| /* |
| * QLogic iSCSI HBA Driver |
| * Copyright (c) 2003-2013 QLogic Corporation |
| * |
| * See LICENSE.qla4xxx for copyright and licensing details. |
| */ |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/pci.h> |
| #include <linux/ratelimit.h> |
| #include "ql4_def.h" |
| #include "ql4_glbl.h" |
| #include "ql4_inline.h" |
| |
| #include <asm-generic/io-64-nonatomic-lo-hi.h> |
| |
| #define TIMEOUT_100_MS 100 |
| #define MASK(n) DMA_BIT_MASK(n) |
| #define MN_WIN(addr) (((addr & 0x1fc0000) >> 1) | ((addr >> 25) & 0x3ff)) |
| #define OCM_WIN(addr) (((addr & 0x1ff0000) >> 1) | ((addr >> 25) & 0x3ff)) |
| #define MS_WIN(addr) (addr & 0x0ffc0000) |
| #define QLA82XX_PCI_MN_2M (0) |
| #define QLA82XX_PCI_MS_2M (0x80000) |
| #define QLA82XX_PCI_OCM0_2M (0xc0000) |
| #define VALID_OCM_ADDR(addr) (((addr) & 0x3f800) != 0x3f800) |
| #define GET_MEM_OFFS_2M(addr) (addr & MASK(18)) |
| |
| /* CRB window related */ |
| #define CRB_BLK(off) ((off >> 20) & 0x3f) |
| #define CRB_SUBBLK(off) ((off >> 16) & 0xf) |
| #define CRB_WINDOW_2M (0x130060) |
| #define CRB_HI(off) ((qla4_82xx_crb_hub_agt[CRB_BLK(off)] << 20) | \ |
| ((off) & 0xf0000)) |
| #define QLA82XX_PCI_CAMQM_2M_END (0x04800800UL) |
| #define QLA82XX_PCI_CAMQM_2M_BASE (0x000ff800UL) |
| #define CRB_INDIRECT_2M (0x1e0000UL) |
| |
| static inline void __iomem * |
| qla4_8xxx_pci_base_offsetfset(struct scsi_qla_host *ha, unsigned long off) |
| { |
| if ((off < ha->first_page_group_end) && |
| (off >= ha->first_page_group_start)) |
| return (void __iomem *)(ha->nx_pcibase + off); |
| |
| return NULL; |
| } |
| |
| #define MAX_CRB_XFORM 60 |
| static unsigned long crb_addr_xform[MAX_CRB_XFORM]; |
| static int qla4_8xxx_crb_table_initialized; |
| |
| #define qla4_8xxx_crb_addr_transform(name) \ |
| (crb_addr_xform[QLA82XX_HW_PX_MAP_CRB_##name] = \ |
| QLA82XX_HW_CRB_HUB_AGT_ADR_##name << 20) |
| static void |
| qla4_82xx_crb_addr_transform_setup(void) |
| { |
| qla4_8xxx_crb_addr_transform(XDMA); |
| qla4_8xxx_crb_addr_transform(TIMR); |
| qla4_8xxx_crb_addr_transform(SRE); |
| qla4_8xxx_crb_addr_transform(SQN3); |
| qla4_8xxx_crb_addr_transform(SQN2); |
| qla4_8xxx_crb_addr_transform(SQN1); |
| qla4_8xxx_crb_addr_transform(SQN0); |
| qla4_8xxx_crb_addr_transform(SQS3); |
| qla4_8xxx_crb_addr_transform(SQS2); |
| qla4_8xxx_crb_addr_transform(SQS1); |
| qla4_8xxx_crb_addr_transform(SQS0); |
| qla4_8xxx_crb_addr_transform(RPMX7); |
| qla4_8xxx_crb_addr_transform(RPMX6); |
| qla4_8xxx_crb_addr_transform(RPMX5); |
| qla4_8xxx_crb_addr_transform(RPMX4); |
| qla4_8xxx_crb_addr_transform(RPMX3); |
| qla4_8xxx_crb_addr_transform(RPMX2); |
| qla4_8xxx_crb_addr_transform(RPMX1); |
| qla4_8xxx_crb_addr_transform(RPMX0); |
| qla4_8xxx_crb_addr_transform(ROMUSB); |
| qla4_8xxx_crb_addr_transform(SN); |
| qla4_8xxx_crb_addr_transform(QMN); |
| qla4_8xxx_crb_addr_transform(QMS); |
| qla4_8xxx_crb_addr_transform(PGNI); |
| qla4_8xxx_crb_addr_transform(PGND); |
| qla4_8xxx_crb_addr_transform(PGN3); |
| qla4_8xxx_crb_addr_transform(PGN2); |
| qla4_8xxx_crb_addr_transform(PGN1); |
| qla4_8xxx_crb_addr_transform(PGN0); |
| qla4_8xxx_crb_addr_transform(PGSI); |
| qla4_8xxx_crb_addr_transform(PGSD); |
| qla4_8xxx_crb_addr_transform(PGS3); |
| qla4_8xxx_crb_addr_transform(PGS2); |
| qla4_8xxx_crb_addr_transform(PGS1); |
| qla4_8xxx_crb_addr_transform(PGS0); |
| qla4_8xxx_crb_addr_transform(PS); |
| qla4_8xxx_crb_addr_transform(PH); |
| qla4_8xxx_crb_addr_transform(NIU); |
| qla4_8xxx_crb_addr_transform(I2Q); |
| qla4_8xxx_crb_addr_transform(EG); |
| qla4_8xxx_crb_addr_transform(MN); |
| qla4_8xxx_crb_addr_transform(MS); |
| qla4_8xxx_crb_addr_transform(CAS2); |
| qla4_8xxx_crb_addr_transform(CAS1); |
| qla4_8xxx_crb_addr_transform(CAS0); |
| qla4_8xxx_crb_addr_transform(CAM); |
| qla4_8xxx_crb_addr_transform(C2C1); |
| qla4_8xxx_crb_addr_transform(C2C0); |
| qla4_8xxx_crb_addr_transform(SMB); |
| qla4_8xxx_crb_addr_transform(OCM0); |
| qla4_8xxx_crb_addr_transform(I2C0); |
| |
| qla4_8xxx_crb_table_initialized = 1; |
| } |
| |
| static struct crb_128M_2M_block_map crb_128M_2M_map[64] = { |
| {{{0, 0, 0, 0} } }, /* 0: PCI */ |
| {{{1, 0x0100000, 0x0102000, 0x120000}, /* 1: PCIE */ |
| {1, 0x0110000, 0x0120000, 0x130000}, |
| {1, 0x0120000, 0x0122000, 0x124000}, |
| {1, 0x0130000, 0x0132000, 0x126000}, |
| {1, 0x0140000, 0x0142000, 0x128000}, |
| {1, 0x0150000, 0x0152000, 0x12a000}, |
| {1, 0x0160000, 0x0170000, 0x110000}, |
| {1, 0x0170000, 0x0172000, 0x12e000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {1, 0x01e0000, 0x01e0800, 0x122000}, |
| {0, 0x0000000, 0x0000000, 0x000000} } }, |
| {{{1, 0x0200000, 0x0210000, 0x180000} } },/* 2: MN */ |
| {{{0, 0, 0, 0} } }, /* 3: */ |
| {{{1, 0x0400000, 0x0401000, 0x169000} } },/* 4: P2NR1 */ |
| {{{1, 0x0500000, 0x0510000, 0x140000} } },/* 5: SRE */ |
| {{{1, 0x0600000, 0x0610000, 0x1c0000} } },/* 6: NIU */ |
| {{{1, 0x0700000, 0x0704000, 0x1b8000} } },/* 7: QM */ |
| {{{1, 0x0800000, 0x0802000, 0x170000}, /* 8: SQM0 */ |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {1, 0x08f0000, 0x08f2000, 0x172000} } }, |
| {{{1, 0x0900000, 0x0902000, 0x174000}, /* 9: SQM1*/ |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {1, 0x09f0000, 0x09f2000, 0x176000} } }, |
| {{{0, 0x0a00000, 0x0a02000, 0x178000}, /* 10: SQM2*/ |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {1, 0x0af0000, 0x0af2000, 0x17a000} } }, |
| {{{0, 0x0b00000, 0x0b02000, 0x17c000}, /* 11: SQM3*/ |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {1, 0x0bf0000, 0x0bf2000, 0x17e000} } }, |
| {{{1, 0x0c00000, 0x0c04000, 0x1d4000} } },/* 12: I2Q */ |
| {{{1, 0x0d00000, 0x0d04000, 0x1a4000} } },/* 13: TMR */ |
| {{{1, 0x0e00000, 0x0e04000, 0x1a0000} } },/* 14: ROMUSB */ |
| {{{1, 0x0f00000, 0x0f01000, 0x164000} } },/* 15: PEG4 */ |
| {{{0, 0x1000000, 0x1004000, 0x1a8000} } },/* 16: XDMA */ |
| {{{1, 0x1100000, 0x1101000, 0x160000} } },/* 17: PEG0 */ |
| {{{1, 0x1200000, 0x1201000, 0x161000} } },/* 18: PEG1 */ |
| {{{1, 0x1300000, 0x1301000, 0x162000} } },/* 19: PEG2 */ |
| {{{1, 0x1400000, 0x1401000, 0x163000} } },/* 20: PEG3 */ |
| {{{1, 0x1500000, 0x1501000, 0x165000} } },/* 21: P2ND */ |
| {{{1, 0x1600000, 0x1601000, 0x166000} } },/* 22: P2NI */ |
| {{{0, 0, 0, 0} } }, /* 23: */ |
| {{{0, 0, 0, 0} } }, /* 24: */ |
| {{{0, 0, 0, 0} } }, /* 25: */ |
| {{{0, 0, 0, 0} } }, /* 26: */ |
| {{{0, 0, 0, 0} } }, /* 27: */ |
| {{{0, 0, 0, 0} } }, /* 28: */ |
| {{{1, 0x1d00000, 0x1d10000, 0x190000} } },/* 29: MS */ |
| {{{1, 0x1e00000, 0x1e01000, 0x16a000} } },/* 30: P2NR2 */ |
| {{{1, 0x1f00000, 0x1f10000, 0x150000} } },/* 31: EPG */ |
| {{{0} } }, /* 32: PCI */ |
| {{{1, 0x2100000, 0x2102000, 0x120000}, /* 33: PCIE */ |
| {1, 0x2110000, 0x2120000, 0x130000}, |
| {1, 0x2120000, 0x2122000, 0x124000}, |
| {1, 0x2130000, 0x2132000, 0x126000}, |
| {1, 0x2140000, 0x2142000, 0x128000}, |
| {1, 0x2150000, 0x2152000, 0x12a000}, |
| {1, 0x2160000, 0x2170000, 0x110000}, |
| {1, 0x2170000, 0x2172000, 0x12e000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000}, |
| {0, 0x0000000, 0x0000000, 0x000000} } }, |
| {{{1, 0x2200000, 0x2204000, 0x1b0000} } },/* 34: CAM */ |
| {{{0} } }, /* 35: */ |
| {{{0} } }, /* 36: */ |
| {{{0} } }, /* 37: */ |
| {{{0} } }, /* 38: */ |
| {{{0} } }, /* 39: */ |
| {{{1, 0x2800000, 0x2804000, 0x1a4000} } },/* 40: TMR */ |
| {{{1, 0x2900000, 0x2901000, 0x16b000} } },/* 41: P2NR3 */ |
| {{{1, 0x2a00000, 0x2a00400, 0x1ac400} } },/* 42: RPMX1 */ |
| {{{1, 0x2b00000, 0x2b00400, 0x1ac800} } },/* 43: RPMX2 */ |
| {{{1, 0x2c00000, 0x2c00400, 0x1acc00} } },/* 44: RPMX3 */ |
| {{{1, 0x2d00000, 0x2d00400, 0x1ad000} } },/* 45: RPMX4 */ |
| {{{1, 0x2e00000, 0x2e00400, 0x1ad400} } },/* 46: RPMX5 */ |
| {{{1, 0x2f00000, 0x2f00400, 0x1ad800} } },/* 47: RPMX6 */ |
| {{{1, 0x3000000, 0x3000400, 0x1adc00} } },/* 48: RPMX7 */ |
| {{{0, 0x3100000, 0x3104000, 0x1a8000} } },/* 49: XDMA */ |
| {{{1, 0x3200000, 0x3204000, 0x1d4000} } },/* 50: I2Q */ |
| {{{1, 0x3300000, 0x3304000, 0x1a0000} } },/* 51: ROMUSB */ |
| {{{0} } }, /* 52: */ |
| {{{1, 0x3500000, 0x3500400, 0x1ac000} } },/* 53: RPMX0 */ |
| {{{1, 0x3600000, 0x3600400, 0x1ae000} } },/* 54: RPMX8 */ |
| {{{1, 0x3700000, 0x3700400, 0x1ae400} } },/* 55: RPMX9 */ |
| {{{1, 0x3800000, 0x3804000, 0x1d0000} } },/* 56: OCM0 */ |
| {{{1, 0x3900000, 0x3904000, 0x1b4000} } },/* 57: CRYPTO */ |
| {{{1, 0x3a00000, 0x3a04000, 0x1d8000} } },/* 58: SMB */ |
| {{{0} } }, /* 59: I2C0 */ |
| {{{0} } }, /* 60: I2C1 */ |
| {{{1, 0x3d00000, 0x3d04000, 0x1dc000} } },/* 61: LPC */ |
| {{{1, 0x3e00000, 0x3e01000, 0x167000} } },/* 62: P2NC */ |
| {{{1, 0x3f00000, 0x3f01000, 0x168000} } } /* 63: P2NR0 */ |
| }; |
| |
| /* |
| * top 12 bits of crb internal address (hub, agent) |
| */ |
| static unsigned qla4_82xx_crb_hub_agt[64] = { |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PS, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_MN, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_MS, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SRE, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_NIU, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_QMN, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SQN0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SQN1, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SQN2, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SQN3, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGN4, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGN0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGN1, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGN2, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGN3, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGND, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGNI, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGS0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGS1, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGS2, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGS3, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGSI, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SN, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_EG, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PS, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_CAM, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_TIMR, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX1, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX2, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX3, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX4, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX5, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX6, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX7, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_XDMA, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_I2Q, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_ROMUSB, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX8, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_RPMX9, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_OCM0, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_SMB, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_I2C0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_I2C1, |
| 0, |
| QLA82XX_HW_CRB_HUB_AGT_ADR_PGNC, |
| 0, |
| }; |
| |
| /* Device states */ |
| static char *qdev_state[] = { |
| "Unknown", |
| "Cold", |
| "Initializing", |
| "Ready", |
| "Need Reset", |
| "Need Quiescent", |
| "Failed", |
| "Quiescent", |
| }; |
| |
| /* |
| * In: 'off' is offset from CRB space in 128M pci map |
| * Out: 'off' is 2M pci map addr |
| * side effect: lock crb window |
| */ |
| static void |
| qla4_82xx_pci_set_crbwindow_2M(struct scsi_qla_host *ha, ulong *off) |
| { |
| u32 win_read; |
| |
| ha->crb_win = CRB_HI(*off); |
| writel(ha->crb_win, |
| (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| |
| /* Read back value to make sure write has gone through before trying |
| * to use it. */ |
| win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| if (win_read != ha->crb_win) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Written crbwin (0x%x) != Read crbwin (0x%x)," |
| " off=0x%lx\n", __func__, ha->crb_win, win_read, *off)); |
| } |
| *off = (*off & MASK(16)) + CRB_INDIRECT_2M + ha->nx_pcibase; |
| } |
| |
| void |
| qla4_82xx_wr_32(struct scsi_qla_host *ha, ulong off, u32 data) |
| { |
| unsigned long flags = 0; |
| int rv; |
| |
| rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off); |
| |
| BUG_ON(rv == -1); |
| |
| if (rv == 1) { |
| write_lock_irqsave(&ha->hw_lock, flags); |
| qla4_82xx_crb_win_lock(ha); |
| qla4_82xx_pci_set_crbwindow_2M(ha, &off); |
| } |
| |
| writel(data, (void __iomem *)off); |
| |
| if (rv == 1) { |
| qla4_82xx_crb_win_unlock(ha); |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| } |
| } |
| |
| uint32_t qla4_82xx_rd_32(struct scsi_qla_host *ha, ulong off) |
| { |
| unsigned long flags = 0; |
| int rv; |
| u32 data; |
| |
| rv = qla4_82xx_pci_get_crb_addr_2M(ha, &off); |
| |
| BUG_ON(rv == -1); |
| |
| if (rv == 1) { |
| write_lock_irqsave(&ha->hw_lock, flags); |
| qla4_82xx_crb_win_lock(ha); |
| qla4_82xx_pci_set_crbwindow_2M(ha, &off); |
| } |
| data = readl((void __iomem *)off); |
| |
| if (rv == 1) { |
| qla4_82xx_crb_win_unlock(ha); |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| } |
| return data; |
| } |
| |
| /* Minidump related functions */ |
| int qla4_82xx_md_rd_32(struct scsi_qla_host *ha, uint32_t off, uint32_t *data) |
| { |
| uint32_t win_read, off_value; |
| int rval = QLA_SUCCESS; |
| |
| off_value = off & 0xFFFF0000; |
| writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| |
| /* |
| * Read back value to make sure write has gone through before trying |
| * to use it. |
| */ |
| win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| if (win_read != off_value) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Written (0x%x) != Read (0x%x), off=0x%x\n", |
| __func__, off_value, win_read, off)); |
| rval = QLA_ERROR; |
| } else { |
| off_value = off & 0x0000FFFF; |
| *data = readl((void __iomem *)(off_value + CRB_INDIRECT_2M + |
| ha->nx_pcibase)); |
| } |
| return rval; |
| } |
| |
| int qla4_82xx_md_wr_32(struct scsi_qla_host *ha, uint32_t off, uint32_t data) |
| { |
| uint32_t win_read, off_value; |
| int rval = QLA_SUCCESS; |
| |
| off_value = off & 0xFFFF0000; |
| writel(off_value, (void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| |
| /* Read back value to make sure write has gone through before trying |
| * to use it. |
| */ |
| win_read = readl((void __iomem *)(CRB_WINDOW_2M + ha->nx_pcibase)); |
| if (win_read != off_value) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Written (0x%x) != Read (0x%x), off=0x%x\n", |
| __func__, off_value, win_read, off)); |
| rval = QLA_ERROR; |
| } else { |
| off_value = off & 0x0000FFFF; |
| writel(data, (void __iomem *)(off_value + CRB_INDIRECT_2M + |
| ha->nx_pcibase)); |
| } |
| return rval; |
| } |
| |
| #define CRB_WIN_LOCK_TIMEOUT 100000000 |
| |
| int qla4_82xx_crb_win_lock(struct scsi_qla_host *ha) |
| { |
