| // SPDX-License-Identifier: GPL-2.0-only |
| |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <kvm/arm_vgic.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/kvm_asm.h> |
| |
| #include "vgic.h" |
| |
| static bool group0_trap; |
| static bool group1_trap; |
| static bool common_trap; |
| static bool gicv4_enable; |
| |
| void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| cpuif->vgic_hcr |= ICH_HCR_UIE; |
| } |
| |
| static bool lr_signals_eoi_mi(u64 lr_val) |
| { |
| return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && |
| !(lr_val & ICH_LR_HW); |
| } |
| |
| void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| int lr; |
| |
| DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); |
| |
| cpuif->vgic_hcr &= ~ICH_HCR_UIE; |
| |
| for (lr = 0; lr < vgic_cpu->used_lrs; lr++) { |
| u64 val = cpuif->vgic_lr[lr]; |
| u32 intid, cpuid; |
| struct vgic_irq *irq; |
| bool is_v2_sgi = false; |
| |
| cpuid = val & GICH_LR_PHYSID_CPUID; |
| cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; |
| |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| intid = val & ICH_LR_VIRTUAL_ID_MASK; |
| } else { |
| intid = val & GICH_LR_VIRTUALID; |
| is_v2_sgi = vgic_irq_is_sgi(intid); |
| } |
| |
| /* Notify fds when the guest EOI'ed a level-triggered IRQ */ |
| if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) |
| kvm_notify_acked_irq(vcpu->kvm, 0, |
| intid - VGIC_NR_PRIVATE_IRQS); |
| |
| irq = vgic_get_irq(vcpu->kvm, vcpu, intid); |
| if (!irq) /* An LPI could have been unmapped. */ |
| continue; |
| |
| raw_spin_lock(&irq->irq_lock); |
| |
| /* Always preserve the active bit */ |
| irq->active = !!(val & ICH_LR_ACTIVE_BIT); |
| |
| if (irq->active && is_v2_sgi) |
| irq->active_source = cpuid; |
| |
| /* Edge is the only case where we preserve the pending bit */ |
| if (irq->config == VGIC_CONFIG_EDGE && |
| (val & ICH_LR_PENDING_BIT)) { |
| irq->pending_latch = true; |
| |
| if (is_v2_sgi) |
| irq->source |= (1 << cpuid); |
| } |
| |
| /* |
| * Clear soft pending state when level irqs have been acked. |
| */ |
| if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) |
| irq->pending_latch = false; |
| |
| /* |
| * Level-triggered mapped IRQs are special because we only |
| * observe rising edges as input to the VGIC. |
| * |
| * If the guest never acked the interrupt we have to sample |
| * the physical line and set the line level, because the |
| * device state could have changed or we simply need to |
| * process the still pending interrupt later. |
| * |
| * If this causes us to lower the level, we have to also clear |
| * the physical active state, since we will otherwise never be |
| * told when the interrupt becomes asserted again. |
| */ |
| if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) { |
| irq->line_level = vgic_get_phys_line_level(irq); |
| |
| if (!irq->line_level) |
| vgic_irq_set_phys_active(irq, false); |
| } |
| |
| raw_spin_unlock(&irq->irq_lock); |
| vgic_put_irq(vcpu->kvm, irq); |
| } |
| |
| vgic_cpu->used_lrs = 0; |
| } |
| |
| /* Requires the irq to be locked already */ |
| void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) |
| { |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| u64 val = irq->intid; |
| bool allow_pending = true, is_v2_sgi; |
| |
| is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && |
| model == KVM_DEV_TYPE_ARM_VGIC_V2); |
| |
| if (irq->active) { |
| val |= ICH_LR_ACTIVE_BIT; |
| if (is_v2_sgi) |
| val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; |
| if (vgic_irq_is_multi_sgi(irq)) { |
| allow_pending = false; |
| val |= ICH_LR_EOI; |
| } |
| } |
| |
| if (irq->hw) { |
| val |= ICH_LR_HW; |
| val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; |
| /* |
| * Never set pending+active on a HW interrupt, as the |
| * pending state is kept at the physical distributor |
| * level. |
| */ |
| if (irq->active) |
| allow_pending = false; |
| } else { |
| if (irq->config == VGIC_CONFIG_LEVEL) { |
| val |= ICH_LR_EOI; |
| |
| /* |
| * Software resampling doesn't work very well |
| * if we allow P+A, so let's not do that. |
| */ |
| if (irq->active) |
| allow_pending = false; |
| } |
| } |
| |
| if (allow_pending && irq_is_pending(irq)) { |
| val |= ICH_LR_PENDING_BIT; |
| |
| if (irq->config == VGIC_CONFIG_EDGE) |
| irq->pending_latch = false; |
| |
| if (vgic_irq_is_sgi(irq->intid) && |
| model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| u32 src = ffs(irq->source); |
| |
| if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", |
| irq->intid)) |
| return; |
| |
| val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; |
