blob: 7e9c835f9ae014911aea8e93c69cf2d26b682da6 [file] [log] [blame]
/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *);
};
#define I8XX_DOT_MIN 25000
#define I8XX_DOT_MAX 350000
#define I8XX_VCO_MIN 930000
#define I8XX_VCO_MAX 1400000
#define I8XX_N_MIN 3
#define I8XX_N_MAX 16
#define I8XX_M_MIN 96
#define I8XX_M_MAX 140
#define I8XX_M1_MIN 18
#define I8XX_M1_MAX 26
#define I8XX_M2_MIN 6
#define I8XX_M2_MAX 16
#define I8XX_P_MIN 4
#define I8XX_P_MAX 128
#define I8XX_P1_MIN 2
#define I8XX_P1_MAX 33
#define I8XX_P1_LVDS_MIN 1
#define I8XX_P1_LVDS_MAX 6
#define I8XX_P2_SLOW 4
#define I8XX_P2_FAST 2
#define I8XX_P2_LVDS_SLOW 14
#define I8XX_P2_LVDS_FAST 7
#define I8XX_P2_SLOW_LIMIT 165000
#define I9XX_DOT_MIN 20000
#define I9XX_DOT_MAX 400000
#define I9XX_VCO_MIN 1400000
#define I9XX_VCO_MAX 2800000
#define PINEVIEW_VCO_MIN 1700000
#define PINEVIEW_VCO_MAX 3500000
#define I9XX_N_MIN 1
#define I9XX_N_MAX 6
/* Pineview's Ncounter is a ring counter */
#define PINEVIEW_N_MIN 3
#define PINEVIEW_N_MAX 6
#define I9XX_M_MIN 70
#define I9XX_M_MAX 120
#define PINEVIEW_M_MIN 2
#define PINEVIEW_M_MAX 256
#define I9XX_M1_MIN 10
#define I9XX_M1_MAX 22
#define I9XX_M2_MIN 5
#define I9XX_M2_MAX 9
/* Pineview M1 is reserved, and must be 0 */
#define PINEVIEW_M1_MIN 0
#define PINEVIEW_M1_MAX 0
#define PINEVIEW_M2_MIN 0
#define PINEVIEW_M2_MAX 254
#define I9XX_P_SDVO_DAC_MIN 5
#define I9XX_P_SDVO_DAC_MAX 80
#define I9XX_P_LVDS_MIN 7
#define I9XX_P_LVDS_MAX 98
#define PINEVIEW_P_LVDS_MIN 7
#define PINEVIEW_P_LVDS_MAX 112
#define I9XX_P1_MIN 1
#define I9XX_P1_MAX 8
#define I9XX_P2_SDVO_DAC_SLOW 10
#define I9XX_P2_SDVO_DAC_FAST 5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
#define I9XX_P2_LVDS_SLOW 14
#define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
/*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN 25000
#define G4X_DOT_SDVO_MAX 270000
#define G4X_VCO_MIN 1750000
#define G4X_VCO_MAX 3500000
#define G4X_N_SDVO_MIN 1
#define G4X_N_SDVO_MAX 4
#define G4X_M_SDVO_MIN 104
#define G4X_M_SDVO_MAX 138
#define G4X_M1_SDVO_MIN 17
#define G4X_M1_SDVO_MAX 23
#define G4X_M2_SDVO_MIN 5
#define G4X_M2_SDVO_MAX 11
#define G4X_P_SDVO_MIN 10
#define G4X_P_SDVO_MAX 30
#define G4X_P1_SDVO_MIN 1
#define G4X_P1_SDVO_MAX 3
#define G4X_P2_SDVO_SLOW 10
#define G4X_P2_SDVO_FAST 10
#define G4X_P2_SDVO_LIMIT 270000
/*The parameter is for HDMI_DAC on G4x platform*/
#define G4X_DOT_HDMI_DAC_MIN 22000
#define G4X_DOT_HDMI_DAC_MAX 400000
#define G4X_N_HDMI_DAC_MIN 1
#define G4X_N_HDMI_DAC_MAX 4
#define G4X_M_HDMI_DAC_MIN 104
#define G4X_M_HDMI_DAC_MAX 138
#define G4X_M1_HDMI_DAC_MIN 16
#define G4X_M1_HDMI_DAC_MAX 23
#define G4X_M2_HDMI_DAC_MIN 5
#define G4X_M2_HDMI_DAC_MAX 11
#define G4X_P_HDMI_DAC_MIN 5
#define G4X_P_HDMI_DAC_MAX 80
#define G4X_P1_HDMI_DAC_MIN 1
#define G4X_P1_HDMI_DAC_MAX 8
#define G4X_P2_HDMI_DAC_SLOW 10
#define G4X_P2_HDMI_DAC_FAST 5
#define G4X_P2_HDMI_DAC_LIMIT 165000
/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN 161670
#define G4X_DOT_DISPLAY_PORT_MAX 227000
#define G4X_N_DISPLAY_PORT_MIN 1
#define G4X_N_DISPLAY_PORT_MAX 2
#define G4X_M_DISPLAY_PORT_MIN 97
#define G4X_M_DISPLAY_PORT_MAX 108
#define G4X_M1_DISPLAY_PORT_MIN 0x10
#define G4X_M1_DISPLAY_PORT_MAX 0x12
#define G4X_M2_DISPLAY_PORT_MIN 0x05
#define G4X_M2_DISPLAY_PORT_MAX 0x06
#define G4X_P_DISPLAY_PORT_MIN 10
#define G4X_P_DISPLAY_PORT_MAX 20
#define G4X_P1_DISPLAY_PORT_MIN 1
#define G4X_P1_DISPLAY_PORT_MAX 2
#define G4X_P2_DISPLAY_PORT_SLOW 10
#define G4X_P2_DISPLAY_PORT_FAST 10
#define G4X_P2_DISPLAY_PORT_LIMIT 0
/* Ironlake */
/* as we calculate clock using (register_value + 2) for
N/M1/M2, so here the range value for them is (actual_value-2).
