* |
| * Construct a RAID0/1/10/4/5/6 mapping: |
| * Args: |
| * <raid_type> <#raid_params> <raid_params>{0,} \ |
| * <#raid_devs> [<meta_dev1> <dev1>]{1,} |
| * |
| * <raid_params> varies by <raid_type>. See 'parse_raid_params' for |
| * details on possible <raid_params>. |
| * |
| * Userspace is free to initialize the metadata devices, hence the superblocks to |
| * enforce recreation based on the passed in table parameters. |
| * |
| */ |
| static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv) |
| { |
| int r; |
| struct raid_type *rt; |
| unsigned num_raid_params, num_raid_devs; |
| struct raid_set *rs = NULL; |
| const char *arg; |
| struct dm_arg_set as = { argc, argv }, as_nrd; |
| struct dm_arg _args[] = { |
| { 0, as.argc, "Cannot understand number of raid parameters" }, |
| { 1, 254, "Cannot understand number of raid devices parameters" } |
| }; |
| |
| /* Must have <raid_type> */ |
| arg = dm_shift_arg(&as); |
| if (!arg) { |
| ti->error = "No arguments"; |
| return -EINVAL; |
| } |
| |
| rt = get_raid_type(arg); |
| if (!rt) { |
| ti->error = "Unrecognised raid_type"; |
| return -EINVAL; |
| } |
| |
| /* Must have <#raid_params> */ |
| if (dm_read_arg_group(_args, &as, &num_raid_params, &ti->error)) |
| return -EINVAL; |
| |
| /* number of raid device tupples <meta_dev data_dev> */ |
| as_nrd = as; |
| dm_consume_args(&as_nrd, num_raid_params); |
| _args[1].max = (as_nrd.argc - 1) / 2; |
| if (dm_read_arg(_args + 1, &as_nrd, &num_raid_devs, &ti->error)) |
| return -EINVAL; |
| |
| if (!__within_range(num_raid_devs, 1, MAX_RAID_DEVICES)) { |
| ti->error = "Invalid number of supplied raid devices"; |
| return -EINVAL; |
| } |
| |
| rs = context_alloc(ti, rt, num_raid_devs); |
| if (IS_ERR(rs)) |
| return PTR_ERR(rs); |
| |
| r = parse_raid_params(rs, &as, num_raid_params); |
| if (r) |
| goto bad; |
| |
| r = parse_dev_params(rs, &as); |
| if (r) |
| goto bad; |
| |
| rs->md.sync_super = super_sync; |
| |
| /* |
| * Backup any new raid set level, layout, ... |
| * requested to be able to compare to superblock |
| * members for conversion decisions. |
| */ |
| rs_config_backup(rs); |
| |
| r = analyse_superblocks(ti, rs); |
| if (r) |
| goto bad; |
| |
| INIT_WORK(&rs->md.event_work, do_table_event); |
| ti->private = rs; |
| ti->num_flush_bios = 1; |
| |
| /* Restore any requested new layout for conversion decision */ |
| rs_config_restore(rs); |
| |
| /* |
| * If a takeover is needed, just set the level to |
| * the new requested one and allow the raid set to run. |
| */ |
| if (rs_takeover_requested(rs)) { |
| r = rs_check_takeover(rs); |
| if (r) |
| return r; |
| |
| r = rs_setup_takeover(rs); |
| if (r) |
| return r; |
| |
| /* Tell preresume to update superblocks with new layout */ |
| _set_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags); |
| rs_set_new(rs); |
| } else |
| rs_set_cur(rs); |
| |
| /* Start raid set read-only and assumed clean to change in raid_resume() */ |
| rs->md.ro = 1; |
| rs->md.in_sync = 1; |
| set_bit(MD_RECOVERY_FROZEN, &rs->md.recovery); |
| |
| /* Has to be held on running the array */ |
| mddev_lock_nointr(&rs->md); |
| r = md_run(&rs->md); |
| rs->md.in_sync = 0; /* Assume already marked dirty */ |
| mddev_unlock(&rs->md); |
| |
| if (r) { |
| ti->error = "Fail to run raid array"; |
| goto bad; |
| } |
| |
| if (ti->len != rs->md.array_sectors) { |
| ti->error = "Array size does not match requested target length"; |
| r = -EINVAL; |
| goto size_mismatch; |
| } |
| rs->callbacks.congested_fn = raid_is_congested; |
| dm_table_add_target_callbacks(ti->table, &rs->callbacks); |
| |
| mddev_suspend(&rs->md); |