| irq->source &= ~(1 << (src - 1)); |
| if (irq->source) { |
| irq->pending_latch = true; |
| val |= ICH_LR_EOI; |
| } |
| } |
| } |
| |
| /* |
| * Level-triggered mapped IRQs are special because we only observe |
| * rising edges as input to the VGIC. We therefore lower the line |
| * level here, so that we can take new virtual IRQs. See |
| * vgic_v3_fold_lr_state for more info. |
| */ |
| if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) |
| irq->line_level = false; |
| |
| if (irq->group) |
| val |= ICH_LR_GROUP; |
| |
| val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; |
| |
| vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; |
| } |
| |
| void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) |
| { |
| vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; |
| } |
| |
| void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| u32 vmcr; |
| |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & |
| ICH_VMCR_ACK_CTL_MASK; |
| vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & |
| ICH_VMCR_FIQ_EN_MASK; |
| } else { |
| /* |
| * When emulating GICv3 on GICv3 with SRE=1 on the |
| * VFIQEn bit is RES1 and the VAckCtl bit is RES0. |
| */ |
| vmcr = ICH_VMCR_FIQ_EN_MASK; |
| } |
| |
| vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; |
| vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; |
| vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; |
| vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; |
| vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; |
| vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; |
| vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; |
| |
| cpu_if->vgic_vmcr = vmcr; |
| } |
| |
| void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| u32 vmcr; |
| |
| vmcr = cpu_if->vgic_vmcr; |
| |
| if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> |
| ICH_VMCR_ACK_CTL_SHIFT; |
| vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> |
| ICH_VMCR_FIQ_EN_SHIFT; |
| } else { |
| /* |
| * When emulating GICv3 on GICv3 with SRE=1 on the |
| * VFIQEn bit is RES1 and the VAckCtl bit is RES0. |
| */ |
| vmcrp->fiqen = 1; |
| vmcrp->ackctl = 0; |
| } |
| |
| vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; |
| vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; |
| vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; |
| vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; |
| vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; |
| vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; |
| vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; |
| } |
| |
| #define INITIAL_PENDBASER_VALUE \ |
| (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ |
| GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ |
| GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) |
| |
| void vgic_v3_enable(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| /* |
| * By forcing VMCR to zero, the GIC will restore the binary |
| * points to their reset values. Anything else resets to zero |
| * anyway. |
| */ |
| vgic_v3->vgic_vmcr = 0; |
| |
| /* |
| * If we are emulating a GICv3, we do it in an non-GICv2-compatible |
| * way, so we force SRE to 1 to demonstrate this to the guest. |
| * Also, we don't support any form of IRQ/FIQ bypass. |
| * This goes with the spec allowing the value to be RAO/WI. |
| */ |
| if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | |
| ICC_SRE_EL1_DFB | |
| ICC_SRE_EL1_SRE); |
| vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; |
| } else { |
| vgic_v3->vgic_sre = 0; |
| } |
| |
| vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & |
| ICH_VTR_ID_BITS_MASK) >> |
| ICH_VTR_ID_BITS_SHIFT; |
| vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & |
| ICH_VTR_PRI_BITS_MASK) >> |
| ICH_VTR_PRI_BITS_SHIFT) + 1; |
| |
| /* Get the show on the road... */ |
| vgic_v3->vgic_hcr = ICH_HCR_EN; |
| if (group0_trap) |
| vgic_v3->vgic_hcr |= ICH_HCR_TALL0; |
| if (group1_trap) |
| vgic_v3->vgic_hcr |= ICH_HCR_TALL1; |
| if (common_trap) |
| vgic_v3->vgic_hcr |= ICH_HCR_TC; |
| } |
| |
| int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) |
| { |
| struct kvm_vcpu *vcpu; |
| int byte_offset, bit_nr; |
| gpa_t pendbase, ptr; |
| bool status; |
| u8 val; |
| int ret; |
| unsigned long flags; |
| |
| retry: |
| vcpu = irq->target_vcpu; |
| if (!vcpu) |
| return 0; |
| |
| pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| |
| byte_offset = irq->intid / BITS_PER_BYTE; |
| bit_nr = irq->intid % BITS_PER_BYTE; |
| ptr = pendbase + byte_offset; |
| |
| ret = kvm_read_guest_lock(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| |