*/
#define IRONLAKE_DOT_MIN 25000
#define IRONLAKE_DOT_MAX 350000
#define IRONLAKE_VCO_MIN 1760000
#define IRONLAKE_VCO_MAX 3510000
#define IRONLAKE_M1_MIN 12
#define IRONLAKE_M1_MAX 22
#define IRONLAKE_M2_MIN 5
#define IRONLAKE_M2_MAX 9
#define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
/* We have parameter ranges for different type of outputs. */
/* DAC & HDMI Refclk 120Mhz */
#define IRONLAKE_DAC_N_MIN 1
#define IRONLAKE_DAC_N_MAX 5
#define IRONLAKE_DAC_M_MIN 79
#define IRONLAKE_DAC_M_MAX 127
#define IRONLAKE_DAC_P_MIN 5
#define IRONLAKE_DAC_P_MAX 80
#define IRONLAKE_DAC_P1_MIN 1
#define IRONLAKE_DAC_P1_MAX 8
#define IRONLAKE_DAC_P2_SLOW 10
#define IRONLAKE_DAC_P2_FAST 5
/* LVDS single-channel 120Mhz refclk */
#define IRONLAKE_LVDS_S_N_MIN 1
#define IRONLAKE_LVDS_S_N_MAX 3
#define IRONLAKE_LVDS_S_M_MIN 79
#define IRONLAKE_LVDS_S_M_MAX 118
#define IRONLAKE_LVDS_S_P_MIN 28
#define IRONLAKE_LVDS_S_P_MAX 112
#define IRONLAKE_LVDS_S_P1_MIN 2
#define IRONLAKE_LVDS_S_P1_MAX 8
#define IRONLAKE_LVDS_S_P2_SLOW 14
#define IRONLAKE_LVDS_S_P2_FAST 14
/* LVDS dual-channel 120Mhz refclk */
#define IRONLAKE_LVDS_D_N_MIN 1
#define IRONLAKE_LVDS_D_N_MAX 3
#define IRONLAKE_LVDS_D_M_MIN 79
#define IRONLAKE_LVDS_D_M_MAX 127
#define IRONLAKE_LVDS_D_P_MIN 14
#define IRONLAKE_LVDS_D_P_MAX 56
#define IRONLAKE_LVDS_D_P1_MIN 2
#define IRONLAKE_LVDS_D_P1_MAX 8
#define IRONLAKE_LVDS_D_P2_SLOW 7
#define IRONLAKE_LVDS_D_P2_FAST 7
/* LVDS single-channel 100Mhz refclk */
#define IRONLAKE_LVDS_S_SSC_N_MIN 1
#define IRONLAKE_LVDS_S_SSC_N_MAX 2
#define IRONLAKE_LVDS_S_SSC_M_MIN 79
#define IRONLAKE_LVDS_S_SSC_M_MAX 126
#define IRONLAKE_LVDS_S_SSC_P_MIN 28
#define IRONLAKE_LVDS_S_SSC_P_MAX 112
#define IRONLAKE_LVDS_S_SSC_P1_MIN 2
#define IRONLAKE_LVDS_S_SSC_P1_MAX 8
#define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
#define IRONLAKE_LVDS_S_SSC_P2_FAST 14
/* LVDS dual-channel 100Mhz refclk */
#define IRONLAKE_LVDS_D_SSC_N_MIN 1
#define IRONLAKE_LVDS_D_SSC_N_MAX 3
#define IRONLAKE_LVDS_D_SSC_M_MIN 79
#define IRONLAKE_LVDS_D_SSC_M_MAX 126
#define IRONLAKE_LVDS_D_SSC_P_MIN 14
#define IRONLAKE_LVDS_D_SSC_P_MAX 42
#define IRONLAKE_LVDS_D_SSC_P1_MIN 2
#define IRONLAKE_LVDS_D_SSC_P1_MAX 6
#define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
#define IRONLAKE_LVDS_D_SSC_P2_FAST 7
/* DisplayPort */
#define IRONLAKE_DP_N_MIN 1
#define IRONLAKE_DP_N_MAX 2
#define IRONLAKE_DP_M_MIN 81
#define IRONLAKE_DP_M_MAX 90
#define IRONLAKE_DP_P_MIN 10
#define IRONLAKE_DP_P_MAX 20
#define IRONLAKE_DP_P2_FAST 10
#define IRONLAKE_DP_P2_SLOW 10
#define IRONLAKE_DP_P2_LIMIT 0
#define IRONLAKE_DP_P1_MIN 1
#define IRONLAKE_DP_P1_MAX 2
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
/* below parameter and function is for G4X Chipset Family*/
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
.m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
.m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
.m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
.p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
.p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
.p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
.p2_slow = G4X_P2_SDVO_SLOW,
.p2_fast = G4X_P2_SDVO_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
.m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
.m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
.m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
.p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
.p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
.p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
.p2_slow = G4X_P2_HDMI_DAC_SLOW,
.p2_fast = G4X_P2_HDMI_DAC_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
.max = G4X_DOT_DISPLAY_PORT_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX},
.n = { .min = G4X_N_DISPLAY_PORT_MIN,
.max = G4X_N_DISPLAY_PORT_MAX },
.m = { .min = G4X_M_DISPLAY_PORT_MIN,
.max = G4X_M_DISPLAY_PORT_MAX },
.m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
.max = G4X_M1_DISPLAY_PORT_MAX },
.m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
.max = G4X_M2_DISPLAY_PORT_MAX },
.p = { .min = G4X_P_DISPLAY_PORT_MIN,
.max = G4X_P_DISPLAY_PORT_MAX },
.p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
.max = G4X_P1_DISPLAY_PORT_MAX},
.p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
.p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
.p2_fast = G4X_P2_DISPLAY_PORT_FAST },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
.n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
.m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
.m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
.m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
.p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* Pineview only supports single-channel mode. */
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
.m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
.p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_DAC_P2_SLOW,
.p2_fast = IRONLAKE_DAC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
.m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_S_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
.m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_D_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
.m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
.n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
.m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
.p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
.p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
.p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
.p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_display_port = {
.dot = { .min = IRONLAKE_DOT_MIN,
.max = IRONLAKE_DOT_MAX },
.vco = { .min = IRONLAKE_VCO_MIN,
.max = IRONLAKE_VCO_MAX},
.n = { .min = IRONLAKE_DP_N_MIN,
.max = IRONLAKE_DP_N_MAX },
.m = { .min = IRONLAKE_DP_M_MIN,
.max = IRONLAKE_DP_M_MAX },
.m1 = { .min = IRONLAKE_M1_MIN,
.max = IRONLAKE_M1_MAX },
.m2 = { .min = IRONLAKE_M2_MIN,
.max = IRONLAKE_M2_MAX },
.p = { .min = IRONLAKE_DP_P_MIN,
.max = IRONLAKE_DP_P_MAX },
.p1 = { .min = IRONLAKE_DP_P1_MIN,
.max = IRONLAKE_DP_P1_MAX},
.p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
.p2_slow = IRONLAKE_DP_P2_SLOW,
.p2_fast = IRONLAKE_DP_P2_FAST },
.find_pll = intel_find_pll_ironlake_dp,
};
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
int refclk = 120;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
refclk = 100;
if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP) {
/* LVDS dual channel */
if (refclk == 100)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
HAS_eDP)
limit = &intel_limits_ironlake_display_port;
else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (IS_IRONLAKE(dev))
limit = intel_ironlake_limit(crtc);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_PINEVIEW(dev)) {
pineview_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder &&
l_entry->encoder->crtc == crtc) {
struct intel_output *intel_output = to_intel_output(l_entry);
if (intel_output->type == type)
return true;
}
}
return false;
}
struct drm_connector *
intel_pipe_get_output (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry, *ret = NULL;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder &&
l_entry->encoder->crtc == crtc) {
ret = l_entry;
break;
}
}
return ret;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
{
const intel_limit_t *limit = intel_limit (crtc);
struct drm_device *dev = crtc->dev;
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid ("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid ("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid ("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid ("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
INTELPllInvalid ("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid ("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid ("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid ("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid ("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS)) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset (best_clock, 0, sizeof (*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in Pineview */
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00488 */
int err_most = (target >> 8) + (target >> 10);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
int lvds_reg;
if (IS_IRONLAKE(dev))
lvds_reg = PCH_LVDS;
else
lvds_reg = LVDS;
