| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2005-2006 Fen Systems Ltd. |
| * Copyright 2005-2011 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| |
| #include <linux/socket.h> |
| #include <linux/in.h> |
| #include <linux/slab.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/udp.h> |
| #include <linux/prefetch.h> |
| #include <linux/moduleparam.h> |
| #include <linux/iommu.h> |
| #include <net/ip.h> |
| #include <net/checksum.h> |
| #include "net_driver.h" |
| #include "efx.h" |
| #include "filter.h" |
| #include "nic.h" |
| #include "selftest.h" |
| #include "workarounds.h" |
| |
| /* Preferred number of descriptors to fill at once */ |
| #define EFX_RX_PREFERRED_BATCH 8U |
| |
| /* Number of RX buffers to recycle pages for. When creating the RX page recycle |
| * ring, this number is divided by the number of buffers per page to calculate |
| * the number of pages to store in the RX page recycle ring. |
| */ |
| #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 |
| #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) |
| |
| /* Size of buffer allocated for skb header area. */ |
| #define EFX_SKB_HEADERS 128u |
| |
| /* This is the percentage fill level below which new RX descriptors |
| * will be added to the RX descriptor ring. |
| */ |
| static unsigned int rx_refill_threshold; |
| |
| /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ |
| #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ |
| EFX_RX_USR_BUF_SIZE) |
| |
| /* |
| * RX maximum head room required. |
| * |
| * This must be at least 1 to prevent overflow, plus one packet-worth |
| * to allow pipelined receives. |
| */ |
| #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS) |
| |
| static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) |
| { |
| return page_address(buf->page) + buf->page_offset; |
| } |
| |
| static inline u32 efx_rx_buf_hash(const u8 *eh) |
| { |
| /* The ethernet header is always directly after any hash. */ |
| #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 |
| return __le32_to_cpup((const __le32 *)(eh - 4)); |
| #else |
| const u8 *data = eh - 4; |
| return (u32)data[0] | |
| (u32)data[1] << 8 | |
| (u32)data[2] << 16 | |
| (u32)data[3] << 24; |
| #endif |
| } |
| |
| static inline struct efx_rx_buffer * |
| efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf) |
| { |
| if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask))) |
| return efx_rx_buffer(rx_queue, 0); |
| else |
| return rx_buf + 1; |
| } |
| |
| static inline void efx_sync_rx_buffer(struct efx_nic *efx, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int len) |
| { |
| dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, |
| DMA_FROM_DEVICE); |
| } |
| |
| void efx_rx_config_page_split(struct efx_nic *efx) |
| { |
| efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + NET_IP_ALIGN, |
| EFX_RX_BUF_ALIGNMENT); |
| efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 : |
| ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) / |
| efx->rx_page_buf_step); |
| efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) / |
| efx->rx_bufs_per_page; |
| efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH, |
| efx->rx_bufs_per_page); |
| } |
| |
| /* Check the RX page recycle ring for a page that can be reused. */ |
| static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct page *page; |
| struct efx_rx_page_state *state; |
| unsigned index; |
| |
| index = rx_queue->page_remove & rx_queue->page_ptr_mask; |
| page = rx_queue->page_ring[index]; |
| if (page == NULL) |
| return NULL; |
| |
| rx_queue->page_ring[index] = NULL; |
| /* page_remove cannot exceed page_add. */ |
| if (rx_queue->page_remove != rx_queue->page_add) |
| ++rx_queue->page_remove; |
| |
| /* If page_count is 1 then we hold the only reference to this page. */ |