| int i; |
| int done = 0, timeout = 0; |
| |
| while (!done) { |
| /* acquire semaphore3 from PCI HW block */ |
| done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_LOCK)); |
| if (done == 1) |
| break; |
| if (timeout >= CRB_WIN_LOCK_TIMEOUT) |
| return -1; |
| |
| timeout++; |
| |
| /* Yield CPU */ |
| if (!in_interrupt()) |
| schedule(); |
| else { |
| for (i = 0; i < 20; i++) |
| cpu_relax(); /*This a nop instr on i386*/ |
| } |
| } |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_WIN_LOCK_ID, ha->func_num); |
| return 0; |
| } |
| |
| void qla4_82xx_crb_win_unlock(struct scsi_qla_host *ha) |
| { |
| qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM7_UNLOCK)); |
| } |
| |
| #define IDC_LOCK_TIMEOUT 100000000 |
| |
| /** |
| * qla4_82xx_idc_lock - hw_lock |
| * @ha: pointer to adapter structure |
| * |
| * General purpose lock used to synchronize access to |
| * CRB_DEV_STATE, CRB_DEV_REF_COUNT, etc. |
| **/ |
| int qla4_82xx_idc_lock(struct scsi_qla_host *ha) |
| { |
| int i; |
| int done = 0, timeout = 0; |
| |
| while (!done) { |
| /* acquire semaphore5 from PCI HW block */ |
| done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_LOCK)); |
| if (done == 1) |
| break; |
| if (timeout >= IDC_LOCK_TIMEOUT) |
| return -1; |
| |
| timeout++; |
| |
| /* Yield CPU */ |
| if (!in_interrupt()) |
| schedule(); |
| else { |
| for (i = 0; i < 20; i++) |
| cpu_relax(); /*This a nop instr on i386*/ |
| } |
| } |
| return 0; |
| } |
| |
| void qla4_82xx_idc_unlock(struct scsi_qla_host *ha) |
| { |
| qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM5_UNLOCK)); |
| } |
| |
| int |
| qla4_82xx_pci_get_crb_addr_2M(struct scsi_qla_host *ha, ulong *off) |
| { |
| struct crb_128M_2M_sub_block_map *m; |
| |
| if (*off >= QLA82XX_CRB_MAX) |
| return -1; |
| |
| if (*off >= QLA82XX_PCI_CAMQM && (*off < QLA82XX_PCI_CAMQM_2M_END)) { |
| *off = (*off - QLA82XX_PCI_CAMQM) + |
| QLA82XX_PCI_CAMQM_2M_BASE + ha->nx_pcibase; |
| return 0; |
| } |
| |
| if (*off < QLA82XX_PCI_CRBSPACE) |
| return -1; |
| |
| *off -= QLA82XX_PCI_CRBSPACE; |
| /* |
| * Try direct map |
| */ |
| |
| m = &crb_128M_2M_map[CRB_BLK(*off)].sub_block[CRB_SUBBLK(*off)]; |
| |
| if (m->valid && (m->start_128M <= *off) && (m->end_128M > *off)) { |
| *off = *off + m->start_2M - m->start_128M + ha->nx_pcibase; |
| return 0; |
| } |
| |
| /* |
| * Not in direct map, use crb window |
| */ |
| return 1; |
| } |
| |
| /* |
| * check memory access boundary. |
| * used by test agent. support ddr access only for now |
| */ |
| static unsigned long |
| qla4_82xx_pci_mem_bound_check(struct scsi_qla_host *ha, |
| unsigned long long addr, int size) |
| { |
| if (!QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, |
| QLA8XXX_ADDR_DDR_NET_MAX) || |
| !QLA8XXX_ADDR_IN_RANGE(addr + size - 1, |
| QLA8XXX_ADDR_DDR_NET, QLA8XXX_ADDR_DDR_NET_MAX) || |
| ((size != 1) && (size != 2) && (size != 4) && (size != 8))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int qla4_82xx_pci_set_window_warning_count; |
| |
| static unsigned long |
| qla4_82xx_pci_set_window(struct scsi_qla_host *ha, unsigned long long addr) |
| { |
| int window; |
| u32 win_read; |
| |
| if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, |
| QLA8XXX_ADDR_DDR_NET_MAX)) { |
| /* DDR network side */ |
| window = MN_WIN(addr); |
| ha->ddr_mn_window = window; |
| qla4_82xx_wr_32(ha, ha->mn_win_crb | |
| QLA82XX_PCI_CRBSPACE, window); |
| win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb | |
| QLA82XX_PCI_CRBSPACE); |
| if ((win_read << 17) != window) { |
| ql4_printk(KERN_WARNING, ha, |
| "%s: Written MNwin (0x%x) != Read MNwin (0x%x)\n", |
| __func__, window, win_read); |
| } |
| addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_DDR_NET; |
| } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0, |
| QLA8XXX_ADDR_OCM0_MAX)) { |
| unsigned int temp1; |
| /* if bits 19:18&17:11 are on */ |
| if ((addr & 0x00ff800) == 0xff800) { |
| printk("%s: QM access not handled.\n", __func__); |
| addr = -1UL; |
| } |
| |
| window = OCM_WIN(addr); |
| ha->ddr_mn_window = window; |
| qla4_82xx_wr_32(ha, ha->mn_win_crb | |
| QLA82XX_PCI_CRBSPACE, window); |
| win_read = qla4_82xx_rd_32(ha, ha->mn_win_crb | |
| QLA82XX_PCI_CRBSPACE); |
| temp1 = ((window & 0x1FF) << 7) | |
| ((window & 0x0FFFE0000) >> 17); |
| if (win_read != temp1) { |
| printk("%s: Written OCMwin (0x%x) != Read" |
| " OCMwin (0x%x)\n", __func__, temp1, win_read); |
| } |
| addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_OCM0_2M; |
| |
| } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET, |
| QLA82XX_P3_ADDR_QDR_NET_MAX)) { |
| /* QDR network side */ |
| window = MS_WIN(addr); |
| ha->qdr_sn_window = window; |
| qla4_82xx_wr_32(ha, ha->ms_win_crb | |
| QLA82XX_PCI_CRBSPACE, window); |
| win_read = qla4_82xx_rd_32(ha, |
| ha->ms_win_crb | QLA82XX_PCI_CRBSPACE); |
| if (win_read != window) { |
| printk("%s: Written MSwin (0x%x) != Read " |
| "MSwin (0x%x)\n", __func__, window, win_read); |
| } |
| addr = GET_MEM_OFFS_2M(addr) + QLA82XX_PCI_QDR_NET; |
| |
| } else { |
| /* |
| * peg gdb frequently accesses memory that doesn't exist, |
| * this limits the chit chat so debugging isn't slowed down. |
| */ |
| if ((qla4_82xx_pci_set_window_warning_count++ < 8) || |
| (qla4_82xx_pci_set_window_warning_count%64 == 0)) { |
| printk("%s: Warning:%s Unknown address range!\n", |
| __func__, DRIVER_NAME); |
| } |
| addr = -1UL; |
| } |
| return addr; |
| } |
| |
| /* check if address is in the same windows as the previous access */ |
| static int qla4_82xx_pci_is_same_window(struct scsi_qla_host *ha, |
| unsigned long long addr) |
| { |
| int window; |
| unsigned long long qdr_max; |
| |
| qdr_max = QLA82XX_P3_ADDR_QDR_NET_MAX; |
| |
| if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_DDR_NET, |
| QLA8XXX_ADDR_DDR_NET_MAX)) { |
| /* DDR network side */ |
| BUG(); /* MN access can not come here */ |
| } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM0, |
| QLA8XXX_ADDR_OCM0_MAX)) { |
| return 1; |
| } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_OCM1, |
| QLA8XXX_ADDR_OCM1_MAX)) { |
| return 1; |
| } else if (QLA8XXX_ADDR_IN_RANGE(addr, QLA8XXX_ADDR_QDR_NET, |
| qdr_max)) { |
| /* QDR network side */ |
| window = ((addr - QLA8XXX_ADDR_QDR_NET) >> 22) & 0x3f; |
| if (ha->qdr_sn_window == window) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int qla4_82xx_pci_mem_read_direct(struct scsi_qla_host *ha, |
| u64 off, void *data, int size) |
| { |
| unsigned long flags; |
| void __iomem *addr; |
| int ret = 0; |
| u64 start; |
| void __iomem *mem_ptr = NULL; |
| unsigned long mem_base; |
| unsigned long mem_page; |
| |
| write_lock_irqsave(&ha->hw_lock, flags); |
| |
| /* |
| * If attempting to access unknown address or straddle hw windows, |
| * do not access. |
| */ |
| start = qla4_82xx_pci_set_window(ha, off); |
| if ((start == -1UL) || |
| (qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) { |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| printk(KERN_ERR"%s out of bound pci memory access. " |
| "offset is 0x%llx\n", DRIVER_NAME, off); |
| return -1; |
| } |
| |
| addr = qla4_8xxx_pci_base_offsetfset(ha, start); |
| if (!addr) { |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| mem_base = pci_resource_start(ha->pdev, 0); |
| mem_page = start & PAGE_MASK; |
| /* Map two pages whenever user tries to access addresses in two |
| consecutive pages. |
| */ |
| if (mem_page != ((start + size - 1) & PAGE_MASK)) |
| mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE * 2); |
| else |
| mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE); |
| |
| if (mem_ptr == NULL) { |
| *(u8 *)data = 0; |
| return -1; |
| } |
| addr = mem_ptr; |
| addr += start & (PAGE_SIZE - 1); |
| write_lock_irqsave(&ha->hw_lock, flags); |
| } |
| |
| switch (size) { |
| case 1: |
| *(u8 *)data = readb(addr); |
| break; |
| case 2: |
| *(u16 *)data = readw(addr); |
| break; |
| case 4: |
| *(u32 *)data = readl(addr); |
| break; |
| case 8: |
| *(u64 *)data = readq(addr); |
| break; |
| default: |
| ret = -1; |
| break; |
| } |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| |
| if (mem_ptr) |
| iounmap(mem_ptr); |
| return ret; |
| } |
| |
| static int |
| qla4_82xx_pci_mem_write_direct(struct scsi_qla_host *ha, u64 off, |
| void *data, int size) |
| { |
| unsigned long flags; |
| void __iomem *addr; |
| int ret = 0; |
| u64 start; |
| void __iomem *mem_ptr = NULL; |
| unsigned long mem_base; |
| unsigned long mem_page; |
| |
| write_lock_irqsave(&ha->hw_lock, flags); |
| |
| /* |
| * If attempting to access unknown address or straddle hw windows, |
| * do not access. |
| */ |
| start = qla4_82xx_pci_set_window(ha, off); |
| if ((start == -1UL) || |
| (qla4_82xx_pci_is_same_window(ha, off + size - 1) == 0)) { |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| printk(KERN_ERR"%s out of bound pci memory access. " |
| "offset is 0x%llx\n", DRIVER_NAME, off); |
| return -1; |
| } |
| |
| addr = qla4_8xxx_pci_base_offsetfset(ha, start); |
| if (!addr) { |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| mem_base = pci_resource_start(ha->pdev, 0); |
| mem_page = start & PAGE_MASK; |
| /* Map two pages whenever user tries to access addresses in two |
| consecutive pages. |
| */ |
| if (mem_page != ((start + size - 1) & PAGE_MASK)) |
| mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE*2); |
| else |
| mem_ptr = ioremap(mem_base + mem_page, PAGE_SIZE); |
| if (mem_ptr == NULL) |
| return -1; |
| |
| addr = mem_ptr; |
| addr += start & (PAGE_SIZE - 1); |
| write_lock_irqsave(&ha->hw_lock, flags); |
| } |
| |
| switch (size) { |
| case 1: |
| writeb(*(u8 *)data, addr); |
| break; |
| case 2: |
| writew(*(u16 *)data, addr); |
| break; |
| case 4: |
| writel(*(u32 *)data, addr); |
| break; |
| case 8: |
| writeq(*(u64 *)data, addr); |
| break; |
| default: |
| ret = -1; |
| break; |
| } |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| if (mem_ptr) |
| iounmap(mem_ptr); |
| return ret; |
| } |
| |
| #define MTU_FUDGE_FACTOR 100 |
| |
| static unsigned long |
| qla4_82xx_decode_crb_addr(unsigned long addr) |
| { |
| int i; |
| unsigned long base_addr, offset, pci_base; |
| |
| if (!qla4_8xxx_crb_table_initialized) |
| qla4_82xx_crb_addr_transform_setup(); |
| |
| pci_base = ADDR_ERROR; |
| base_addr = addr & 0xfff00000; |
| offset = addr & 0x000fffff; |
| |
| for (i = 0; i < MAX_CRB_XFORM; i++) { |
| if (crb_addr_xform[i] == base_addr) { |
| pci_base = i << 20; |
| break; |
| } |
| } |
| if (pci_base == ADDR_ERROR) |
| return pci_base; |
| else |
| return pci_base + offset; |
| } |
| |
| static long rom_max_timeout = 100; |
| static long qla4_82xx_rom_lock_timeout = 100; |
| |
| static int |
| qla4_82xx_rom_lock(struct scsi_qla_host *ha) |
| { |
| int i; |
| int done = 0, timeout = 0; |
| |
| while (!done) { |
| /* acquire semaphore2 from PCI HW block */ |
| |
| done = qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_LOCK)); |
| if (done == 1) |
| break; |
| if (timeout >= qla4_82xx_rom_lock_timeout) |
| return -1; |
| |
| timeout++; |
| |
| /* Yield CPU */ |
| if (!in_interrupt()) |
| schedule(); |
| else { |
| for (i = 0; i < 20; i++) |
| cpu_relax(); /*This a nop instr on i386*/ |
| } |
| } |
| qla4_82xx_wr_32(ha, QLA82XX_ROM_LOCK_ID, ROM_LOCK_DRIVER); |
| return 0; |
| } |
| |
| static void |
| qla4_82xx_rom_unlock(struct scsi_qla_host *ha) |
| { |
| qla4_82xx_rd_32(ha, QLA82XX_PCIE_REG(PCIE_SEM2_UNLOCK)); |
| } |
| |
| static int |
| qla4_82xx_wait_rom_done(struct scsi_qla_host *ha) |
| { |
| long timeout = 0; |
| long done = 0 ; |
| |
| while (done == 0) { |
| done = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_STATUS); |
| done &= 2; |
| timeout++; |
| if (timeout >= rom_max_timeout) { |
| printk("%s: Timeout reached waiting for rom done", |
| DRIVER_NAME); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| qla4_82xx_do_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp) |
| { |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ADDRESS, addr); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 3); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_INSTR_OPCODE, 0xb); |
| if (qla4_82xx_wait_rom_done(ha)) { |
| printk("%s: Error waiting for rom done\n", DRIVER_NAME); |
| return -1; |
| } |
| /* reset abyte_cnt and dummy_byte_cnt */ |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); |
| udelay(10); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_ROM_ABYTE_CNT, 0); |
| |
| *valp = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_ROM_RDATA); |
| return 0; |
| } |
| |
| static int |
| qla4_82xx_rom_fast_read(struct scsi_qla_host *ha, int addr, int *valp) |
| { |
| int ret, loops = 0; |
| |
| while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) { |
| udelay(100); |
| loops++; |
| } |
| if (loops >= 50000) { |
| ql4_printk(KERN_WARNING, ha, "%s: qla4_82xx_rom_lock failed\n", |
| DRIVER_NAME); |
| return -1; |
| } |
| ret = qla4_82xx_do_rom_fast_read(ha, addr, valp); |
| qla4_82xx_rom_unlock(ha); |
| return ret; |
| } |
| |
| /** |
| * This routine does CRB initialize sequence |
| * to put the ISP into operational state |
| **/ |
| static int |
| qla4_82xx_pinit_from_rom(struct scsi_qla_host *ha, int verbose) |
| { |
| int addr, val; |
| int i ; |
| struct crb_addr_pair *buf; |
| unsigned long off; |
| unsigned offset, n; |
| |
| struct crb_addr_pair { |
| long addr; |
| long data; |
| }; |
| |
| /* Halt all the indiviual PEGs and other blocks of the ISP */ |
| qla4_82xx_rom_lock(ha); |
| |
| /* disable all I2Q */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x10, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x14, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x18, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x1c, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x20, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_I2Q + 0x24, 0x0); |
| |
| /* disable all niu interrupts */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x40, 0xff); |
| /* disable xge rx/tx */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x70000, 0x00); |
| /* disable xg1 rx/tx */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x80000, 0x00); |
| /* disable sideband mac */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0x90000, 0x00); |
| /* disable ap0 mac */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xa0000, 0x00); |
| /* disable ap1 mac */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_NIU + 0xb0000, 0x00); |
| |
| /* halt sre */ |
| val = qla4_82xx_rd_32(ha, QLA82XX_CRB_SRE + 0x1000); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_SRE + 0x1000, val & (~(0x1))); |
| |
| /* halt epg */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_EPG + 0x1300, 0x1); |
| |
| /* halt timers */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x0, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x8, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x10, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x18, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x100, 0x0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_TIMER + 0x200, 0x0); |