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requriment prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirment prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target) ;
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
/* return directly when it is eDP */
if (HAS_eDP)
return true;
if (target < 200000) {
clock.n = 1;
clock.p1 = 2;
clock.p2 = 10;
clock.m1 = 12;
clock.m2 = 9;
} else {
clock.n = 2;
clock.p1 = 1;
clock.p2 = 10;
clock.m1 = 14;
clock.m2 = 8;
}
intel_clock(dev, refclk, &clock);
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
clock.vco = 0;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
void
intel_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
msleep(20);
}
/* Parameters have changed, update FBC info */
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane, i;
u32 fbc_ctl, fbc_ctl2;
dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
if (fb->pitch < dev_priv->cfb_pitch)
dev_priv->cfb_pitch = fb->pitch;
/* FBC_CTL wants 64B units */
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
dev_priv->cfb_fence = obj_priv->fence_reg;
dev_priv->cfb_plane = intel_crtc->plane;
plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
if (obj_priv->tiling_mode != I915_TILING_NONE)
fbc_ctl2 |= FBC_CTL_CPU_FENCE;
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
/* enable it... */
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
if (obj_priv->tiling_mode != I915_TILING_NONE)
fbc_ctl |= dev_priv->cfb_fence;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
}
void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
if (!I915_HAS_FBC(dev))
return;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
; /* nothing */
intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("disabled FBC\n");
}
static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
DPFC_CTL_PLANEB);
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
dev_priv->cfb_fence = obj_priv->fence_reg;
dev_priv->cfb_plane = intel_crtc->plane;
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
if (obj_priv->tiling_mode != I915_TILING_NONE) {
dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
} else {
I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
}
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
/* enable it... */
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
intel_wait_for_vblank(dev);
DRM_DEBUG_KMS("disabled FBC\n");
}
static bool g4x_fbc_enabled(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
/**
* intel_update_fbc - enable/disable FBC as needed
* @crtc: CRTC to point the compressor at
* @mode: mode in use
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= 2048 in width, 1536 in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
static void intel_update_fbc(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane;
if (!i915_powersave)
return;
if (!dev_priv->display.fbc_enabled ||
!dev_priv->display.enable_fbc ||
!dev_priv->display.disable_fbc)
return;
if (!crtc->fb)
return;
intel_fb = to_intel_framebuffer(fb);
obj_priv = intel_fb->obj->driver_private;
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
if (intel_fb->obj->size > dev_priv->cfb_size) {
DRM_DEBUG_KMS("framebuffer too large, disabling "
"compression\n");
goto out_disable;
}
if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
goto out_disable;
}
if ((mode->hdisplay > 2048) ||
(mode->vdisplay > 1536)) {
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
goto out_disable;
}
if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
goto out_disable;
}
if (obj_priv->tiling_mode != I915_TILING_X) {
DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
goto out_disable;
}
if (dev_priv->display.fbc_enabled(crtc)) {
/* We can re-enable it in this case, but need to update pitch */
if (fb->pitch > dev_priv->cfb_pitch)
dev_priv->display.disable_fbc(dev);
if (obj_priv->fence_reg != dev_priv->cfb_fence)
dev_priv->display.disable_fbc(dev);
if (plane != dev_priv->cfb_plane)
dev_priv->display.disable_fbc(dev);
}
if (!dev_priv->display.fbc_enabled(crtc)) {
/* Now try to turn it back on if possible */
dev_priv->display.enable_fbc(crtc, 500);
}
return;
out_disable:
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
/* Multiple disables should be harmless */
if (dev_priv->display.fbc_enabled(crtc))
dev_priv->display.disable_fbc(dev);
}
static int
intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
{
struct drm_i915_gem_object *obj_priv = obj->driver_private;
u32 alignment;
int ret;
switch (obj_priv->tiling_mode) {
case I915_TILING_NONE:
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
ret = i915_gem_object_pin(obj, alignment);
if (ret != 0)
return ret;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
obj_priv->tiling_mode != I915_TILING_NONE) {
ret = i915_gem_object_get_fence_reg(obj);
if (ret != 0) {
i915_gem_object_unpin(obj);
return ret;
}
}
return 0;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct drm_gem_object *obj;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
u32 dspcntr;
int ret;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
switch (plane) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(crtc->fb);
obj = intel_fb->obj;
obj_priv = obj->driver_private;
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev, obj);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
ret = i915_gem_object_set_to_display_plane(obj);
if (ret != 0) {
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
dspcntr = I915_READ(dspcntr_reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (crtc->fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (crtc->fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
if (crtc->fb->depth == 30)
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
else
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth\n");
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
if (IS_I965G(dev)) {
if (obj_priv->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
if (IS_IRONLAKE(dev))
/* must disable */
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
I915_WRITE(dspcntr_reg, dspcntr);
Start = obj_priv->gtt_offset;
Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
I915_WRITE(dspstride, crtc->fb->pitch);
if (IS_I965G(dev)) {
I915_WRITE(dspbase, Offset);
I915_READ(dspbase);
I915_WRITE(dspsurf, Start);
I915_READ(dspsurf);
I915_WRITE(dsptileoff, (y << 16) | x);
} else {
I915_WRITE(dspbase, Start + Offset);
I915_READ(dspbase);
}
if ((IS_I965G(dev) || plane == 0))
intel_update_fbc(crtc, &crtc->mode);
intel_wait_for_vblank(dev);
if (old_fb) {
intel_fb = to_intel_framebuffer(old_fb);
obj_priv = intel_fb->obj->driver_private;
i915_gem_object_unpin(intel_fb->obj);
}
intel_increase_pllclock(crtc, true);
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg;
if (IS_IRONLAKE(dev))
vga_reg = CPU_VGACNTRL;
else
vga_reg = VGACNTRL;
if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
return;
I915_WRITE8(VGA_SR_INDEX, 1);
sr1 = I915_READ8(VGA_SR_DATA);
I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
udelay(100);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
}
static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
}
static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
dpa_ctl = I915_READ(DP_A);
dpa_ctl |= DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
udelay(200);
}
static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (clock < 200000) {
u32 temp;
dpa_ctl |= DP_PLL_FREQ_160MHZ;
/* workaround for 160Mhz:
1) program 0x4600c bits 15:0 = 0x8124
2) program 0x46010 bit 0 = 1
3) program 0x46034 bit 24 = 1
4) program 0x64000 bit 14 = 1
*/
temp = I915_READ(0x4600c);
temp &= 0xffff0000;
I915_WRITE(0x4600c, temp | 0x8124);
temp = I915_READ(0x46010);
I915_WRITE(0x46010, temp | 1);
temp = I915_READ(0x46034);
I915_WRITE(0x46034, temp | (1 << 24));
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
udelay(500);
}
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
u32 temp;
int tries = 5, j, n;
u32 pipe_bpc;
temp = I915_READ(pipeconf_reg);
pipe_bpc = temp & PIPE_BPC_MASK;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
if ((temp & LVDS_PORT_EN) == 0) {
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
POSTING_READ(PCH_LVDS);
}
}
if (HAS_eDP) {
/* enable eDP PLL */
ironlake_enable_pll_edp(crtc);
} else {
/* enable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
}
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
temp = I915_READ(fdi_rx_reg);
/*
* make the BPC in FDI Rx be consistent with that in
* pipeconf reg.
