| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (c) 2015, 2017-2018, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/export.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/ktime.h> |
| #include <linux/pm_domain.h> |
| #include <linux/regmap.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/reset-controller.h> |
| #include <linux/slab.h> |
| #include "gdsc.h" |
| |
| #define PWR_ON_MASK BIT(31) |
| #define EN_REST_WAIT_MASK GENMASK_ULL(23, 20) |
| #define EN_FEW_WAIT_MASK GENMASK_ULL(19, 16) |
| #define CLK_DIS_WAIT_MASK GENMASK_ULL(15, 12) |
| #define SW_OVERRIDE_MASK BIT(2) |
| #define HW_CONTROL_MASK BIT(1) |
| #define SW_COLLAPSE_MASK BIT(0) |
| #define GMEM_CLAMP_IO_MASK BIT(0) |
| #define GMEM_RESET_MASK BIT(4) |
| |
| /* CFG_GDSCR */ |
| #define GDSC_POWER_UP_COMPLETE BIT(16) |
| #define GDSC_POWER_DOWN_COMPLETE BIT(15) |
| #define GDSC_RETAIN_FF_ENABLE BIT(11) |
| #define CFG_GDSCR_OFFSET 0x4 |
| |
| /* Wait 2^n CXO cycles between all states. Here, n=2 (4 cycles). */ |
| #define EN_REST_WAIT_VAL (0x2 << 20) |
| #define EN_FEW_WAIT_VAL (0x8 << 16) |
| #define CLK_DIS_WAIT_VAL (0x2 << 12) |
| |
| #define RETAIN_MEM BIT(14) |
| #define RETAIN_PERIPH BIT(13) |
| |
| #define TIMEOUT_US 500 |
| |
| #define domain_to_gdsc(domain) container_of(domain, struct gdsc, pd) |
| |
| enum gdsc_status { |
| GDSC_OFF, |
| GDSC_ON |
| }; |
| |
| /* Returns 1 if GDSC status is status, 0 if not, and < 0 on error */ |
| static int gdsc_check_status(struct gdsc *sc, enum gdsc_status status) |
| { |
| unsigned int reg; |
| u32 val; |
| int ret; |
| |
| if (sc->flags & POLL_CFG_GDSCR) |
| reg = sc->gdscr + CFG_GDSCR_OFFSET; |
| else if (sc->gds_hw_ctrl) |
| reg = sc->gds_hw_ctrl; |
| else |
| reg = sc->gdscr; |
| |
| ret = regmap_read(sc->regmap, reg, &val); |
| if (ret) |
| return ret; |
| |
| if (sc->flags & POLL_CFG_GDSCR) { |
| switch (status) { |
| case GDSC_ON: |
| return !!(val & GDSC_POWER_UP_COMPLETE); |
| case GDSC_OFF: |
| return !!(val & GDSC_POWER_DOWN_COMPLETE); |
| } |
| } |
| |
| switch (status) { |
| case GDSC_ON: |
| return !!(val & PWR_ON_MASK); |
| case GDSC_OFF: |
| return !(val & PWR_ON_MASK); |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int gdsc_hwctrl(struct gdsc *sc, bool en) |
| { |
| u32 val = en ? HW_CONTROL_MASK : 0; |
| |
| return regmap_update_bits(sc->regmap, sc->gdscr, HW_CONTROL_MASK, val); |
| } |
| |
| static int gdsc_poll_status(struct gdsc *sc, enum gdsc_status status) |
| { |
| ktime_t start; |
| |
| start = ktime_get(); |
| do { |
| if (gdsc_check_status(sc, status)) |
| return 0; |
| } while (ktime_us_delta(ktime_get(), start) < TIMEOUT_US); |
| |
| if (gdsc_check_status(sc, status)) |
| return 0; |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int gdsc_toggle_logic(struct gdsc *sc, enum gdsc_status status) |
| { |
| int ret; |
| u32 val = (status == GDSC_ON) ? 0 : SW_COLLAPSE_MASK; |
| |
| if (status == GDSC_ON && sc->rsupply) { |
| ret = regulator_enable(sc->rsupply); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = regmap_update_bits(sc->regmap, sc->gdscr, SW_COLLAPSE_MASK, val); |
| if (ret) |
| return ret; |
| |
| /* If disabling votable gdscs, don't poll on status */ |
| if ((sc->flags & VOTABLE) && status == GDSC_OFF) { |
| /* |
