| /* |
| * drivers/mtd/nand/fsmc_nand.c |
| * |
| * ST Microelectronics |
| * Flexible Static Memory Controller (FSMC) |
| * Driver for NAND portions |
| * |
| * Copyright © 2010 ST Microelectronics |
| * Vipin Kumar <vipin.kumar@st.com> |
| * Ashish Priyadarshi |
| * |
| * Based on drivers/mtd/nand/nomadik_nand.c |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/resource.h> |
| #include <linux/sched.h> |
| #include <linux/types.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/platform_device.h> |
| #include <linux/of.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/fsmc.h> |
| #include <linux/amba/bus.h> |
| #include <mtd/mtd-abi.h> |
| |
| static struct nand_ecclayout fsmc_ecc1_128_layout = { |
| .eccbytes = 24, |
| .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, |
| 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, |
| .oobfree = { |
| {.offset = 8, .length = 8}, |
| {.offset = 24, .length = 8}, |
| {.offset = 40, .length = 8}, |
| {.offset = 56, .length = 8}, |
| {.offset = 72, .length = 8}, |
| {.offset = 88, .length = 8}, |
| {.offset = 104, .length = 8}, |
| {.offset = 120, .length = 8} |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc1_64_layout = { |
| .eccbytes = 12, |
| .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52}, |
| .oobfree = { |
| {.offset = 8, .length = 8}, |
| {.offset = 24, .length = 8}, |
| {.offset = 40, .length = 8}, |
| {.offset = 56, .length = 8}, |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc1_16_layout = { |
| .eccbytes = 3, |
| .eccpos = {2, 3, 4}, |
| .oobfree = { |
| {.offset = 8, .length = 8}, |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes |
| * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46 |
| * bytes are free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_256_layout = { |
| .eccbytes = 208, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126, |
| 130, 131, 132, 133, 134, 135, 136, |
| 137, 138, 139, 140, 141, 142, |
| 146, 147, 148, 149, 150, 151, 152, |
| 153, 154, 155, 156, 157, 158, |
| 162, 163, 164, 165, 166, 167, 168, |
| 169, 170, 171, 172, 173, 174, |
| 178, 179, 180, 181, 182, 183, 184, |
| 185, 186, 187, 188, 189, 190, |
| 194, 195, 196, 197, 198, 199, 200, |
| 201, 202, 203, 204, 205, 206, |
| 210, 211, 212, 213, 214, 215, 216, |
| 217, 218, 219, 220, 221, 222, |
| 226, 227, 228, 229, 230, 231, 232, |
| 233, 234, 235, 236, 237, 238, |
| 242, 243, 244, 245, 246, 247, 248, |
| 249, 250, 251, 252, 253, 254 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 3}, |
| {.offset = 143, .length = 3}, |
| {.offset = 159, .length = 3}, |
| {.offset = 175, .length = 3}, |
| {.offset = 191, .length = 3}, |
| {.offset = 207, .length = 3}, |
| {.offset = 223, .length = 3}, |
| {.offset = 239, .length = 3}, |
| {.offset = 255, .length = 1} |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes |
| * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 |
| * bytes are free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_224_layout = { |
| .eccbytes = 104, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 97} |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes |
| * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22 |
| * bytes are free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_128_layout = { |
| .eccbytes = 104, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 1} |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of |
| * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10 |
| * bytes are free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_64_layout = { |
| .eccbytes = 52, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 1}, |
| } |
| }; |
| |
| /* |
| * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of |
| * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One |
| * byte is free for use. |
| */ |
| static struct nand_ecclayout fsmc_ecc4_16_layout = { |
| .eccbytes = 13, |
| .eccpos = { 0, 1, 2, 3, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 1}, |
| } |
| }; |
| |
| /* |
| * ECC placement definitions in oobfree type format. |
| * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| * consecutively and immediately after the 512 byte data block for hardware to |
| * generate the error bit offsets in 512 byte data. |
| * Managing the ecc bytes in the following way makes it easier for software to |
| * read ecc bytes consecutive to data bytes. This way is similar to |
| * oobfree structure maintained already in generic nand driver |
| */ |
| static struct fsmc_eccplace fsmc_ecc4_lp_place = { |
| .eccplace = { |
| {.offset = 2, .length = 13}, |
| {.offset = 18, .length = 13}, |
| {.offset = 34, .length = 13}, |
| {.offset = 50, .length = 13}, |
| {.offset = 66, .length = 13}, |
| {.offset = 82, .length = 13}, |
| {.offset = 98, .length = 13}, |
| {.offset = 114, .length = 13} |
| } |
| }; |
| |
| static struct fsmc_eccplace fsmc_ecc4_sp_place = { |
| .eccplace = { |
| {.offset = 0, .length = 4}, |
| {.offset = 6, .length = 9} |
| } |
| }; |
| |
| /** |
| * struct fsmc_nand_data - structure for FSMC NAND device state |
| * |
| * @pid: Part ID on the AMBA PrimeCell format |
| * @mtd: MTD info for a NAND flash. |
| * @nand: Chip related info for a NAND flash. |
| * @partitions: Partition info for a NAND Flash. |
| * @nr_partitions: Total number of partition of a NAND flash. |
| * |
| * @ecc_place: ECC placing locations in oobfree type format. |
| * @bank: Bank number for probed device. |
| * @clk: Clock structure for FSMC. |
| * |
| * @read_dma_chan: DMA channel for read access |
| * @write_dma_chan: DMA channel for write access to NAND |
| * @dma_access_complete: Completion structure |
| * |
| * @data_pa: NAND Physical port for Data. |
| * @data_va: NAND port for Data. |
| * @cmd_va: NAND port for Command. |
| * @addr_va: NAND port for Address. |
| * @regs_va: FSMC regs base address. |
| */ |
| struct fsmc_nand_data { |
| u32 pid; |
| struct mtd_info mtd; |
| struct nand_chip nand; |
| struct mtd_partition *partitions; |
| unsigned int nr_partitions; |
| |
| struct fsmc_eccplace *ecc_place; |
| unsigned int bank; |
| struct device *dev; |
| enum access_mode mode; |
| struct clk *clk; |
| |
| /* DMA related objects */ |
| struct dma_chan *read_dma_chan; |
| struct dma_chan *write_dma_chan; |
| struct completion dma_access_complete; |
| |
| struct fsmc_nand_timings *dev_timings; |
| |
| dma_addr_t data_pa; |
| void __iomem *data_va; |
| void __iomem *cmd_va; |
| void __iomem *addr_va; |
| void __iomem *regs_va; |
| |
| void (*select_chip)(uint32_t bank, uint32_t busw); |
| }; |
| |
| /* Assert CS signal based on chipnr */ |
| static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsmc_nand_data *host; |
| |
| host = container_of(mtd, struct fsmc_nand_data, mtd); |
| |
| switch (chipnr) { |
| case -1: |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); |
| break; |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| if (host->select_chip) |
| host->select_chip(chipnr, |
| chip->options & NAND_BUSWIDTH_16); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * fsmc_cmd_ctrl - For facilitaing Hardware access |
| * This routine allows hardware specific access to control-lines(ALE,CLE) |
| */ |
| static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| void __iomem *regs = host->regs_va; |
| unsigned int bank = host->bank; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| u32 pc; |
| |
| if (ctrl & NAND_CLE) { |
| this->IO_ADDR_R = host->cmd_va; |
| this->IO_ADDR_W = host->cmd_va; |
| } else if (ctrl & NAND_ALE) { |