| status = val & (1 << bit_nr); |
| |
| raw_spin_lock_irqsave(&irq->irq_lock, flags); |
| if (irq->target_vcpu != vcpu) { |
| raw_spin_unlock_irqrestore(&irq->irq_lock, flags); |
| goto retry; |
| } |
| irq->pending_latch = status; |
| vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| |
| if (status) { |
| /* clear consumed data */ |
| val &= ~(1 << bit_nr); |
| ret = kvm_write_guest_lock(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * vgic_v3_save_pending_tables - Save the pending tables into guest RAM |
| * kvm lock and all vcpu lock must be held |
| */ |
| int vgic_v3_save_pending_tables(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| int last_byte_offset = -1; |
| struct vgic_irq *irq; |
| int ret; |
| u8 val; |
| |
| list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { |
| int byte_offset, bit_nr; |
| struct kvm_vcpu *vcpu; |
| gpa_t pendbase, ptr; |
| bool stored; |
| |
| vcpu = irq->target_vcpu; |
| if (!vcpu) |
| continue; |
| |
| pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| |
| byte_offset = irq->intid / BITS_PER_BYTE; |
| bit_nr = irq->intid % BITS_PER_BYTE; |
| ptr = pendbase + byte_offset; |
| |
| if (byte_offset != last_byte_offset) { |
| ret = kvm_read_guest_lock(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| last_byte_offset = byte_offset; |
| } |
| |
| stored = val & (1U << bit_nr); |
| if (stored == irq->pending_latch) |
| continue; |
| |
| if (irq->pending_latch) |
| val |= 1 << bit_nr; |
| else |
| val &= ~(1 << bit_nr); |
| |
| ret = kvm_write_guest_lock(kvm, ptr, &val, 1); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * vgic_v3_rdist_overlap - check if a region overlaps with any |
| * existing redistributor region |
| * |
| * @kvm: kvm handle |
| * @base: base of the region |
| * @size: size of region |
| * |
| * Return: true if there is an overlap |
| */ |
| bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) |
| { |
| struct vgic_dist *d = &kvm->arch.vgic; |
| struct vgic_redist_region *rdreg; |
| |
| list_for_each_entry(rdreg, &d->rd_regions, list) { |
| if ((base + size > rdreg->base) && |
| (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Check for overlapping regions and for regions crossing the end of memory |
| * for base addresses which have already been set. |
| */ |
| bool vgic_v3_check_base(struct kvm *kvm) |
| { |
| struct vgic_dist *d = &kvm->arch.vgic; |
| struct vgic_redist_region *rdreg; |
| |
| if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && |
| d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) |
| return false; |
| |
| list_for_each_entry(rdreg, &d->rd_regions, list) { |
| if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) < |
| rdreg->base) |
| return false; |
| } |
| |
| if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) |
| return true; |
| |
| return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, |
| KVM_VGIC_V3_DIST_SIZE); |
| } |
| |
| /** |
| * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one |
| * which has free space to put a new rdist region. |
| * |
| * @rd_regions: redistributor region list head |
| * |
| * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). |
| * Stride between redistributors is 0 and regions are filled in the index order. |
| * |
| * Return: the redist region handle, if any, that has space to map a new rdist |
| * region. |
| */ |
| struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) |
| { |
| struct vgic_redist_region *rdreg; |
| |
| list_for_each_entry(rdreg, rd_regions, list) { |
| if (!vgic_v3_redist_region_full(rdreg)) |
| return rdreg; |
| } |
| return NULL; |
| } |
| |
| struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, |
| u32 index) |
| { |
| struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; |
| struct vgic_redist_region *rdreg; |
| |
| list_for_each_entry(rdreg, rd_regions, list) { |
| if (rdreg->index == index) |
| return rdreg; |
| } |
| return NULL; |
| } |
| |
| |
| int vgic_v3_map_resources(struct kvm *kvm) |
| { |
| struct vgic_dist *dist = &kvm->arch.vgic; |
| struct kvm_vcpu *vcpu; |
| int ret = 0; |
| int c; |
| |
| if (vgic_ready(kvm)) |
| goto out; |
| |
| kvm_for_each_vcpu(c, vcpu, kvm) { |
| struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| |
| if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { |
| kvm_debug("vcpu %d redistributor base not set\n", c); |
| ret = -ENXIO; |
| goto out; |
| } |
| } |
| |
| if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { |
| kvm_err("Need to set vgic distributor addresses first\n"); |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| if (!vgic_v3_check_base(kvm)) { |