| * Add a short delay here to ensure that an enable |
| * right after it was disabled does not put it in an |
| * unknown state |
| */ |
| udelay(TIMEOUT_US); |
| return 0; |
| } |
| |
| if (sc->gds_hw_ctrl) { |
| /* |
| * The gds hw controller asserts/de-asserts the status bit soon |
| * after it receives a power on/off request from a master. |
| * The controller then takes around 8 xo cycles to start its |
| * internal state machine and update the status bit. During |
| * this time, the status bit does not reflect the true status |
| * of the core. |
| * Add a delay of 1 us between writing to the SW_COLLAPSE bit |
| * and polling the status bit. |
| */ |
| udelay(1); |
| } |
| |
| ret = gdsc_poll_status(sc, status); |
| WARN(ret, "%s status stuck at 'o%s'", sc->pd.name, status ? "ff" : "n"); |
| |
| if (!ret && status == GDSC_OFF && sc->rsupply) { |
| ret = regulator_disable(sc->rsupply); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static inline int gdsc_deassert_reset(struct gdsc *sc) |
| { |
| int i; |
| |
| for (i = 0; i < sc->reset_count; i++) |
| sc->rcdev->ops->deassert(sc->rcdev, sc->resets[i]); |
| return 0; |
| } |
| |
| static inline int gdsc_assert_reset(struct gdsc *sc) |
| { |
| int i; |
| |
| for (i = 0; i < sc->reset_count; i++) |
| sc->rcdev->ops->assert(sc->rcdev, sc->resets[i]); |
| return 0; |
| } |
| |
| static inline void gdsc_force_mem_on(struct gdsc *sc) |
| { |
| int i; |
| u32 mask = RETAIN_MEM; |
| |
| if (!(sc->flags & NO_RET_PERIPH)) |
| mask |= RETAIN_PERIPH; |
| |
| for (i = 0; i < sc->cxc_count; i++) |
| regmap_update_bits(sc->regmap, sc->cxcs[i], mask, mask); |
| } |
| |
| static inline void gdsc_clear_mem_on(struct gdsc *sc) |
| { |
| int i; |
| u32 mask = RETAIN_MEM; |
| |
| if (!(sc->flags & NO_RET_PERIPH)) |
| mask |= RETAIN_PERIPH; |
| |
| for (i = 0; i < sc->cxc_count; i++) |
| regmap_update_bits(sc->regmap, sc->cxcs[i], mask, 0); |
| } |
| |
| static inline void gdsc_deassert_clamp_io(struct gdsc *sc) |
| { |
| regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| GMEM_CLAMP_IO_MASK, 0); |
| } |
| |
| static inline void gdsc_assert_clamp_io(struct gdsc *sc) |
| { |
| regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| GMEM_CLAMP_IO_MASK, 1); |
| } |
| |
| static inline void gdsc_assert_reset_aon(struct gdsc *sc) |
| { |
| regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| GMEM_RESET_MASK, 1); |
| udelay(1); |
| regmap_update_bits(sc->regmap, sc->clamp_io_ctrl, |
| GMEM_RESET_MASK, 0); |
| } |
| |
| static void gdsc_retain_ff_on(struct gdsc *sc) |
| { |
| u32 mask = GDSC_RETAIN_FF_ENABLE; |
| |
| regmap_update_bits(sc->regmap, sc->gdscr, mask, mask); |
| } |
| |
| static int gdsc_enable(struct generic_pm_domain *domain) |
| { |
| struct gdsc *sc = domain_to_gdsc(domain); |
| int ret; |
| |
| if (sc->pwrsts == PWRSTS_ON) |
| return gdsc_deassert_reset(sc); |
| |
| if (sc->flags & SW_RESET) { |
| gdsc_assert_reset(sc); |
| udelay(1); |
| gdsc_deassert_reset(sc); |
| } |
| |
| if (sc->flags & CLAMP_IO) { |
| if (sc->flags & AON_RESET) |
| gdsc_assert_reset_aon(sc); |
| gdsc_deassert_clamp_io(sc); |
| } |
| |
| ret = gdsc_toggle_logic(sc, GDSC_ON); |
| if (ret) |
| return ret; |
| |
| if (sc->pwrsts & PWRSTS_OFF) |
| gdsc_force_mem_on(sc); |
| |
| /* |