*/
temp &= ~(0x7 << 16);
temp |= (pipe_bpc << 11);
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
FDI_SEL_PCDCLK |
FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
I915_READ(fdi_rx_reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for Ironlake */
temp = I915_READ(fdi_tx_reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
I915_READ(fdi_tx_reg);
udelay(100);
}
}
/* Enable panel fitting for LVDS */
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(pf_ctl_reg);
I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
/* currently full aspect */
I915_WRITE(pf_win_pos, 0);
I915_WRITE(pf_win_size,
(dev_priv->panel_fixed_mode->hdisplay << 16) |
(dev_priv->panel_fixed_mode->vdisplay));
}
/* Enable CPU pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0) {
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
udelay(100);
}
/* configure and enable CPU plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
if (!HAS_eDP) {
/* enable CPU FDI TX and PCH FDI RX */
temp = I915_READ(fdi_tx_reg);
temp |= FDI_TX_ENABLE;
temp |= FDI_DP_PORT_WIDTH_X4; /* default */
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(150);
/* Train FDI. */
/* umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
temp = I915_READ(fdi_rx_imr_reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(fdi_rx_imr_reg, temp);
I915_READ(fdi_rx_imr_reg);
udelay(150);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK) == 0) {
for (j = 0; j < tries; j++) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
temp);
if (temp & FDI_RX_BIT_LOCK)
break;
udelay(200);
}
if (j != tries)
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
else
DRM_DEBUG_KMS("train 1 fail\n");
} else {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("train 1 ok 2!\n");
}
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_rx_reg, temp);
udelay(150);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
for (j = 0; j < tries; j++) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
temp);
if (temp & FDI_RX_SYMBOL_LOCK)
break;
udelay(200);
}
if (j != tries) {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("train 2 ok 1!\n");
} else
DRM_DEBUG_KMS("train 2 fail\n");
} else {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("train 2 ok 2!\n");
}
DRM_DEBUG_KMS("train done\n");
/* set transcoder timing */
I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
/* enable PCH transcoder */
temp = I915_READ(transconf_reg);
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
temp &= ~PIPE_BPC_MASK;
temp |= pipe_bpc;
I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
I915_READ(transconf_reg);
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
;
/* enable normal */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
FDI_TX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
FDI_RX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_rx_reg);
/* wait one idle pattern time */
udelay(100);
}
intel_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_OFF:
DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
drm_vblank_off(dev, pipe);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
i915_disable_vga(dev);
/* disable cpu pipe, disable after all planes disabled */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
n = 0;
/* wait for cpu pipe off, pipe state */
while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
n++;
if (n < 60) {
udelay(500);
continue;
} else {
DRM_DEBUG_KMS("pipe %d off delay\n",
pipe);
break;
}
}
} else
DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
udelay(100);
/* Disable PF */
temp = I915_READ(pf_ctl_reg);
if ((temp & PF_ENABLE) != 0) {
I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
I915_READ(pf_ctl_reg);
}
I915_WRITE(pf_win_size, 0);
/* disable CPU FDI tx and PCH FDI rx */
temp = I915_READ(fdi_tx_reg);
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
/* BPC in FDI rx is consistent with that in pipeconf */
temp &= ~(0x07 << 16);
temp |= (pipe_bpc << 11);
I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(100);
/* still set train pattern 1 */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_rx_reg, temp);
udelay(100);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
I915_READ(PCH_LVDS);
udelay(100);
}
/* disable PCH transcoder */
temp = I915_READ(transconf_reg);
if ((temp & TRANS_ENABLE) != 0) {
I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
I915_READ(transconf_reg);
n = 0;
/* wait for PCH transcoder off, transcoder state */
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
n++;
if (n < 60) {
udelay(500);
continue;
} else {
DRM_DEBUG_KMS("transcoder %d off "
"delay\n", pipe);
break;
}
}
}
temp = I915_READ(transconf_reg);
/* BPC in transcoder is consistent with that in pipeconf */
temp &= ~PIPE_BPC_MASK;
temp |= pipe_bpc;
I915_WRITE(transconf_reg, temp);
I915_READ(transconf_reg);
udelay(100);
/* disable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
}
if (HAS_eDP) {
ironlake_disable_pll_edp(crtc);
}
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_SEL_PCDCLK;
I915_WRITE(fdi_rx_reg, temp);
I915_READ(fdi_rx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(fdi_rx_reg, temp);
I915_READ(fdi_rx_reg);
/* Disable CPU FDI TX PLL */
temp = I915_READ(fdi_tx_reg);
if ((temp & FDI_TX_PLL_ENABLE) != 0) {
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
I915_READ(fdi_tx_reg);
udelay(100);
}
/* Wait for the clocks to turn off. */
udelay(100);
break;
}
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
struct intel_overlay *overlay;
int ret;
if (!enable && intel_crtc->overlay) {
overlay = intel_crtc->overlay;
mutex_lock(&overlay->dev->struct_mutex);
for (;;) {
ret = intel_overlay_switch_off(overlay);
if (ret == 0)
break;
ret = intel_overlay_recover_from_interrupt(overlay, 0);
if (ret != 0) {
/* overlay doesn't react anymore. Usually
* results in a black screen and an unkillable
* X server. */
BUG();
overlay->hw_wedged = HW_WEDGED;
break;
}
}
mutex_unlock(&overlay->dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway. */
return;
}
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
u32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
intel_update_watermarks(dev);
/* Enable the DPLL */
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(dpll_reg, temp);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
intel_crtc_load_lut(crtc);
if ((IS_I965G(dev) || plane == 0))
intel_update_fbc(crtc, &crtc->mode);
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
break;
case DRM_MODE_DPMS_OFF:
intel_update_watermarks(dev);
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, false);
drm_vblank_off(dev, pipe);
if (dev_priv->cfb_plane == plane &&
dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
/* Disable the VGA plane that we never use */
i915_disable_vga(dev);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
if (!IS_I9XX(dev)) {
/* Wait for vblank for the disable to take effect */
intel_wait_for_vblank(dev);
}
/* Next, disable display pipes */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
}
/* Wait for vblank for the disable to take effect. */
intel_wait_for_vblank(dev);
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
dev_priv->display.dpms(crtc, mode);
intel_crtc->dpms_mode = mode;
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
break;
}
}
static void intel_crtc_prepare (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void intel_crtc_commit (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void intel_encoder_prepare (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (IS_IRONLAKE(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > 27000 * 4)
return MODE_CLOCK_HIGH;
}
return true;
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
int intel_panel_fitter_pipe (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pfit_control;
/* i830 doesn't have a panel fitter */
if (IS_I830(dev))
return -1;
pfit_control = I915_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
if (IS_I965G(dev))
return (pfit_control >> 29) & 0x3;
/* older chips can only use pipe 1 */
return 1;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
#define DATA_N 0x800000
#define LINK_N 0x80000
static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
int link_clock, struct fdi_m_n *m_n)
{
u64 temp;
m_n->tu = 64; /* default size */
temp = (u64) DATA_N * pixel_clock;
temp = div_u64(temp, link_clock);
m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
m_n->gmch_n = DATA_N;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
temp = (u64) LINK_N * pixel_clock;
m_n->link_m = div_u64(temp, link_clock);
m_n->link_n = LINK_N;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
struct intel_watermark_params {
unsigned long fifo_size;
unsigned long max_wm;
unsigned long default_wm;
unsigned long guard_size;
unsigned long cacheline_size;
};
/* Pineview has different values for various configs */
static struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
struct intel_watermark_params *wm,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required /= wm->cacheline_size;
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
wm_size = wm->fifo_size - (entries_required + wm->guard_size);
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