| this->IO_ADDR_R = host->addr_va; |
| this->IO_ADDR_W = host->addr_va; |
| } else { |
| this->IO_ADDR_R = host->data_va; |
| this->IO_ADDR_W = host->data_va; |
| } |
| |
| pc = readl(FSMC_NAND_REG(regs, bank, PC)); |
| if (ctrl & NAND_NCE) |
| pc |= FSMC_ENABLE; |
| else |
| pc &= ~FSMC_ENABLE; |
| writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); |
| } |
| |
| mb(); |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb_relaxed(cmd, this->IO_ADDR_W); |
| } |
| |
| /* |
| * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine |
| * |
| * This routine initializes timing parameters related to NAND memory access in |
| * FSMC registers |
| */ |
| static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, |
| uint32_t busw, struct fsmc_nand_timings *timings) |
| { |
| uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; |
| uint32_t tclr, tar, thiz, thold, twait, tset; |
| struct fsmc_nand_timings *tims; |
| struct fsmc_nand_timings default_timings = { |
| .tclr = FSMC_TCLR_1, |
| .tar = FSMC_TAR_1, |
| .thiz = FSMC_THIZ_1, |
| .thold = FSMC_THOLD_4, |
| .twait = FSMC_TWAIT_6, |
| .tset = FSMC_TSET_0, |
| }; |
| |
| if (timings) |
| tims = timings; |
| else |
| tims = &default_timings; |
| |
| tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; |
| tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; |
| thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; |
| thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; |
| twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; |
| tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; |
| |
| if (busw) |
| writel_relaxed(value | FSMC_DEVWID_16, |
| FSMC_NAND_REG(regs, bank, PC)); |
| else |
| writel_relaxed(value | FSMC_DEVWID_8, |
| FSMC_NAND_REG(regs, bank, PC)); |
| |
| writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, |
| FSMC_NAND_REG(regs, bank, PC)); |
| writel_relaxed(thiz | thold | twait | tset, |
| FSMC_NAND_REG(regs, bank, COMM)); |
| writel_relaxed(thiz | thold | twait | tset, |
| FSMC_NAND_REG(regs, bank, ATTRIB)); |
| } |
| |
| /* |
| * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers |
| */ |
| static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| void __iomem *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| |
| writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, |
| FSMC_NAND_REG(regs, bank, PC)); |
| writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, |
| FSMC_NAND_REG(regs, bank, PC)); |
| writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, |
| FSMC_NAND_REG(regs, bank, PC)); |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by |
| * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to |
| * max of 8-bits) |
| */ |
| static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| void __iomem *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| uint32_t ecc_tmp; |
| unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; |
| |
| do { |
| if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) |
| break; |
| else |
| cond_resched(); |
| } while (!time_after_eq(jiffies, deadline)); |
| |
| if (time_after_eq(jiffies, deadline)) { |
| dev_err(host->dev, "calculate ecc timed out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); |
| ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| ecc[3] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); |
| ecc[4] = (uint8_t) (ecc_tmp >> 0); |
| ecc[5] = (uint8_t) (ecc_tmp >> 8); |
| ecc[6] = (uint8_t) (ecc_tmp >> 16); |
| ecc[7] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); |
| ecc[8] = (uint8_t) (ecc_tmp >> 0); |
| ecc[9] = (uint8_t) (ecc_tmp >> 8); |
| ecc[10] = (uint8_t) (ecc_tmp >> 16); |
| ecc[11] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); |