| if (page_count(page) == 1) { |
| ++rx_queue->page_recycle_count; |
| return page; |
| } else { |
| state = page_address(page); |
| dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| put_page(page); |
| ++rx_queue->page_recycle_failed; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers |
| * |
| * @rx_queue: Efx RX queue |
| * |
| * This allocates a batch of pages, maps them for DMA, and populates |
| * struct efx_rx_buffers for each one. Return a negative error code or |
| * 0 on success. If a single page can be used for multiple buffers, |
| * then the page will either be inserted fully, or not at all. |
| */ |
| static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_rx_buffer *rx_buf; |
| struct page *page; |
| unsigned int page_offset; |
| struct efx_rx_page_state *state; |
| dma_addr_t dma_addr; |
| unsigned index, count; |
| |
| count = 0; |
| do { |
| page = efx_reuse_page(rx_queue); |
| if (page == NULL) { |
| page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, |
| efx->rx_buffer_order); |
| if (unlikely(page == NULL)) |
| return -ENOMEM; |
| dma_addr = |
| dma_map_page(&efx->pci_dev->dev, page, 0, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(&efx->pci_dev->dev, |
| dma_addr))) { |
| __free_pages(page, efx->rx_buffer_order); |
| return -EIO; |
| } |
| state = page_address(page); |
| state->dma_addr = dma_addr; |
| } else { |
| state = page_address(page); |
| dma_addr = state->dma_addr; |
| } |
| |
| dma_addr += sizeof(struct efx_rx_page_state); |
| page_offset = sizeof(struct efx_rx_page_state); |
| |
| do { |
| index = rx_queue->added_count & rx_queue->ptr_mask; |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| rx_buf->dma_addr = dma_addr + NET_IP_ALIGN; |
| rx_buf->page = page; |
| rx_buf->page_offset = page_offset + NET_IP_ALIGN; |
| rx_buf->len = efx->rx_dma_len; |
| rx_buf->flags = 0; |
| ++rx_queue->added_count; |
| get_page(page); |
| dma_addr += efx->rx_page_buf_step; |
| page_offset += efx->rx_page_buf_step; |
| } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE); |
| |
| rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE; |
| } while (++count < efx->rx_pages_per_batch); |
| |
| return 0; |
| } |
| |
| /* Unmap a DMA-mapped page. This function is only called for the final RX |
| * buffer in a page. |
| */ |
| static void efx_unmap_rx_buffer(struct efx_nic *efx, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct page *page = rx_buf->page; |
| |
| if (page) { |
| struct efx_rx_page_state *state = page_address(page); |
| dma_unmap_page(&efx->pci_dev->dev, |
| state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| } |
| } |
| |
| static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf) |
| { |
| if (rx_buf->page) { |
| put_page(rx_buf->page); |
| rx_buf->page = NULL; |
| } |
| } |
| |
| /* Attempt to recycle the page if there is an RX recycle ring; the page can |
| * only be added if this is the final RX buffer, to prevent pages being used in |
| * the descriptor ring and appearing in the recycle ring simultaneously. |
| */ |
| static void efx_recycle_rx_page(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf) |
| { |
| struct page *page = rx_buf->page; |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned index; |
| |
| /* Only recycle the page after processing the final buffer. */ |
| if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) |
| return; |
| |
| index = rx_queue->page_add & rx_queue->page_ptr_mask; |
| if (rx_queue->page_ring[index] == NULL) { |
| unsigned read_index = rx_queue->page_remove & |
| rx_queue->page_ptr_mask; |
| |
| /* The next slot in the recycle ring is available, but |
| * increment page_remove if the read pointer currently |
| * points here. |
| */ |
| if (read_index == index) |
| ++rx_queue->page_remove; |
| rx_queue->page_ring[index] = page; |