struct cxsr_latency {
int is_desktop;
unsigned long fsb_freq;
unsigned long mem_freq;
unsigned long display_sr;
unsigned long display_hpll_disable;
unsigned long cursor_sr;
unsigned long cursor_hpll_disable;
};
static struct cxsr_latency cxsr_latency_table[] = {
{1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
};
static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
int mem)
{
int i;
struct cxsr_latency *latency;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
/* deactivate cxsr */
reg = I915_READ(DSPFW3);
reg &= ~(PINEVIEW_SELF_REFRESH_EN);
I915_WRITE(DSPFW3, reg);
DRM_INFO("Big FIFO is disabled\n");
}
static void pineview_enable_cxsr(struct drm_device *dev, unsigned long clock,
int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
unsigned long wm;
struct cxsr_latency *latency;
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm, pixel_size,
latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= 0x7fffff;
reg |= wm << 23;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm, pixel_size,
latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~(0x3f << 24);
reg |= (wm & 0x3f) << 24;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
reg = I915_READ(DSPFW3);
reg &= 0xfffffe00;
reg |= wm & 0x1ff;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pixel_size,
latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~(0x3f << 16);
reg |= (wm & 0x3f) << 16;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
/* activate cxsr */
reg = I915_READ(DSPFW3);
reg |= PINEVIEW_SELF_REFRESH_EN;
I915_WRITE(DSPFW3, reg);
DRM_INFO("Big FIFO is enabled\n");
return;
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
if (plane == 0)
size = dsparb & 0x7f;
else
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
(dsparb & 0x7f);
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
if (plane == 0)
size = dsparb & 0x1ff;
else
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
(dsparb & 0x1ff);
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
return size;
}
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 1; /* Convert to cachelines */
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
return size;
}
static void g4x_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int total_size, cacheline_size;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
struct intel_watermark_params planea_params, planeb_params;
unsigned long line_time_us;
int sr_clock, sr_entries = 0, entries_required;
/* Create copies of the base settings for each pipe */
planea_params = planeb_params = g4x_wm_info;
/* Grab a couple of global values before we overwrite them */
total_size = planea_params.fifo_size;
cacheline_size = planea_params.cacheline_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
1000;
entries_required /= G4X_FIFO_LINE_SIZE;
planea_wm = entries_required + planea_params.guard_size;
entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
1000;
entries_required /= G4X_FIFO_LINE_SIZE;
planeb_wm = entries_required + planeb_params.guard_size;
cursora_wm = cursorb_wm = 16;
cursor_sr = 32;
DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
/* Calc sr entries for one plane configs */
if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
sr_clock = planea_clock ? planea_clock : planeb_clock;
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
/* Use ns/us then divide to preserve precision */
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
pixel_size * sr_hdisplay) / 1000;
sr_entries = roundup(sr_entries / cacheline_size, 1);
DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
planea_wm, planeb_wm, sr_entries);
planea_wm &= 0x3f;
planeb_wm &= 0x3f;
I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
static void i965_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long line_time_us;
int sr_clock, sr_entries, srwm = 1;
/* Calc sr entries for one plane configs */
if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
sr_clock = planea_clock ? planea_clock : planeb_clock;
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
/* Use ns/us then divide to preserve precision */
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
pixel_size * sr_hdisplay) / 1000;
sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
srwm = I945_FIFO_SIZE - sr_entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x3f;
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
(8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
}
static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t fwater_lo;
uint32_t fwater_hi;
int total_size, cacheline_size, cwm, srwm = 1;
int planea_wm, planeb_wm;
struct intel_watermark_params planea_params, planeb_params;
unsigned long line_time_us;
int sr_clock, sr_entries = 0;
/* Create copies of the base settings for each pipe */
if (IS_I965GM(dev) || IS_I945GM(dev))
planea_params = planeb_params = i945_wm_info;
else if (IS_I9XX(dev))
planea_params = planeb_params = i915_wm_info;
else
planea_params = planeb_params = i855_wm_info;
/* Grab a couple of global values before we overwrite them */
total_size = planea_params.fifo_size;
cacheline_size = planea_params.cacheline_size;
/* Update per-plane FIFO sizes */
planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
planea_wm = intel_calculate_wm(planea_clock, &planea_params,
pixel_size, latency_ns);
planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
pixel_size, latency_ns);
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && sr_hdisplay &&
(!planea_clock || !planeb_clock)) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
sr_clock = planea_clock ? planea_clock : planeb_clock;
line_time_us = ((sr_hdisplay * 1000) / sr_clock);
/* Use ns/us then divide to preserve precision */
sr_entries = (((sr_latency_ns / line_time_us) + 1) *
pixel_size * sr_hdisplay) / 1000;
sr_entries = roundup(sr_entries / cacheline_size, 1);
DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
srwm = total_size - sr_entries;
if (srwm < 0)
srwm = 1;
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
} else {
/* Turn off self refresh if both pipes are enabled */
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
}
static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
int unused2, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
int planea_wm;
i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
pixel_size, latency_ns);
fwater_lo |= (3<<8) | planea_wm;
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
static void intel_update_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
int sr_hdisplay = 0;
unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
int enabled = 0, pixel_size = 0;
if (!dev_priv->display.update_wm)
return;
/* Get the clock config from both planes */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
intel_crtc = to_intel_crtc(crtc);
if (crtc->enabled) {
enabled++;
if (intel_crtc->plane == 0) {
DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
intel_crtc->pipe, crtc->mode.clock);
planea_clock = crtc->mode.clock;
} else {
DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
intel_crtc->pipe, crtc->mode.clock);
planeb_clock = crtc->mode.clock;
}
sr_hdisplay = crtc->mode.hdisplay;
sr_clock = crtc->mode.clock;
if (crtc->fb)
pixel_size = crtc->fb->bits_per_pixel / 8;
else
pixel_size = 4; /* by default */
}
}
if (enabled <= 0)
return;
/* Single plane configs can enable self refresh */
if (enabled == 1 && IS_PINEVIEW(dev))
pineview_enable_cxsr(dev, sr_clock, pixel_size);
else if (IS_PINEVIEW(dev))
pineview_disable_cxsr(dev);
dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
sr_hdisplay, pixel_size);
}
static int intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int fp_reg = (pipe == 0) ? FPA0 : FPB0;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
int refclk, num_outputs = 0;
intel_clock_t clock, reduced_clock;
u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
bool is_edp = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
const intel_limit_t *limit;
int ret;
struct fdi_m_n m_n = {0};
int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int lvds_reg = LVDS;
u32 temp;
int sdvo_pixel_multiply;
int target_clock;
drm_vblank_pre_modeset(dev, pipe);
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (!connector->encoder || connector->encoder->crtc != crtc)
continue;
switch (intel_output->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (intel_output->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_DVO:
is_dvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
case INTEL_OUTPUT_EDP:
is_edp = true;
break;
}
num_outputs++;
}
if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
refclk / 1000);
} else if (IS_I9XX(dev)) {
refclk = 96000;
if (IS_IRONLAKE(dev))
refclk = 120000; /* 120Mhz refclk */
} else {
refclk = 48000;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
drm_vblank_post_modeset(dev, pipe);
return -EINVAL;
}
if (is_lvds && dev_priv->lvds_downclock_avail) {
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&reduced_clock);
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
/*
* If the different P is found, it means that we can't
* switch the display clock by using the FP0/FP1.
* In such case we will disable the LVDS downclock
* feature.