| kvm_err("VGIC redist and dist frames overlap\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * For a VGICv3 we require the userland to explicitly initialize |
| * the VGIC before we need to use it. |
| */ |
| if (!vgic_initialized(kvm)) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); |
| if (ret) { |
| kvm_err("Unable to register VGICv3 dist MMIO regions\n"); |
| goto out; |
| } |
| |
| dist->ready = true; |
| |
| out: |
| return ret; |
| } |
| |
| DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); |
| |
| static int __init early_group0_trap_cfg(char *buf) |
| { |
| return strtobool(buf, &group0_trap); |
| } |
| early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); |
| |
| static int __init early_group1_trap_cfg(char *buf) |
| { |
| return strtobool(buf, &group1_trap); |
| } |
| early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); |
| |
| static int __init early_common_trap_cfg(char *buf) |
| { |
| return strtobool(buf, &common_trap); |
| } |
| early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); |
| |
| static int __init early_gicv4_enable(char *buf) |
| { |
| return strtobool(buf, &gicv4_enable); |
| } |
| early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); |
| |
| /** |
| * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller |
| * @info: pointer to the GIC description |
| * |
| * Returns 0 if the VGICv3 has been probed successfully, returns an error code |
| * otherwise |
| */ |
| int vgic_v3_probe(const struct gic_kvm_info *info) |
| { |
| u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2); |
| int ret; |
| |
| /* |
| * The ListRegs field is 5 bits, but there is a architectural |
| * maximum of 16 list registers. Just ignore bit 4... |
| */ |
| kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; |
| kvm_vgic_global_state.can_emulate_gicv2 = false; |
| kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; |
| |
| /* GICv4 support? */ |
| if (info->has_v4) { |
| kvm_vgic_global_state.has_gicv4 = gicv4_enable; |
| kvm_info("GICv4 support %sabled\n", |
| gicv4_enable ? "en" : "dis"); |
| } |
| |
| if (!info->vcpu.start) { |
| kvm_info("GICv3: no GICV resource entry\n"); |
| kvm_vgic_global_state.vcpu_base = 0; |
| } else if (!PAGE_ALIGNED(info->vcpu.start)) { |
| pr_warn("GICV physical address 0x%llx not page aligned\n", |
| (unsigned long long)info->vcpu.start); |
| kvm_vgic_global_state.vcpu_base = 0; |
| } else { |
| kvm_vgic_global_state.vcpu_base = info->vcpu.start; |
| kvm_vgic_global_state.can_emulate_gicv2 = true; |
| ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); |
| if (ret) { |
| kvm_err("Cannot register GICv2 KVM device.\n"); |
| return ret; |
| } |
| kvm_info("vgic-v2@%llx\n", info->vcpu.start); |
| } |
| ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); |
| if (ret) { |
| kvm_err("Cannot register GICv3 KVM device.\n"); |
| kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); |
| return ret; |
| } |
| |
| if (kvm_vgic_global_state.vcpu_base == 0) |
| kvm_info("disabling GICv2 emulation\n"); |
| |
| #ifdef CONFIG_ARM64 |
| if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { |
| group0_trap = true; |
| group1_trap = true; |
| } |
| #endif |
| |
| if (group0_trap || group1_trap || common_trap) { |
| kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", |
| group0_trap ? "G0" : "", |
| group1_trap ? "G1" : "", |
| common_trap ? "C" : ""); |
| static_branch_enable(&vgic_v3_cpuif_trap); |
| } |
| |
| kvm_vgic_global_state.vctrl_base = NULL; |
| kvm_vgic_global_state.type = VGIC_V3; |
| kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; |
| |
| return 0; |
| } |
| |
| void vgic_v3_load(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| /* |
| * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen |
| * is dependent on ICC_SRE_EL1.SRE, and we have to perform the |
| * VMCR_EL2 save/restore in the world switch. |
| */ |
| if (likely(cpu_if->vgic_sre)) |
| kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); |
| |
| kvm_call_hyp(__vgic_v3_restore_aprs, vcpu); |
| |
| if (has_vhe()) |
| __vgic_v3_activate_traps(vcpu); |
| |
| WARN_ON(vgic_v4_load(vcpu)); |
| } |
| |
| void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) |
| { |
| struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| |
| if (likely(cpu_if->vgic_sre)) |
| cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); |
| } |
| |
| void vgic_v3_put(struct kvm_vcpu *vcpu) |
| { |
| WARN_ON(vgic_v4_put(vcpu, false)); |
| |
| vgic_v3_vmcr_sync(vcpu); |
| |
| kvm_call_hyp(__vgic_v3_save_aprs, vcpu); |
| |
| if (has_vhe()) |
| __vgic_v3_deactivate_traps(vcpu); |
| } |