| return 0; |
| |
| size_mismatch: |
| md_stop(&rs->md); |
| bad: |
| context_free(rs); |
| |
| return r; |
| } |
| |
| static void raid_dtr(struct dm_target *ti) |
| { |
| struct raid_set *rs = ti->private; |
| |
| list_del_init(&rs->callbacks.list); |
| md_stop(&rs->md); |
| context_free(rs); |
| } |
| |
| static int raid_map(struct dm_target *ti, struct bio *bio) |
| { |
| struct raid_set *rs = ti->private; |
| struct mddev *mddev = &rs->md; |
| |
| mddev->pers->make_request(mddev, bio); |
| |
| return DM_MAPIO_SUBMITTED; |
| } |
| |
| /* Return string describing the current sync action of @mddev */ |
| static const char *decipher_sync_action(struct mddev *mddev) |
| { |
| if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) |
| return "frozen"; |
| |
| if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || |
| (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) |
| return "reshape"; |
| |
| if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { |
| if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) |
| return "resync"; |
| else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) |
| return "check"; |
| return "repair"; |
| } |
| |
| if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) |
| return "recover"; |
| } |
| |
| return "idle"; |
| } |
| |
| /* |
| * Return status string @rdev |
| * |
| * Status characters: |
| * |
| * 'D' = Dead/Failed device |
| * 'a' = Alive but not in-sync |
| * 'A' = Alive and in-sync |
| */ |
| static const char *_raid_dev_status(struct md_rdev *rdev, bool array_in_sync) |
| { |
| if (test_bit(Faulty, &rdev->flags)) |
| return "D"; |
| else if (!array_in_sync || !test_bit(In_sync, &rdev->flags)) |
| return "a"; |
| else |
| return "A"; |
| } |
| |
| /* Helper to return resync/reshape progress for @rs and @array_in_sync */ |
| static sector_t rs_get_progress(struct raid_set *rs, |
| sector_t resync_max_sectors, bool *array_in_sync) |
| { |
| sector_t r, recovery_cp, curr_resync_completed; |
| struct mddev *mddev = &rs->md; |
| |
| curr_resync_completed = mddev->curr_resync_completed ?: mddev->recovery_cp; |
| recovery_cp = mddev->recovery_cp; |
| *array_in_sync = false; |
| |
| if (rs_is_raid0(rs)) { |
| r = resync_max_sectors; |
| *array_in_sync = true; |
| |
| } else { |
| r = mddev->reshape_position; |
| |
| /* Reshape is relative to the array size */ |
| if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || |
| r != MaxSector) { |
| if (r == MaxSector) { |
| *array_in_sync = true; |
| r = resync_max_sectors; |
| } else { |
| /* Got to reverse on backward reshape */ |
| if (mddev->reshape_backwards) |
| r = mddev->array_sectors - r; |
| |
| /* Devide by # of data stripes */ |
| sector_div(r, mddev_data_stripes(rs)); |
| } |
| |
| /* Sync is relative to the component device size */ |
| } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) |
| r = curr_resync_completed; |
| else |
| r = recovery_cp; |
| |
| if (r == MaxSector) { |
| /* |
| * Sync complete. |
| */ |
| *array_in_sync = true; |
| r = resync_max_sectors; |
| } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { |
| /* |
| * If "check" or "repair" is occurring, the raid set has |
| * undergone an initial sync and the health characters |
| * should not be 'a' anymore. |
| */ |
| *array_in_sync = true; |
| } else { |
| struct md_rdev *rdev; |
| |
| /* |
| * The raid set may be doing an initial sync, or it may |
| * be rebuilding individual components. If all the |
| * devices are In_sync, then it is the raid set that is |
| * being initialized. |
| */ |
| rdev_for_each(rdev, mddev) |
| if (!test_bit(In_sync, &rdev->flags)) |
| *array_in_sync = true; |