*/
DRM_DEBUG_KMS("Different P is found for "
"LVDS clock/downclock\n");
has_reduced_clock = 0;
}
}
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (is_sdvo && is_tv) {
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 3;
clock.m1 = 16;
clock.m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 6;
clock.m1 = 12;
clock.m2 = 8;
}
}
/* FDI link */
if (IS_IRONLAKE(dev)) {
int lane, link_bw, bpp;
/* eDP doesn't require FDI link, so just set DP M/N
according to current link config */
if (is_edp) {
struct drm_connector *edp;
target_clock = mode->clock;
edp = intel_pipe_get_output(crtc);
intel_edp_link_config(to_intel_output(edp),
&lane, &link_bw);
} else {
/* DP over FDI requires target mode clock
instead of link clock */
if (is_dp)
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
lane = 4;
link_bw = 270000;
}
/* determine panel color depth */
temp = I915_READ(pipeconf_reg);
temp &= ~PIPE_BPC_MASK;
if (is_lvds) {
int lvds_reg = I915_READ(PCH_LVDS);
/* the BPC will be 6 if it is 18-bit LVDS panel */
if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
temp |= PIPE_8BPC;
else
temp |= PIPE_6BPC;
} else if (is_edp) {
switch (dev_priv->edp_bpp/3) {
case 8:
temp |= PIPE_8BPC;
break;
case 10:
temp |= PIPE_10BPC;
break;
case 6:
temp |= PIPE_6BPC;
break;
case 12:
temp |= PIPE_12BPC;
break;
}
} else
temp |= PIPE_8BPC;
I915_WRITE(pipeconf_reg, temp);
I915_READ(pipeconf_reg);
switch (temp & PIPE_BPC_MASK) {
case PIPE_8BPC:
bpp = 24;
break;
case PIPE_10BPC:
bpp = 30;
break;
case PIPE_6BPC:
bpp = 18;
break;
case PIPE_12BPC:
bpp = 36;
break;
default:
DRM_ERROR("unknown pipe bpc value\n");
bpp = 24;
}
ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
}
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
if (IS_IRONLAKE(dev)) {
temp = I915_READ(PCH_DREF_CONTROL);
/* Always enable nonspread source */
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
if (is_edp) {
if (dev_priv->lvds_use_ssc) {
temp |= DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
} else {
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
}
}
}
if (IS_PINEVIEW(dev)) {
fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = (1 << reduced_clock.n) << 16 |
reduced_clock.m1 << 8 | reduced_clock.m2;
} else {
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
reduced_clock.m2;
}
if (!IS_IRONLAKE(dev))
dpll = DPLL_VGA_MODE_DIS;
if (IS_I9XX(dev)) {
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
dpll |= DPLL_DVO_HIGH_SPEED;
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
else if (IS_IRONLAKE(dev))
dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
}
if (is_dp)
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
if (IS_IRONLAKE(dev))
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && has_reduced_clock)
dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (IS_I965G(dev) && !IS_IRONLAKE(dev))
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
} else {
if (is_lvds) {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock.p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock.p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
}
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(pipeconf_reg);
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
/* Ironlake's plane is forced to pipe, bit 24 is to
enable color space conversion */
if (!IS_IRONLAKE(dev)) {
if (pipe == 0)
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
}
if (pipe == 0 && !IS_I965G(dev)) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock >
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
pipeconf |= PIPEACONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
}
dspcntr |= DISPLAY_PLANE_ENABLE;
pipeconf |= PIPEACONF_ENABLE;
dpll |= DPLL_VCO_ENABLE;
/* Disable the panel fitter if it was on our pipe */
if (!IS_IRONLAKE(dev) && intel_panel_fitter_pipe(dev) == pipe)
I915_WRITE(PFIT_CONTROL, 0);
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
/* assign to Ironlake registers */
if (IS_IRONLAKE(dev)) {
fp_reg = pch_fp_reg;
dpll_reg = pch_dpll_reg;
}
if (is_edp) {
ironlake_disable_pll_edp(crtc);
} else if ((dpll & DPLL_VCO_ENABLE)) {
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
udelay(150);
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
u32 lvds;
if (IS_IRONLAKE(dev))
lvds_reg = PCH_LVDS;
lvds = I915_READ(lvds_reg);
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
/* set the corresponsding LVDS_BORDER bit */
lvds |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag */
if (IS_I965G(dev)) {
if (dev_priv->lvds_dither) {
if (IS_IRONLAKE(dev))
pipeconf |= PIPE_ENABLE_DITHER;
else
lvds |= LVDS_ENABLE_DITHER;
} else {
if (IS_IRONLAKE(dev))
pipeconf &= ~PIPE_ENABLE_DITHER;
else
lvds &= ~LVDS_ENABLE_DITHER;
}
}
I915_WRITE(lvds_reg, lvds);
I915_READ(lvds_reg);
}
if (is_dp)
intel_dp_set_m_n(crtc, mode, adjusted_mode);
if (!is_edp) {
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
if (IS_I965G(dev) && !IS_IRONLAKE(dev)) {
if (is_sdvo) {
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
} else
I915_WRITE(dpll_md_reg, 0);
} else {
/* write it again -- the BIOS does, after all */
I915_WRITE(dpll_reg, dpll);
}
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(fp_reg + 4, fp2);
intel_crtc->lowfreq_avail = true;
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
}
} else {
I915_WRITE(fp_reg + 4, fp);
intel_crtc->lowfreq_avail = false;
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
}
I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from, which should
* always be the user's requested size.
*/
if (!IS_IRONLAKE(dev)) {
I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
(mode->hdisplay - 1));
I915_WRITE(dsppos_reg, 0);
}
I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
if (IS_IRONLAKE(dev)) {
I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
I915_WRITE(link_m1_reg, m_n.link_m);
I915_WRITE(link_n1_reg, m_n.link_n);
if (is_edp) {
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
} else {
/* enable FDI RX PLL too */
temp = I915_READ(fdi_rx_reg);
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
udelay(200);
}
}
I915_WRITE(pipeconf_reg, pipeconf);
I915_READ(pipeconf_reg);
intel_wait_for_vblank(dev);
if (IS_IRONLAKE(dev)) {
/* enable address swizzle for tiling buffer */
temp = I915_READ(DISP_ARB_CTL);
I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
}
I915_WRITE(dspcntr_reg, dspcntr);
/* Flush the plane changes */
ret = intel_pipe_set_base(crtc, x, y, old_fb);
if ((IS_I965G(dev) || plane == 0))
intel_update_fbc(crtc, &crtc->mode);
intel_update_watermarks(dev);
drm_vblank_post_modeset(dev, pipe);
return ret;
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
/* use legacy palette for Ironlake */
if (IS_IRONLAKE(dev))
palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
LGC_PALETTE_B;
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_gem_object *bo;
struct drm_i915_gem_object *obj_priv;
int pipe = intel_crtc->pipe;
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
uint32_t temp = I915_READ(control);
size_t addr;
int ret;
DRM_DEBUG_KMS("\n");
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG_KMS("cursor off\n");
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
temp |= CURSOR_MODE_DISABLE;
} else {
temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
}
addr = 0;
bo = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
bo = drm_gem_object_lookup(dev, file_priv, handle);
if (!bo)
return -ENOENT;
obj_priv = bo->driver_private;
if (bo->size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->info->cursor_needs_physical) {
ret = i915_gem_object_pin(bo, PAGE_SIZE);
if (ret) {
DRM_ERROR("failed to pin cursor bo\n");
goto fail_locked;
}
addr = obj_priv->gtt_offset;
} else {
ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj_priv->phys_obj->handle->busaddr;
}
if (!IS_I9XX(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
/* Hooray for CUR*CNTR differences */
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
temp |= (pipe << 28); /* Connect to correct pipe */
} else {
temp &= ~(CURSOR_FORMAT_MASK);
temp |= CURSOR_ENABLE;
temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
}
finish:
I915_WRITE(control, temp);
I915_WRITE(base, addr);
if (intel_crtc->cursor_bo) {
if (dev_priv->info->cursor_needs_physical) {
if (intel_crtc->cursor_bo != bo)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(intel_crtc->cursor_bo);
}
mutex_unlock(&dev->struct_mutex);
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = bo;
return 0;
fail:
mutex_lock(&dev->struct_mutex);
fail_locked:
drm_gem_object_unreference(bo);
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
int pipe = intel_crtc->pipe;
uint32_t temp = 0;
uint32_t adder;
if (crtc->fb) {
intel_fb = to_intel_framebuffer(crtc->fb);
intel_mark_busy(dev, intel_fb->obj);
}
if (x < 0) {
temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
if (y < 0) {
temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
temp |= x << CURSOR_X_SHIFT;
temp |= y << CURSOR_Y_SHIFT;
adder = intel_crtc->cursor_addr;
I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
*red = intel_crtc->lut_r[regno] << 8;
*green = intel_crtc->lut_g[regno] << 8;
*blue = intel_crtc->lut_b[regno] << 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i;
if (size != 256)
return;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other outputs.