| ecc[12] = (uint8_t) (ecc_tmp >> 16); |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by |
| * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| * max of 1-bit) |
| */ |
| static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| void __iomem *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| uint32_t ecc_tmp; |
| |
| ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); |
| ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| |
| return 0; |
| } |
| |
| /* Count the number of 0's in buff upto a max of max_bits */ |
| static int count_written_bits(uint8_t *buff, int size, int max_bits) |
| { |
| int k, written_bits = 0; |
| |
| for (k = 0; k < size; k++) { |
| written_bits += hweight8(~buff[k]); |
| if (written_bits > max_bits) |
| break; |
| } |
| |
| return written_bits; |
| } |
| |
| static void dma_complete(void *param) |
| { |
| struct fsmc_nand_data *host = param; |
| |
| complete(&host->dma_access_complete); |
| } |
| |
| static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, |
| enum dma_data_direction direction) |
| { |
| struct dma_chan *chan; |
| struct dma_device *dma_dev; |
| struct dma_async_tx_descriptor *tx; |
| dma_addr_t dma_dst, dma_src, dma_addr; |
| dma_cookie_t cookie; |
| unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| int ret; |
| |
| if (direction == DMA_TO_DEVICE) |
| chan = host->write_dma_chan; |
| else if (direction == DMA_FROM_DEVICE) |
| chan = host->read_dma_chan; |
| else |
| return -EINVAL; |
| |
| dma_dev = chan->device; |
| dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); |
| |
| if (direction == DMA_TO_DEVICE) { |
| dma_src = dma_addr; |
| dma_dst = host->data_pa; |
| flags |= DMA_COMPL_SRC_UNMAP_SINGLE | DMA_COMPL_SKIP_DEST_UNMAP; |
| } else { |
| dma_src = host->data_pa; |
| dma_dst = dma_addr; |
| flags |= DMA_COMPL_DEST_UNMAP_SINGLE | DMA_COMPL_SKIP_SRC_UNMAP; |
| } |
| |
| tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, |
| len, flags); |
| |
| if (!tx) { |
| dev_err(host->dev, "device_prep_dma_memcpy error\n"); |
| dma_unmap_single(dma_dev->dev, dma_addr, len, direction); |
| return -EIO; |
| } |
| |
| tx->callback = dma_complete; |
| tx->callback_param = host; |
| cookie = tx->tx_submit(tx); |
| |
| ret = dma_submit_error(cookie); |
| if (ret) { |
| dev_err(host->dev, "dma_submit_error %d\n", cookie); |
| return ret; |
| } |
| |
| dma_async_issue_pending(chan); |
| |
| ret = |
| wait_for_completion_timeout(&host->dma_access_complete, |
| msecs_to_jiffies(3000)); |
| if (ret <= 0) { |
| chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); |
| dev_err(host->dev, "wait_for_completion_timeout\n"); |
| return ret ? ret : -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_write_buf - write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *chip = mtd->priv; |
| |
| if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && |
| IS_ALIGNED(len, sizeof(uint32_t))) { |
| uint32_t *p = (uint32_t *)buf; |
| len = len >> 2; |
| for (i = 0; i < len; i++) |
| writel_relaxed(p[i], chip->IO_ADDR_W); |
| } else { |
| for (i = 0; i < len; i++) |
| writeb_relaxed(buf[i], chip->IO_ADDR_W); |
| } |
| } |
| |
| /* |
| * fsmc_read_buf - read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| int i; |
| struct nand_chip *chip = mtd->priv; |
| |
| if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && |
| IS_ALIGNED(len, sizeof(uint32_t))) { |
| uint32_t *p = (uint32_t *)buf; |
| len = len >> 2; |
| for (i = 0; i < len; i++) |
| p[i] = readl_relaxed(chip->IO_ADDR_R); |
| } else { |
| for (i = 0; i < len; i++) |
| buf[i] = readb_relaxed(chip->IO_ADDR_R); |
| } |
| } |
| |
| /* |
| * fsmc_read_buf_dma - read chip data into buffer |
| * @mtd: MTD device structure |
| * @buf: buffer to store date |
| * @len: number of bytes to read |
| */ |