| ++rx_queue->page_add; |
| return; |
| } |
| ++rx_queue->page_recycle_full; |
| efx_unmap_rx_buffer(efx, rx_buf); |
| put_page(rx_buf->page); |
| } |
| |
| static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf) |
| { |
| /* Release the page reference we hold for the buffer. */ |
| if (rx_buf->page) |
| put_page(rx_buf->page); |
| |
| /* If this is the last buffer in a page, unmap and free it. */ |
| if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) { |
| efx_unmap_rx_buffer(rx_queue->efx, rx_buf); |
| efx_free_rx_buffer(rx_buf); |
| } |
| rx_buf->page = NULL; |
| } |
| |
| /* Recycle the pages that are used by buffers that have just been received. */ |
| static void efx_recycle_rx_pages(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags) |
| { |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| |
| do { |
| efx_recycle_rx_page(channel, rx_buf); |
| rx_buf = efx_rx_buf_next(rx_queue, rx_buf); |
| } while (--n_frags); |
| } |
| |
| static void efx_discard_rx_packet(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags) |
| { |
| struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); |
| |
| efx_recycle_rx_pages(channel, rx_buf, n_frags); |
| |
| do { |
| efx_free_rx_buffer(rx_buf); |
| rx_buf = efx_rx_buf_next(rx_queue, rx_buf); |
| } while (--n_frags); |
| } |
| |
| /** |
| * efx_fast_push_rx_descriptors - push new RX descriptors quickly |
| * @rx_queue: RX descriptor queue |
| * |
| * This will aim to fill the RX descriptor queue up to |
| * @rx_queue->@max_fill. If there is insufficient atomic |
| * memory to do so, a slow fill will be scheduled. |
| * |
| * The caller must provide serialisation (none is used here). In practise, |
| * this means this function must run from the NAPI handler, or be called |
| * when NAPI is disabled. |
| */ |
| void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int fill_level, batch_size; |
| int space, rc = 0; |
| |
| if (!rx_queue->refill_enabled) |
| return; |
| |
| /* Calculate current fill level, and exit if we don't need to fill */ |
| fill_level = (rx_queue->added_count - rx_queue->removed_count); |
| EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); |
| if (fill_level >= rx_queue->fast_fill_trigger) |
| goto out; |
| |
| /* Record minimum fill level */ |
| if (unlikely(fill_level < rx_queue->min_fill)) { |
| if (fill_level) |
| rx_queue->min_fill = fill_level; |
| } |
| |
| batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page; |
| space = rx_queue->max_fill - fill_level; |
| EFX_BUG_ON_PARANOID(space < batch_size); |
| |
| netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, |
| "RX queue %d fast-filling descriptor ring from" |
| " level %d to level %d\n", |
| efx_rx_queue_index(rx_queue), fill_level, |
| rx_queue->max_fill); |
| |
| |
| do { |
| rc = efx_init_rx_buffers(rx_queue); |
| if (unlikely(rc)) { |
| /* Ensure that we don't leave the rx queue empty */ |
| if (rx_queue->added_count == rx_queue->removed_count) |
| efx_schedule_slow_fill(rx_queue); |
| goto out; |
| } |
| } while ((space -= batch_size) >= batch_size); |
| |
| netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, |
| "RX queue %d fast-filled descriptor ring " |
| "to level %d\n", efx_rx_queue_index(rx_queue), |
| rx_queue->added_count - rx_queue->removed_count); |
| |
| out: |
| if (rx_queue->notified_count != rx_queue->added_count) |
| efx_nic_notify_rx_desc(rx_queue); |
| } |
| |
| void efx_rx_slow_fill(unsigned long context) |
| { |
| struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; |
| |
| /* Post an event to cause NAPI to run and refill the queue */ |
| efx_nic_generate_fill_event(rx_queue); |
| ++rx_queue->slow_fill_count; |
| } |
| |
| static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, |
| struct efx_rx_buffer *rx_buf, |
| int len) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; |