*
* Currently this code will only succeed if there is a pipe with no outputs
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
struct drm_display_mode *mode,
int *dpms_mode)
{
struct intel_crtc *intel_crtc;
struct drm_crtc *possible_crtc;
struct drm_crtc *supported_crtc =NULL;
struct drm_encoder *encoder = &intel_output->enc;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs;
int i = -1;
/*
* Algorithm gets a little messy:
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
* - if there are no unused crtcs available, try to use the first
* one we found that supports the connector
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
/* Make sure the crtc and connector are running */
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
return crtc;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
if (!supported_crtc)
supported_crtc = possible_crtc;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
return NULL;
}
encoder->crtc = crtc;
intel_output->base.encoder = encoder;
intel_output->load_detect_temp = true;
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (!crtc->enabled) {
if (!mode)
mode = &load_detect_mode;
drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
} else {
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
/* Add this connector to the crtc */
encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
encoder_funcs->commit(encoder);
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev);
return crtc;
}
void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
{
struct drm_encoder *encoder = &intel_output->enc;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
if (intel_output->load_detect_temp) {
encoder->crtc = NULL;
intel_output->base.encoder = NULL;
intel_output->load_detect_temp = false;
crtc->enabled = drm_helper_crtc_in_use(crtc);
drm_helper_disable_unused_functions(dev);
}
/* Switch crtc and output back off if necessary */
if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
if (encoder->crtc == crtc)
encoder_funcs->dpms(encoder, dpms_mode);
crtc_funcs->dpms(crtc, dpms_mode);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
else
fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (IS_I9XX(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
intel_clock(dev, 96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
intel_clock(dev, 66000, &clock);
} else
intel_clock(dev, 48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
intel_clock(dev, 48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
return mode;
}
#define GPU_IDLE_TIMEOUT 500 /* ms */
/* When this timer fires, we've been idle for awhile */
static void intel_gpu_idle_timer(unsigned long arg)
{
struct drm_device *dev = (struct drm_device *)arg;
drm_i915_private_t *dev_priv = dev->dev_private;
DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
dev_priv->busy = false;
queue_work(dev_priv->wq, &dev_priv->idle_work);
}
#define CRTC_IDLE_TIMEOUT 1000 /* ms */
static void intel_crtc_idle_timer(unsigned long arg)
{
struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
struct drm_crtc *crtc = &intel_crtc->base;
drm_i915_private_t *dev_priv = crtc->dev->dev_private;
DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
intel_crtc->busy = false;
queue_work(dev_priv->wq, &dev_priv->idle_work);
}
static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll = I915_READ(dpll_reg);
if (IS_IRONLAKE(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
DRM_DEBUG_DRIVER("upclocking LVDS\n");
/* Unlock panel regs */
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
dpll = I915_READ(dpll_reg);
intel_wait_for_vblank(dev);
dpll = I915_READ(dpll_reg);
if (dpll & DISPLAY_RATE_SELECT_FPA1)
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
/* ...and lock them again */
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
}
/* Schedule downclock */
if (schedule)
mod_timer(&intel_crtc->idle_timer, jiffies +
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll = I915_READ(dpll_reg);
if (IS_IRONLAKE(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
DRM_DEBUG_DRIVER("downclocking LVDS\n");
/* Unlock panel regs */
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
dpll = I915_READ(dpll_reg);
intel_wait_for_vblank(dev);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
/* ...and lock them again */
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
}
}
/**
* intel_idle_update - adjust clocks for idleness
* @work: work struct
*
* Either the GPU or display (or both) went idle. Check the busy status
* here and adjust the CRTC and GPU clocks as necessary.
*/
static void intel_idle_update(struct work_struct *work)
{
drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
idle_work);
struct drm_device *dev = dev_priv->dev;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
if (!i915_powersave)
return;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
if (!intel_crtc->busy)
intel_decrease_pllclock(crtc);
}
mutex_unlock(&dev->struct_mutex);
}
/**
* intel_mark_busy - mark the GPU and possibly the display busy
* @dev: drm device
* @obj: object we're operating on
*
* Callers can use this function to indicate that the GPU is busy processing
* commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
* buffer), we'll also mark the display as busy, so we know to increase its
* clock frequency.
*/
void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL;
struct intel_framebuffer *intel_fb;
struct intel_crtc *intel_crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return;
if (!dev_priv->busy)
dev_priv->busy = true;
else
mod_timer(&dev_priv->idle_timer, jiffies +
msecs_to_jiffies(GPU_IDLE_TIMEOUT));
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_fb = to_intel_framebuffer(crtc->fb);
if (intel_fb->obj == obj) {
if (!intel_crtc->busy) {
/* Non-busy -> busy, upclock */
intel_increase_pllclock(crtc, true);
intel_crtc->busy = true;
} else {
/* Busy -> busy, put off timer */
mod_timer(&intel_crtc->idle_timer, jiffies +
msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
}
}
}
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
struct intel_unpin_work {
struct work_struct work;
struct drm_device *dev;
struct drm_gem_object *obj;
struct drm_pending_vblank_event *event;
int pending;
};
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
mutex_lock(&work->dev->struct_mutex);
i915_gem_object_unpin(work->obj);
drm_gem_object_unreference(work->obj);
mutex_unlock(&work->dev->struct_mutex);
kfree(work);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
struct drm_i915_gem_object *obj_priv;
struct drm_pending_vblank_event *e;
struct timeval now;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL || !work->pending) {
if (work && !work->pending) {
obj_priv = work->obj->driver_private;
DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
obj_priv,
atomic_read(&obj_priv->pending_flip));
}
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
intel_crtc->unpin_work = NULL;
drm_vblank_put(dev, intel_crtc->pipe);
if (work->event) {
e = work->event;
do_gettimeofday(&now);
e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
e->event.tv_sec = now.tv_sec;
e->event.tv_usec = now.tv_usec;
list_add_tail(&e->base.link,
&e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
spin_unlock_irqrestore(&dev->event_lock, flags);
obj_priv = work->obj->driver_private;
/* Initial scanout buffer will have a 0 pending flip count */
if ((atomic_read(&obj_priv->pending_flip) == 0) ||
atomic_dec_and_test(&obj_priv->pending_flip))
DRM_WAKEUP(&dev_priv->pending_flip_queue);
schedule_work(&work->work);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
intel_crtc->unpin_work->pending = 1;
} else {
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct drm_gem_object *obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
int ret;
RING_LOCALS;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
mutex_lock(&dev->struct_mutex);
work->event = event;
work->dev = crtc->dev;
intel_fb = to_intel_framebuffer(crtc->fb);
work->obj = intel_fb->obj;
INIT_WORK(&work->work, intel_unpin_work_fn);
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(work);
mutex_unlock(&dev->struct_mutex);
return -EBUSY;
}
intel_crtc->unpin_work = work;
spin_unlock_irqrestore(&dev->event_lock, flags);
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
ret = intel_pin_and_fence_fb_obj(dev, obj);
if (ret != 0) {
DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
obj->driver_private);
kfree(work);
intel_crtc->unpin_work = NULL;
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* Reference the old fb object for the scheduled work. */
drm_gem_object_reference(work->obj);
crtc->fb = fb;
i915_gem_object_flush_write_domain(obj);
drm_vblank_get(dev, intel_crtc->pipe);
obj_priv = obj->driver_private;
atomic_inc(&obj_priv->pending_flip);
BEGIN_LP_RING(4);
OUT_RING(MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
OUT_RING(fb->pitch);
if (IS_I965G(dev)) {
OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
OUT_RING((fb->width << 16) | fb->height);
} else {
OUT_RING(obj_priv->gtt_offset);
OUT_RING(MI_NOOP);
}
ADVANCE_LP_RING();
mutex_unlock(&dev->struct_mutex);
return 0;
}
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.prepare = intel_crtc_prepare,
.commit = intel_crtc_commit,
.load_lut = intel_crtc_load_lut,
};
static const struct drm_crtc_funcs intel_crtc_funcs = {
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
};
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = ((pipe == 0) ? 1 : 0);
}
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
intel_crtc->cursor_addr = 0;
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
intel_crtc->busy = false;
setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
(unsigned long)intel_crtc);
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
DRM_MODE_OBJECT_CRTC);
if (!drmmode_obj) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
struct drm_crtc *crtc = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->pipe == pipe)
break;
}
return crtc;
}
static int intel_connector_clones(struct drm_device *dev, int type_mask)
{
int index_mask = 0;
struct drm_connector *connector;
int entry = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (type_mask & intel_output->clone_mask)
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
intel_crt_init(dev);
/* Set up integrated LVDS */
if (IS_MOBILE(dev) && !IS_I830(dev))
intel_lvds_init(dev);
if (IS_IRONLAKE(dev)) {
int found;
if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
intel_dp_init(dev, DP_A);
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* check SDVOB */
/* found = intel_sdvo_init(dev, HDMIB); */
found = 0;
if (!found)
intel_hdmi_init(dev, HDMIB);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B);
}
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC);
if (I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C);
if (I915_READ(PCH_DP_D) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_D);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B);
}
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC);
}
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C);
}
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D);
}
} else if (IS_I8XX(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
struct drm_encoder *encoder = &intel_output->enc;
encoder->possible_crtcs = intel_output->crtc_mask;
encoder->possible_clones = intel_connector_clones(dev,
intel_output->clone_mask);
}
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
intelfb_remove(dev, fb);
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(intel_fb->obj);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_gem_object *object = intel_fb->obj;
return drm_gem_handle_create(file_priv, object, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd *mode_cmd,
struct drm_framebuffer **fb,
struct drm_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb)
return -ENOMEM;
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
*fb = &intel_fb->base;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd *mode_cmd)
{
struct drm_gem_object *obj;
struct drm_framebuffer *fb;
int ret;
obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
if (!obj)
return NULL;
ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
if (ret) {
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return NULL;
}
return fb;
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.fb_changed = intelfb_probe,
};
static struct drm_gem_object *
intel_alloc_power_context(struct drm_device *dev)
{
struct drm_gem_object *pwrctx;
int ret;
pwrctx = drm_gem_object_alloc(dev, 4096);
if (!pwrctx) {
DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
return NULL;
}
mutex_lock(&dev->struct_mutex);
ret = i915_gem_object_pin(pwrctx, 4096);
if (ret) {
DRM_ERROR("failed to pin power context: %d\n", ret);
goto err_unref;
}
ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
if (ret) {
DRM_ERROR("failed to set-domain on power context: %d\n", ret);
goto err_unpin;
}
mutex_unlock(&dev->struct_mutex);
return pwrctx;
err_unpin:
i915_gem_object_unpin(pwrctx);
err_unref:
drm_gem_object_unreference(pwrctx);
mutex_unlock(&dev->struct_mutex);
return NULL;
}
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/*
* Disable clock gating reported to work incorrectly according to the
* specs, but enable as much else as we can.
*/
if (IS_IRONLAKE(dev)) {
return;
} else if (IS_G4X(dev)) {
uint32_t dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
} else if (IS_I965GM(dev)) {
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
} else if (IS_I965G(dev)) {
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
} else if (IS_I9XX(dev)) {
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
} else if (IS_I85X(dev) || IS_I865G(dev)) {
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
} else if (IS_I830(dev)) {
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
struct drm_i915_gem_object *obj_priv = NULL;
if (dev_priv->pwrctx) {
obj_priv = dev_priv->pwrctx->driver_private;
} else {
struct drm_gem_object *pwrctx;
pwrctx = intel_alloc_power_context(dev);
if (pwrctx) {
dev_priv->pwrctx = pwrctx;
obj_priv = pwrctx->driver_private;
}
}
if (obj_priv) {
I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
I915_WRITE(MCHBAR_RENDER_STANDBY,
I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
}
}
}
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* We always want a DPMS function */
if (IS_IRONLAKE(dev))
dev_priv->display.dpms = ironlake_crtc_dpms;
else
dev_priv->display.dpms = i9xx_crtc_dpms;
/* Only mobile has FBC, leave pointers NULL for other chips */
if (IS_MOBILE(dev)) {
if (IS_GM45(dev)) {
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
dev_priv->display.enable_fbc = g4x_enable_fbc;
dev_priv->display.disable_fbc = g4x_disable_fbc;
} else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
dev_priv->display.enable_fbc = i8xx_enable_fbc;
dev_priv->display.disable_fbc = i8xx_disable_fbc;
}
/* 855GM needs testing */
}
/* Returns the core display clock speed */
if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
/* For FIFO watermark updates */
if (IS_IRONLAKE(dev))
dev_priv->display.update_wm = NULL;
else if (IS_G4X(dev))
dev_priv->display.update_wm = g4x_update_wm;
else if (IS_I965G(dev))
dev_priv->display.update_wm = i965_update_wm;
else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
} else {
if (IS_I85X(dev))
dev_priv->display.get_fifo_size = i85x_get_fifo_size;
else if (IS_845G(dev))
dev_priv->display.get_fifo_size = i845_get_fifo_size;
else
dev_priv->display.get_fifo_size = i830_get_fifo_size;
dev_priv->display.update_wm = i830_update_wm;
}
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int num_pipe;
int i;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.funcs = (void *)&intel_mode_funcs;
intel_init_display(dev);
if (IS_I965G(dev)) {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
} else if (IS_I9XX(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
}
/* set memory base */
if (IS_I9XX(dev))
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
else
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
if (IS_MOBILE(dev) || IS_I9XX(dev))
num_pipe = 2;
else
num_pipe = 1;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
num_pipe, num_pipe > 1 ? "s" : "");
if (IS_I85X(dev))
pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
else if (IS_I9XX(dev) || IS_G4X(dev))
pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
for (i = 0; i < num_pipe; i++) {
intel_crtc_init(dev, i);
}
intel_setup_outputs(dev);
intel_init_clock_gating(dev);
INIT_WORK(&dev_priv->idle_work, intel_idle_update);
setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
(unsigned long)dev);
intel_setup_overlay(dev);
if (IS_PINEVIEW(dev) && !intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->fsb_freq,
dev_priv->mem_freq))
DRM_INFO("failed to find known CxSR latency "
"(found fsb freq %d, mem freq %d), disabling CxSR\n",
dev_priv->fsb_freq, dev_priv->mem_freq);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_increase_pllclock(crtc, false);
del_timer_sync(&intel_crtc->idle_timer);
}
del_timer_sync(&dev_priv->idle_timer);
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
if (dev_priv->pwrctx) {
struct drm_i915_gem_object *obj_priv;
obj_priv = dev_priv->pwrctx->driver_private;
I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
I915_READ(PWRCTXA);
i915_gem_object_unpin(dev_priv->pwrctx);
drm_gem_object_unreference(dev_priv->pwrctx);
}
mutex_unlock(&dev->struct_mutex);
drm_mode_config_cleanup(dev);
}
/* current intel driver doesn't take advantage of encoders
always give back the encoder for the connector
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
return &intel_output->enc;
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 gmch_ctrl;
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
return 0;
}