blob: 792d25b79ea68b5c82b2365f43854f02a613bf8f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2020 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <linux/slab.h>
#include "../habanalabs.h"
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
}
/**
* hl_mmu_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
*
* Return: 0 for success, non-zero for failure.
*/
int hl_mmu_init(struct hl_device *hdev)
{
int rc = -EOPNOTSUPP;
if (!hdev->mmu_enable)
return 0;
if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].init != NULL)
rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
return rc;
}
/**
* hl_mmu_fini() - release the MMU module.
* @hdev: habanalabs device structure.
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_fini(struct hl_device *hdev)
{
if (!hdev->mmu_enable)
return;
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
hdev->mmu_func[MMU_HR_PGT].fini(hdev);
}
/**
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
* @ctx: pointer to the context structure to initialize.
*
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
* page tables hops related to this context.
* Return: 0 on success, non-zero otherwise.
*/
int hl_mmu_ctx_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
int rc = -EOPNOTSUPP;
if (!hdev->mmu_enable)
return 0;
mutex_init(&ctx->mmu_lock);
if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL)
rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
return rc;
}
/*
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Free any pgts which were not freed yet
* - Free the mutex
* - Free DRAM default page mapping hops
*/
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (!hdev->mmu_enable)
return;
if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
mutex_destroy(&ctx->mmu_lock);
}
/*
* hl_mmu_unmap_page - unmaps a virtual addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @page_size: size of the page to unmap
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is mapped
* - Unmap the virt addr and frees pgts if possible
* - Returns 0 on success, -EINVAL if the given addr is not mapped
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after unmapping of
* large area.
*/
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr;
u32 real_page_size, npages;
int i, rc = 0, pgt_residency;
bool is_dram_addr;
if (!hdev->mmu_enable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and unmap them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else {
/*
* MMU page size may differ from DRAM page size.
* In such case work with the DRAM page size and let the MMU
* scrambling routine to handle this mismatch when
* calculating the address to remove from the MMU page table
*/
if (is_dram_addr && ((page_size % prop->dram_page_size) == 0)) {
real_page_size = prop->dram_page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %uKB aligned, can't unmap\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
}
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = hdev->mmu_func[pgt_residency].unmap(ctx,
real_virt_addr, is_dram_addr);
if (rc)
break;
real_virt_addr += real_page_size;
}
if (flush_pte)
hdev->mmu_func[pgt_residency].flush(ctx);
return rc;
}
/*
* hl_mmu_map_page - maps a virtual addr to physical addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @page_size: physical page size
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is not mapped
* - Allocate pgts as necessary in order to map the virt addr to the phys
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after mapping of
* large area.
*/
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
u32 page_size, bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr, real_phys_addr;
u32 real_page_size, npages;
int i, rc, pgt_residency, mapped_cnt = 0;
bool is_dram_addr;
if (!hdev->mmu_enable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
if (is_dram_addr)
mmu_prop = &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
mmu_prop = &prop->pmmu_huge;
else
mmu_prop = &prop->pmmu;
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
real_page_size = mmu_prop->page_size;
} else if (is_dram_addr && ((page_size % prop->dram_page_size) == 0) &&
(prop->dram_page_size < mmu_prop->page_size)) {
/*
* MMU page size may differ from DRAM page size.
* In such case work with the DRAM page size and let the MMU
* scrambling routine handle this mismatch when calculating
* the address to place in the MMU page table. (in that case
* also make sure that the dram_page_size smaller than the
* mmu page size)
*/
real_page_size = prop->dram_page_size;
} else {
dev_err(hdev->dev,
"page size of %u is not %uKB aligned, can't map\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
/*
* Verify that the phys and virt addresses are aligned with the
* MMU page size (in dram this means checking the address and MMU
* after scrambling)
*/
if ((is_dram_addr &&
((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
(mmu_prop->page_size - 1)) ||
(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
(mmu_prop->page_size - 1)))) ||
(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
(virt_addr & (real_page_size - 1)))))
dev_crit(hdev->dev,
"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
phys_addr, virt_addr, real_page_size);
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
real_phys_addr = phys_addr;
for (i = 0 ; i < npages ; i++) {
rc = hdev->mmu_func[pgt_residency].map(ctx,