| * If clocks to this power domain were already on, they will take an |
| * additional 4 clock cycles to re-enable after the power domain is |
| * enabled. Delay to account for this. A delay is also needed to ensure |
| * clocks are not enabled within 400ns of enabling power to the |
| * memories. |
| */ |
| udelay(1); |
| |
| /* Turn on HW trigger mode if supported */ |
| if (sc->flags & HW_CTRL) { |
| ret = gdsc_hwctrl(sc, true); |
| if (ret) |
| return ret; |
| /* |
| * Wait for the GDSC to go through a power down and |
| * up cycle. In case a firmware ends up polling status |
| * bits for the gdsc, it might read an 'on' status before |
| * the GDSC can finish the power cycle. |
| * We wait 1us before returning to ensure the firmware |
| * can't immediately poll the status bits. |
| */ |
| udelay(1); |
| } |
| |
| if (sc->flags & RETAIN_FF_ENABLE) |
| gdsc_retain_ff_on(sc); |
| |
| return 0; |
| } |
| |
| static int gdsc_disable(struct generic_pm_domain *domain) |
| { |
| struct gdsc *sc = domain_to_gdsc(domain); |
| int ret; |
| |
| if (sc->pwrsts == PWRSTS_ON) |
| return gdsc_assert_reset(sc); |
| |
| /* Turn off HW trigger mode if supported */ |
| if (sc->flags & HW_CTRL) { |
| ret = gdsc_hwctrl(sc, false); |
| if (ret < 0) |
| return ret; |
| /* |
| * Wait for the GDSC to go through a power down and |
| * up cycle. In case we end up polling status |
| * bits for the gdsc before the power cycle is completed |
| * it might read an 'on' status wrongly. |
| */ |
| udelay(1); |
| |
| ret = gdsc_poll_status(sc, GDSC_ON); |
| if (ret) |
| return ret; |
| } |
| |
| if (sc->pwrsts & PWRSTS_OFF) |
| gdsc_clear_mem_on(sc); |
| |
| ret = gdsc_toggle_logic(sc, GDSC_OFF); |
| if (ret) |
| return ret; |
| |
| if (sc->flags & CLAMP_IO) |
| gdsc_assert_clamp_io(sc); |
| |
| return 0; |
| } |
| |
| static int gdsc_init(struct gdsc *sc) |
| { |
| u32 mask, val; |
| int on, ret; |
| |
| /* |
| * Disable HW trigger: collapse/restore occur based on registers writes. |
| * Disable SW override: Use hardware state-machine for sequencing. |
| * Configure wait time between states. |
| */ |
| mask = HW_CONTROL_MASK | SW_OVERRIDE_MASK | |
| EN_REST_WAIT_MASK | EN_FEW_WAIT_MASK | CLK_DIS_WAIT_MASK; |
| val = EN_REST_WAIT_VAL | EN_FEW_WAIT_VAL | CLK_DIS_WAIT_VAL; |
| ret = regmap_update_bits(sc->regmap, sc->gdscr, mask, val); |
| if (ret) |
| return ret; |
| |
| /* Force gdsc ON if only ON state is supported */ |
| if (sc->pwrsts == PWRSTS_ON) { |
| ret = gdsc_toggle_logic(sc, GDSC_ON); |
| if (ret) |
| return ret; |
| } |
| |
| on = gdsc_check_status(sc, GDSC_ON); |
| if (on < 0) |
| return on; |
| |
| /* |
| * Votable GDSCs can be ON due to Vote from other masters. |
| * If a Votable GDSC is ON, make sure we have a Vote. |
| */ |
| if ((sc->flags & VOTABLE) && on) |
| gdsc_enable(&sc->pd); |
| |
| /* |
| * Make sure the retain bit is set if the GDSC is already on, otherwise |
| * we end up turning off the GDSC and destroying all the register |
| * contents that we thought we were saving. |
| */ |
| if ((sc->flags & RETAIN_FF_ENABLE) && on) |
| gdsc_retain_ff_on(sc); |
| |
| /* If ALWAYS_ON GDSCs are not ON, turn them ON */ |
| if (sc->flags & ALWAYS_ON) { |
| if (!on) |
| gdsc_enable(&sc->pd); |
| on = true; |