| |
| /* halt pegs */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x3c, 1); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1 + 0x3c, 1); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2 + 0x3c, 1); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3 + 0x3c, 1); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_4 + 0x3c, 1); |
| msleep(5); |
| |
| /* big hammer */ |
| if (test_bit(DPC_RESET_HA, &ha->dpc_flags)) |
| /* don't reset CAM block on reset */ |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xfeffffff); |
| else |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0xffffffff); |
| |
| qla4_82xx_rom_unlock(ha); |
| |
| /* Read the signature value from the flash. |
| * Offset 0: Contain signature (0xcafecafe) |
| * Offset 4: Offset and number of addr/value pairs |
| * that present in CRB initialize sequence |
| */ |
| if (qla4_82xx_rom_fast_read(ha, 0, &n) != 0 || n != 0xcafecafeUL || |
| qla4_82xx_rom_fast_read(ha, 4, &n) != 0) { |
| ql4_printk(KERN_WARNING, ha, |
| "[ERROR] Reading crb_init area: n: %08x\n", n); |
| return -1; |
| } |
| |
| /* Offset in flash = lower 16 bits |
| * Number of enteries = upper 16 bits |
| */ |
| offset = n & 0xffffU; |
| n = (n >> 16) & 0xffffU; |
| |
| /* number of addr/value pair should not exceed 1024 enteries */ |
| if (n >= 1024) { |
| ql4_printk(KERN_WARNING, ha, |
| "%s: %s:n=0x%x [ERROR] Card flash not initialized.\n", |
| DRIVER_NAME, __func__, n); |
| return -1; |
| } |
| |
| ql4_printk(KERN_INFO, ha, |
| "%s: %d CRB init values found in ROM.\n", DRIVER_NAME, n); |
| |
| buf = kmalloc(n * sizeof(struct crb_addr_pair), GFP_KERNEL); |
| if (buf == NULL) { |
| ql4_printk(KERN_WARNING, ha, |
| "%s: [ERROR] Unable to malloc memory.\n", DRIVER_NAME); |
| return -1; |
| } |
| |
| for (i = 0; i < n; i++) { |
| if (qla4_82xx_rom_fast_read(ha, 8*i + 4*offset, &val) != 0 || |
| qla4_82xx_rom_fast_read(ha, 8*i + 4*offset + 4, &addr) != |
| 0) { |
| kfree(buf); |
| return -1; |
| } |
| |
| buf[i].addr = addr; |
| buf[i].data = val; |
| } |
| |
| for (i = 0; i < n; i++) { |
| /* Translate internal CRB initialization |
| * address to PCI bus address |
| */ |
| off = qla4_82xx_decode_crb_addr((unsigned long)buf[i].addr) + |
| QLA82XX_PCI_CRBSPACE; |
| /* Not all CRB addr/value pair to be written, |
| * some of them are skipped |
| */ |
| |
| /* skip if LS bit is set*/ |
| if (off & 0x1) { |
| DEBUG2(ql4_printk(KERN_WARNING, ha, |
| "Skip CRB init replay for offset = 0x%lx\n", off)); |
| continue; |
| } |
| |
| /* skipping cold reboot MAGIC */ |
| if (off == QLA82XX_CAM_RAM(0x1fc)) |
| continue; |
| |
| /* do not reset PCI */ |
| if (off == (ROMUSB_GLB + 0xbc)) |
| continue; |
| |
| /* skip core clock, so that firmware can increase the clock */ |
| if (off == (ROMUSB_GLB + 0xc8)) |
| continue; |
| |
| /* skip the function enable register */ |
| if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION)) |
| continue; |
| |
| if (off == QLA82XX_PCIE_REG(PCIE_SETUP_FUNCTION2)) |
| continue; |
| |
| if ((off & 0x0ff00000) == QLA82XX_CRB_SMB) |
| continue; |
| |
| if ((off & 0x0ff00000) == QLA82XX_CRB_DDR_NET) |
| continue; |
| |
| if (off == ADDR_ERROR) { |
| ql4_printk(KERN_WARNING, ha, |
| "%s: [ERROR] Unknown addr: 0x%08lx\n", |
| DRIVER_NAME, buf[i].addr); |
| continue; |
| } |
| |
| qla4_82xx_wr_32(ha, off, buf[i].data); |
| |
| /* ISP requires much bigger delay to settle down, |
| * else crb_window returns 0xffffffff |
| */ |
| if (off == QLA82XX_ROMUSB_GLB_SW_RESET) |
| msleep(1000); |
| |
| /* ISP requires millisec delay between |
| * successive CRB register updation |
| */ |
| msleep(1); |
| } |
| |
| kfree(buf); |
| |
| /* Resetting the data and instruction cache */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0xec, 0x1e); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_D+0x4c, 8); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_I+0x4c, 8); |
| |
| /* Clear all protocol processing engines */ |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0x8, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0+0xc, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0x8, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_1+0xc, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0x8, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_2+0xc, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0x8, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_3+0xc, 0); |
| |
| return 0; |
| } |
| |
| static int |
| qla4_82xx_load_from_flash(struct scsi_qla_host *ha, uint32_t image_start) |
| { |
| int i, rval = 0; |
| long size = 0; |
| long flashaddr, memaddr; |
| u64 data; |
| u32 high, low; |
| |
| flashaddr = memaddr = ha->hw.flt_region_bootload; |
| size = (image_start - flashaddr) / 8; |
| |
| DEBUG2(printk("scsi%ld: %s: bootldr=0x%lx, fw_image=0x%x\n", |
| ha->host_no, __func__, flashaddr, image_start)); |
| |
| for (i = 0; i < size; i++) { |
| if ((qla4_82xx_rom_fast_read(ha, flashaddr, (int *)&low)) || |
| (qla4_82xx_rom_fast_read(ha, flashaddr + 4, |
| (int *)&high))) { |
| rval = -1; |
| goto exit_load_from_flash; |
| } |
| data = ((u64)high << 32) | low ; |
| rval = qla4_82xx_pci_mem_write_2M(ha, memaddr, &data, 8); |
| if (rval) |
| goto exit_load_from_flash; |
| |
| flashaddr += 8; |
| memaddr += 8; |
| |
| if (i % 0x1000 == 0) |
| msleep(1); |
| |
| } |
| |
| udelay(100); |
| |
| read_lock(&ha->hw_lock); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_PEG_NET_0 + 0x18, 0x1020); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, 0x80001e); |
| read_unlock(&ha->hw_lock); |
| |
| exit_load_from_flash: |
| return rval; |
| } |
| |
| static int qla4_82xx_load_fw(struct scsi_qla_host *ha, uint32_t image_start) |
| { |
| u32 rst; |
| |
| qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0); |
| if (qla4_82xx_pinit_from_rom(ha, 0) != QLA_SUCCESS) { |
| printk(KERN_WARNING "%s: Error during CRB Initialization\n", |
| __func__); |
| return QLA_ERROR; |
| } |
| |
| udelay(500); |
| |
| /* at this point, QM is in reset. This could be a problem if there are |
| * incoming d* transition queue messages. QM/PCIE could wedge. |
| * To get around this, QM is brought out of reset. |
| */ |
| |
| rst = qla4_82xx_rd_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET); |
| /* unreset qm */ |
| rst &= ~(1 << 28); |
| qla4_82xx_wr_32(ha, QLA82XX_ROMUSB_GLB_SW_RESET, rst); |
| |
| if (qla4_82xx_load_from_flash(ha, image_start)) { |
| printk("%s: Error trying to load fw from flash!\n", __func__); |
| return QLA_ERROR; |
| } |
| |
| return QLA_SUCCESS; |
| } |
| |
| int |
| qla4_82xx_pci_mem_read_2M(struct scsi_qla_host *ha, |
| u64 off, void *data, int size) |
| { |
| int i, j = 0, k, start, end, loop, sz[2], off0[2]; |
| int shift_amount; |
| uint32_t temp; |
| uint64_t off8, val, mem_crb, word[2] = {0, 0}; |
| |
| /* |
| * If not MN, go check for MS or invalid. |
| */ |
| |
| if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX) |
| mem_crb = QLA82XX_CRB_QDR_NET; |
| else { |
| mem_crb = QLA82XX_CRB_DDR_NET; |
| if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0) |
| return qla4_82xx_pci_mem_read_direct(ha, |
| off, data, size); |
| } |
| |
| |
| off8 = off & 0xfffffff0; |
| off0[0] = off & 0xf; |
| sz[0] = (size < (16 - off0[0])) ? size : (16 - off0[0]); |
| shift_amount = 4; |
| |
| loop = ((off0[0] + size - 1) >> shift_amount) + 1; |
| off0[1] = 0; |
| sz[1] = size - sz[0]; |
| |
| for (i = 0; i < loop; i++) { |
| temp = off8 + (i << shift_amount); |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_LO, temp); |
| temp = 0; |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_ADDR_HI, temp); |
| temp = MIU_TA_CTL_ENABLE; |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp); |
| temp = MIU_TA_CTL_START_ENABLE; |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_CTRL, temp); |
| |
| for (j = 0; j < MAX_CTL_CHECK; j++) { |
| temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL); |
| if ((temp & MIU_TA_CTL_BUSY) == 0) |
| break; |
| } |
| |
| if (j >= MAX_CTL_CHECK) { |
| printk_ratelimited(KERN_ERR |
| "%s: failed to read through agent\n", |
| __func__); |
| break; |
| } |
| |
| start = off0[i] >> 2; |
| end = (off0[i] + sz[i] - 1) >> 2; |
| for (k = start; k <= end; k++) { |
| temp = qla4_82xx_rd_32(ha, |
| mem_crb + MIU_TEST_AGT_RDDATA(k)); |
| word[i] |= ((uint64_t)temp << (32 * (k & 1))); |
| } |
| } |
| |
| if (j >= MAX_CTL_CHECK) |
| return -1; |
| |
| if ((off0[0] & 7) == 0) { |
| val = word[0]; |
| } else { |
| val = ((word[0] >> (off0[0] * 8)) & (~(~0ULL << (sz[0] * 8)))) | |
| ((word[1] & (~(~0ULL << (sz[1] * 8)))) << (sz[0] * 8)); |
| } |
| |
| switch (size) { |
| case 1: |
| *(uint8_t *)data = val; |
| break; |
| case 2: |
| *(uint16_t *)data = val; |
| break; |
| case 4: |
| *(uint32_t *)data = val; |
| break; |
| case 8: |
| *(uint64_t *)data = val; |
| break; |
| } |
| return 0; |
| } |
| |
| int |
| qla4_82xx_pci_mem_write_2M(struct scsi_qla_host *ha, |
| u64 off, void *data, int size) |
| { |
| int i, j, ret = 0, loop, sz[2], off0; |
| int scale, shift_amount, startword; |
| uint32_t temp; |
| uint64_t off8, mem_crb, tmpw, word[2] = {0, 0}; |
| |
| /* |
| * If not MN, go check for MS or invalid. |
| */ |
| if (off >= QLA8XXX_ADDR_QDR_NET && off <= QLA82XX_P3_ADDR_QDR_NET_MAX) |
| mem_crb = QLA82XX_CRB_QDR_NET; |
| else { |
| mem_crb = QLA82XX_CRB_DDR_NET; |
| if (qla4_82xx_pci_mem_bound_check(ha, off, size) == 0) |
| return qla4_82xx_pci_mem_write_direct(ha, |
| off, data, size); |
| } |
| |
| off0 = off & 0x7; |
| sz[0] = (size < (8 - off0)) ? size : (8 - off0); |
| sz[1] = size - sz[0]; |
| |
| off8 = off & 0xfffffff0; |
| loop = (((off & 0xf) + size - 1) >> 4) + 1; |
| shift_amount = 4; |
| scale = 2; |
| startword = (off & 0xf)/8; |
| |
| for (i = 0; i < loop; i++) { |
| if (qla4_82xx_pci_mem_read_2M(ha, off8 + |
| (i << shift_amount), &word[i * scale], 8)) |
| return -1; |
| } |
| |
| switch (size) { |
| case 1: |
| tmpw = *((uint8_t *)data); |
| break; |
| case 2: |
| tmpw = *((uint16_t *)data); |
| break; |
| case 4: |
| tmpw = *((uint32_t *)data); |
| break; |
| case 8: |
| default: |
| tmpw = *((uint64_t *)data); |
| break; |
| } |
| |
| if (sz[0] == 8) |
| word[startword] = tmpw; |
| else { |
| word[startword] &= |
| ~((~(~0ULL << (sz[0] * 8))) << (off0 * 8)); |
| word[startword] |= tmpw << (off0 * 8); |
| } |
| |
| if (sz[1] != 0) { |
| word[startword+1] &= ~(~0ULL << (sz[1] * 8)); |
| word[startword+1] |= tmpw >> (sz[0] * 8); |
| } |
| |
| for (i = 0; i < loop; i++) { |
| temp = off8 + (i << shift_amount); |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_LO, temp); |
| temp = 0; |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_ADDR_HI, temp); |
| temp = word[i * scale] & 0xffffffff; |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_LO, temp); |
| temp = (word[i * scale] >> 32) & 0xffffffff; |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_WRDATA_HI, temp); |
| temp = word[i*scale + 1] & 0xffffffff; |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_LO, |
| temp); |
| temp = (word[i*scale + 1] >> 32) & 0xffffffff; |
| qla4_82xx_wr_32(ha, mem_crb + MIU_TEST_AGT_WRDATA_UPPER_HI, |
| temp); |
| |
| temp = MIU_TA_CTL_WRITE_ENABLE; |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp); |
| temp = MIU_TA_CTL_WRITE_START; |
| qla4_82xx_wr_32(ha, mem_crb+MIU_TEST_AGT_CTRL, temp); |
| |
| for (j = 0; j < MAX_CTL_CHECK; j++) { |
| temp = qla4_82xx_rd_32(ha, mem_crb + MIU_TEST_AGT_CTRL); |
| if ((temp & MIU_TA_CTL_BUSY) == 0) |
| break; |
| } |
| |
| if (j >= MAX_CTL_CHECK) { |
| if (printk_ratelimit()) |
| ql4_printk(KERN_ERR, ha, |
| "%s: failed to read through agent\n", |
| __func__); |
| ret = -1; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int qla4_82xx_cmdpeg_ready(struct scsi_qla_host *ha, int pegtune_val) |
| { |
| u32 val = 0; |
| int retries = 60; |
| |
| if (!pegtune_val) { |
| do { |
| val = qla4_82xx_rd_32(ha, CRB_CMDPEG_STATE); |
| if ((val == PHAN_INITIALIZE_COMPLETE) || |
| (val == PHAN_INITIALIZE_ACK)) |
| return 0; |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(500); |
| |
| } while (--retries); |
| |
| if (!retries) { |
| pegtune_val = qla4_82xx_rd_32(ha, |
| QLA82XX_ROMUSB_GLB_PEGTUNE_DONE); |
| printk(KERN_WARNING "%s: init failed, " |
| "pegtune_val = %x\n", __func__, pegtune_val); |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static int qla4_82xx_rcvpeg_ready(struct scsi_qla_host *ha) |
| { |
| uint32_t state = 0; |
| int loops = 0; |
| |
| /* Window 1 call */ |
| read_lock(&ha->hw_lock); |
| state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE); |
| read_unlock(&ha->hw_lock); |
| |
| while ((state != PHAN_PEG_RCV_INITIALIZED) && (loops < 30000)) { |
| udelay(100); |
| /* Window 1 call */ |
| read_lock(&ha->hw_lock); |
| state = qla4_82xx_rd_32(ha, CRB_RCVPEG_STATE); |
| read_unlock(&ha->hw_lock); |
| |
| loops++; |
| } |
| |
| if (loops >= 30000) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "Receive Peg initialization not complete: 0x%x.\n", state)); |
| return QLA_ERROR; |
| } |
| |
| return QLA_SUCCESS; |
| } |
| |
| void |
| qla4_8xxx_set_drv_active(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_active; |
| |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| drv_active |= (1 << ha->func_num); |
| else |
| drv_active |= (1 << (ha->func_num * 4)); |
| |
| ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n", |
| __func__, ha->host_no, drv_active); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active); |
| } |
| |
| void |
| qla4_8xxx_clear_drv_active(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_active; |
| |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| drv_active &= ~(1 << (ha->func_num)); |
| else |
| drv_active &= ~(1 << (ha->func_num * 4)); |
| |
| ql4_printk(KERN_INFO, ha, "%s(%ld): drv_active: 0x%08x\n", |
| __func__, ha->host_no, drv_active); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_ACTIVE, drv_active); |
| } |
| |
| inline int qla4_8xxx_need_reset(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_state, drv_active; |
| int rval; |
| |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| rval = drv_state & (1 << ha->func_num); |
| else |
| rval = drv_state & (1 << (ha->func_num * 4)); |
| |
| if ((test_bit(AF_EEH_BUSY, &ha->flags)) && drv_active) |
| rval = 1; |
| |
| return rval; |
| } |
| |
| void qla4_8xxx_set_rst_ready(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_state; |
| |
| drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| drv_state |= (1 << ha->func_num); |
| else |
| drv_state |= (1 << (ha->func_num * 4)); |
| |
| ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n", |
| __func__, ha->host_no, drv_state); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state); |
| } |
| |
| void qla4_8xxx_clear_rst_ready(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_state; |
| |
| drv_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| drv_state &= ~(1 << ha->func_num); |
| else |
| drv_state &= ~(1 << (ha->func_num * 4)); |
| |