| #if 0 |
| r = 0; /* HM FIXME: TESTME: https://bugzilla.redhat.com/show_bug.cgi?id=1210637 ? */ |
| #endif |
| } |
| } |
| |
| return r; |
| } |
| |
| /* Helper to return @dev name or "-" if !@dev */ |
| static const char *_get_dev_name(struct dm_dev *dev) |
| { |
| return dev ? dev->name : "-"; |
| } |
| |
| static void raid_status(struct dm_target *ti, status_type_t type, |
| unsigned int status_flags, char *result, unsigned int maxlen) |
| { |
| struct raid_set *rs = ti->private; |
| struct mddev *mddev = &rs->md; |
| struct r5conf *conf = mddev->private; |
| int max_nr_stripes = conf ? conf->max_nr_stripes : 0; |
| bool array_in_sync; |
| unsigned int raid_param_cnt = 1; /* at least 1 for chunksize */ |
| unsigned int sz = 0; |
| unsigned int write_mostly_params = 0; |
| sector_t progress, resync_max_sectors, resync_mismatches; |
| const char *sync_action; |
| struct raid_type *rt; |
| struct md_rdev *rdev; |
| |
| switch (type) { |
| case STATUSTYPE_INFO: |
| /* *Should* always succeed */ |
| rt = get_raid_type_by_ll(mddev->new_level, mddev->new_layout); |
| if (!rt) |
| return; |
| |
| DMEMIT("%s %d ", rt ? rt->name : "unknown", mddev->raid_disks); |
| |
| /* Access most recent mddev properties for status output */ |
| smp_rmb(); |
| /* Get sensible max sectors even if raid set not yet started */ |
| resync_max_sectors = _test_flag(RT_FLAG_RS_PRERESUMED, rs->runtime_flags) ? |
| mddev->resync_max_sectors : mddev->dev_sectors; |
| progress = rs_get_progress(rs, resync_max_sectors, &array_in_sync); |
| resync_mismatches = (mddev->last_sync_action && !strcasecmp(mddev->last_sync_action, "check")) ? |
| (unsigned int) atomic64_read(&mddev->resync_mismatches) : 0; |
| sync_action = decipher_sync_action(&rs->md); |
| |
| /* HM FIXME: do we want another state char for raid0? It shows 'D' or 'A' now */ |
| rdev_for_each(rdev, mddev) |
| DMEMIT(_raid_dev_status(rdev, array_in_sync)); |
| |
| /* |
| * In-sync/Reshape ratio: |
| * The in-sync ratio shows the progress of: |
| * - Initializing the raid set |
| * - Rebuilding a subset of devices of the raid set |
| * The user can distinguish between the two by referring |
| * to the status characters. |
| * |
| * The reshape ratio shows the progress of |
| * changing the raid layout or the number of |
| * disks of a raid set |
| */ |
| DMEMIT(" %llu/%llu", (unsigned long long) progress, |
| (unsigned long long) resync_max_sectors); |
| |
| /* |
| * v1.5.0+: |
| * |
| * Sync action: |
| * See Documentation/device-mapper/dm-raid.txt for |
| * information on each of these states. |
| */ |
| DMEMIT(" %s", sync_action); |
| |
| /* |
| * v1.5.0+: |
| * |
| * resync_mismatches/mismatch_cnt |
| * This field shows the number of discrepancies found when |
| * performing a "check" of the raid set. |
| */ |
| DMEMIT(" %llu", (unsigned long long) resync_mismatches); |
| |
| /* |
| * v1.9.0+: |
| * |
| * data_offset (needed for out of space reshaping) |
| * This field shows the data offset into the data |
| * image LV where the first stripes data starts. |
| * |
| * We keep data_offset equal on all raid disks of the set, |
| * so retrieving it from the first raid disk is sufficient. |
| */ |
| DMEMIT(" %llu", (unsigned long long) rs->dev[0].rdev.data_offset); |
| break; |
| |
| case STATUSTYPE_TABLE: |
| /* Report the table line string you would use to construct this raid set */ |
| |
| /* Calculate raid parameter count */ |
| rdev_for_each(rdev, mddev) |
| if (test_bit(WriteMostly, &rdev->flags)) |
| write_mostly_params += 2; |
| raid_param_cnt += memweight(rs->rebuild_disks, |
| DISKS_ARRAY_ELEMS * sizeof(*rs->rebuild_disks)) * 2 + |