real_virt_addr, real_phys_addr,
real_page_size, is_dram_addr);
if (rc)
goto err;
real_virt_addr += real_page_size;
real_phys_addr += real_page_size;
mapped_cnt++;
}
if (flush_pte)
hdev->mmu_func[pgt_residency].flush(ctx);
return 0;
err:
real_virt_addr = virt_addr;
for (i = 0 ; i < mapped_cnt ; i++) {
if (hdev->mmu_func[pgt_residency].unmap(ctx,
real_virt_addr, is_dram_addr))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va: 0x%llx\n", real_virt_addr);
real_virt_addr += real_page_size;
}
hdev->mmu_func[pgt_residency].flush(ctx);
return rc;
}
/*
* hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
* for mapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @size: size to map
*
*/
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va, curr_pa;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
curr_pa = phys_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
flush_pte);
if (rc) {
dev_err(hdev->dev,
"Map failed for va 0x%llx to pa 0x%llx\n",
curr_va, curr_pa);
goto unmap;
}
}
return rc;
unmap:
for (; off >= 0 ; off -= page_size) {
curr_va = virt_addr + off;
flush_pte = (off - (s32) page_size) < 0;
if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va 0x%llx\n", curr_va);
}
return rc;
}
/*
* hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
* for unmapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to unmap
* @size: size to unmap
*
*/
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
if (rc)
dev_warn_ratelimited(hdev->dev,
"Unmap failed for va 0x%llx\n", curr_va);
}
return rc;
}
/*
* hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_out(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (!hdev->mmu_enable)
return;
if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
}
/*
* hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
*
* @ctx: pointer to the context structure
*
*/
void hl_mmu_swap_in(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (!hdev->mmu_enable)
return;
if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
}
static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops,
u64 *phys_addr)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
u32 hop0_shift_off;
void *p;
/* last hop holds the phys address and flags */
if (hops->unscrambled_paddr)
tmp_phys_addr = hops->unscrambled_paddr;
else
tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
p = &prop->pmmu_huge;
else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
p = &prop->pmmu;
else /* HL_VA_RANGE_TYPE_DRAM */
p = &prop->dmmu;
if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
!is_power_of_2(prop->dram_page_size)) {
unsigned long dram_page_size = prop->dram_page_size;
u64 page_offset_mask;
u64 phys_addr_mask;
u32 bit;
/*
* find last set bit in page_size to cover all bits of page
* offset. note that 1 has to be added to bit index.
* note that the internal ulong variable is used to avoid
* alignment issue.
*/
bit = find_last_bit(&dram_page_size,
sizeof(dram_page_size) * BITS_PER_BYTE) + 1;
page_offset_mask = (BIT_ULL(bit) - 1);
phys_addr_mask = ~page_offset_mask;
*phys_addr = (tmp_phys_addr & phys_addr_mask) |
(virt_addr & page_offset_mask);
} else {
/*
* find the correct hop shift field in hl_mmu_properties
* structure in order to determine the right masks
* for the page offset.
*/
hop0_shift_off = offsetof(struct hl_mmu_properties, hop0_shift);
p = (char *)p + hop0_shift_off;
p = (char *)p + ((hops->used_hops - 1) * sizeof(u64));
hop_shift = *(u64 *)p;
offset_mask = (1ull << hop_shift) - 1;
addr_mask = ~(offset_mask);
*phys_addr = (tmp_phys_addr & addr_mask) |
(virt_addr & offset_mask);
}
}
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
{
struct hl_mmu_hop_info hops;
int rc;
memset(&hops, 0, sizeof(hops));
rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
if (rc)
return rc;
hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
return 0;
}
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_mmu_properties *mmu_prop;
int rc;
bool is_dram_addr;
if (!hdev->mmu_enable)
return -EOPNOTSUPP;
hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
/* host-residency is the same in PMMU and HPMMU, use one of them */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
mutex_lock(&ctx->mmu_lock);
if (mmu_prop->host_resident)
rc = hdev->mmu_func[MMU_HR_PGT].get_tlb_info(ctx,
virt_addr, hops);
else
rc = hdev->mmu_func[MMU_DR_PGT].get_tlb_info(ctx,
virt_addr, hops);
mutex_unlock(&ctx->mmu_lock);
/* add page offset to physical address */
if (hops->unscrambled_paddr)
hl_mmu_pa_page_with_offset(ctx, virt_addr, hops,
&hops->unscrambled_paddr);
return rc;
}
int hl_mmu_if_set_funcs(struct hl_device *hdev)
{
if (!hdev->mmu_enable)
return 0;
switch (hdev->asic_type) {
case ASIC_GOYA:
case ASIC_GAUDI:
case ASIC_GAUDI_SEC:
hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
break;
default:
dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
hdev->asic_type);
return -EOPNOTSUPP;
}
return 0;
}
/**
* hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
* @hdev: pointer to device data.
* @addr: The address to scramble.
*
* Return: The scrambled address.
*/
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}
/**
* hl_mmu_descramble_addr() - The generic mmu address descrambling
* routine.
* @hdev: pointer to device data.
* @addr: The address to descramble.
*
* Return: The un-scrambled address.
*/
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}