| |
| if (likely(len <= max_len)) |
| return; |
| |
| /* The packet must be discarded, but this is only a fatal error |
| * if the caller indicated it was |
| */ |
| rx_buf->flags |= EFX_RX_PKT_DISCARD; |
| |
| if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { |
| if (net_ratelimit()) |
| netif_err(efx, rx_err, efx->net_dev, |
| " RX queue %d seriously overlength " |
| "RX event (0x%x > 0x%x+0x%x). Leaking\n", |
| efx_rx_queue_index(rx_queue), len, max_len, |
| efx->type->rx_buffer_padding); |
| efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); |
| } else { |
| if (net_ratelimit()) |
| netif_err(efx, rx_err, efx->net_dev, |
| " RX queue %d overlength RX event " |
| "(0x%x > 0x%x)\n", |
| efx_rx_queue_index(rx_queue), len, max_len); |
| } |
| |
| efx_rx_queue_channel(rx_queue)->n_rx_overlength++; |
| } |
| |
| /* Pass a received packet up through GRO. GRO can handle pages |
| * regardless of checksum state and skbs with a good checksum. |
| */ |
| static void |
| efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags, u8 *eh) |
| { |
| struct napi_struct *napi = &channel->napi_str; |
| gro_result_t gro_result; |
| struct efx_nic *efx = channel->efx; |
| struct sk_buff *skb; |
| |
| skb = napi_get_frags(napi); |
| if (unlikely(!skb)) { |
| while (n_frags--) { |
| put_page(rx_buf->page); |
| rx_buf->page = NULL; |
| rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); |
| } |
| return; |
| } |
| |
| if (efx->net_dev->features & NETIF_F_RXHASH) |
| skb->rxhash = efx_rx_buf_hash(eh); |
| skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? |
| CHECKSUM_UNNECESSARY : CHECKSUM_NONE); |
| |
| for (;;) { |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| rx_buf->page, rx_buf->page_offset, |
| rx_buf->len); |
| rx_buf->page = NULL; |
| skb->len += rx_buf->len; |
| if (skb_shinfo(skb)->nr_frags == n_frags) |
| break; |
| |
| rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); |
| } |
| |
| skb->data_len = skb->len; |
| skb->truesize += n_frags * efx->rx_buffer_truesize; |
| |
| skb_record_rx_queue(skb, channel->rx_queue.core_index); |
| |
| gro_result = napi_gro_frags(napi); |
| if (gro_result != GRO_DROP) |
| channel->irq_mod_score += 2; |
| } |
| |
| /* Allocate and construct an SKB around page fragments */ |
| static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags, |
| u8 *eh, int hdr_len) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct sk_buff *skb; |
| |
| /* Allocate an SKB to store the headers */ |
| skb = netdev_alloc_skb(efx->net_dev, hdr_len + EFX_PAGE_SKB_ALIGN); |
| if (unlikely(skb == NULL)) |
| return NULL; |
| |
| EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len); |
| |
| skb_reserve(skb, EFX_PAGE_SKB_ALIGN); |
| memcpy(__skb_put(skb, hdr_len), eh, hdr_len); |
| |
| /* Append the remaining page(s) onto the frag list */ |
| if (rx_buf->len > hdr_len) { |
| rx_buf->page_offset += hdr_len; |
| rx_buf->len -= hdr_len; |
| |
| for (;;) { |
| skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, |
| rx_buf->page, rx_buf->page_offset, |
| rx_buf->len); |
| rx_buf->page = NULL; |
| skb->len += rx_buf->len; |
| skb->data_len += rx_buf->len; |
| if (skb_shinfo(skb)->nr_frags == n_frags) |
| break; |
| |
| rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); |
| } |
| } else { |
| __free_pages(rx_buf->page, efx->rx_buffer_order); |
| rx_buf->page = NULL; |
| n_frags = 0; |
| } |
| |
| skb->truesize += n_frags * efx->rx_buffer_truesize; |
| |
| /* Move past the ethernet header */ |
| skb->protocol = eth_type_trans(skb, efx->net_dev); |
| |
| return skb; |
| } |
| |
| void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, |
| unsigned int n_frags, unsigned int len, u16 flags) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_channel *channel = efx_rx_queue_channel(rx_queue); |