| ql4_printk(KERN_INFO, ha, "%s(%ld): drv_state: 0x%08x\n", |
| __func__, ha->host_no, drv_state); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, drv_state); |
| } |
| |
| static inline void |
| qla4_8xxx_set_qsnt_ready(struct scsi_qla_host *ha) |
| { |
| uint32_t qsnt_state; |
| |
| qsnt_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_STATE); |
| |
| /* |
| * For ISP8324 and ISP8042, drv_active register has 1 bit per function, |
| * shift 1 by func_num to set a bit for the function. |
| * For ISP8022, drv_active has 4 bits per function. |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| qsnt_state |= (1 << ha->func_num); |
| else |
| qsnt_state |= (2 << (ha->func_num * 4)); |
| |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_STATE, qsnt_state); |
| } |
| |
| |
| static int |
| qla4_82xx_start_firmware(struct scsi_qla_host *ha, uint32_t image_start) |
| { |
| uint16_t lnk; |
| |
| /* scrub dma mask expansion register */ |
| qla4_82xx_wr_32(ha, CRB_DMA_SHIFT, 0x55555555); |
| |
| /* Overwrite stale initialization register values */ |
| qla4_82xx_wr_32(ha, CRB_CMDPEG_STATE, 0); |
| qla4_82xx_wr_32(ha, CRB_RCVPEG_STATE, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS1, 0); |
| qla4_82xx_wr_32(ha, QLA82XX_PEG_HALT_STATUS2, 0); |
| |
| if (qla4_82xx_load_fw(ha, image_start) != QLA_SUCCESS) { |
| printk("%s: Error trying to start fw!\n", __func__); |
| return QLA_ERROR; |
| } |
| |
| /* Handshake with the card before we register the devices. */ |
| if (qla4_82xx_cmdpeg_ready(ha, 0) != QLA_SUCCESS) { |
| printk("%s: Error during card handshake!\n", __func__); |
| return QLA_ERROR; |
| } |
| |
| /* Negotiated Link width */ |
| pcie_capability_read_word(ha->pdev, PCI_EXP_LNKSTA, &lnk); |
| ha->link_width = (lnk >> 4) & 0x3f; |
| |
| /* Synchronize with Receive peg */ |
| return qla4_82xx_rcvpeg_ready(ha); |
| } |
| |
| int qla4_82xx_try_start_fw(struct scsi_qla_host *ha) |
| { |
| int rval = QLA_ERROR; |
| |
| /* |
| * FW Load priority: |
| * 1) Operational firmware residing in flash. |
| * 2) Fail |
| */ |
| |
| ql4_printk(KERN_INFO, ha, |
| "FW: Retrieving flash offsets from FLT/FDT ...\n"); |
| rval = qla4_8xxx_get_flash_info(ha); |
| if (rval != QLA_SUCCESS) |
| return rval; |
| |
| ql4_printk(KERN_INFO, ha, |
| "FW: Attempting to load firmware from flash...\n"); |
| rval = qla4_82xx_start_firmware(ha, ha->hw.flt_region_fw); |
| |
| if (rval != QLA_SUCCESS) { |
| ql4_printk(KERN_ERR, ha, "FW: Load firmware from flash" |
| " FAILED...\n"); |
| return rval; |
| } |
| |
| return rval; |
| } |
| |
| void qla4_82xx_rom_lock_recovery(struct scsi_qla_host *ha) |
| { |
| if (qla4_82xx_rom_lock(ha)) { |
| /* Someone else is holding the lock. */ |
| dev_info(&ha->pdev->dev, "Resetting rom_lock\n"); |
| } |
| |
| /* |
| * Either we got the lock, or someone |
| * else died while holding it. |
| * In either case, unlock. |
| */ |
| qla4_82xx_rom_unlock(ha); |
| } |
| |
| static uint32_t ql4_84xx_poll_wait_for_ready(struct scsi_qla_host *ha, |
| uint32_t addr1, uint32_t mask) |
| { |
| unsigned long timeout; |
| uint32_t rval = QLA_SUCCESS; |
| uint32_t temp; |
| |
| timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS); |
| do { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); |
| if ((temp & mask) != 0) |
| break; |
| |
| if (time_after_eq(jiffies, timeout)) { |
| ql4_printk(KERN_INFO, ha, "Error in processing rdmdio entry\n"); |
| return QLA_ERROR; |
| } |
| } while (1); |
| |
| return rval; |
| } |
| |
| uint32_t ql4_84xx_ipmdio_rd_reg(struct scsi_qla_host *ha, uint32_t addr1, |
| uint32_t addr3, uint32_t mask, uint32_t addr, |
| uint32_t *data_ptr) |
| { |
| int rval = QLA_SUCCESS; |
| uint32_t temp; |
| uint32_t data; |
| |
| rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); |
| if (rval) |
| goto exit_ipmdio_rd_reg; |
| |
| temp = (0x40000000 | addr); |
| ha->isp_ops->wr_reg_indirect(ha, addr1, temp); |
| |
| rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); |
| if (rval) |
| goto exit_ipmdio_rd_reg; |
| |
| ha->isp_ops->rd_reg_indirect(ha, addr3, &data); |
| *data_ptr = data; |
| |
| exit_ipmdio_rd_reg: |
| return rval; |
| } |
| |
| |
| static uint32_t ql4_84xx_poll_wait_ipmdio_bus_idle(struct scsi_qla_host *ha, |
| uint32_t addr1, |
| uint32_t addr2, |
| uint32_t addr3, |
| uint32_t mask) |
| { |
| unsigned long timeout; |
| uint32_t temp; |
| uint32_t rval = QLA_SUCCESS; |
| |
| timeout = jiffies + msecs_to_jiffies(TIMEOUT_100_MS); |
| do { |
| ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3, mask, addr2, &temp); |
| if ((temp & 0x1) != 1) |
| break; |
| if (time_after_eq(jiffies, timeout)) { |
| ql4_printk(KERN_INFO, ha, "Error in processing mdiobus idle\n"); |
| return QLA_ERROR; |
| } |
| } while (1); |
| |
| return rval; |
| } |
| |
| static int ql4_84xx_ipmdio_wr_reg(struct scsi_qla_host *ha, |
| uint32_t addr1, uint32_t addr3, |
| uint32_t mask, uint32_t addr, |
| uint32_t value) |
| { |
| int rval = QLA_SUCCESS; |
| |
| rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); |
| if (rval) |
| goto exit_ipmdio_wr_reg; |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr3, value); |
| ha->isp_ops->wr_reg_indirect(ha, addr1, addr); |
| |
| rval = ql4_84xx_poll_wait_for_ready(ha, addr1, mask); |
| if (rval) |
| goto exit_ipmdio_wr_reg; |
| |
| exit_ipmdio_wr_reg: |
| return rval; |
| } |
| |
| static void qla4_8xxx_minidump_process_rdcrb(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, r_stride, loop_cnt, i, r_value; |
| struct qla8xxx_minidump_entry_crb *crb_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| crb_hdr = (struct qla8xxx_minidump_entry_crb *)entry_hdr; |
| r_addr = crb_hdr->addr; |
| r_stride = crb_hdr->crb_strd.addr_stride; |
| loop_cnt = crb_hdr->op_count; |
| |
| for (i = 0; i < loop_cnt; i++) { |
| ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); |
| *data_ptr++ = cpu_to_le32(r_addr); |
| *data_ptr++ = cpu_to_le32(r_value); |
| r_addr += r_stride; |
| } |
| *d_ptr = data_ptr; |
| } |
| |
| static int qla4_83xx_check_dma_engine_state(struct scsi_qla_host *ha) |
| { |
| int rval = QLA_SUCCESS; |
| uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0; |
| uint64_t dma_base_addr = 0; |
| struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL; |
| |
| tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) |
| ha->fw_dump_tmplt_hdr; |
| dma_eng_num = |
| tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX]; |
| dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS + |
| (dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET); |
| |
| /* Read the pex-dma's command-status-and-control register. */ |
| rval = ha->isp_ops->rd_reg_indirect(ha, |
| (dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL), |
| &cmd_sts_and_cntrl); |
| |
| if (rval) |
| return QLA_ERROR; |
| |
| /* Check if requested pex-dma engine is available. */ |
| if (cmd_sts_and_cntrl & BIT_31) |
| return QLA_SUCCESS; |
| else |
| return QLA_ERROR; |
| } |
| |
| static int qla4_83xx_start_pex_dma(struct scsi_qla_host *ha, |
| struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr) |
| { |
| int rval = QLA_SUCCESS, wait = 0; |
| uint32_t dma_eng_num = 0, cmd_sts_and_cntrl = 0; |
| uint64_t dma_base_addr = 0; |
| struct qla4_8xxx_minidump_template_hdr *tmplt_hdr = NULL; |
| |
| tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) |
| ha->fw_dump_tmplt_hdr; |
| dma_eng_num = |
| tmplt_hdr->saved_state_array[QLA83XX_PEX_DMA_ENGINE_INDEX]; |
| dma_base_addr = QLA83XX_PEX_DMA_BASE_ADDRESS + |
| (dma_eng_num * QLA83XX_PEX_DMA_NUM_OFFSET); |
| |
| rval = ha->isp_ops->wr_reg_indirect(ha, |
| dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_LOW, |
| m_hdr->desc_card_addr); |
| if (rval) |
| goto error_exit; |
| |
| rval = ha->isp_ops->wr_reg_indirect(ha, |
| dma_base_addr + QLA83XX_PEX_DMA_CMD_ADDR_HIGH, 0); |
| if (rval) |
| goto error_exit; |
| |
| rval = ha->isp_ops->wr_reg_indirect(ha, |
| dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL, |
| m_hdr->start_dma_cmd); |
| if (rval) |
| goto error_exit; |
| |
| /* Wait for dma operation to complete. */ |
| for (wait = 0; wait < QLA83XX_PEX_DMA_MAX_WAIT; wait++) { |
| rval = ha->isp_ops->rd_reg_indirect(ha, |
| (dma_base_addr + QLA83XX_PEX_DMA_CMD_STS_AND_CNTRL), |
| &cmd_sts_and_cntrl); |
| if (rval) |
| goto error_exit; |
| |
| if ((cmd_sts_and_cntrl & BIT_1) == 0) |
| break; |
| else |
| udelay(10); |
| } |
| |
| /* Wait a max of 100 ms, otherwise fallback to rdmem entry read */ |
| if (wait >= QLA83XX_PEX_DMA_MAX_WAIT) { |
| rval = QLA_ERROR; |
| goto error_exit; |
| } |
| |
| error_exit: |
| return rval; |
| } |
| |
| static int qla4_83xx_minidump_pex_dma_read(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| int rval = QLA_SUCCESS; |
| struct qla4_83xx_minidump_entry_rdmem_pex_dma *m_hdr = NULL; |
| uint32_t size, read_size; |
| uint8_t *data_ptr = (uint8_t *)*d_ptr; |
| void *rdmem_buffer = NULL; |
| dma_addr_t rdmem_dma; |
| struct qla4_83xx_pex_dma_descriptor dma_desc; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| |
| rval = qla4_83xx_check_dma_engine_state(ha); |
| if (rval != QLA_SUCCESS) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: DMA engine not available. Fallback to rdmem-read.\n", |
| __func__)); |
| return QLA_ERROR; |
| } |
| |
| m_hdr = (struct qla4_83xx_minidump_entry_rdmem_pex_dma *)entry_hdr; |
| rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev, |
| QLA83XX_PEX_DMA_READ_SIZE, |
| &rdmem_dma, GFP_KERNEL); |
| if (!rdmem_buffer) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Unable to allocate rdmem dma buffer\n", |
| __func__)); |
| return QLA_ERROR; |
| } |
| |
| /* Prepare pex-dma descriptor to be written to MS memory. */ |
| /* dma-desc-cmd layout: |
| * 0-3: dma-desc-cmd 0-3 |
| * 4-7: pcid function number |
| * 8-15: dma-desc-cmd 8-15 |
| */ |
| dma_desc.cmd.dma_desc_cmd = (m_hdr->dma_desc_cmd & 0xff0f); |
| dma_desc.cmd.dma_desc_cmd |= ((PCI_FUNC(ha->pdev->devfn) & 0xf) << 0x4); |
| dma_desc.dma_bus_addr = rdmem_dma; |
| |
| size = 0; |
| read_size = 0; |
| /* |
| * Perform rdmem operation using pex-dma. |
| * Prepare dma in chunks of QLA83XX_PEX_DMA_READ_SIZE. |
| */ |
| while (read_size < m_hdr->read_data_size) { |
| if (m_hdr->read_data_size - read_size >= |
| QLA83XX_PEX_DMA_READ_SIZE) |
| size = QLA83XX_PEX_DMA_READ_SIZE; |
| else { |
| size = (m_hdr->read_data_size - read_size); |
| |
| if (rdmem_buffer) |
| dma_free_coherent(&ha->pdev->dev, |
| QLA83XX_PEX_DMA_READ_SIZE, |
| rdmem_buffer, rdmem_dma); |
| |
| rdmem_buffer = dma_alloc_coherent(&ha->pdev->dev, size, |
| &rdmem_dma, |
| GFP_KERNEL); |
| if (!rdmem_buffer) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Unable to allocate rdmem dma buffer\n", |
| __func__)); |
| return QLA_ERROR; |
| } |
| dma_desc.dma_bus_addr = rdmem_dma; |
| } |
| |
| dma_desc.src_addr = m_hdr->read_addr + read_size; |
| dma_desc.cmd.read_data_size = size; |
| |
| /* Prepare: Write pex-dma descriptor to MS memory. */ |
| rval = qla4_83xx_ms_mem_write_128b(ha, |
| (uint64_t)m_hdr->desc_card_addr, |
| (uint32_t *)&dma_desc, |
| (sizeof(struct qla4_83xx_pex_dma_descriptor)/16)); |
| if (rval == -1) { |
| ql4_printk(KERN_INFO, ha, |
| "%s: Error writing rdmem-dma-init to MS !!!\n", |
| __func__); |
| goto error_exit; |
| } |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: Dma-desc: Instruct for rdmem dma (size 0x%x).\n", |
| __func__, size)); |
| /* Execute: Start pex-dma operation. */ |
| rval = qla4_83xx_start_pex_dma(ha, m_hdr); |
| if (rval != QLA_SUCCESS) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "scsi(%ld): start-pex-dma failed rval=0x%x\n", |
| ha->host_no, rval)); |
| goto error_exit; |
| } |
| |
| memcpy(data_ptr, rdmem_buffer, size); |
| data_ptr += size; |
| read_size += size; |
| } |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__)); |
| |
| *d_ptr = (uint32_t *)data_ptr; |
| |
| error_exit: |
| if (rdmem_buffer) |
| dma_free_coherent(&ha->pdev->dev, size, rdmem_buffer, |
| rdmem_dma); |
| |
| return rval; |
| } |
| |
| static int qla4_8xxx_minidump_process_l2tag(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t addr, r_addr, c_addr, t_r_addr; |
| uint32_t i, k, loop_count, t_value, r_cnt, r_value; |
| unsigned long p_wait, w_time, p_mask; |
| uint32_t c_value_w, c_value_r; |
| struct qla8xxx_minidump_entry_cache *cache_hdr; |
| int rval = QLA_ERROR; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr; |
| |
| loop_count = cache_hdr->op_count; |
| r_addr = cache_hdr->read_addr; |
| c_addr = cache_hdr->control_addr; |
| c_value_w = cache_hdr->cache_ctrl.write_value; |
| |
| t_r_addr = cache_hdr->tag_reg_addr; |
| t_value = cache_hdr->addr_ctrl.init_tag_value; |
| r_cnt = cache_hdr->read_ctrl.read_addr_cnt; |
| p_wait = cache_hdr->cache_ctrl.poll_wait; |
| p_mask = cache_hdr->cache_ctrl.poll_mask; |
| |
| for (i = 0; i < loop_count; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value); |
| |
| if (c_value_w) |
| ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w); |
| |
| if (p_mask) { |
| w_time = jiffies + p_wait; |
| do { |
| ha->isp_ops->rd_reg_indirect(ha, c_addr, |
| &c_value_r); |
| if ((c_value_r & p_mask) == 0) { |
| break; |
| } else if (time_after_eq(jiffies, w_time)) { |
| /* capturing dump failed */ |
| return rval; |
| } |
| } while (1); |
| } |
| |
| addr = r_addr; |
| for (k = 0; k < r_cnt; k++) { |
| ha->isp_ops->rd_reg_indirect(ha, addr, &r_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| addr += cache_hdr->read_ctrl.read_addr_stride; |
| } |
| |
| t_value += cache_hdr->addr_ctrl.tag_value_stride; |
| } |
| *d_ptr = data_ptr; |
| return QLA_SUCCESS; |
| } |
| |
| static int qla4_8xxx_minidump_process_control(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr) |
| { |
| struct qla8xxx_minidump_entry_crb *crb_entry; |
| uint32_t read_value, opcode, poll_time, addr, index, rval = QLA_SUCCESS; |
| uint32_t crb_addr; |
| unsigned long wtime; |
| struct qla4_8xxx_minidump_template_hdr *tmplt_hdr; |
| int i; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) |
| ha->fw_dump_tmplt_hdr; |
| crb_entry = (struct qla8xxx_minidump_entry_crb *)entry_hdr; |
| |
| crb_addr = crb_entry->addr; |
| for (i = 0; i < crb_entry->op_count; i++) { |
| opcode = crb_entry->crb_ctrl.opcode; |
| if (opcode & QLA8XXX_DBG_OPCODE_WR) { |
| ha->isp_ops->wr_reg_indirect(ha, crb_addr, |
| crb_entry->value_1); |
| opcode &= ~QLA8XXX_DBG_OPCODE_WR; |
| } |
| if (opcode & QLA8XXX_DBG_OPCODE_RW) { |
| ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); |
| ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); |
| opcode &= ~QLA8XXX_DBG_OPCODE_RW; |
| } |
| if (opcode & QLA8XXX_DBG_OPCODE_AND) { |
| ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); |
| read_value &= crb_entry->value_2; |
| opcode &= ~QLA8XXX_DBG_OPCODE_AND; |
| if (opcode & QLA8XXX_DBG_OPCODE_OR) { |
| read_value |= crb_entry->value_3; |
| opcode &= ~QLA8XXX_DBG_OPCODE_OR; |
| } |
| ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); |
| } |
| if (opcode & QLA8XXX_DBG_OPCODE_OR) { |
| ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); |