| static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| struct fsmc_nand_data *host; |
| |
| host = container_of(mtd, struct fsmc_nand_data, mtd); |
| dma_xfer(host, buf, len, DMA_FROM_DEVICE); |
| } |
| |
| /* |
| * fsmc_write_buf_dma - write buffer to chip |
| * @mtd: MTD device structure |
| * @buf: data buffer |
| * @len: number of bytes to write |
| */ |
| static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, |
| int len) |
| { |
| struct fsmc_nand_data *host; |
| |
| host = container_of(mtd, struct fsmc_nand_data, mtd); |
| dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); |
| } |
| |
| /* |
| * fsmc_read_page_hwecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @oob_required: caller expects OOB data read to chip->oob_poi |
| * @page: page number to read |
| * |
| * This routine is needed for fsmc version 8 as reading from NAND chip has to be |
| * performed in a strict sequence as follows: |
| * data(512 byte) -> ecc(13 byte) |
| * After this read, fsmc hardware generates and reports error data bits(up to a |
| * max of 8 bits) |
| */ |
| static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_eccplace *ecc_place = host->ecc_place; |
| int i, j, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| int off, len, group = 0; |
| /* |
| * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we |
| * end up reading 14 bytes (7 words) from oob. The local array is |
| * to maintain word alignment |
| */ |
| uint16_t ecc_oob[7]; |
| uint8_t *oob = (uint8_t *)&ecc_oob[0]; |
| unsigned int max_bitflips = 0; |
| |
| for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| |
| for (j = 0; j < eccbytes;) { |
| off = ecc_place->eccplace[group].offset; |
| len = ecc_place->eccplace[group].length; |
| group++; |
| |
| /* |
| * length is intentionally kept a higher multiple of 2 |
| * to read at least 13 bytes even in case of 16 bit NAND |
| * devices |
| */ |
| if (chip->options & NAND_BUSWIDTH_16) |
| len = roundup(len, 2); |
| |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); |
| chip->read_buf(mtd, oob + j, len); |
| j += len; |
| } |
| |
| memcpy(&ecc_code[i], oob, chip->ecc.bytes); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* |
| * fsmc_bch8_correct_data |
| * @mtd: mtd info structure |
| * @dat: buffer of read data |
| * @read_ecc: ecc read from device spare area |
| * @calc_ecc: ecc calculated from read data |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset informations of 13 bits each in 512 bytes of read data. |
| */ |
| static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct nand_chip *chip = mtd->priv; |
| void __iomem *regs = host->regs_va; |
| unsigned int bank = host->bank; |
| uint32_t err_idx[8]; |
| uint32_t num_err, i; |
| uint32_t ecc1, ecc2, ecc3, ecc4; |
| |
| num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; |
| |
| /* no bit flipping */ |
| if (likely(num_err == 0)) |
| return 0; |
| |
| /* too many errors */ |
| if (unlikely(num_err > 8)) { |
| /* |
| * This is a temporary erase check. A newly erased page read |
| * would result in an ecc error because the oob data is also |
| * erased to FF and the calculated ecc for an FF data is not |
| * FF..FF. |
| * This is a workaround to skip performing correction in case |
| * data is FF..FF |
| * |
| * Logic: |
| * For every page, each bit written as 0 is counted until these |
| * number of bits are greater than 8 (the maximum correction |
| * capability of FSMC for each 512 + 13 bytes) |
| */ |
| |
| int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); |
| int bits_data = count_written_bits(dat, chip->ecc.size, 8); |
| |
| if ((bits_ecc + bits_data) <= 8) { |
| if (bits_data) |
| memset(dat, 0xff, chip->ecc.size); |
| return bits_data; |
| } |
| |
| return -EBADMSG; |
| } |