| struct efx_rx_buffer *rx_buf; |
| |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| rx_buf->flags |= flags; |
| |
| /* Validate the number of fragments and completed length */ |
| if (n_frags == 1) { |
| efx_rx_packet__check_len(rx_queue, rx_buf, len); |
| } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || |
| unlikely(len <= (n_frags - 1) * EFX_RX_USR_BUF_SIZE) || |
| unlikely(len > n_frags * EFX_RX_USR_BUF_SIZE) || |
| unlikely(!efx->rx_scatter)) { |
| /* If this isn't an explicit discard request, either |
| * the hardware or the driver is broken. |
| */ |
| WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); |
| rx_buf->flags |= EFX_RX_PKT_DISCARD; |
| } |
| |
| netif_vdbg(efx, rx_status, efx->net_dev, |
| "RX queue %d received ids %x-%x len %d %s%s\n", |
| efx_rx_queue_index(rx_queue), index, |
| (index + n_frags - 1) & rx_queue->ptr_mask, len, |
| (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", |
| (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); |
| |
| /* Discard packet, if instructed to do so. Process the |
| * previous receive first. |
| */ |
| if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { |
| efx_rx_flush_packet(channel); |
| efx_discard_rx_packet(channel, rx_buf, n_frags); |
| return; |
| } |
| |
| if (n_frags == 1) |
| rx_buf->len = len; |
| |
| /* Release and/or sync the DMA mapping - assumes all RX buffers |
| * consumed in-order per RX queue. |
| */ |
| efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); |
| |
| /* Prefetch nice and early so data will (hopefully) be in cache by |
| * the time we look at it. |
| */ |
| prefetch(efx_rx_buf_va(rx_buf)); |
| |
| rx_buf->page_offset += efx->type->rx_buffer_hash_size; |
| rx_buf->len -= efx->type->rx_buffer_hash_size; |
| |
| if (n_frags > 1) { |
| /* Release/sync DMA mapping for additional fragments. |
| * Fix length for last fragment. |
| */ |
| unsigned int tail_frags = n_frags - 1; |
| |
| for (;;) { |
| rx_buf = efx_rx_buf_next(rx_queue, rx_buf); |
| if (--tail_frags == 0) |
| break; |
| efx_sync_rx_buffer(efx, rx_buf, EFX_RX_USR_BUF_SIZE); |
| } |
| rx_buf->len = len - (n_frags - 1) * EFX_RX_USR_BUF_SIZE; |
| efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); |
| } |
| |
| /* All fragments have been DMA-synced, so recycle pages. */ |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| efx_recycle_rx_pages(channel, rx_buf, n_frags); |
| |
| /* Pipeline receives so that we give time for packet headers to be |
| * prefetched into cache. |
| */ |
| efx_rx_flush_packet(channel); |
| channel->rx_pkt_n_frags = n_frags; |
| channel->rx_pkt_index = index; |
| } |
| |
| static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, |
| struct efx_rx_buffer *rx_buf, |
| unsigned int n_frags) |
| { |
| struct sk_buff *skb; |
| u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); |
| |
| skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); |
| if (unlikely(skb == NULL)) { |
| efx_free_rx_buffer(rx_buf); |
| return; |
| } |
| skb_record_rx_queue(skb, channel->rx_queue.core_index); |
| |
| /* Set the SKB flags */ |
| skb_checksum_none_assert(skb); |
| if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| if (channel->type->receive_skb) |
| if (channel->type->receive_skb(channel, skb)) |
| return; |
| |
| /* Pass the packet up */ |
| netif_receive_skb(skb); |
| } |
| |
| /* Handle a received packet. Second half: Touches packet payload. */ |
| void __efx_rx_packet(struct efx_channel *channel) |
| { |
| struct efx_nic *efx = channel->efx; |
| struct efx_rx_buffer *rx_buf = |
| efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); |
| u8 *eh = efx_rx_buf_va(rx_buf); |
| |
| /* If we're in loopback test, then pass the packet directly to the |
| * loopback layer, and free the rx_buf here |
| */ |
| if (unlikely(efx->loopback_selftest)) { |