| read_value |= crb_entry->value_3; |
| ha->isp_ops->wr_reg_indirect(ha, crb_addr, read_value); |
| opcode &= ~QLA8XXX_DBG_OPCODE_OR; |
| } |
| if (opcode & QLA8XXX_DBG_OPCODE_POLL) { |
| poll_time = crb_entry->crb_strd.poll_timeout; |
| wtime = jiffies + poll_time; |
| ha->isp_ops->rd_reg_indirect(ha, crb_addr, &read_value); |
| |
| do { |
| if ((read_value & crb_entry->value_2) == |
| crb_entry->value_1) { |
| break; |
| } else if (time_after_eq(jiffies, wtime)) { |
| /* capturing dump failed */ |
| rval = QLA_ERROR; |
| break; |
| } else { |
| ha->isp_ops->rd_reg_indirect(ha, |
| crb_addr, &read_value); |
| } |
| } while (1); |
| opcode &= ~QLA8XXX_DBG_OPCODE_POLL; |
| } |
| |
| if (opcode & QLA8XXX_DBG_OPCODE_RDSTATE) { |
| if (crb_entry->crb_strd.state_index_a) { |
| index = crb_entry->crb_strd.state_index_a; |
| addr = tmplt_hdr->saved_state_array[index]; |
| } else { |
| addr = crb_addr; |
| } |
| |
| ha->isp_ops->rd_reg_indirect(ha, addr, &read_value); |
| index = crb_entry->crb_ctrl.state_index_v; |
| tmplt_hdr->saved_state_array[index] = read_value; |
| opcode &= ~QLA8XXX_DBG_OPCODE_RDSTATE; |
| } |
| |
| if (opcode & QLA8XXX_DBG_OPCODE_WRSTATE) { |
| if (crb_entry->crb_strd.state_index_a) { |
| index = crb_entry->crb_strd.state_index_a; |
| addr = tmplt_hdr->saved_state_array[index]; |
| } else { |
| addr = crb_addr; |
| } |
| |
| if (crb_entry->crb_ctrl.state_index_v) { |
| index = crb_entry->crb_ctrl.state_index_v; |
| read_value = |
| tmplt_hdr->saved_state_array[index]; |
| } else { |
| read_value = crb_entry->value_1; |
| } |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr, read_value); |
| opcode &= ~QLA8XXX_DBG_OPCODE_WRSTATE; |
| } |
| |
| if (opcode & QLA8XXX_DBG_OPCODE_MDSTATE) { |
| index = crb_entry->crb_ctrl.state_index_v; |
| read_value = tmplt_hdr->saved_state_array[index]; |
| read_value <<= crb_entry->crb_ctrl.shl; |
| read_value >>= crb_entry->crb_ctrl.shr; |
| if (crb_entry->value_2) |
| read_value &= crb_entry->value_2; |
| read_value |= crb_entry->value_3; |
| read_value += crb_entry->value_1; |
| tmplt_hdr->saved_state_array[index] = read_value; |
| opcode &= ~QLA8XXX_DBG_OPCODE_MDSTATE; |
| } |
| crb_addr += crb_entry->crb_strd.addr_stride; |
| } |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s\n", __func__)); |
| return rval; |
| } |
| |
| static void qla4_8xxx_minidump_process_rdocm(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, r_stride, loop_cnt, i, r_value; |
| struct qla8xxx_minidump_entry_rdocm *ocm_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| ocm_hdr = (struct qla8xxx_minidump_entry_rdocm *)entry_hdr; |
| r_addr = ocm_hdr->read_addr; |
| r_stride = ocm_hdr->read_addr_stride; |
| loop_cnt = ocm_hdr->op_count; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: r_addr: 0x%x, r_stride: 0x%x, loop_cnt: 0x%x\n", |
| __func__, r_addr, r_stride, loop_cnt)); |
| |
| for (i = 0; i < loop_cnt; i++) { |
| r_value = readl((void __iomem *)(r_addr + ha->nx_pcibase)); |
| *data_ptr++ = cpu_to_le32(r_value); |
| r_addr += r_stride; |
| } |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%lx\n", |
| __func__, (long unsigned int) (loop_cnt * sizeof(uint32_t)))); |
| *d_ptr = data_ptr; |
| } |
| |
| static void qla4_8xxx_minidump_process_rdmux(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, s_stride, s_addr, s_value, loop_cnt, i, r_value; |
| struct qla8xxx_minidump_entry_mux *mux_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| mux_hdr = (struct qla8xxx_minidump_entry_mux *)entry_hdr; |
| r_addr = mux_hdr->read_addr; |
| s_addr = mux_hdr->select_addr; |
| s_stride = mux_hdr->select_value_stride; |
| s_value = mux_hdr->select_value; |
| loop_cnt = mux_hdr->op_count; |
| |
| for (i = 0; i < loop_cnt; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value); |
| ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); |
| *data_ptr++ = cpu_to_le32(s_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| s_value += s_stride; |
| } |
| *d_ptr = data_ptr; |
| } |
| |
| static void qla4_8xxx_minidump_process_l1cache(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t addr, r_addr, c_addr, t_r_addr; |
| uint32_t i, k, loop_count, t_value, r_cnt, r_value; |
| uint32_t c_value_w; |
| struct qla8xxx_minidump_entry_cache *cache_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| cache_hdr = (struct qla8xxx_minidump_entry_cache *)entry_hdr; |
| loop_count = cache_hdr->op_count; |
| r_addr = cache_hdr->read_addr; |
| c_addr = cache_hdr->control_addr; |
| c_value_w = cache_hdr->cache_ctrl.write_value; |
| |
| t_r_addr = cache_hdr->tag_reg_addr; |
| t_value = cache_hdr->addr_ctrl.init_tag_value; |
| r_cnt = cache_hdr->read_ctrl.read_addr_cnt; |
| |
| for (i = 0; i < loop_count; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, t_r_addr, t_value); |
| ha->isp_ops->wr_reg_indirect(ha, c_addr, c_value_w); |
| addr = r_addr; |
| for (k = 0; k < r_cnt; k++) { |
| ha->isp_ops->rd_reg_indirect(ha, addr, &r_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| addr += cache_hdr->read_ctrl.read_addr_stride; |
| } |
| t_value += cache_hdr->addr_ctrl.tag_value_stride; |
| } |
| *d_ptr = data_ptr; |
| } |
| |
| static void qla4_8xxx_minidump_process_queue(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t s_addr, r_addr; |
| uint32_t r_stride, r_value, r_cnt, qid = 0; |
| uint32_t i, k, loop_cnt; |
| struct qla8xxx_minidump_entry_queue *q_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| q_hdr = (struct qla8xxx_minidump_entry_queue *)entry_hdr; |
| s_addr = q_hdr->select_addr; |
| r_cnt = q_hdr->rd_strd.read_addr_cnt; |
| r_stride = q_hdr->rd_strd.read_addr_stride; |
| loop_cnt = q_hdr->op_count; |
| |
| for (i = 0; i < loop_cnt; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, s_addr, qid); |
| r_addr = q_hdr->read_addr; |
| for (k = 0; k < r_cnt; k++) { |
| ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| r_addr += r_stride; |
| } |
| qid += q_hdr->q_strd.queue_id_stride; |
| } |
| *d_ptr = data_ptr; |
| } |
| |
| #define MD_DIRECT_ROM_WINDOW 0x42110030 |
| #define MD_DIRECT_ROM_READ_BASE 0x42150000 |
| |
| static void qla4_82xx_minidump_process_rdrom(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, r_value; |
| uint32_t i, loop_cnt; |
| struct qla8xxx_minidump_entry_rdrom *rom_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr; |
| r_addr = rom_hdr->read_addr; |
| loop_cnt = rom_hdr->read_data_size/sizeof(uint32_t); |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: flash_addr: 0x%x, read_data_size: 0x%x\n", |
| __func__, r_addr, loop_cnt)); |
| |
| for (i = 0; i < loop_cnt; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, MD_DIRECT_ROM_WINDOW, |
| (r_addr & 0xFFFF0000)); |
| ha->isp_ops->rd_reg_indirect(ha, |
| MD_DIRECT_ROM_READ_BASE + (r_addr & 0x0000FFFF), |
| &r_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| r_addr += sizeof(uint32_t); |
| } |
| *d_ptr = data_ptr; |
| } |
| |
| #define MD_MIU_TEST_AGT_CTRL 0x41000090 |
| #define MD_MIU_TEST_AGT_ADDR_LO 0x41000094 |
| #define MD_MIU_TEST_AGT_ADDR_HI 0x41000098 |
| |
| static int __qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, r_value, r_data; |
| uint32_t i, j, loop_cnt; |
| struct qla8xxx_minidump_entry_rdmem *m_hdr; |
| unsigned long flags; |
| uint32_t *data_ptr = *d_ptr; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Entering fn: %s\n", __func__)); |
| m_hdr = (struct qla8xxx_minidump_entry_rdmem *)entry_hdr; |
| r_addr = m_hdr->read_addr; |
| loop_cnt = m_hdr->read_data_size/16; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: Read addr: 0x%x, read_data_size: 0x%x\n", |
| __func__, r_addr, m_hdr->read_data_size)); |
| |
| if (r_addr & 0xf) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: Read addr 0x%x not 16 bytes aligned\n", |
| __func__, r_addr)); |
| return QLA_ERROR; |
| } |
| |
| if (m_hdr->read_data_size % 16) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: Read data[0x%x] not multiple of 16 bytes\n", |
| __func__, m_hdr->read_data_size)); |
| return QLA_ERROR; |
| } |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "[%s]: rdmem_addr: 0x%x, read_data_size: 0x%x, loop_cnt: 0x%x\n", |
| __func__, r_addr, m_hdr->read_data_size, loop_cnt)); |
| |
| write_lock_irqsave(&ha->hw_lock, flags); |
| for (i = 0; i < loop_cnt; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_LO, |
| r_addr); |
| r_value = 0; |
| ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_ADDR_HI, |
| r_value); |
| r_value = MIU_TA_CTL_ENABLE; |
| ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value); |
| r_value = MIU_TA_CTL_START_ENABLE; |
| ha->isp_ops->wr_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, r_value); |
| |
| for (j = 0; j < MAX_CTL_CHECK; j++) { |
| ha->isp_ops->rd_reg_indirect(ha, MD_MIU_TEST_AGT_CTRL, |
| &r_value); |
| if ((r_value & MIU_TA_CTL_BUSY) == 0) |
| break; |
| } |
| |
| if (j >= MAX_CTL_CHECK) { |
| printk_ratelimited(KERN_ERR |
| "%s: failed to read through agent\n", |
| __func__); |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| return QLA_SUCCESS; |
| } |
| |
| for (j = 0; j < 4; j++) { |
| ha->isp_ops->rd_reg_indirect(ha, |
| MD_MIU_TEST_AGT_RDDATA[j], |
| &r_data); |
| *data_ptr++ = cpu_to_le32(r_data); |
| } |
| |
| r_addr += 16; |
| } |
| write_unlock_irqrestore(&ha->hw_lock, flags); |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s datacount: 0x%x\n", |
| __func__, (loop_cnt * 16))); |
| |
| *d_ptr = data_ptr; |
| return QLA_SUCCESS; |
| } |
| |
| static int qla4_8xxx_minidump_process_rdmem(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t *data_ptr = *d_ptr; |
| int rval = QLA_SUCCESS; |
| |
| if (is_qla8032(ha) || is_qla8042(ha)) { |
| rval = qla4_83xx_minidump_pex_dma_read(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) { |
| rval = __qla4_8xxx_minidump_process_rdmem(ha, entry_hdr, |
| &data_ptr); |
| } |
| } else { |
| rval = __qla4_8xxx_minidump_process_rdmem(ha, entry_hdr, |
| &data_ptr); |
| } |
| *d_ptr = data_ptr; |
| return rval; |
| } |
| |
| static void qla4_8xxx_mark_entry_skipped(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| int index) |
| { |
| entry_hdr->d_ctrl.driver_flags |= QLA8XXX_DBG_SKIPPED_FLAG; |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "scsi(%ld): Skipping entry[%d]: ETYPE[0x%x]-ELEVEL[0x%x]\n", |
| ha->host_no, index, entry_hdr->entry_type, |
| entry_hdr->d_ctrl.entry_capture_mask)); |
| /* If driver encounters a new entry type that it cannot process, |
| * it should just skip the entry and adjust the total buffer size by |
| * from subtracting the skipped bytes from it |
| */ |
| ha->fw_dump_skip_size += entry_hdr->entry_capture_size; |
| } |
| |
| /* ISP83xx functions to process new minidump entries... */ |
| static uint32_t qla83xx_minidump_process_pollrd(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t r_addr, s_addr, s_value, r_value, poll_wait, poll_mask; |
| uint16_t s_stride, i; |
| uint32_t *data_ptr = *d_ptr; |
| uint32_t rval = QLA_SUCCESS; |
| struct qla83xx_minidump_entry_pollrd *pollrd_hdr; |
| |
| pollrd_hdr = (struct qla83xx_minidump_entry_pollrd *)entry_hdr; |
| s_addr = le32_to_cpu(pollrd_hdr->select_addr); |
| r_addr = le32_to_cpu(pollrd_hdr->read_addr); |
| s_value = le32_to_cpu(pollrd_hdr->select_value); |
| s_stride = le32_to_cpu(pollrd_hdr->select_value_stride); |
| |
| poll_wait = le32_to_cpu(pollrd_hdr->poll_wait); |
| poll_mask = le32_to_cpu(pollrd_hdr->poll_mask); |
| |
| for (i = 0; i < le32_to_cpu(pollrd_hdr->op_count); i++) { |
| ha->isp_ops->wr_reg_indirect(ha, s_addr, s_value); |
| poll_wait = le32_to_cpu(pollrd_hdr->poll_wait); |
| while (1) { |
| ha->isp_ops->rd_reg_indirect(ha, s_addr, &r_value); |
| |
| if ((r_value & poll_mask) != 0) { |
| break; |
| } else { |
| msleep(1); |
| if (--poll_wait == 0) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", |
| __func__); |
| rval = QLA_ERROR; |
| goto exit_process_pollrd; |
| } |
| } |
| } |
| ha->isp_ops->rd_reg_indirect(ha, r_addr, &r_value); |
| *data_ptr++ = cpu_to_le32(s_value); |
| *data_ptr++ = cpu_to_le32(r_value); |
| s_value += s_stride; |
| } |
| |
| *d_ptr = data_ptr; |
| |
| exit_process_pollrd: |
| return rval; |
| } |
| |
| static uint32_t qla4_84xx_minidump_process_rddfe(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| int loop_cnt; |
| uint32_t addr1, addr2, value, data, temp, wrval; |
| uint8_t stride, stride2; |
| uint16_t count; |
| uint32_t poll, mask, data_size, modify_mask; |
| uint32_t wait_count = 0; |
| uint32_t *data_ptr = *d_ptr; |
| struct qla8044_minidump_entry_rddfe *rddfe; |
| uint32_t rval = QLA_SUCCESS; |
| |
| rddfe = (struct qla8044_minidump_entry_rddfe *)entry_hdr; |
| addr1 = le32_to_cpu(rddfe->addr_1); |
| value = le32_to_cpu(rddfe->value); |
| stride = le32_to_cpu(rddfe->stride); |
| stride2 = le32_to_cpu(rddfe->stride2); |
| count = le32_to_cpu(rddfe->count); |
| |
| poll = le32_to_cpu(rddfe->poll); |
| mask = le32_to_cpu(rddfe->mask); |
| modify_mask = le32_to_cpu(rddfe->modify_mask); |
| data_size = le32_to_cpu(rddfe->data_size); |
| |
| addr2 = addr1 + stride; |
| |
| for (loop_cnt = 0x0; loop_cnt < count; loop_cnt++) { |
| ha->isp_ops->wr_reg_indirect(ha, addr1, (0x40000000 | value)); |
| |
| wait_count = 0; |
| while (wait_count < poll) { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); |
| if ((temp & mask) != 0) |
| break; |
| wait_count++; |
| } |
| |
| if (wait_count == poll) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); |
| rval = QLA_ERROR; |
| goto exit_process_rddfe; |
| } else { |
| ha->isp_ops->rd_reg_indirect(ha, addr2, &temp); |
| temp = temp & modify_mask; |
| temp = (temp | ((loop_cnt << 16) | loop_cnt)); |
| wrval = ((temp << 16) | temp); |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr2, wrval); |
| ha->isp_ops->wr_reg_indirect(ha, addr1, value); |
| |
| wait_count = 0; |
| while (wait_count < poll) { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); |
| if ((temp & mask) != 0) |
| break; |
| wait_count++; |
| } |
| if (wait_count == poll) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", |
| __func__); |
| rval = QLA_ERROR; |
| goto exit_process_rddfe; |
| } |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr1, |
| ((0x40000000 | value) + |
| stride2)); |
| wait_count = 0; |
| while (wait_count < poll) { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &temp); |
| if ((temp & mask) != 0) |
| break; |
| wait_count++; |
| } |
| |
| if (wait_count == poll) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", |
| __func__); |
| rval = QLA_ERROR; |
| goto exit_process_rddfe; |
| } |
| |
| ha->isp_ops->rd_reg_indirect(ha, addr2, &data); |
| |
| *data_ptr++ = cpu_to_le32(wrval); |
| *data_ptr++ = cpu_to_le32(data); |
| } |
| } |
| |
| *d_ptr = data_ptr; |
| exit_process_rddfe: |
| return rval; |
| } |
| |
| static uint32_t qla4_84xx_minidump_process_rdmdio(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| int rval = QLA_SUCCESS; |
| uint32_t addr1, addr2, value1, value2, data, selval; |
| uint8_t stride1, stride2; |
| uint32_t addr3, addr4, addr5, addr6, addr7; |
| uint16_t count, loop_cnt; |