| |
| /* |
| * ------------------- calc_ecc[] bit wise -----------|--13 bits--| |
| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset informations of 13 bits each. calc_ecc is copied into a |
| * uint64_t array and error offset indexes are populated in err_idx |
| * array |
| */ |
| ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); |
| ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); |
| ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); |
| ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); |
| |
| err_idx[0] = (ecc1 >> 0) & 0x1FFF; |
| err_idx[1] = (ecc1 >> 13) & 0x1FFF; |
| err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); |
| err_idx[3] = (ecc2 >> 7) & 0x1FFF; |
| err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); |
| err_idx[5] = (ecc3 >> 1) & 0x1FFF; |
| err_idx[6] = (ecc3 >> 14) & 0x1FFF; |
| err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); |
| |
| i = 0; |
| while (num_err--) { |
| change_bit(0, (unsigned long *)&err_idx[i]); |
| change_bit(1, (unsigned long *)&err_idx[i]); |
| |
| if (err_idx[i] < chip->ecc.size * 8) { |
| change_bit(err_idx[i], (unsigned long *)dat); |
| i++; |
| } |
| } |
| return i; |
| } |
| |
| static bool filter(struct dma_chan *chan, void *slave) |
| { |
| chan->private = slave; |
| return true; |
| } |
| |
| #ifdef CONFIG_OF |
| static int fsmc_nand_probe_config_dt(struct platform_device *pdev, |
| struct device_node *np) |
| { |
| struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| u32 val; |
| |
| /* Set default NAND width to 8 bits */ |
| pdata->width = 8; |
| if (!of_property_read_u32(np, "bank-width", &val)) { |
| if (val == 2) { |
| pdata->width = 16; |
| } else if (val != 1) { |
| dev_err(&pdev->dev, "invalid bank-width %u\n", val); |
| return -EINVAL; |
| } |
| } |
| if (of_get_property(np, "nand-skip-bbtscan", NULL)) |
| pdata->options = NAND_SKIP_BBTSCAN; |
| |
| return 0; |
| } |
| #else |
| static int fsmc_nand_probe_config_dt(struct platform_device *pdev, |
| struct device_node *np) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| /* |
| * fsmc_nand_probe - Probe function |
| * @pdev: platform device structure |
| */ |
| static int __init fsmc_nand_probe(struct platform_device *pdev) |
| { |
| struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| struct device_node __maybe_unused *np = pdev->dev.of_node; |
| struct mtd_part_parser_data ppdata = {}; |
| struct fsmc_nand_data *host; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| struct resource *res; |
| dma_cap_mask_t mask; |
| int ret = 0; |
| u32 pid; |
| int i; |
| |
| if (np) { |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| pdev->dev.platform_data = pdata; |
| ret = fsmc_nand_probe_config_dt(pdev, np); |
| if (ret) { |
| dev_err(&pdev->dev, "no platform data\n"); |
| return -ENODEV; |
| } |
| } |
| |
| if (!pdata) { |
| dev_err(&pdev->dev, "platform data is NULL\n"); |
| return -EINVAL; |
| } |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| dev_err(&pdev->dev, "failed to allocate device structure\n"); |
| return -ENOMEM; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); |
| if (!res) |
| return -EINVAL; |
| |
| host->data_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->data_va)) |
| return PTR_ERR(host->data_va); |
| |
| host->data_pa = (dma_addr_t)res->start; |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); |
| if (!res) |
| return -EINVAL; |
| |
| host->addr_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->addr_va)) |
| return PTR_ERR(host->addr_va); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); |
| if (!res) |
| return -EINVAL; |
| |
| host->cmd_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->cmd_va)) |
| return PTR_ERR(host->cmd_va); |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); |