| efx_loopback_rx_packet(efx, eh, rx_buf->len); |
| efx_free_rx_buffer(rx_buf); |
| goto out; |
| } |
| |
| if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) |
| rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; |
| |
| if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) |
| efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); |
| else |
| efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); |
| out: |
| channel->rx_pkt_n_frags = 0; |
| } |
| |
| int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int entries; |
| int rc; |
| |
| /* Create the smallest power-of-two aligned ring */ |
| entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); |
| EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); |
| rx_queue->ptr_mask = entries - 1; |
| |
| netif_dbg(efx, probe, efx->net_dev, |
| "creating RX queue %d size %#x mask %#x\n", |
| efx_rx_queue_index(rx_queue), efx->rxq_entries, |
| rx_queue->ptr_mask); |
| |
| /* Allocate RX buffers */ |
| rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer), |
| GFP_KERNEL); |
| if (!rx_queue->buffer) |
| return -ENOMEM; |
| |
| rc = efx_nic_probe_rx(rx_queue); |
| if (rc) { |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| |
| return rc; |
| } |
| |
| static void efx_init_rx_recycle_ring(struct efx_nic *efx, |
| struct efx_rx_queue *rx_queue) |
| { |
| unsigned int bufs_in_recycle_ring, page_ring_size; |
| |
| /* Set the RX recycle ring size */ |
| #ifdef CONFIG_PPC64 |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; |
| #else |
| if (iommu_present(&pci_bus_type)) |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; |
| else |
| bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; |
| #endif /* CONFIG_PPC64 */ |
| |
| page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / |
| efx->rx_bufs_per_page); |
| rx_queue->page_ring = kcalloc(page_ring_size, |
| sizeof(*rx_queue->page_ring), GFP_KERNEL); |
| rx_queue->page_ptr_mask = page_ring_size - 1; |
| } |
| |
| void efx_init_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| struct efx_nic *efx = rx_queue->efx; |
| unsigned int max_fill, trigger, max_trigger; |
| |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| /* Initialise ptr fields */ |
| rx_queue->added_count = 0; |
| rx_queue->notified_count = 0; |
| rx_queue->removed_count = 0; |
| rx_queue->min_fill = -1U; |
| efx_init_rx_recycle_ring(efx, rx_queue); |
| |
| rx_queue->page_remove = 0; |
| rx_queue->page_add = rx_queue->page_ptr_mask + 1; |
| rx_queue->page_recycle_count = 0; |
| rx_queue->page_recycle_failed = 0; |
| rx_queue->page_recycle_full = 0; |
| |
| /* Initialise limit fields */ |
| max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; |
| max_trigger = |
| max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page; |
| if (rx_refill_threshold != 0) { |
| trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; |
| if (trigger > max_trigger) |
| trigger = max_trigger; |
| } else { |
| trigger = max_trigger; |
| } |
| |
| rx_queue->max_fill = max_fill; |
| rx_queue->fast_fill_trigger = trigger; |
| rx_queue->refill_enabled = true; |
| |
| /* Set up RX descriptor ring */ |
| efx_nic_init_rx(rx_queue); |
| } |
| |
| void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| int i; |
| struct efx_nic *efx = rx_queue->efx; |
| struct efx_rx_buffer *rx_buf; |
| |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| del_timer_sync(&rx_queue->slow_fill); |
| |
| /* Release RX buffers from the current read ptr to the write ptr */ |
| if (rx_queue->buffer) { |
| for (i = rx_queue->removed_count; i < rx_queue->added_count; |
| i++) { |
| unsigned index = i & rx_queue->ptr_mask; |
| rx_buf = efx_rx_buffer(rx_queue, index); |
| efx_fini_rx_buffer(rx_queue, rx_buf); |
| } |
| } |
| |
| /* Unmap and release the pages in the recycle ring. Remove the ring. */ |
| for (i = 0; i <= rx_queue->page_ptr_mask; i++) { |
| struct page *page = rx_queue->page_ring[i]; |
| struct efx_rx_page_state *state; |
| |
| if (page == NULL) |
| continue; |
| |
| state = page_address(page); |
| dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, |
| PAGE_SIZE << efx->rx_buffer_order, |
| DMA_FROM_DEVICE); |
| put_page(page); |
| } |
| kfree(rx_queue->page_ring); |
| rx_queue->page_ring = NULL; |
| } |
| |
| void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) |
| { |
| netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, |
| "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); |
| |
| efx_nic_remove_rx(rx_queue); |
| |
| kfree(rx_queue->buffer); |
| rx_queue->buffer = NULL; |
| } |
| |
| |
| module_param(rx_refill_threshold, uint, 0444); |
| MODULE_PARM_DESC(rx_refill_threshold, |
| "RX descriptor ring refill threshold (%)"); |
| |
| #ifdef CONFIG_RFS_ACCEL |
| |
| int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, |
| u16 rxq_index, u32 flow_id) |
| { |
| struct efx_nic *efx = netdev_priv(net_dev); |
| struct efx_channel *channel; |
| struct efx_filter_spec spec; |
| const struct iphdr *ip; |
| const __be16 *ports; |
| int nhoff; |
| int rc; |
| |
| nhoff = skb_network_offset(skb); |
| |
| if (skb->protocol == htons(ETH_P_8021Q)) { |
| EFX_BUG_ON_PARANOID(skb_headlen(skb) < |
| nhoff + sizeof(struct vlan_hdr)); |
| if (((const struct vlan_hdr *)skb->data + nhoff)-> |
| h_vlan_encapsulated_proto != htons(ETH_P_IP)) |
| return -EPROTONOSUPPORT; |
| |
| /* This is IP over 802.1q VLAN. We can't filter on the |
| * IP 5-tuple and the vlan together, so just strip the |
| * vlan header and filter on the IP part. |
| */ |
| nhoff += sizeof(struct vlan_hdr); |
| } else if (skb->protocol != htons(ETH_P_IP)) { |
| return -EPROTONOSUPPORT; |
| } |
| |
| /* RFS must validate the IP header length before calling us */ |
| EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip)); |
| ip = (const struct iphdr *)(skb->data + nhoff); |
| if (ip_is_fragment(ip)) |
| return -EPROTONOSUPPORT; |
| EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4); |
| ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl); |
| |
| efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT, |
| efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, |
| rxq_index); |
| rc = efx_filter_set_ipv4_full(&spec, ip->protocol, |
| ip->daddr, ports[1], ip->saddr, ports[0]); |
| if (rc) |
| return rc; |
| |
| rc = efx->type->filter_rfs_insert(efx, &spec); |
| if (rc < 0) |
| return rc; |
| |
| /* Remember this so we can check whether to expire the filter later */ |
| efx->rps_flow_id[rc] = flow_id; |
| channel = efx_get_channel(efx, skb_get_rx_queue(skb)); |
| ++channel->rfs_filters_added; |
| |
| netif_info(efx, rx_status, efx->net_dev, |
| "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n", |
| (ip->protocol == IPPROTO_TCP) ? "TCP" : "UDP", |
| &ip->saddr, ntohs(ports[0]), &ip->daddr, ntohs(ports[1]), |
| rxq_index, flow_id, rc); |
| |
| return rc; |
| } |
| |
| bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota) |
| { |
| bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); |
| unsigned int index, size; |
| u32 flow_id; |
| |
| if (!spin_trylock_bh(&efx->filter_lock)) |
| return false; |
| |
| expire_one = efx->type->filter_rfs_expire_one; |
| index = efx->rps_expire_index; |
| size = efx->type->max_rx_ip_filters; |
| while (quota--) { |
| flow_id = efx->rps_flow_id[index]; |
| if (expire_one(efx, flow_id, index)) |
| netif_info(efx, rx_status, efx->net_dev, |
| "expired filter %d [flow %u]\n", |
| index, flow_id); |
| if (++index == size) |
| index = 0; |
| } |
| efx->rps_expire_index = index; |
| |
| spin_unlock_bh(&efx->filter_lock); |
| return true; |
| } |
| |
| #endif /* CONFIG_RFS_ACCEL */ |