| write_mostly_params + |
| hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_NO_ARGS) + |
| hweight32(rs->ctr_flags & CTR_FLAG_OPTIONS_ONE_ARG) * 2; |
| /* Emit table line */ |
| DMEMIT("%s %u %u", rs->raid_type->name, raid_param_cnt, mddev->new_chunk_sectors); |
| if (_test_flag(CTR_FLAG_RAID10_FORMAT, rs->ctr_flags)) |
| DMEMIT(" %s %s", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_FORMAT), |
| raid10_md_layout_to_format(mddev->layout)); |
| if (_test_flag(CTR_FLAG_RAID10_COPIES, rs->ctr_flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_RAID10_COPIES), |
| raid10_md_layout_to_copies(mddev->layout)); |
| if (_test_flag(CTR_FLAG_NOSYNC, rs->ctr_flags)) |
| DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_NOSYNC)); |
| if (_test_flag(CTR_FLAG_SYNC, rs->ctr_flags)) |
| DMEMIT(" %s", dm_raid_arg_name_by_flag(CTR_FLAG_SYNC)); |
| if (_test_flag(CTR_FLAG_REGION_SIZE, rs->ctr_flags)) |
| DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_REGION_SIZE), |
| (unsigned long long) to_sector(mddev->bitmap_info.chunksize)); |
| if (_test_flag(CTR_FLAG_DATA_OFFSET, rs->ctr_flags)) |
| DMEMIT(" %s %llu", dm_raid_arg_name_by_flag(CTR_FLAG_DATA_OFFSET), |
| (unsigned long long) rs->data_offset); |
| if (_test_flag(CTR_FLAG_DAEMON_SLEEP, rs->ctr_flags)) |
| DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_DAEMON_SLEEP), |
| mddev->bitmap_info.daemon_sleep); |
| if (_test_flag(CTR_FLAG_DELTA_DISKS, rs->ctr_flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_DELTA_DISKS), |
| mddev->delta_disks); |
| if (_test_flag(CTR_FLAG_STRIPE_CACHE, rs->ctr_flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_STRIPE_CACHE), |
| max_nr_stripes); |
| rdev_for_each(rdev, mddev) |
| if (test_bit(rdev->raid_disk, (void *) rs->rebuild_disks)) |
| DMEMIT(" %s %u", dm_raid_arg_name_by_flag(CTR_FLAG_REBUILD), |
| rdev->raid_disk); |
| rdev_for_each(rdev, mddev) |
| if (test_bit(WriteMostly, &rdev->flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_WRITE_MOSTLY), |
| rdev->raid_disk); |
| if (_test_flag(CTR_FLAG_MAX_WRITE_BEHIND, rs->ctr_flags)) |
| DMEMIT(" %s %lu", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_WRITE_BEHIND), |
| mddev->bitmap_info.max_write_behind); |
| if (_test_flag(CTR_FLAG_MAX_RECOVERY_RATE, rs->ctr_flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MAX_RECOVERY_RATE), |
| mddev->sync_speed_max); |
| if (_test_flag(CTR_FLAG_MIN_RECOVERY_RATE, rs->ctr_flags)) |
| DMEMIT(" %s %d", dm_raid_arg_name_by_flag(CTR_FLAG_MIN_RECOVERY_RATE), |
| mddev->sync_speed_min); |
| DMEMIT(" %d", rs->raid_disks); |
| rdev_for_each(rdev, mddev) { |
| struct raid_dev *rd = container_of(rdev, struct raid_dev, rdev); |
| |
| DMEMIT(" %s %s", _get_dev_name(rd->meta_dev), |
| _get_dev_name(rd->data_dev)); |
| } |
| } |
| } |
| |
| static int raid_message(struct dm_target *ti, unsigned argc, char **argv) |
| { |
| struct raid_set *rs = ti->private; |
| struct mddev *mddev = &rs->md; |
| |
| if (!strcasecmp(argv[0], "reshape")) { |
| DMERR("Reshape not supported."); |
| return -EINVAL; |
| } |
| |
| if (!mddev->pers || !mddev->pers->sync_request) |
| return -EINVAL; |
| |
| if (!strcasecmp(argv[0], "frozen")) |
| set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); |
| else |
| clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); |
| |
| if (!strcasecmp(argv[0], "idle") || !strcasecmp(argv[0], "frozen")) { |
| if (mddev->sync_thread) { |
| set_bit(MD_RECOVERY_INTR, &mddev->recovery); |
| md_reap_sync_thread(mddev); |
| } |
| } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || |
| test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) |
| return -EBUSY; |
| else if (!strcasecmp(argv[0], "resync")) |
| ; /* MD_RECOVERY_NEEDED set below */ |
| else if (!strcasecmp(argv[0], "recover")) |
| set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); |
| else { |
| if (!strcasecmp(argv[0], "check")) |
| set_bit(MD_RECOVERY_CHECK, &mddev->recovery); |
| else if (!!strcasecmp(argv[0], "repair")) |
| return -EINVAL; |
| set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); |
| set_bit(MD_RECOVERY_SYNC, &mddev->recovery); |
| } |
| if (mddev->ro == 2) { |
| /* A write to sync_action is enough to justify |
| * canceling read-auto mode |
| */ |
| mddev->ro = 0; |
| if (!mddev->suspended && mddev->sync_thread) |
| md_wakeup_thread(mddev->sync_thread); |
| } |
| set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); |
| if (!mddev->suspended && mddev->thread) |
| md_wakeup_thread(mddev->thread); |
| |
| return 0; |
| } |
| |
| static int raid_iterate_devices(struct dm_target *ti, |
| iterate_devices_callout_fn fn, void *data) |
| { |
| struct raid_set *rs = ti->private; |
| unsigned i; |
| int r = 0; |
| |
| for (i = 0; !r && i < rs->md.raid_disks; i++) |
| if (rs->dev[i].data_dev) |
| r = fn(ti, |
| rs->dev[i].data_dev, |
| 0, /* No offset on data devs */ |
| rs->md.dev_sectors, |
| data); |
| |
| return r; |
| } |
| |
| static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits) |
| { |
| struct raid_set *rs = ti->private; |
| unsigned chunk_size = rs->md.chunk_sectors << 9; |
| struct r5conf *conf = rs->md.private; |
| |
| blk_limits_io_min(limits, chunk_size); |
| blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded)); |
| } |
| |
| static void raid_presuspend(struct dm_target *ti) |
| { |
| struct raid_set *rs = ti->private; |
| |
| md_stop_writes(&rs->md); |
| } |
| |
| static void raid_postsuspend(struct dm_target *ti) |
| { |
| struct raid_set *rs = ti->private; |
| |
| mddev_suspend(&rs->md); |
| } |
| |
| static void attempt_restore_of_faulty_devices(struct raid_set *rs) |
| { |
| int i; |
| uint64_t failed_devices, cleared_failed_devices = 0; |
| unsigned long flags; |
| struct dm_raid_superblock *sb; |
| struct md_rdev *r; |
| |
| for (i = 0; i < rs->md.raid_disks; i++) { |
| r = &rs->dev[i].rdev; |
| if (test_bit(Faulty, &r->flags) && r->sb_page && |
| sync_page_io(r, 0, r->sb_size, r->sb_page, REQ_OP_READ, 0, |
| 1)) { |
| DMINFO("Faulty %s device #%d has readable super block." |
| " Attempting to revive it.", |
| rs->raid_type->name, i); |
| |
| /* |
| * Faulty bit may be set, but sometimes the array can |
| * be suspended before the personalities can respond |
| * by removing the device from the array (i.e. calling |
| * 'hot_remove_disk'). If they haven't yet removed |
| * the failed device, its 'raid_disk' number will be |
| * '>= 0' - meaning we must call this function |
| * ourselves. |
| */ |
| if ((r->raid_disk >= 0) && |
| (r->mddev->pers->hot_remove_disk(r->mddev, r) != 0)) |
| /* Failed to revive this device, try next */ |
| continue; |
| |
| r->raid_disk = i; |
| r->saved_raid_disk = i; |
| flags = r->flags; |
| clear_bit(Faulty, &r->flags); |
| clear_bit(WriteErrorSeen, &r->flags); |
| clear_bit(In_sync, &r->flags); |
| if (r->mddev->pers->hot_add_disk(r->mddev, r)) { |
| r->raid_disk = -1; |
| r->saved_raid_disk = -1; |
| r->flags = flags; |
| } else { |
| r->recovery_offset = 0; |
| cleared_failed_devices |= 1 << i; |
| } |
| } |
| } |
| if (cleared_failed_devices) { |
| rdev_for_each(r, &rs->md) { |
| sb = page_address(r->sb_page); |
| failed_devices = le64_to_cpu(sb->failed_devices); |
| failed_devices &= ~cleared_failed_devices; |
| sb->failed_devices = cpu_to_le64(failed_devices); |
| } |
| } |
| } |
| |
| /* Load the dirty region bitmap */ |
| static int _bitmap_load(struct raid_set *rs) |
| { |
| int r = 0; |
| |
| /* Try loading the bitmap unless "raid0", which does not have one */ |
| if (!rs_is_raid0(rs) && |
| !_test_and_set_flag(RT_FLAG_RS_BITMAP_LOADED, &rs->runtime_flags)) { |
| r = bitmap_load(&rs->md); |
| if (r) |
| DMERR("Failed to load bitmap"); |
| } |
| |
| return r; |
| } |
| |
| static int raid_preresume(struct dm_target *ti) |
| { |
| struct raid_set *rs = ti->private; |
| struct mddev *mddev = &rs->md; |
| |
| /* This is a resume after a suspend of the set -> it's already started */ |
| if (_test_and_set_flag(RT_FLAG_RS_PRERESUMED, &rs->runtime_flags)) |
| return 0; |
| |
| /* |
| * The superblocks need to be updated on disk if the |
| * array is new or _bitmap_load will overwrite them |
| * in core with old data. |
| * |
| * In case the array got modified (takeover/reshape/resize) |
| * or the data offsets on the component devices changed, they |
| * have to be updated as well. |
| * |
| * Have to switch to readwrite and back in order to |
| * allow for the superblock updates. |
| */ |
| if (_test_and_clear_flag(RT_FLAG_UPDATE_SBS, &rs->runtime_flags)) { |
| set_bit(MD_CHANGE_DEVS, &mddev->flags); |
| mddev->ro = 0; |
| md_update_sb(mddev, 1); |
| mddev->ro = 1; |
| } |
| |
| /* |
| * Disable/enable discard support on raid set after any |
| * conversion, because devices can have been added |
| */ |
| configure_discard_support(rs); |
| |
| /* Load the bitmap from disk unless raid0 */ |
| return _bitmap_load(rs); |
| } |
| |
| static void raid_resume(struct dm_target *ti) |
| { |
| struct raid_set *rs = ti->private; |
| struct mddev *mddev = &rs->md; |
| |
| if (_test_and_set_flag(RT_FLAG_RS_RESUMED, &rs->runtime_flags)) { |
| /* |
| * A secondary resume while the device is active. |
| * Take this opportunity to check whether any failed |
| * devices are reachable again. |
| */ |
| attempt_restore_of_faulty_devices(rs); |
| } |
| |
| mddev->ro = 0; |
| mddev->in_sync = 0; |
| clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); |
| |
| if (mddev->suspended) |
| mddev_resume(mddev); |
| } |
| |
| static struct target_type raid_target = { |
| .name = "raid", |
| .version = {1, 9, 0}, |
| .module = THIS_MODULE, |
| .ctr = raid_ctr, |
| .dtr = raid_dtr, |
| .map = raid_map, |
| .status = raid_status, |
| .message = raid_message, |
| .iterate_devices = raid_iterate_devices, |
| .io_hints = raid_io_hints, |
| .presuspend = raid_presuspend, |
| .postsuspend = raid_postsuspend, |
| .preresume = raid_preresume, |
| .resume = raid_resume, |
| }; |
| |
| static int __init dm_raid_init(void) |
| { |
| DMINFO("Loading target version %u.%u.%u", |
| raid_target.version[0], |
| raid_target.version[1], |
| raid_target.version[2]); |
| return dm_register_target(&raid_target); |
| } |
| |
| static void __exit dm_raid_exit(void) |
| { |
| dm_unregister_target(&raid_target); |
| } |
| |
| module_init(dm_raid_init); |
| module_exit(dm_raid_exit); |
| |
| module_param(devices_handle_discard_safely, bool, 0644); |
| MODULE_PARM_DESC(devices_handle_discard_safely, |
| "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); |
| |
| MODULE_DESCRIPTION(DM_NAME " raid0/1/10/4/5/6 target"); |
| MODULE_ALIAS("dm-raid0"); |
| MODULE_ALIAS("dm-raid1"); |
| MODULE_ALIAS("dm-raid10"); |
| MODULE_ALIAS("dm-raid4"); |
| MODULE_ALIAS("dm-raid5"); |
| MODULE_ALIAS("dm-raid6"); |
| MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>"); |
| MODULE_AUTHOR("Heinz Mauelshagen <dm-devel@redhat.com>"); |
| MODULE_LICENSE("GPL"); |