| if (!res) |
| return -EINVAL; |
| |
| host->regs_va = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(host->regs_va)) |
| return PTR_ERR(host->regs_va); |
| |
| host->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| dev_err(&pdev->dev, "failed to fetch block clock\n"); |
| return PTR_ERR(host->clk); |
| } |
| |
| ret = clk_prepare_enable(host->clk); |
| if (ret) |
| goto err_clk_prepare_enable; |
| |
| /* |
| * This device ID is actually a common AMBA ID as used on the |
| * AMBA PrimeCell bus. However it is not a PrimeCell. |
| */ |
| for (pid = 0, i = 0; i < 4; i++) |
| pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); |
| host->pid = pid; |
| dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " |
| "revision %02x, config %02x\n", |
| AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), |
| AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); |
| |
| host->bank = pdata->bank; |
| host->select_chip = pdata->select_bank; |
| host->partitions = pdata->partitions; |
| host->nr_partitions = pdata->nr_partitions; |
| host->dev = &pdev->dev; |
| host->dev_timings = pdata->nand_timings; |
| host->mode = pdata->mode; |
| |
| if (host->mode == USE_DMA_ACCESS) |
| init_completion(&host->dma_access_complete); |
| |
| /* Link all private pointers */ |
| mtd = &host->mtd; |
| nand = &host->nand; |
| mtd->priv = nand; |
| nand->priv = host; |
| |
| host->mtd.owner = THIS_MODULE; |
| nand->IO_ADDR_R = host->data_va; |
| nand->IO_ADDR_W = host->data_va; |
| nand->cmd_ctrl = fsmc_cmd_ctrl; |
| nand->chip_delay = 30; |
| |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.hwctl = fsmc_enable_hwecc; |
| nand->ecc.size = 512; |
| nand->options = pdata->options; |
| nand->select_chip = fsmc_select_chip; |
| nand->badblockbits = 7; |
| |
| if (pdata->width == FSMC_NAND_BW16) |
| nand->options |= NAND_BUSWIDTH_16; |
| |
| switch (host->mode) { |
| case USE_DMA_ACCESS: |
| dma_cap_zero(mask); |
| dma_cap_set(DMA_MEMCPY, mask); |
| host->read_dma_chan = dma_request_channel(mask, filter, |
| pdata->read_dma_priv); |
| if (!host->read_dma_chan) { |
| dev_err(&pdev->dev, "Unable to get read dma channel\n"); |
| goto err_req_read_chnl; |
| } |
| host->write_dma_chan = dma_request_channel(mask, filter, |
| pdata->write_dma_priv); |
| if (!host->write_dma_chan) { |
| dev_err(&pdev->dev, "Unable to get write dma channel\n"); |
| goto err_req_write_chnl; |
| } |
| nand->read_buf = fsmc_read_buf_dma; |
| nand->write_buf = fsmc_write_buf_dma; |
| break; |
| |
| default: |
| case USE_WORD_ACCESS: |
| nand->read_buf = fsmc_read_buf; |
| nand->write_buf = fsmc_write_buf; |
| break; |
| } |
| |
| fsmc_nand_setup(host->regs_va, host->bank, |
| nand->options & NAND_BUSWIDTH_16, |
| host->dev_timings); |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| nand->ecc.read_page = fsmc_read_page_hwecc; |
| nand->ecc.calculate = fsmc_read_hwecc_ecc4; |
| nand->ecc.correct = fsmc_bch8_correct_data; |
| nand->ecc.bytes = 13; |
| nand->ecc.strength = 8; |
| } else { |
| nand->ecc.calculate = fsmc_read_hwecc_ecc1; |
| nand->ecc.correct = nand_correct_data; |
| nand->ecc.bytes = 3; |
| nand->ecc.strength = 1; |
| } |
| |
| /* |
| * Scan to find existence of the device |
| */ |
| if (nand_scan_ident(&host->mtd, 1, NULL)) { |
| ret = -ENXIO; |
| dev_err(&pdev->dev, "No NAND Device found!\n"); |
| goto err_scan_ident; |
| } |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| switch (host->mtd.oobsize) { |
| case 16: |
| nand->ecc.layout = &fsmc_ecc4_16_layout; |
| host->ecc_place = &fsmc_ecc4_sp_place; |
| break; |
| case 64: |
| nand->ecc.layout = &fsmc_ecc4_64_layout; |
| host->ecc_place = &fsmc_ecc4_lp_place; |
| break; |
| case 128: |
| nand->ecc.layout = &fsmc_ecc4_128_layout; |