| sc->pd.flags |= GENPD_FLAG_ALWAYS_ON; |
| } |
| |
| if (on || (sc->pwrsts & PWRSTS_RET)) |
| gdsc_force_mem_on(sc); |
| else |
| gdsc_clear_mem_on(sc); |
| |
| if (!sc->pd.power_off) |
| sc->pd.power_off = gdsc_disable; |
| if (!sc->pd.power_on) |
| sc->pd.power_on = gdsc_enable; |
| pm_genpd_init(&sc->pd, NULL, !on); |
| |
| return 0; |
| } |
| |
| int gdsc_register(struct gdsc_desc *desc, |
| struct reset_controller_dev *rcdev, struct regmap *regmap) |
| { |
| int i, ret; |
| struct genpd_onecell_data *data; |
| struct device *dev = desc->dev; |
| struct gdsc **scs = desc->scs; |
| size_t num = desc->num; |
| |
| data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->domains = devm_kcalloc(dev, num, sizeof(*data->domains), |
| GFP_KERNEL); |
| if (!data->domains) |
| return -ENOMEM; |
| |
| for (i = 0; i < num; i++) { |
| if (!scs[i] || !scs[i]->supply) |
| continue; |
| |
| scs[i]->rsupply = devm_regulator_get(dev, scs[i]->supply); |
| if (IS_ERR(scs[i]->rsupply)) |
| return PTR_ERR(scs[i]->rsupply); |
| } |
| |
| data->num_domains = num; |
| for (i = 0; i < num; i++) { |
| if (!scs[i]) |
| continue; |
| scs[i]->regmap = regmap; |
| scs[i]->rcdev = rcdev; |
| ret = gdsc_init(scs[i]); |
| if (ret) |
| return ret; |
| data->domains[i] = &scs[i]->pd; |
| } |
| |
| /* Add subdomains */ |
| for (i = 0; i < num; i++) { |
| if (!scs[i]) |
| continue; |
| if (scs[i]->parent) |
| pm_genpd_add_subdomain(scs[i]->parent, &scs[i]->pd); |
| } |
| |
| return of_genpd_add_provider_onecell(dev->of_node, data); |
| } |
| |
| void gdsc_unregister(struct gdsc_desc *desc) |
| { |
| int i; |
| struct device *dev = desc->dev; |
| struct gdsc **scs = desc->scs; |
| size_t num = desc->num; |
| |
| /* Remove subdomains */ |
| for (i = 0; i < num; i++) { |
| if (!scs[i]) |
| continue; |
| if (scs[i]->parent) |
| pm_genpd_remove_subdomain(scs[i]->parent, &scs[i]->pd); |
| } |
| of_genpd_del_provider(dev->of_node); |
| } |
| |
| /* |
| * On SDM845+ the GPU GX domain is *almost* entirely controlled by the GMU |
| * running in the CX domain so the CPU doesn't need to know anything about the |
| * GX domain EXCEPT.... |
| * |
| * Hardware constraints dictate that the GX be powered down before the CX. If |
| * the GMU crashes it could leave the GX on. In order to successfully bring back |
| * the device the CPU needs to disable the GX headswitch. There being no sane |
| * way to reach in and touch that register from deep inside the GPU driver we |
| * need to set up the infrastructure to be able to ensure that the GPU can |
| * ensure that the GX is off during this super special case. We do this by |
| * defining a GX gdsc with a dummy enable function and a "default" disable |
| * function. |
| * |
| * This allows us to attach with genpd_dev_pm_attach_by_name() in the GPU |
| * driver. During power up, nothing will happen from the CPU (and the GMU will |
| * power up normally but during power down this will ensure that the GX domain |
| * is *really* off - this gives us a semi standard way of doing what we need. |
| */ |
| int gdsc_gx_do_nothing_enable(struct generic_pm_domain *domain) |
| { |
| /* Do nothing but give genpd the impression that we were successful */ |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(gdsc_gx_do_nothing_enable); |