| uint32_t poll, mask; |
| uint32_t *data_ptr = *d_ptr; |
| struct qla8044_minidump_entry_rdmdio *rdmdio; |
| |
| rdmdio = (struct qla8044_minidump_entry_rdmdio *)entry_hdr; |
| addr1 = le32_to_cpu(rdmdio->addr_1); |
| addr2 = le32_to_cpu(rdmdio->addr_2); |
| value1 = le32_to_cpu(rdmdio->value_1); |
| stride1 = le32_to_cpu(rdmdio->stride_1); |
| stride2 = le32_to_cpu(rdmdio->stride_2); |
| count = le32_to_cpu(rdmdio->count); |
| |
| poll = le32_to_cpu(rdmdio->poll); |
| mask = le32_to_cpu(rdmdio->mask); |
| value2 = le32_to_cpu(rdmdio->value_2); |
| |
| addr3 = addr1 + stride1; |
| |
| for (loop_cnt = 0; loop_cnt < count; loop_cnt++) { |
| rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2, |
| addr3, mask); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| addr4 = addr2 - stride1; |
| rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr4, |
| value2); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| addr5 = addr2 - (2 * stride1); |
| rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, addr5, |
| value1); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| addr6 = addr2 - (3 * stride1); |
| rval = ql4_84xx_ipmdio_wr_reg(ha, addr1, addr3, mask, |
| addr6, 0x2); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| rval = ql4_84xx_poll_wait_ipmdio_bus_idle(ha, addr1, addr2, |
| addr3, mask); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| addr7 = addr2 - (4 * stride1); |
| rval = ql4_84xx_ipmdio_rd_reg(ha, addr1, addr3, |
| mask, addr7, &data); |
| if (rval) |
| goto exit_process_rdmdio; |
| |
| selval = (value2 << 18) | (value1 << 2) | 2; |
| |
| stride2 = le32_to_cpu(rdmdio->stride_2); |
| *data_ptr++ = cpu_to_le32(selval); |
| *data_ptr++ = cpu_to_le32(data); |
| |
| value1 = value1 + stride2; |
| *d_ptr = data_ptr; |
| } |
| |
| exit_process_rdmdio: |
| return rval; |
| } |
| |
| static uint32_t qla4_84xx_minidump_process_pollwr(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t addr1, addr2, value1, value2, poll, mask, r_value; |
| struct qla8044_minidump_entry_pollwr *pollwr_hdr; |
| uint32_t wait_count = 0; |
| uint32_t rval = QLA_SUCCESS; |
| |
| pollwr_hdr = (struct qla8044_minidump_entry_pollwr *)entry_hdr; |
| addr1 = le32_to_cpu(pollwr_hdr->addr_1); |
| addr2 = le32_to_cpu(pollwr_hdr->addr_2); |
| value1 = le32_to_cpu(pollwr_hdr->value_1); |
| value2 = le32_to_cpu(pollwr_hdr->value_2); |
| |
| poll = le32_to_cpu(pollwr_hdr->poll); |
| mask = le32_to_cpu(pollwr_hdr->mask); |
| |
| while (wait_count < poll) { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value); |
| |
| if ((r_value & poll) != 0) |
| break; |
| |
| wait_count++; |
| } |
| |
| if (wait_count == poll) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT\n", __func__); |
| rval = QLA_ERROR; |
| goto exit_process_pollwr; |
| } |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr2, value2); |
| ha->isp_ops->wr_reg_indirect(ha, addr1, value1); |
| |
| wait_count = 0; |
| while (wait_count < poll) { |
| ha->isp_ops->rd_reg_indirect(ha, addr1, &r_value); |
| |
| if ((r_value & poll) != 0) |
| break; |
| wait_count++; |
| } |
| |
| exit_process_pollwr: |
| return rval; |
| } |
| |
| static void qla83xx_minidump_process_rdmux2(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t sel_val1, sel_val2, t_sel_val, data, i; |
| uint32_t sel_addr1, sel_addr2, sel_val_mask, read_addr; |
| struct qla83xx_minidump_entry_rdmux2 *rdmux2_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| rdmux2_hdr = (struct qla83xx_minidump_entry_rdmux2 *)entry_hdr; |
| sel_val1 = le32_to_cpu(rdmux2_hdr->select_value_1); |
| sel_val2 = le32_to_cpu(rdmux2_hdr->select_value_2); |
| sel_addr1 = le32_to_cpu(rdmux2_hdr->select_addr_1); |
| sel_addr2 = le32_to_cpu(rdmux2_hdr->select_addr_2); |
| sel_val_mask = le32_to_cpu(rdmux2_hdr->select_value_mask); |
| read_addr = le32_to_cpu(rdmux2_hdr->read_addr); |
| |
| for (i = 0; i < rdmux2_hdr->op_count; i++) { |
| ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val1); |
| t_sel_val = sel_val1 & sel_val_mask; |
| *data_ptr++ = cpu_to_le32(t_sel_val); |
| |
| ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val); |
| ha->isp_ops->rd_reg_indirect(ha, read_addr, &data); |
| |
| *data_ptr++ = cpu_to_le32(data); |
| |
| ha->isp_ops->wr_reg_indirect(ha, sel_addr1, sel_val2); |
| t_sel_val = sel_val2 & sel_val_mask; |
| *data_ptr++ = cpu_to_le32(t_sel_val); |
| |
| ha->isp_ops->wr_reg_indirect(ha, sel_addr2, t_sel_val); |
| ha->isp_ops->rd_reg_indirect(ha, read_addr, &data); |
| |
| *data_ptr++ = cpu_to_le32(data); |
| |
| sel_val1 += rdmux2_hdr->select_value_stride; |
| sel_val2 += rdmux2_hdr->select_value_stride; |
| } |
| |
| *d_ptr = data_ptr; |
| } |
| |
| static uint32_t qla83xx_minidump_process_pollrdmwr(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t poll_wait, poll_mask, r_value, data; |
| uint32_t addr_1, addr_2, value_1, value_2; |
| uint32_t *data_ptr = *d_ptr; |
| uint32_t rval = QLA_SUCCESS; |
| struct qla83xx_minidump_entry_pollrdmwr *poll_hdr; |
| |
| poll_hdr = (struct qla83xx_minidump_entry_pollrdmwr *)entry_hdr; |
| addr_1 = le32_to_cpu(poll_hdr->addr_1); |
| addr_2 = le32_to_cpu(poll_hdr->addr_2); |
| value_1 = le32_to_cpu(poll_hdr->value_1); |
| value_2 = le32_to_cpu(poll_hdr->value_2); |
| poll_mask = le32_to_cpu(poll_hdr->poll_mask); |
| |
| ha->isp_ops->wr_reg_indirect(ha, addr_1, value_1); |
| |
| poll_wait = le32_to_cpu(poll_hdr->poll_wait); |
| while (1) { |
| ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value); |
| |
| if ((r_value & poll_mask) != 0) { |
| break; |
| } else { |
| msleep(1); |
| if (--poll_wait == 0) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_1\n", |
| __func__); |
| rval = QLA_ERROR; |
| goto exit_process_pollrdmwr; |
| } |
| } |
| } |
| |
| ha->isp_ops->rd_reg_indirect(ha, addr_2, &data); |
| data &= le32_to_cpu(poll_hdr->modify_mask); |
| ha->isp_ops->wr_reg_indirect(ha, addr_2, data); |
| ha->isp_ops->wr_reg_indirect(ha, addr_1, value_2); |
| |
| poll_wait = le32_to_cpu(poll_hdr->poll_wait); |
| while (1) { |
| ha->isp_ops->rd_reg_indirect(ha, addr_1, &r_value); |
| |
| if ((r_value & poll_mask) != 0) { |
| break; |
| } else { |
| msleep(1); |
| if (--poll_wait == 0) { |
| ql4_printk(KERN_ERR, ha, "%s: TIMEOUT_2\n", |
| __func__); |
| rval = QLA_ERROR; |
| goto exit_process_pollrdmwr; |
| } |
| } |
| } |
| |
| *data_ptr++ = cpu_to_le32(addr_2); |
| *data_ptr++ = cpu_to_le32(data); |
| *d_ptr = data_ptr; |
| |
| exit_process_pollrdmwr: |
| return rval; |
| } |
| |
| static uint32_t qla4_83xx_minidump_process_rdrom(struct scsi_qla_host *ha, |
| struct qla8xxx_minidump_entry_hdr *entry_hdr, |
| uint32_t **d_ptr) |
| { |
| uint32_t fl_addr, u32_count, rval; |
| struct qla8xxx_minidump_entry_rdrom *rom_hdr; |
| uint32_t *data_ptr = *d_ptr; |
| |
| rom_hdr = (struct qla8xxx_minidump_entry_rdrom *)entry_hdr; |
| fl_addr = le32_to_cpu(rom_hdr->read_addr); |
| u32_count = le32_to_cpu(rom_hdr->read_data_size)/sizeof(uint32_t); |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "[%s]: fl_addr: 0x%x, count: 0x%x\n", |
| __func__, fl_addr, u32_count)); |
| |
| rval = qla4_83xx_lockless_flash_read_u32(ha, fl_addr, |
| (u8 *)(data_ptr), u32_count); |
| |
| if (rval == QLA_ERROR) { |
| ql4_printk(KERN_ERR, ha, "%s: Flash Read Error,Count=%d\n", |
| __func__, u32_count); |
| goto exit_process_rdrom; |
| } |
| |
| data_ptr += u32_count; |
| *d_ptr = data_ptr; |
| |
| exit_process_rdrom: |
| return rval; |
| } |
| |
| /** |
| * qla4_8xxx_collect_md_data - Retrieve firmware minidump data. |
| * @ha: pointer to adapter structure |
| **/ |
| static int qla4_8xxx_collect_md_data(struct scsi_qla_host *ha) |
| { |
| int num_entry_hdr = 0; |
| struct qla8xxx_minidump_entry_hdr *entry_hdr; |
| struct qla4_8xxx_minidump_template_hdr *tmplt_hdr; |
| uint32_t *data_ptr; |
| uint32_t data_collected = 0; |
| int i, rval = QLA_ERROR; |
| uint64_t now; |
| uint32_t timestamp; |
| |
| ha->fw_dump_skip_size = 0; |
| if (!ha->fw_dump) { |
| ql4_printk(KERN_INFO, ha, "%s(%ld) No buffer to dump\n", |
| __func__, ha->host_no); |
| return rval; |
| } |
| |
| tmplt_hdr = (struct qla4_8xxx_minidump_template_hdr *) |
| ha->fw_dump_tmplt_hdr; |
| data_ptr = (uint32_t *)((uint8_t *)ha->fw_dump + |
| ha->fw_dump_tmplt_size); |
| data_collected += ha->fw_dump_tmplt_size; |
| |
| num_entry_hdr = tmplt_hdr->num_of_entries; |
| ql4_printk(KERN_INFO, ha, "[%s]: starting data ptr: %p\n", |
| __func__, data_ptr); |
| ql4_printk(KERN_INFO, ha, |
| "[%s]: no of entry headers in Template: 0x%x\n", |
| __func__, num_entry_hdr); |
| ql4_printk(KERN_INFO, ha, "[%s]: Capture Mask obtained: 0x%x\n", |
| __func__, ha->fw_dump_capture_mask); |
| ql4_printk(KERN_INFO, ha, "[%s]: Total_data_size 0x%x, %d obtained\n", |
| __func__, ha->fw_dump_size, ha->fw_dump_size); |
| |
| /* Update current timestamp before taking dump */ |
| now = get_jiffies_64(); |
| timestamp = (u32)(jiffies_to_msecs(now) / 1000); |
| tmplt_hdr->driver_timestamp = timestamp; |
| |
| entry_hdr = (struct qla8xxx_minidump_entry_hdr *) |
| (((uint8_t *)ha->fw_dump_tmplt_hdr) + |
| tmplt_hdr->first_entry_offset); |
| |
| if (is_qla8032(ha) || is_qla8042(ha)) |
| tmplt_hdr->saved_state_array[QLA83XX_SS_OCM_WNDREG_INDEX] = |
| tmplt_hdr->ocm_window_reg[ha->func_num]; |
| |
| /* Walk through the entry headers - validate/perform required action */ |
| for (i = 0; i < num_entry_hdr; i++) { |
| if (data_collected > ha->fw_dump_size) { |
| ql4_printk(KERN_INFO, ha, |
| "Data collected: [0x%x], Total Dump size: [0x%x]\n", |
| data_collected, ha->fw_dump_size); |
| return rval; |
| } |
| |
| if (!(entry_hdr->d_ctrl.entry_capture_mask & |
| ha->fw_dump_capture_mask)) { |
| entry_hdr->d_ctrl.driver_flags |= |
| QLA8XXX_DBG_SKIPPED_FLAG; |
| goto skip_nxt_entry; |
| } |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "Data collected: [0x%x], Dump size left:[0x%x]\n", |
| data_collected, |
| (ha->fw_dump_size - data_collected))); |
| |
| /* Decode the entry type and take required action to capture |
| * debug data |
| */ |
| switch (entry_hdr->entry_type) { |
| case QLA8XXX_RDEND: |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA8XXX_CNTRL: |
| rval = qla4_8xxx_minidump_process_control(ha, |
| entry_hdr); |
| if (rval != QLA_SUCCESS) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| goto md_failed; |
| } |
| break; |
| case QLA8XXX_RDCRB: |
| qla4_8xxx_minidump_process_rdcrb(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA8XXX_RDMEM: |
| rval = qla4_8xxx_minidump_process_rdmem(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| goto md_failed; |
| } |
| break; |
| case QLA8XXX_BOARD: |
| case QLA8XXX_RDROM: |
| if (is_qla8022(ha)) { |
| qla4_82xx_minidump_process_rdrom(ha, entry_hdr, |
| &data_ptr); |
| } else if (is_qla8032(ha) || is_qla8042(ha)) { |
| rval = qla4_83xx_minidump_process_rdrom(ha, |
| entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, |
| entry_hdr, |
| i); |
| } |
| break; |
| case QLA8XXX_L2DTG: |
| case QLA8XXX_L2ITG: |
| case QLA8XXX_L2DAT: |
| case QLA8XXX_L2INS: |
| rval = qla4_8xxx_minidump_process_l2tag(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| goto md_failed; |
| } |
| break; |
| case QLA8XXX_L1DTG: |
| case QLA8XXX_L1ITG: |
| case QLA8XXX_L1DAT: |
| case QLA8XXX_L1INS: |
| qla4_8xxx_minidump_process_l1cache(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA8XXX_RDOCM: |
| qla4_8xxx_minidump_process_rdocm(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA8XXX_RDMUX: |
| qla4_8xxx_minidump_process_rdmux(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA8XXX_QUEUE: |
| qla4_8xxx_minidump_process_queue(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA83XX_POLLRD: |
| if (is_qla8022(ha)) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| } |
| rval = qla83xx_minidump_process_pollrd(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA83XX_RDMUX2: |
| if (is_qla8022(ha)) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| } |
| qla83xx_minidump_process_rdmux2(ha, entry_hdr, |
| &data_ptr); |
| break; |
| case QLA83XX_POLLRDMWR: |
| if (is_qla8022(ha)) { |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| } |
| rval = qla83xx_minidump_process_pollrdmwr(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA8044_RDDFE: |
| rval = qla4_84xx_minidump_process_rddfe(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA8044_RDMDIO: |
| rval = qla4_84xx_minidump_process_rdmdio(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA8044_POLLWR: |
| rval = qla4_84xx_minidump_process_pollwr(ha, entry_hdr, |
| &data_ptr); |
| if (rval != QLA_SUCCESS) |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| case QLA8XXX_RDNOP: |
| default: |
| qla4_8xxx_mark_entry_skipped(ha, entry_hdr, i); |
| break; |
| } |
| |
| data_collected = (uint8_t *)data_ptr - (uint8_t *)ha->fw_dump; |
| skip_nxt_entry: |
| /* next entry in the template */ |
| entry_hdr = (struct qla8xxx_minidump_entry_hdr *) |
| (((uint8_t *)entry_hdr) + |
| entry_hdr->entry_size); |
| } |
| |
| if ((data_collected + ha->fw_dump_skip_size) != ha->fw_dump_size) { |
| ql4_printk(KERN_INFO, ha, |
| "Dump data mismatch: Data collected: [0x%x], total_data_size:[0x%x]\n", |
| data_collected, ha->fw_dump_size); |
| rval = QLA_ERROR; |
| goto md_failed; |
| } |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Leaving fn: %s Last entry: 0x%x\n", |
| __func__, i)); |
| md_failed: |
| return rval; |
| } |
| |
| /** |
| * qla4_8xxx_uevent_emit - Send uevent when the firmware dump is ready. |
| * @ha: pointer to adapter structure |
| **/ |
| static void qla4_8xxx_uevent_emit(struct scsi_qla_host *ha, u32 code) |
| { |
| char event_string[40]; |
| char *envp[] = { event_string, NULL }; |
| |
| switch (code) { |
| case QL4_UEVENT_CODE_FW_DUMP: |
| snprintf(event_string, sizeof(event_string), "FW_DUMP=%ld", |
| ha->host_no); |
| break; |
| default: |
| /*do nothing*/ |
| break; |
| } |
| |
| kobject_uevent_env(&(&ha->pdev->dev)->kobj, KOBJ_CHANGE, envp); |
| } |
| |
| void qla4_8xxx_get_minidump(struct scsi_qla_host *ha) |
| { |
| if (ql4xenablemd && test_bit(AF_FW_RECOVERY, &ha->flags) && |
| !test_bit(AF_82XX_FW_DUMPED, &ha->flags)) { |
| if (!qla4_8xxx_collect_md_data(ha)) { |
| qla4_8xxx_uevent_emit(ha, QL4_UEVENT_CODE_FW_DUMP); |
| set_bit(AF_82XX_FW_DUMPED, &ha->flags); |
| } else { |
| ql4_printk(KERN_INFO, ha, "%s: Unable to collect minidump\n", |
| __func__); |
| } |
| } |
| } |
| |
| /** |
| * qla4_8xxx_device_bootstrap - Initialize device, set DEV_READY, start fw |
| * @ha: pointer to adapter structure |
| * |
| * Note: IDC lock must be held upon entry |
| **/ |
| int qla4_8xxx_device_bootstrap(struct scsi_qla_host *ha) |
| { |
| int rval = QLA_ERROR; |
| int i; |
| uint32_t old_count, count; |
| int need_reset = 0; |
| |
| need_reset = ha->isp_ops->need_reset(ha); |
| |
| if (need_reset) { |
| /* We are trying to perform a recovery here. */ |
| if (test_bit(AF_FW_RECOVERY, &ha->flags)) |
| ha->isp_ops->rom_lock_recovery(ha); |
| } else { |
| old_count = qla4_8xxx_rd_direct(ha, QLA8XXX_PEG_ALIVE_COUNTER); |
| for (i = 0; i < 10; i++) { |
| msleep(200); |
| count = qla4_8xxx_rd_direct(ha, |
| QLA8XXX_PEG_ALIVE_COUNTER); |
| if (count != old_count) { |
| rval = QLA_SUCCESS; |
| goto dev_ready; |
| } |
| } |
| ha->isp_ops->rom_lock_recovery(ha); |
| } |
| |
| /* set to DEV_INITIALIZING */ |
| ql4_printk(KERN_INFO, ha, "HW State: INITIALIZING\n"); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, |
| QLA8XXX_DEV_INITIALIZING); |
| |
| ha->isp_ops->idc_unlock(ha); |
| |
| if (is_qla8022(ha)) |
| qla4_8xxx_get_minidump(ha); |
| |
| rval = ha->isp_ops->restart_firmware(ha); |
| ha->isp_ops->idc_lock(ha); |
| |
| if (rval != QLA_SUCCESS) { |
| ql4_printk(KERN_INFO, ha, "HW State: FAILED\n"); |
| qla4_8xxx_clear_drv_active(ha); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, |
| QLA8XXX_DEV_FAILED); |
| return rval; |
| } |
| |
| dev_ready: |
| ql4_printk(KERN_INFO, ha, "HW State: READY\n"); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, QLA8XXX_DEV_READY); |
| |
| return rval; |
| } |
| |
| /** |
| * qla4_82xx_need_reset_handler - Code to start reset sequence |
| * @ha: pointer to adapter structure |
| * |
| * Note: IDC lock must be held upon entry |
| **/ |
| static void |
| qla4_82xx_need_reset_handler(struct scsi_qla_host *ha) |
| { |
| uint32_t dev_state, drv_state, drv_active; |
| uint32_t active_mask = 0xFFFFFFFF; |
| unsigned long reset_timeout; |
| |
| ql4_printk(KERN_INFO, ha, |
| "Performing ISP error recovery\n"); |
| |
| if (test_and_clear_bit(AF_ONLINE, &ha->flags)) { |
| qla4_82xx_idc_unlock(ha); |
| ha->isp_ops->disable_intrs(ha); |
| qla4_82xx_idc_lock(ha); |
| } |
| |
| if (!test_bit(AF_8XXX_RST_OWNER, &ha->flags)) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s(%ld): reset acknowledged\n", |
| __func__, ha->host_no)); |
| qla4_8xxx_set_rst_ready(ha); |
| } else { |
| active_mask = (~(1 << (ha->func_num * 4))); |
| } |
| |
| /* wait for 10 seconds for reset ack from all functions */ |
| reset_timeout = jiffies + (ha->nx_reset_timeout * HZ); |
| |
| drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE); |
| drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE); |
| |
| ql4_printk(KERN_INFO, ha, |
| "%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n", |
| __func__, ha->host_no, drv_state, drv_active); |
| |
| while (drv_state != (drv_active & active_mask)) { |
| if (time_after_eq(jiffies, reset_timeout)) { |
| ql4_printk(KERN_INFO, ha, |
| "%s: RESET TIMEOUT! drv_state: 0x%08x, drv_active: 0x%08x\n", |
| DRIVER_NAME, drv_state, drv_active); |
| break; |
| } |
| |
| /* |
| * When reset_owner times out, check which functions |
| * acked/did not ack |
| */ |
| if (test_bit(AF_8XXX_RST_OWNER, &ha->flags)) { |
| ql4_printk(KERN_INFO, ha, |
| "%s(%ld): drv_state = 0x%x, drv_active = 0x%x\n", |
| __func__, ha->host_no, drv_state, |
| drv_active); |
| } |
| qla4_82xx_idc_unlock(ha); |
| msleep(1000); |
| qla4_82xx_idc_lock(ha); |
| |
| drv_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_STATE); |
| drv_active = qla4_82xx_rd_32(ha, QLA82XX_CRB_DRV_ACTIVE); |
| } |
| |
| /* Clear RESET OWNER as we are not going to use it any further */ |
| clear_bit(AF_8XXX_RST_OWNER, &ha->flags); |
| |
| dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE); |
| ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", dev_state, |
| dev_state < MAX_STATES ? qdev_state[dev_state] : "Unknown"); |
| |
| /* Force to DEV_COLD unless someone else is starting a reset */ |
| if (dev_state != QLA8XXX_DEV_INITIALIZING) { |
| ql4_printk(KERN_INFO, ha, "HW State: COLD/RE-INIT\n"); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE, QLA8XXX_DEV_COLD); |
| qla4_8xxx_set_rst_ready(ha); |
| } |
| } |
| |
| /** |
| * qla4_8xxx_need_qsnt_handler - Code to start qsnt |
| * @ha: pointer to adapter structure |
| **/ |
| void |
| qla4_8xxx_need_qsnt_handler(struct scsi_qla_host *ha) |
| { |
| ha->isp_ops->idc_lock(ha); |
| qla4_8xxx_set_qsnt_ready(ha); |
| ha->isp_ops->idc_unlock(ha); |
| } |
| |
| static void qla4_82xx_set_idc_ver(struct scsi_qla_host *ha) |
| { |
| int idc_ver; |
| uint32_t drv_active; |
| |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| if (drv_active == (1 << (ha->func_num * 4))) { |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION, |
| QLA82XX_IDC_VERSION); |
| ql4_printk(KERN_INFO, ha, |
| "%s: IDC version updated to %d\n", __func__, |
| QLA82XX_IDC_VERSION); |
| } else { |
| idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); |
| if (QLA82XX_IDC_VERSION != idc_ver) { |
| ql4_printk(KERN_INFO, ha, |
| "%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n", |
| __func__, QLA82XX_IDC_VERSION, idc_ver); |
| } |
| } |
| } |
| |
| static int qla4_83xx_set_idc_ver(struct scsi_qla_host *ha) |
| { |
| int idc_ver; |
| uint32_t drv_active; |
| int rval = QLA_SUCCESS; |
| |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| if (drv_active == (1 << ha->func_num)) { |
| idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); |
| idc_ver &= (~0xFF); |
| idc_ver |= QLA83XX_IDC_VER_MAJ_VALUE; |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION, idc_ver); |
| ql4_printk(KERN_INFO, ha, |
| "%s: IDC version updated to %d\n", __func__, |
| idc_ver); |
| } else { |
| idc_ver = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_IDC_VERSION); |
| idc_ver &= 0xFF; |
| if (QLA83XX_IDC_VER_MAJ_VALUE != idc_ver) { |
| ql4_printk(KERN_INFO, ha, |
| "%s: qla4xxx driver IDC version %d is not compatible with IDC version %d of other drivers!\n", |
| __func__, QLA83XX_IDC_VER_MAJ_VALUE, |
| idc_ver); |
| rval = QLA_ERROR; |
| goto exit_set_idc_ver; |
| } |
| } |
| |
| /* Update IDC_MINOR_VERSION */ |
| idc_ver = qla4_83xx_rd_reg(ha, QLA83XX_CRB_IDC_VER_MINOR); |
| idc_ver &= ~(0x03 << (ha->func_num * 2)); |
| idc_ver |= (QLA83XX_IDC_VER_MIN_VALUE << (ha->func_num * 2)); |
| qla4_83xx_wr_reg(ha, QLA83XX_CRB_IDC_VER_MINOR, idc_ver); |
| |
| exit_set_idc_ver: |
| return rval; |
| } |
| |
| int qla4_8xxx_update_idc_reg(struct scsi_qla_host *ha) |
| { |
| uint32_t drv_active; |
| int rval = QLA_SUCCESS; |
| |
| if (test_bit(AF_INIT_DONE, &ha->flags)) |
| goto exit_update_idc_reg; |
| |
| ha->isp_ops->idc_lock(ha); |
| qla4_8xxx_set_drv_active(ha); |
| |
| /* |
| * If we are the first driver to load and |
| * ql4xdontresethba is not set, clear IDC_CTRL BIT0. |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) { |
| drv_active = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DRV_ACTIVE); |
| if ((drv_active == (1 << ha->func_num)) && !ql4xdontresethba) |
| qla4_83xx_clear_idc_dontreset(ha); |
| } |
| |
| if (is_qla8022(ha)) { |
| qla4_82xx_set_idc_ver(ha); |
| } else if (is_qla8032(ha) || is_qla8042(ha)) { |
| rval = qla4_83xx_set_idc_ver(ha); |
| if (rval == QLA_ERROR) |
| qla4_8xxx_clear_drv_active(ha); |
| } |
| |
| ha->isp_ops->idc_unlock(ha); |
| |
| exit_update_idc_reg: |
| return rval; |
| } |
| |
| /** |
| * qla4_8xxx_device_state_handler - Adapter state machine |
| * @ha: pointer to host adapter structure. |
| * |
| * Note: IDC lock must be UNLOCKED upon entry |
| **/ |
| int qla4_8xxx_device_state_handler(struct scsi_qla_host *ha) |
| { |
| uint32_t dev_state; |
| int rval = QLA_SUCCESS; |
| unsigned long dev_init_timeout; |
| |
| rval = qla4_8xxx_update_idc_reg(ha); |
| if (rval == QLA_ERROR) |
| goto exit_state_handler; |
| |
| dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE); |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", |
| dev_state, dev_state < MAX_STATES ? |
| qdev_state[dev_state] : "Unknown")); |
| |
| /* wait for 30 seconds for device to go ready */ |
| dev_init_timeout = jiffies + (ha->nx_dev_init_timeout * HZ); |
| |
| ha->isp_ops->idc_lock(ha); |
| while (1) { |
| |
| if (time_after_eq(jiffies, dev_init_timeout)) { |
| ql4_printk(KERN_WARNING, ha, |
| "%s: Device Init Failed 0x%x = %s\n", |
| DRIVER_NAME, |
| dev_state, dev_state < MAX_STATES ? |
| qdev_state[dev_state] : "Unknown"); |
| qla4_8xxx_wr_direct(ha, QLA8XXX_CRB_DEV_STATE, |
| QLA8XXX_DEV_FAILED); |
| } |
| |
| dev_state = qla4_8xxx_rd_direct(ha, QLA8XXX_CRB_DEV_STATE); |
| ql4_printk(KERN_INFO, ha, "Device state is 0x%x = %s\n", |
| dev_state, dev_state < MAX_STATES ? |
| qdev_state[dev_state] : "Unknown"); |
| |
| /* NOTE: Make sure idc unlocked upon exit of switch statement */ |
| switch (dev_state) { |
| case QLA8XXX_DEV_READY: |
| goto exit; |
| case QLA8XXX_DEV_COLD: |
| rval = qla4_8xxx_device_bootstrap(ha); |
| goto exit; |
| case QLA8XXX_DEV_INITIALIZING: |
| ha->isp_ops->idc_unlock(ha); |
| msleep(1000); |
| ha->isp_ops->idc_lock(ha); |
| break; |
| case QLA8XXX_DEV_NEED_RESET: |
| /* |
| * For ISP8324 and ISP8042, if NEED_RESET is set by any |
| * driver, it should be honored, irrespective of |
| * IDC_CTRL DONTRESET_BIT0 |
| */ |
| if (is_qla8032(ha) || is_qla8042(ha)) { |
| qla4_83xx_need_reset_handler(ha); |
| } else if (is_qla8022(ha)) { |
| if (!ql4xdontresethba) { |
| qla4_82xx_need_reset_handler(ha); |
| /* Update timeout value after need |
| * reset handler */ |
| dev_init_timeout = jiffies + |
| (ha->nx_dev_init_timeout * HZ); |
| } else { |
| ha->isp_ops->idc_unlock(ha); |
| msleep(1000); |
| ha->isp_ops->idc_lock(ha); |
| } |
| } |
| break; |
| case QLA8XXX_DEV_NEED_QUIESCENT: |
| /* idc locked/unlocked in handler */ |
| qla4_8xxx_need_qsnt_handler(ha); |
| break; |
| case QLA8XXX_DEV_QUIESCENT: |
| ha->isp_ops->idc_unlock(ha); |
| msleep(1000); |
| ha->isp_ops->idc_lock(ha); |
| break; |
| case QLA8XXX_DEV_FAILED: |
| ha->isp_ops->idc_unlock(ha); |
| qla4xxx_dead_adapter_cleanup(ha); |
| rval = QLA_ERROR; |
| ha->isp_ops->idc_lock(ha); |
| goto exit; |
| default: |
| ha->isp_ops->idc_unlock(ha); |
| qla4xxx_dead_adapter_cleanup(ha); |
| rval = QLA_ERROR; |
| ha->isp_ops->idc_lock(ha); |
| goto exit; |
| } |
| } |
| exit: |
| ha->isp_ops->idc_unlock(ha); |
| exit_state_handler: |
| return rval; |
| } |
| |
| int qla4_8xxx_load_risc(struct scsi_qla_host *ha) |
| { |
| int retval; |
| |
| /* clear the interrupt */ |
| if (is_qla8032(ha) || is_qla8042(ha)) { |
| writel(0, &ha->qla4_83xx_reg->risc_intr); |
| readl(&ha->qla4_83xx_reg->risc_intr); |
| } else if (is_qla8022(ha)) { |
| writel(0, &ha->qla4_82xx_reg->host_int); |
| readl(&ha->qla4_82xx_reg->host_int); |
| } |
| |
| retval = qla4_8xxx_device_state_handler(ha); |
| |
| /* Initialize request and response queues. */ |
| if (retval == QLA_SUCCESS) |
| qla4xxx_init_rings(ha); |
| |
| if (retval == QLA_SUCCESS && !test_bit(AF_IRQ_ATTACHED, &ha->flags)) |
| retval = qla4xxx_request_irqs(ha); |
| |
| return retval; |
| } |
| |
| /*****************************************************************************/ |
| /* Flash Manipulation Routines */ |
| /*****************************************************************************/ |
| |
| #define OPTROM_BURST_SIZE 0x1000 |
| #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4) |
| |
| #define FARX_DATA_FLAG BIT_31 |
| #define FARX_ACCESS_FLASH_CONF 0x7FFD0000 |
| #define FARX_ACCESS_FLASH_DATA 0x7FF00000 |
| |
| static inline uint32_t |
| flash_conf_addr(struct ql82xx_hw_data *hw, uint32_t faddr) |
| { |
| return hw->flash_conf_off | faddr; |
| } |
| |
| static inline uint32_t |
| flash_data_addr(struct ql82xx_hw_data *hw, uint32_t faddr) |
| { |
| return hw->flash_data_off | faddr; |
| } |
| |
| static uint32_t * |
| qla4_82xx_read_flash_data(struct scsi_qla_host *ha, uint32_t *dwptr, |
| uint32_t faddr, uint32_t length) |
| { |
| uint32_t i; |
| uint32_t val; |
| int loops = 0; |
| while ((qla4_82xx_rom_lock(ha) != 0) && (loops < 50000)) { |
| udelay(100); |
| cond_resched(); |
| loops++; |
| } |
| if (loops >= 50000) { |
| ql4_printk(KERN_WARNING, ha, "ROM lock failed\n"); |
| return dwptr; |
| } |
| |
| /* Dword reads to flash. */ |
| for (i = 0; i < length/4; i++, faddr += 4) { |
| if (qla4_82xx_do_rom_fast_read(ha, faddr, &val)) { |
| ql4_printk(KERN_WARNING, ha, |
| "Do ROM fast read failed\n"); |
| goto done_read; |
| } |
| dwptr[i] = __constant_cpu_to_le32(val); |
| } |
| |
| done_read: |
| qla4_82xx_rom_unlock(ha); |
| return dwptr; |
| } |
| |
| /** |
| * Address and length are byte address |
| **/ |
| static uint8_t * |
| qla4_82xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf, |
| uint32_t offset, uint32_t length) |
| { |
| qla4_82xx_read_flash_data(ha, (uint32_t *)buf, offset, length); |
| return buf; |
| } |
| |
| static int |
| qla4_8xxx_find_flt_start(struct scsi_qla_host *ha, uint32_t *start) |
| { |
| const char *loc, *locations[] = { "DEF", "PCI" }; |
| |
| /* |
| * FLT-location structure resides after the last PCI region. |
| */ |
| |
| /* Begin with sane defaults. */ |
| loc = locations[0]; |
| *start = FA_FLASH_LAYOUT_ADDR_82; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "FLTL[%s] = 0x%x.\n", loc, *start)); |
| return QLA_SUCCESS; |
| } |
| |
| static void |
| qla4_8xxx_get_flt_info(struct scsi_qla_host *ha, uint32_t flt_addr) |
| { |
| const char *loc, *locations[] = { "DEF", "FLT" }; |
| uint16_t *wptr; |
| uint16_t cnt, chksum; |
| uint32_t start, status; |
| struct qla_flt_header *flt; |
| struct qla_flt_region *region; |
| struct ql82xx_hw_data *hw = &ha->hw; |
| |
| hw->flt_region_flt = flt_addr; |
| wptr = (uint16_t *)ha->request_ring; |
| flt = (struct qla_flt_header *)ha->request_ring; |
| region = (struct qla_flt_region *)&flt[1]; |
| |
| if (is_qla8022(ha)) { |
| qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, |
| flt_addr << 2, OPTROM_BURST_SIZE); |
| } else if (is_qla8032(ha) || is_qla8042(ha)) { |
| status = qla4_83xx_flash_read_u32(ha, flt_addr << 2, |
| (uint8_t *)ha->request_ring, |
| 0x400); |
| if (status != QLA_SUCCESS) |
| goto no_flash_data; |
| } |
| |
| if (*wptr == __constant_cpu_to_le16(0xffff)) |
| goto no_flash_data; |
| if (flt->version != __constant_cpu_to_le16(1)) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Unsupported FLT detected: " |
| "version=0x%x length=0x%x checksum=0x%x.\n", |
| le16_to_cpu(flt->version), le16_to_cpu(flt->length), |
| le16_to_cpu(flt->checksum))); |
| goto no_flash_data; |
| } |
| |
| cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1; |
| for (chksum = 0; cnt; cnt--) |
| chksum += le16_to_cpu(*wptr++); |
| if (chksum) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FLT detected: " |
| "version=0x%x length=0x%x checksum=0x%x.\n", |
| le16_to_cpu(flt->version), le16_to_cpu(flt->length), |
| chksum)); |
| goto no_flash_data; |
| } |
| |
| loc = locations[1]; |
| cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region); |
| for ( ; cnt; cnt--, region++) { |
| /* Store addresses as DWORD offsets. */ |
| start = le32_to_cpu(region->start) >> 2; |
| |
| DEBUG3(ql4_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x " |
| "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start, |
| le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size))); |
| |
| switch (le32_to_cpu(region->code) & 0xff) { |
| case FLT_REG_FDT: |
| hw->flt_region_fdt = start; |
| break; |
| case FLT_REG_BOOT_CODE_82: |
| hw->flt_region_boot = start; |
| break; |
| case FLT_REG_FW_82: |
| case FLT_REG_FW_82_1: |
| hw->flt_region_fw = start; |
| break; |
| case FLT_REG_BOOTLOAD_82: |
| hw->flt_region_bootload = start; |
| break; |
| case FLT_REG_ISCSI_PARAM: |
| hw->flt_iscsi_param = start; |
| break; |
| case FLT_REG_ISCSI_CHAP: |
| hw->flt_region_chap = start; |
| hw->flt_chap_size = le32_to_cpu(region->size); |
| break; |
| case FLT_REG_ISCSI_DDB: |
| hw->flt_region_ddb = start; |
| hw->flt_ddb_size = le32_to_cpu(region->size); |
| break; |
| } |
| } |
| goto done; |
| |
| no_flash_data: |
| /* Use hardcoded defaults. */ |
| loc = locations[0]; |
| |
| hw->flt_region_fdt = FA_FLASH_DESCR_ADDR_82; |
| hw->flt_region_boot = FA_BOOT_CODE_ADDR_82; |
| hw->flt_region_bootload = FA_BOOT_LOAD_ADDR_82; |
| hw->flt_region_fw = FA_RISC_CODE_ADDR_82; |
| hw->flt_region_chap = FA_FLASH_ISCSI_CHAP >> 2; |
| hw->flt_chap_size = FA_FLASH_CHAP_SIZE; |
| hw->flt_region_ddb = FA_FLASH_ISCSI_DDB >> 2; |
| hw->flt_ddb_size = FA_FLASH_DDB_SIZE; |
| |
| done: |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "FLT[%s]: flt=0x%x fdt=0x%x boot=0x%x bootload=0x%x fw=0x%x chap=0x%x chap_size=0x%x ddb=0x%x ddb_size=0x%x\n", |
| loc, hw->flt_region_flt, hw->flt_region_fdt, |
| hw->flt_region_boot, hw->flt_region_bootload, |
| hw->flt_region_fw, hw->flt_region_chap, |
| hw->flt_chap_size, hw->flt_region_ddb, |
| hw->flt_ddb_size)); |
| } |
| |
| static void |
| qla4_82xx_get_fdt_info(struct scsi_qla_host *ha) |
| { |
| #define FLASH_BLK_SIZE_4K 0x1000 |
| #define FLASH_BLK_SIZE_32K 0x8000 |
| #define FLASH_BLK_SIZE_64K 0x10000 |
| const char *loc, *locations[] = { "MID", "FDT" }; |
| uint16_t cnt, chksum; |
| uint16_t *wptr; |
| struct qla_fdt_layout *fdt; |
| uint16_t mid = 0; |
| uint16_t fid = 0; |
| struct ql82xx_hw_data *hw = &ha->hw; |
| |
| hw->flash_conf_off = FARX_ACCESS_FLASH_CONF; |
| hw->flash_data_off = FARX_ACCESS_FLASH_DATA; |
| |
| wptr = (uint16_t *)ha->request_ring; |
| fdt = (struct qla_fdt_layout *)ha->request_ring; |
| qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, |
| hw->flt_region_fdt << 2, OPTROM_BURST_SIZE); |
| |
| if (*wptr == __constant_cpu_to_le16(0xffff)) |
| goto no_flash_data; |
| |
| if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' || |
| fdt->sig[3] != 'D') |
| goto no_flash_data; |
| |
| for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1; |
| cnt++) |
| chksum += le16_to_cpu(*wptr++); |
| |
| if (chksum) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, "Inconsistent FDT detected: " |
| "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0], |
| le16_to_cpu(fdt->version))); |
| goto no_flash_data; |
| } |
| |
| loc = locations[1]; |
| mid = le16_to_cpu(fdt->man_id); |
| fid = le16_to_cpu(fdt->id); |
| hw->fdt_wrt_disable = fdt->wrt_disable_bits; |
| hw->fdt_erase_cmd = flash_conf_addr(hw, 0x0300 | fdt->erase_cmd); |
| hw->fdt_block_size = le32_to_cpu(fdt->block_size); |
| |
| if (fdt->unprotect_sec_cmd) { |
| hw->fdt_unprotect_sec_cmd = flash_conf_addr(hw, 0x0300 | |
| fdt->unprotect_sec_cmd); |
| hw->fdt_protect_sec_cmd = fdt->protect_sec_cmd ? |
| flash_conf_addr(hw, 0x0300 | fdt->protect_sec_cmd) : |
| flash_conf_addr(hw, 0x0336); |
| } |
| goto done; |
| |
| no_flash_data: |
| loc = locations[0]; |
| hw->fdt_block_size = FLASH_BLK_SIZE_64K; |
| done: |
| DEBUG2(ql4_printk(KERN_INFO, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x " |
| "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid, |
| hw->fdt_erase_cmd, hw->fdt_protect_sec_cmd, |
| hw->fdt_unprotect_sec_cmd, hw->fdt_wrt_disable, |
| hw->fdt_block_size)); |
| } |
| |
| static void |
| qla4_82xx_get_idc_param(struct scsi_qla_host *ha) |
| { |
| #define QLA82XX_IDC_PARAM_ADDR 0x003e885c |
| uint32_t *wptr; |
| |
| if (!is_qla8022(ha)) |
| return; |
| wptr = (uint32_t *)ha->request_ring; |
| qla4_82xx_read_optrom_data(ha, (uint8_t *)ha->request_ring, |
| QLA82XX_IDC_PARAM_ADDR , 8); |
| |
| if (*wptr == __constant_cpu_to_le32(0xffffffff)) { |
| ha->nx_dev_init_timeout = ROM_DEV_INIT_TIMEOUT; |
| ha->nx_reset_timeout = ROM_DRV_RESET_ACK_TIMEOUT; |
| } else { |
| ha->nx_dev_init_timeout = le32_to_cpu(*wptr++); |
| ha->nx_reset_timeout = le32_to_cpu(*wptr); |
| } |
| |
| DEBUG2(ql4_printk(KERN_DEBUG, ha, |
| "ha->nx_dev_init_timeout = %d\n", ha->nx_dev_init_timeout)); |
| DEBUG2(ql4_printk(KERN_DEBUG, ha, |
| "ha->nx_reset_timeout = %d\n", ha->nx_reset_timeout)); |
| return; |
| } |
| |
| void qla4_82xx_queue_mbox_cmd(struct scsi_qla_host *ha, uint32_t *mbx_cmd, |
| int in_count) |
| { |
| int i; |
| |
| /* Load all mailbox registers, except mailbox 0. */ |
| for (i = 1; i < in_count; i++) |
| writel(mbx_cmd[i], &ha->qla4_82xx_reg->mailbox_in[i]); |
| |
| /* Wakeup firmware */ |
| writel(mbx_cmd[0], &ha->qla4_82xx_reg->mailbox_in[0]); |
| readl(&ha->qla4_82xx_reg->mailbox_in[0]); |
| writel(HINT_MBX_INT_PENDING, &ha->qla4_82xx_reg->hint); |
| readl(&ha->qla4_82xx_reg->hint); |
| } |
| |
| void qla4_82xx_process_mbox_intr(struct scsi_qla_host *ha, int out_count) |
| { |
| int intr_status; |
| |
| intr_status = readl(&ha->qla4_82xx_reg->host_int); |
| if (intr_status & ISRX_82XX_RISC_INT) { |
| ha->mbox_status_count = out_count; |
| intr_status = readl(&ha->qla4_82xx_reg->host_status); |
| ha->isp_ops->interrupt_service_routine(ha, intr_status); |
| |
| if (test_bit(AF_INTERRUPTS_ON, &ha->flags) && |
| test_bit(AF_INTx_ENABLED, &ha->flags)) |
| qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, |
| 0xfbff); |
| } |
| } |
| |
| int |
| qla4_8xxx_get_flash_info(struct scsi_qla_host *ha) |
| { |
| int ret; |
| uint32_t flt_addr; |
| |
| ret = qla4_8xxx_find_flt_start(ha, &flt_addr); |
| if (ret != QLA_SUCCESS) |
| return ret; |
| |
| qla4_8xxx_get_flt_info(ha, flt_addr); |
| if (is_qla8022(ha)) { |
| qla4_82xx_get_fdt_info(ha); |
| qla4_82xx_get_idc_param(ha); |
| } else if (is_qla8032(ha) || is_qla8042(ha)) { |
| qla4_83xx_get_idc_param(ha); |
| } |
| |
| return QLA_SUCCESS; |
| } |
| |
| /** |
| * qla4_8xxx_stop_firmware - stops firmware on specified adapter instance |
| * @ha: pointer to host adapter structure. |
| * |
| * Remarks: |
| * For iSCSI, throws away all I/O and AENs into bit bucket, so they will |
| * not be available after successful return. Driver must cleanup potential |
| * outstanding I/O's after calling this funcion. |
| **/ |
| int |
| qla4_8xxx_stop_firmware(struct scsi_qla_host *ha) |
| { |
| int status; |
| uint32_t mbox_cmd[MBOX_REG_COUNT]; |
| uint32_t mbox_sts[MBOX_REG_COUNT]; |
| |
| memset(&mbox_cmd, 0, sizeof(mbox_cmd)); |
| memset(&mbox_sts, 0, sizeof(mbox_sts)); |
| |
| mbox_cmd[0] = MBOX_CMD_STOP_FW; |
| status = qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, |
| &mbox_cmd[0], &mbox_sts[0]); |
| |
| DEBUG2(printk("scsi%ld: %s: status = %d\n", ha->host_no, |
| __func__, status)); |
| return status; |
| } |
| |
| /** |
| * qla4_82xx_isp_reset - Resets ISP and aborts all outstanding commands. |
| * @ha: pointer to host adapter structure. |
| **/ |
| int |
| qla4_82xx_isp_reset(struct scsi_qla_host *ha) |
| { |
| int rval; |
| uint32_t dev_state; |
| |
| qla4_82xx_idc_lock(ha); |
| dev_state = qla4_82xx_rd_32(ha, QLA82XX_CRB_DEV_STATE); |
| |
| if (dev_state == QLA8XXX_DEV_READY) { |
| ql4_printk(KERN_INFO, ha, "HW State: NEED RESET\n"); |
| qla4_82xx_wr_32(ha, QLA82XX_CRB_DEV_STATE, |
| QLA8XXX_DEV_NEED_RESET); |
| set_bit(AF_8XXX_RST_OWNER, &ha->flags); |
| } else |
| ql4_printk(KERN_INFO, ha, "HW State: DEVICE INITIALIZING\n"); |
| |
| qla4_82xx_idc_unlock(ha); |
| |
| rval = qla4_8xxx_device_state_handler(ha); |
| |
| qla4_82xx_idc_lock(ha); |
| qla4_8xxx_clear_rst_ready(ha); |
| qla4_82xx_idc_unlock(ha); |
| |
| if (rval == QLA_SUCCESS) { |
| ql4_printk(KERN_INFO, ha, "Clearing AF_RECOVERY in qla4_82xx_isp_reset\n"); |
| clear_bit(AF_FW_RECOVERY, &ha->flags); |
| } |
| |
| return rval; |
| } |
| |
| /** |
| * qla4_8xxx_get_sys_info - get adapter MAC address(es) and serial number |
| * @ha: pointer to host adapter structure. |
| * |
| **/ |
| int qla4_8xxx_get_sys_info(struct scsi_qla_host *ha) |
| { |
| uint32_t mbox_cmd[MBOX_REG_COUNT]; |
| uint32_t mbox_sts[MBOX_REG_COUNT]; |
| struct mbx_sys_info *sys_info; |
| dma_addr_t sys_info_dma; |
| int status = QLA_ERROR; |
| |
| sys_info = dma_alloc_coherent(&ha->pdev->dev, sizeof(*sys_info), |
| &sys_info_dma, GFP_KERNEL); |
| if (sys_info == NULL) { |
| DEBUG2(printk("scsi%ld: %s: Unable to allocate dma buffer.\n", |
| ha->host_no, __func__)); |
| return status; |
| } |
| |
| memset(sys_info, 0, sizeof(*sys_info)); |
| memset(&mbox_cmd, 0, sizeof(mbox_cmd)); |
| memset(&mbox_sts, 0, sizeof(mbox_sts)); |
| |
| mbox_cmd[0] = MBOX_CMD_GET_SYS_INFO; |
| mbox_cmd[1] = LSDW(sys_info_dma); |
| mbox_cmd[2] = MSDW(sys_info_dma); |
| mbox_cmd[4] = sizeof(*sys_info); |
| |
| if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 6, &mbox_cmd[0], |
| &mbox_sts[0]) != QLA_SUCCESS) { |
| DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO failed\n", |
| ha->host_no, __func__)); |
| goto exit_validate_mac82; |
| } |
| |
| /* Make sure we receive the minimum required data to cache internally */ |
| if (((is_qla8032(ha) || is_qla8042(ha)) ? mbox_sts[3] : mbox_sts[4]) < |
| offsetof(struct mbx_sys_info, reserved)) { |
| DEBUG2(printk("scsi%ld: %s: GET_SYS_INFO data receive" |
| " error (%x)\n", ha->host_no, __func__, mbox_sts[4])); |
| goto exit_validate_mac82; |
| } |
| |
| /* Save M.A.C. address & serial_number */ |
| ha->port_num = sys_info->port_num; |
| memcpy(ha->my_mac, &sys_info->mac_addr[0], |
| min(sizeof(ha->my_mac), sizeof(sys_info->mac_addr))); |
| memcpy(ha->serial_number, &sys_info->serial_number, |
| min(sizeof(ha->serial_number), sizeof(sys_info->serial_number))); |
| memcpy(ha->model_name, &sys_info->board_id_str, |
| min(sizeof(ha->model_name), sizeof(sys_info->board_id_str))); |
| ha->phy_port_cnt = sys_info->phys_port_cnt; |
| ha->phy_port_num = sys_info->port_num; |
| ha->iscsi_pci_func_cnt = sys_info->iscsi_pci_func_cnt; |
| |
| DEBUG2(printk("scsi%ld: %s: " |
| "mac %02x:%02x:%02x:%02x:%02x:%02x " |
| "serial %s\n", ha->host_no, __func__, |
| ha->my_mac[0], ha->my_mac[1], ha->my_mac[2], |
| ha->my_mac[3], ha->my_mac[4], ha->my_mac[5], |
| ha->serial_number)); |
| |
| status = QLA_SUCCESS; |
| |
| exit_validate_mac82: |
| dma_free_coherent(&ha->pdev->dev, sizeof(*sys_info), sys_info, |
| sys_info_dma); |
| return status; |
| } |
| |
| /* Interrupt handling helpers. */ |
| |
| int qla4_8xxx_intr_enable(struct scsi_qla_host *ha) |
| { |
| uint32_t mbox_cmd[MBOX_REG_COUNT]; |
| uint32_t mbox_sts[MBOX_REG_COUNT]; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__)); |
| |
| memset(&mbox_cmd, 0, sizeof(mbox_cmd)); |
| memset(&mbox_sts, 0, sizeof(mbox_sts)); |
| mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS; |
| mbox_cmd[1] = INTR_ENABLE; |
| if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0], |
| &mbox_sts[0]) != QLA_SUCCESS) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n", |
| __func__, mbox_sts[0])); |
| return QLA_ERROR; |
| } |
| return QLA_SUCCESS; |
| } |
| |
| int qla4_8xxx_intr_disable(struct scsi_qla_host *ha) |
| { |
| uint32_t mbox_cmd[MBOX_REG_COUNT]; |
| uint32_t mbox_sts[MBOX_REG_COUNT]; |
| |
| DEBUG2(ql4_printk(KERN_INFO, ha, "%s\n", __func__)); |
| |
| memset(&mbox_cmd, 0, sizeof(mbox_cmd)); |
| memset(&mbox_sts, 0, sizeof(mbox_sts)); |
| mbox_cmd[0] = MBOX_CMD_ENABLE_INTRS; |
| mbox_cmd[1] = INTR_DISABLE; |
| if (qla4xxx_mailbox_command(ha, MBOX_REG_COUNT, 1, &mbox_cmd[0], |
| &mbox_sts[0]) != QLA_SUCCESS) { |
| DEBUG2(ql4_printk(KERN_INFO, ha, |
| "%s: MBOX_CMD_ENABLE_INTRS failed (0x%04x)\n", |
| __func__, mbox_sts[0])); |
| return QLA_ERROR; |
| } |
| |
| return QLA_SUCCESS; |
| } |
| |
| void |
| qla4_82xx_enable_intrs(struct scsi_qla_host *ha) |
| { |
| qla4_8xxx_intr_enable(ha); |
| |
| spin_lock_irq(&ha->hardware_lock); |
| /* BIT 10 - reset */ |
| qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0xfbff); |
| spin_unlock_irq(&ha->hardware_lock); |
| set_bit(AF_INTERRUPTS_ON, &ha->flags); |
| } |
| |
| void |
| qla4_82xx_disable_intrs(struct scsi_qla_host *ha) |
| { |
| if (test_and_clear_bit(AF_INTERRUPTS_ON, &ha->flags)) |
| qla4_8xxx_intr_disable(ha); |
| |
| spin_lock_irq(&ha->hardware_lock); |
| /* BIT 10 - set */ |
| qla4_82xx_wr_32(ha, ha->nx_legacy_intr.tgt_mask_reg, 0x0400); |
| spin_unlock_irq(&ha->hardware_lock); |
| } |
| |
| struct ql4_init_msix_entry { |
| uint16_t entry; |
| uint16_t index; |
| const char *name; |
| irq_handler_t handler; |
| }; |
| |
| static struct ql4_init_msix_entry qla4_8xxx_msix_entries[QLA_MSIX_ENTRIES] = { |
| { QLA_MSIX_DEFAULT, QLA_MIDX_DEFAULT, |
| "qla4xxx (default)", |
| (irq_handler_t)qla4_8xxx_default_intr_handler }, |
| { QLA_MSIX_RSP_Q, QLA_MIDX_RSP_Q, |
| "qla4xxx (rsp_q)", (irq_handler_t)qla4_8xxx_msix_rsp_q }, |
| }; |
| |
| void |
| qla4_8xxx_disable_msix(struct scsi_qla_host *ha) |
| { |
| int i; |
| struct ql4_msix_entry *qentry; |
| |
| for (i = 0; i < QLA_MSIX_ENTRIES; i++) { |
| qentry = &ha->msix_entries[qla4_8xxx_msix_entries[i].index]; |
| if (qentry->have_irq) { |
| free_irq(qentry->msix_vector, ha); |
| DEBUG2(ql4_printk(KERN_INFO, ha, "%s: %s\n", |
| __func__, qla4_8xxx_msix_entries[i].name)); |
| } |
| } |
| pci_disable_msix(ha->pdev); |
| clear_bit(AF_MSIX_ENABLED, &ha->flags); |
| } |
| |
| int |
| qla4_8xxx_enable_msix(struct scsi_qla_host *ha) |
| { |
| int i, ret; |
| struct msix_entry entries[QLA_MSIX_ENTRIES]; |
| struct ql4_msix_entry *qentry; |
| |
| for (i = 0; i < QLA_MSIX_ENTRIES; i++) |
| entries[i].entry = qla4_8xxx_msix_entries[i].entry; |
| |
| ret = pci_enable_msix(ha->pdev, entries, ARRAY_SIZE(entries)); |
| if (ret) { |
| ql4_printk(KERN_WARNING, ha, |
| "MSI-X: Failed to enable support -- %d/%d\n", |
| QLA_MSIX_ENTRIES, ret); |
| goto msix_out; |
| } |
| set_bit(AF_MSIX_ENABLED, &ha->flags); |
| |
| for (i = 0; i < QLA_MSIX_ENTRIES; i++) { |
| qentry = &ha->msix_entries[qla4_8xxx_msix_entries[i].index]; |
| qentry->msix_vector = entries[i].vector; |
| qentry->msix_entry = entries[i].entry; |
| qentry->have_irq = 0; |
| ret = request_irq(qentry->msix_vector, |
| qla4_8xxx_msix_entries[i].handler, 0, |
| qla4_8xxx_msix_entries[i].name, ha); |
| if (ret) { |
| ql4_printk(KERN_WARNING, ha, |
| "MSI-X: Unable to register handler -- %x/%d.\n", |
| qla4_8xxx_msix_entries[i].index, ret); |
| qla4_8xxx_disable_msix(ha); |
| goto msix_out; |
| } |
| qentry->have_irq = 1; |
| DEBUG2(ql4_printk(KERN_INFO, ha, "%s: %s\n", |
| __func__, qla4_8xxx_msix_entries[i].name)); |
| } |
| msix_out: |
| return ret; |
| } |
| |
| int qla4_8xxx_check_init_adapter_retry(struct scsi_qla_host *ha) |
| { |
| int status = QLA_SUCCESS; |
| |
| /* Dont retry adapter initialization if IRQ allocation failed */ |
| if (!test_bit(AF_IRQ_ATTACHED, &ha->flags)) { |
| ql4_printk(KERN_WARNING, ha, "%s: Skipping retry of adapter initialization as IRQs are not attached\n", |
| __func__); |
| status = QLA_ERROR; |
| goto exit_init_adapter_failure; |
| } |
| |
| /* Since interrupts are registered in start_firmware for |
| * 8xxx, release them here if initialize_adapter fails |
| * and retry adapter initialization */ |
| qla4xxx_free_irqs(ha); |
| |
| exit_init_adapter_failure: |
| return status; |
| } |