| host->ecc_place = &fsmc_ecc4_lp_place; |
| break; |
| case 224: |
| nand->ecc.layout = &fsmc_ecc4_224_layout; |
| host->ecc_place = &fsmc_ecc4_lp_place; |
| break; |
| case 256: |
| nand->ecc.layout = &fsmc_ecc4_256_layout; |
| host->ecc_place = &fsmc_ecc4_lp_place; |
| break; |
| default: |
| printk(KERN_WARNING "No oob scheme defined for " |
| "oobsize %d\n", mtd->oobsize); |
| BUG(); |
| } |
| } else { |
| switch (host->mtd.oobsize) { |
| case 16: |
| nand->ecc.layout = &fsmc_ecc1_16_layout; |
| break; |
| case 64: |
| nand->ecc.layout = &fsmc_ecc1_64_layout; |
| break; |
| case 128: |
| nand->ecc.layout = &fsmc_ecc1_128_layout; |
| break; |
| default: |
| printk(KERN_WARNING "No oob scheme defined for " |
| "oobsize %d\n", mtd->oobsize); |
| BUG(); |
| } |
| } |
| |
| /* Second stage of scan to fill MTD data-structures */ |
| if (nand_scan_tail(&host->mtd)) { |
| ret = -ENXIO; |
| goto err_probe; |
| } |
| |
| /* |
| * The partition information can is accessed by (in the same precedence) |
| * |
| * command line through Bootloader, |
| * platform data, |
| * default partition information present in driver. |
| */ |
| /* |
| * Check for partition info passed |
| */ |
| host->mtd.name = "nand"; |
| ppdata.of_node = np; |
| ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata, |
| host->partitions, host->nr_partitions); |
| if (ret) |
| goto err_probe; |
| |
| platform_set_drvdata(pdev, host); |
| dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); |
| return 0; |
| |
| err_probe: |
| err_scan_ident: |
| if (host->mode == USE_DMA_ACCESS) |
| dma_release_channel(host->write_dma_chan); |
| err_req_write_chnl: |
| if (host->mode == USE_DMA_ACCESS) |
| dma_release_channel(host->read_dma_chan); |
| err_req_read_chnl: |
| clk_disable_unprepare(host->clk); |
| err_clk_prepare_enable: |
| clk_put(host->clk); |
| return ret; |
| } |
| |
| /* |
| * Clean up routine |
| */ |
| static int fsmc_nand_remove(struct platform_device *pdev) |
| { |
| struct fsmc_nand_data *host = platform_get_drvdata(pdev); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| if (host) { |
| nand_release(&host->mtd); |
| |
| if (host->mode == USE_DMA_ACCESS) { |
| dma_release_channel(host->write_dma_chan); |
| dma_release_channel(host->read_dma_chan); |
| } |
| clk_disable_unprepare(host->clk); |
| clk_put(host->clk); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int fsmc_nand_suspend(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| if (host) |
| clk_disable_unprepare(host->clk); |
| return 0; |
| } |
| |
| static int fsmc_nand_resume(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| if (host) { |
| clk_prepare_enable(host->clk); |
| fsmc_nand_setup(host->regs_va, host->bank, |
| host->nand.options & NAND_BUSWIDTH_16, |
| host->dev_timings); |
| } |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); |
| #endif |
| |
| #ifdef CONFIG_OF |
| static const struct of_device_id fsmc_nand_id_table[] = { |
| { .compatible = "st,spear600-fsmc-nand" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); |
| #endif |
| |
| static struct platform_driver fsmc_nand_driver = { |
| .remove = fsmc_nand_remove, |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "fsmc-nand", |
| .of_match_table = of_match_ptr(fsmc_nand_id_table), |
| #ifdef CONFIG_PM |
| .pm = &fsmc_nand_pm_ops, |
| #endif |
| }, |
| }; |
| |
| static int __init fsmc_nand_init(void) |
| { |
| return platform_driver_probe(&fsmc_nand_driver, |
| fsmc_nand_probe); |
| } |
| module_init(fsmc_nand_init); |
| |
| static void __exit fsmc_nand_exit(void) |
| { |
| platform_driver_unregister(&fsmc_nand_driver); |
| } |
| module_exit(fsmc_nand_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); |
| MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |