| /* |
| * Copyright © 2008 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| * |
| * Authors: |
| * Keith Packard <keithp@keithp.com> |
| * |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/notifier.h> |
| #include <linux/reboot.h> |
| #include <drm/drmP.h> |
| #include <drm/drm_crtc.h> |
| #include <drm/drm_crtc_helper.h> |
| #include <drm/drm_edid.h> |
| #include "intel_drv.h" |
| #include <drm/i915_drm.h> |
| #include "i915_drv.h" |
| |
| #define DP_LINK_CHECK_TIMEOUT (10 * 1000) |
| |
| struct dp_link_dpll { |
| int link_bw; |
| struct dpll dpll; |
| }; |
| |
| static const struct dp_link_dpll gen4_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } |
| }; |
| |
| static const struct dp_link_dpll pch_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } |
| }; |
| |
| static const struct dp_link_dpll vlv_dpll[] = { |
| { DP_LINK_BW_1_62, |
| { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, |
| { DP_LINK_BW_2_7, |
| { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } |
| }; |
| |
| /* |
| * CHV supports eDP 1.4 that have more link rates. |
| * Below only provides the fixed rate but exclude variable rate. |
| */ |
| static const struct dp_link_dpll chv_dpll[] = { |
| /* |
| * CHV requires to program fractional division for m2. |
| * m2 is stored in fixed point format using formula below |
| * (m2_int << 22) | m2_fraction |
| */ |
| { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */ |
| { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, |
| { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */ |
| { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, |
| { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */ |
| { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } } |
| }; |
| |
| /** |
| * is_edp - is the given port attached to an eDP panel (either CPU or PCH) |
| * @intel_dp: DP struct |
| * |
| * If a CPU or PCH DP output is attached to an eDP panel, this function |
| * will return true, and false otherwise. |
| */ |
| static bool is_edp(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| |
| return intel_dig_port->base.type == INTEL_OUTPUT_EDP; |
| } |
| |
| static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| |
| return intel_dig_port->base.base.dev; |
| } |
| |
| static struct intel_dp *intel_attached_dp(struct drm_connector *connector) |
| { |
| return enc_to_intel_dp(&intel_attached_encoder(connector)->base); |
| } |
| |
| static void intel_dp_link_down(struct intel_dp *intel_dp); |
| static bool _edp_panel_vdd_on(struct intel_dp *intel_dp); |
| static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); |
| |
| int |
| intel_dp_max_link_bw(struct intel_dp *intel_dp) |
| { |
| int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; |
| struct drm_device *dev = intel_dp->attached_connector->base.dev; |
| |
| switch (max_link_bw) { |
| case DP_LINK_BW_1_62: |
| case DP_LINK_BW_2_7: |
| break; |
| case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */ |
| if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || |
| INTEL_INFO(dev)->gen >= 8) && |
| intel_dp->dpcd[DP_DPCD_REV] >= 0x12) |
| max_link_bw = DP_LINK_BW_5_4; |
| else |
| max_link_bw = DP_LINK_BW_2_7; |
| break; |
| default: |
| WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n", |
| max_link_bw); |
| max_link_bw = DP_LINK_BW_1_62; |
| break; |
| } |
| return max_link_bw; |
| } |
| |
| static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| u8 source_max, sink_max; |
| |
| source_max = 4; |
| if (HAS_DDI(dev) && intel_dig_port->port == PORT_A && |
| (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0) |
| source_max = 2; |
| |
| sink_max = drm_dp_max_lane_count(intel_dp->dpcd); |
| |
| return min(source_max, sink_max); |
| } |
| |
| /* |
| * The units on the numbers in the next two are... bizarre. Examples will |
| * make it clearer; this one parallels an example in the eDP spec. |
| * |
| * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as: |
| * |
| * 270000 * 1 * 8 / 10 == 216000 |
| * |
| * The actual data capacity of that configuration is 2.16Gbit/s, so the |
| * units are decakilobits. ->clock in a drm_display_mode is in kilohertz - |
| * or equivalently, kilopixels per second - so for 1680x1050R it'd be |
| * 119000. At 18bpp that's 2142000 kilobits per second. |
| * |
| * Thus the strange-looking division by 10 in intel_dp_link_required, to |
| * get the result in decakilobits instead of kilobits. |
| */ |
| |
| static int |
| intel_dp_link_required(int pixel_clock, int bpp) |
| { |
| return (pixel_clock * bpp + 9) / 10; |
| } |
| |
| static int |
| intel_dp_max_data_rate(int max_link_clock, int max_lanes) |
| { |
| return (max_link_clock * max_lanes * 8) / 10; |
| } |
| |
| static enum drm_mode_status |
| intel_dp_mode_valid(struct drm_connector *connector, |
| struct drm_display_mode *mode) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; |
| int target_clock = mode->clock; |
| int max_rate, mode_rate, max_lanes, max_link_clock; |
| |
| if (is_edp(intel_dp) && fixed_mode) { |
| if (mode->hdisplay > fixed_mode->hdisplay) |
| return MODE_PANEL; |
| |
| if (mode->vdisplay > fixed_mode->vdisplay) |
| return MODE_PANEL; |
| |
| target_clock = fixed_mode->clock; |
| } |
| |
| max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp)); |
| max_lanes = intel_dp_max_lane_count(intel_dp); |
| |
| max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); |
| mode_rate = intel_dp_link_required(target_clock, 18); |
| |
| if (mode_rate > max_rate) |
| return MODE_CLOCK_HIGH; |
| |
| if (mode->clock < 10000) |
| return MODE_CLOCK_LOW; |
| |
| if (mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return MODE_H_ILLEGAL; |
| |
| return MODE_OK; |
| } |
| |
| static uint32_t |
| pack_aux(uint8_t *src, int src_bytes) |
| { |
| int i; |
| uint32_t v = 0; |
| |
| if (src_bytes > 4) |
| src_bytes = 4; |
| for (i = 0; i < src_bytes; i++) |
| v |= ((uint32_t) src[i]) << ((3-i) * 8); |
| return v; |
| } |
| |
| static void |
| unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) |
| { |
| int i; |
| if (dst_bytes > 4) |
| dst_bytes = 4; |
| for (i = 0; i < dst_bytes; i++) |
| dst[i] = src >> ((3-i) * 8); |
| } |
| |
| /* hrawclock is 1/4 the FSB frequency */ |
| static int |
| intel_hrawclk(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t clkcfg; |
| |
| /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */ |
| if (IS_VALLEYVIEW(dev)) |
| return 200; |
| |
| clkcfg = I915_READ(CLKCFG); |
| switch (clkcfg & CLKCFG_FSB_MASK) { |
| case CLKCFG_FSB_400: |
| return 100; |
| case CLKCFG_FSB_533: |
| return 133; |
| case CLKCFG_FSB_667: |
| return 166; |
| case CLKCFG_FSB_800: |
| return 200; |
| case CLKCFG_FSB_1067: |
| return 266; |
| case CLKCFG_FSB_1333: |
| return 333; |
| /* these two are just a guess; one of them might be right */ |
| case CLKCFG_FSB_1600: |
| case CLKCFG_FSB_1600_ALT: |
| return 400; |
| default: |
| return 133; |
| } |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer(struct drm_device *dev, |
| struct intel_dp *intel_dp, |
| struct edp_power_seq *out); |
| static void |
| intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, |
| struct intel_dp *intel_dp, |
| struct edp_power_seq *out); |
| |
| static enum pipe |
| vlv_power_sequencer_pipe(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| enum pipe pipe; |
| |
| /* modeset should have pipe */ |
| if (crtc) |
| return to_intel_crtc(crtc)->pipe; |
| |
| /* init time, try to find a pipe with this port selected */ |
| for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { |
| u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) & |
| PANEL_PORT_SELECT_MASK; |
| if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B) |
| return pipe; |
| if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C) |
| return pipe; |
| } |
| |
| /* shrug */ |
| return PIPE_A; |
| } |
| |
| static u32 _pp_ctrl_reg(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return PCH_PP_CONTROL; |
| else |
| return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp)); |
| } |
| |
| static u32 _pp_stat_reg(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| if (HAS_PCH_SPLIT(dev)) |
| return PCH_PP_STATUS; |
| else |
| return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp)); |
| } |
| |
| /* Reboot notifier handler to shutdown panel power to guarantee T12 timing |
| This function only applicable when panel PM state is not to be tracked */ |
| static int edp_notify_handler(struct notifier_block *this, unsigned long code, |
| void *unused) |
| { |
| struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), |
| edp_notifier); |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_div; |
| u32 pp_ctrl_reg, pp_div_reg; |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| if (!is_edp(intel_dp) || code != SYS_RESTART) |
| return 0; |
| |
| if (IS_VALLEYVIEW(dev)) { |
| pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| pp_div = I915_READ(pp_div_reg); |
| pp_div &= PP_REFERENCE_DIVIDER_MASK; |
| |
| /* 0x1F write to PP_DIV_REG sets max cycle delay */ |
| I915_WRITE(pp_div_reg, pp_div | 0x1F); |
| I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); |
| msleep(intel_dp->panel_power_cycle_delay); |
| } |
| |
| return 0; |
| } |
| |
| static bool edp_have_panel_power(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; |
| } |
| |
| static bool edp_have_panel_vdd(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| enum intel_display_power_domain power_domain; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| return intel_display_power_enabled(dev_priv, power_domain) && |
| (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0; |
| } |
| |
| static void |
| intel_dp_check_edp(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { |
| WARN(1, "eDP powered off while attempting aux channel communication.\n"); |
| DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", |
| I915_READ(_pp_stat_reg(intel_dp)), |
| I915_READ(_pp_ctrl_reg(intel_dp))); |
| } |
| } |
| |
| static uint32_t |
| intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; |
| uint32_t status; |
| bool done; |
| |
| #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| if (has_aux_irq) |
| done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, |
| msecs_to_jiffies_timeout(10)); |
| else |
| done = wait_for_atomic(C, 10) == 0; |
| if (!done) |
| DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n", |
| has_aux_irq); |
| #undef C |
| |
| return status; |
| } |
| |
| static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| |
| /* |
| * The clock divider is based off the hrawclk, and would like to run at |
| * 2MHz. So, take the hrawclk value and divide by 2 and use that |
| */ |
| return index ? 0 : intel_hrawclk(dev) / 2; |
| } |
| |
| static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| |
| if (index) |
| return 0; |
| |
| if (intel_dig_port->port == PORT_A) { |
| if (IS_GEN6(dev) || IS_GEN7(dev)) |
| return 200; /* SNB & IVB eDP input clock at 400Mhz */ |
| else |
| return 225; /* eDP input clock at 450Mhz */ |
| } else { |
| return DIV_ROUND_UP(intel_pch_rawclk(dev), 2); |
| } |
| } |
| |
| static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (intel_dig_port->port == PORT_A) { |
| if (index) |
| return 0; |
| return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000); |
| } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) { |
| /* Workaround for non-ULT HSW */ |
| switch (index) { |
| case 0: return 63; |
| case 1: return 72; |
| default: return 0; |
| } |
| } else { |
| return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2); |
| } |
| } |
| |
| static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index) |
| { |
| return index ? 0 : 100; |
| } |
| |
| static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp, |
| bool has_aux_irq, |
| int send_bytes, |
| uint32_t aux_clock_divider) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| uint32_t precharge, timeout; |
| |
| if (IS_GEN6(dev)) |
| precharge = 3; |
| else |
| precharge = 5; |
| |
| if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL) |
| timeout = DP_AUX_CH_CTL_TIME_OUT_600us; |
| else |
| timeout = DP_AUX_CH_CTL_TIME_OUT_400us; |
| |
| return DP_AUX_CH_CTL_SEND_BUSY | |
| DP_AUX_CH_CTL_DONE | |
| (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| timeout | |
| DP_AUX_CH_CTL_RECEIVE_ERROR | |
| (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); |
| } |
| |
| static int |
| intel_dp_aux_ch(struct intel_dp *intel_dp, |
| uint8_t *send, int send_bytes, |
| uint8_t *recv, int recv_size) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg; |
| uint32_t ch_data = ch_ctl + 4; |
| uint32_t aux_clock_divider; |
| int i, ret, recv_bytes; |
| uint32_t status; |
| int try, clock = 0; |
| bool has_aux_irq = HAS_AUX_IRQ(dev); |
| bool vdd; |
| |
| vdd = _edp_panel_vdd_on(intel_dp); |
| |
| /* dp aux is extremely sensitive to irq latency, hence request the |
| * lowest possible wakeup latency and so prevent the cpu from going into |
| * deep sleep states. |
| */ |
| pm_qos_update_request(&dev_priv->pm_qos, 0); |
| |
| intel_dp_check_edp(intel_dp); |
| |
| intel_aux_display_runtime_get(dev_priv); |
| |
| /* Try to wait for any previous AUX channel activity */ |
| for (try = 0; try < 3; try++) { |
| status = I915_READ_NOTRACE(ch_ctl); |
| if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) |
| break; |
| msleep(1); |
| } |
| |
| if (try == 3) { |
| WARN(1, "dp_aux_ch not started status 0x%08x\n", |
| I915_READ(ch_ctl)); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Only 5 data registers! */ |
| if (WARN_ON(send_bytes > 20 || recv_size > 20)) { |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { |
| u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, |
| has_aux_irq, |
| send_bytes, |
| aux_clock_divider); |
| |
| /* Must try at least 3 times according to DP spec */ |
| for (try = 0; try < 5; try++) { |
| /* Load the send data into the aux channel data registers */ |
| for (i = 0; i < send_bytes; i += 4) |
| I915_WRITE(ch_data + i, |
| pack_aux(send + i, send_bytes - i)); |
| |
| /* Send the command and wait for it to complete */ |
| I915_WRITE(ch_ctl, send_ctl); |
| |
| status = intel_dp_aux_wait_done(intel_dp, has_aux_irq); |
| |
| /* Clear done status and any errors */ |
| I915_WRITE(ch_ctl, |
| status | |
| DP_AUX_CH_CTL_DONE | |
| DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR); |
| |
| if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | |
| DP_AUX_CH_CTL_RECEIVE_ERROR)) |
| continue; |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| if (status & DP_AUX_CH_CTL_DONE) |
| break; |
| } |
| |
| if ((status & DP_AUX_CH_CTL_DONE) == 0) { |
| DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| /* Check for timeout or receive error. |
| * Timeouts occur when the sink is not connected |
| */ |
| if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { |
| DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Timeouts occur when the device isn't connected, so they're |
| * "normal" -- don't fill the kernel log with these */ |
| if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { |
| DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| /* Unload any bytes sent back from the other side */ |
| recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> |
| DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); |
| if (recv_bytes > recv_size) |
| recv_bytes = recv_size; |
| |
| for (i = 0; i < recv_bytes; i += 4) |
| unpack_aux(I915_READ(ch_data + i), |
| recv + i, recv_bytes - i); |
| |
| ret = recv_bytes; |
| out: |
| pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); |
| intel_aux_display_runtime_put(dev_priv); |
| |
| if (vdd) |
| edp_panel_vdd_off(intel_dp, false); |
| |
| return ret; |
| } |
| |
| #define BARE_ADDRESS_SIZE 3 |
| #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) |
| static ssize_t |
| intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) |
| { |
| struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); |
| uint8_t txbuf[20], rxbuf[20]; |
| size_t txsize, rxsize; |
| int ret; |
| |
| txbuf[0] = msg->request << 4; |
| txbuf[1] = msg->address >> 8; |
| txbuf[2] = msg->address & 0xff; |
| txbuf[3] = msg->size - 1; |
| |
| switch (msg->request & ~DP_AUX_I2C_MOT) { |
| case DP_AUX_NATIVE_WRITE: |
| case DP_AUX_I2C_WRITE: |
| txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; |
| rxsize = 1; |
| |
| if (WARN_ON(txsize > 20)) |
| return -E2BIG; |
| |
| memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); |
| |
| ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); |
| if (ret > 0) { |
| msg->reply = rxbuf[0] >> 4; |
| |
| /* Return payload size. */ |
| ret = msg->size; |
| } |
| break; |
| |
| case DP_AUX_NATIVE_READ: |
| case DP_AUX_I2C_READ: |
| txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; |
| rxsize = msg->size + 1; |
| |
| if (WARN_ON(rxsize > 20)) |
| return -E2BIG; |
| |
| ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize); |
| if (ret > 0) { |
| msg->reply = rxbuf[0] >> 4; |
| /* |
| * Assume happy day, and copy the data. The caller is |
| * expected to check msg->reply before touching it. |
| * |
| * Return payload size. |
| */ |
| ret--; |
| memcpy(msg->buffer, rxbuf + 1, ret); |
| } |
| break; |
| |
| default: |
| ret = -EINVAL; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static void |
| intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum port port = intel_dig_port->port; |
| const char *name = NULL; |
| int ret; |
| |
| switch (port) { |
| case PORT_A: |
| intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL; |
| name = "DPDDC-A"; |
| break; |
| case PORT_B: |
| intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL; |
| name = "DPDDC-B"; |
| break; |
| case PORT_C: |
| intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL; |
| name = "DPDDC-C"; |
| break; |
| case PORT_D: |
| intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL; |
| name = "DPDDC-D"; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (!HAS_DDI(dev)) |
| intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10; |
| |
| intel_dp->aux.name = name; |
| intel_dp->aux.dev = dev->dev; |
| intel_dp->aux.transfer = intel_dp_aux_transfer; |
| |
| DRM_DEBUG_KMS("registering %s bus for %s\n", name, |
| connector->base.kdev->kobj.name); |
| |
| ret = drm_dp_aux_register(&intel_dp->aux); |
| if (ret < 0) { |
| DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n", |
| name, ret); |
| return; |
| } |
| |
| ret = sysfs_create_link(&connector->base.kdev->kobj, |
| &intel_dp->aux.ddc.dev.kobj, |
| intel_dp->aux.ddc.dev.kobj.name); |
| if (ret < 0) { |
| DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret); |
| drm_dp_aux_unregister(&intel_dp->aux); |
| } |
| } |
| |
| static void |
| intel_dp_connector_unregister(struct intel_connector *intel_connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base); |
| |
| if (!intel_connector->mst_port) |
| sysfs_remove_link(&intel_connector->base.kdev->kobj, |
| intel_dp->aux.ddc.dev.kobj.name); |
| intel_connector_unregister(intel_connector); |
| } |
| |
| static void |
| hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw) |
| { |
| switch (link_bw) { |
| case DP_LINK_BW_1_62: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810; |
| break; |
| case DP_LINK_BW_2_7: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350; |
| break; |
| case DP_LINK_BW_5_4: |
| pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700; |
| break; |
| } |
| } |
| |
| static void |
| intel_dp_set_clock(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config, int link_bw) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| const struct dp_link_dpll *divisor = NULL; |
| int i, count = 0; |
| |
| if (IS_G4X(dev)) { |
| divisor = gen4_dpll; |
| count = ARRAY_SIZE(gen4_dpll); |
| } else if (HAS_PCH_SPLIT(dev)) { |
| divisor = pch_dpll; |
| count = ARRAY_SIZE(pch_dpll); |
| } else if (IS_CHERRYVIEW(dev)) { |
| divisor = chv_dpll; |
| count = ARRAY_SIZE(chv_dpll); |
| } else if (IS_VALLEYVIEW(dev)) { |
| divisor = vlv_dpll; |
| count = ARRAY_SIZE(vlv_dpll); |
| } |
| |
| if (divisor && count) { |
| for (i = 0; i < count; i++) { |
| if (link_bw == divisor[i].link_bw) { |
| pipe_config->dpll = divisor[i].dpll; |
| pipe_config->clock_set = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| bool |
| intel_dp_compute_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *intel_crtc = encoder->new_crtc; |
| struct intel_connector *intel_connector = intel_dp->attached_connector; |
| int lane_count, clock; |
| int min_lane_count = 1; |
| int max_lane_count = intel_dp_max_lane_count(intel_dp); |
| /* Conveniently, the link BW constants become indices with a shift...*/ |
| int min_clock = 0; |
| int max_clock = intel_dp_max_link_bw(intel_dp) >> 3; |
| int bpp, mode_rate; |
| static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 }; |
| int link_avail, link_clock; |
| |
| if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A) |
| pipe_config->has_pch_encoder = true; |
| |
| pipe_config->has_dp_encoder = true; |
| pipe_config->has_drrs = false; |
| pipe_config->has_audio = intel_dp->has_audio; |
| |
| if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { |
| intel_fixed_panel_mode(intel_connector->panel.fixed_mode, |
| adjusted_mode); |
| if (!HAS_PCH_SPLIT(dev)) |
| intel_gmch_panel_fitting(intel_crtc, pipe_config, |
| intel_connector->panel.fitting_mode); |
| else |
| intel_pch_panel_fitting(intel_crtc, pipe_config, |
| intel_connector->panel.fitting_mode); |
| } |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) |
| return false; |
| |
| DRM_DEBUG_KMS("DP link computation with max lane count %i " |
| "max bw %02x pixel clock %iKHz\n", |
| max_lane_count, bws[max_clock], |
| adjusted_mode->crtc_clock); |
| |
| /* Walk through all bpp values. Luckily they're all nicely spaced with 2 |
| * bpc in between. */ |
| bpp = pipe_config->pipe_bpp; |
| if (is_edp(intel_dp)) { |
| if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) { |
| DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", |
| dev_priv->vbt.edp_bpp); |
| bpp = dev_priv->vbt.edp_bpp; |
| } |
| |
| if (IS_BROADWELL(dev)) { |
| /* Yes, it's an ugly hack. */ |
| min_lane_count = max_lane_count; |
| DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n", |
| min_lane_count); |
| } else if (dev_priv->vbt.edp_lanes) { |
| min_lane_count = min(dev_priv->vbt.edp_lanes, |
| max_lane_count); |
| DRM_DEBUG_KMS("using min %u lanes per VBT\n", |
| min_lane_count); |
| } |
| |
| if (dev_priv->vbt.edp_rate) { |
| min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock); |
| DRM_DEBUG_KMS("using min %02x link bw per VBT\n", |
| bws[min_clock]); |
| } |
| } |
| |
| for (; bpp >= 6*3; bpp -= 2*3) { |
| mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, |
| bpp); |
| |
| for (clock = min_clock; clock <= max_clock; clock++) { |
| for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) { |
| link_clock = drm_dp_bw_code_to_link_rate(bws[clock]); |
| link_avail = intel_dp_max_data_rate(link_clock, |
| lane_count); |
| |
| if (mode_rate <= link_avail) { |
| goto found; |
| } |
| } |
| } |
| } |
| |
| return false; |
| |
| found: |
| if (intel_dp->color_range_auto) { |
| /* |
| * See: |
| * CEA-861-E - 5.1 Default Encoding Parameters |
| * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry |
| */ |
| if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1) |
| intel_dp->color_range = DP_COLOR_RANGE_16_235; |
| else |
| intel_dp->color_range = 0; |
| } |
| |
| if (intel_dp->color_range) |
| pipe_config->limited_color_range = true; |
| |
| intel_dp->link_bw = bws[clock]; |
| intel_dp->lane_count = lane_count; |
| pipe_config->pipe_bpp = bpp; |
| pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw); |
| |
| DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n", |
| intel_dp->link_bw, intel_dp->lane_count, |
| pipe_config->port_clock, bpp); |
| DRM_DEBUG_KMS("DP link bw required %i available %i\n", |
| mode_rate, link_avail); |
| |
| intel_link_compute_m_n(bpp, lane_count, |
| adjusted_mode->crtc_clock, |
| pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| |
| if (intel_connector->panel.downclock_mode != NULL && |
| intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) { |
| pipe_config->has_drrs = true; |
| intel_link_compute_m_n(bpp, lane_count, |
| intel_connector->panel.downclock_mode->clock, |
| pipe_config->port_clock, |
| &pipe_config->dp_m2_n2); |
| } |
| |
| if (HAS_DDI(dev)) |
| hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw); |
| else |
| intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw); |
| |
| return true; |
| } |
| |
| static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); |
| struct drm_device *dev = crtc->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock); |
| dpa_ctl = I915_READ(DP_A); |
| dpa_ctl &= ~DP_PLL_FREQ_MASK; |
| |
| if (crtc->config.port_clock == 162000) { |
| /* For a long time we've carried around a ILK-DevA w/a for the |
| * 160MHz clock. If we're really unlucky, it's still required. |
| */ |
| DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n"); |
| dpa_ctl |= DP_PLL_FREQ_160MHZ; |
| intel_dp->DP |= DP_PLL_FREQ_160MHZ; |
| } else { |
| dpa_ctl |= DP_PLL_FREQ_270MHZ; |
| intel_dp->DP |= DP_PLL_FREQ_270MHZ; |
| } |
| |
| I915_WRITE(DP_A, dpa_ctl); |
| |
| POSTING_READ(DP_A); |
| udelay(500); |
| } |
| |
| static void intel_dp_prepare(struct intel_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode; |
| |
| /* |
| * There are four kinds of DP registers: |
| * |
| * IBX PCH |
| * SNB CPU |
| * IVB CPU |
| * CPT PCH |
| * |
| * IBX PCH and CPU are the same for almost everything, |
| * except that the CPU DP PLL is configured in this |
| * register |
| * |
| * CPT PCH is quite different, having many bits moved |
| * to the TRANS_DP_CTL register instead. That |
| * configuration happens (oddly) in ironlake_pch_enable |
| */ |
| |
| /* Preserve the BIOS-computed detected bit. This is |
| * supposed to be read-only. |
| */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; |
| |
| /* Handle DP bits in common between all three register formats */ |
| intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; |
| intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count); |
| |
| if (crtc->config.has_audio) { |
| DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", |
| pipe_name(crtc->pipe)); |
| intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; |
| intel_write_eld(&encoder->base, adjusted_mode); |
| } |
| |
| /* Split out the IBX/CPU vs CPT settings */ |
| |
| if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| intel_dp->DP |= crtc->pipe << 29; |
| } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { |
| if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev)) |
| intel_dp->DP |= intel_dp->color_range; |
| |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| intel_dp->DP |= DP_SYNC_HS_HIGH; |
| if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| intel_dp->DP |= DP_SYNC_VS_HIGH; |
| intel_dp->DP |= DP_LINK_TRAIN_OFF; |
| |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| intel_dp->DP |= DP_ENHANCED_FRAMING; |
| |
| if (!IS_CHERRYVIEW(dev)) { |
| if (crtc->pipe == 1) |
| intel_dp->DP |= DP_PIPEB_SELECT; |
| } else { |
| intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe); |
| } |
| } else { |
| intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; |
| } |
| } |
| |
| #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) |
| |
| #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) |
| #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) |
| |
| #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) |
| #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) |
| |
| static void wait_panel_status(struct intel_dp *intel_dp, |
| u32 mask, |
| u32 value) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", |
| mask, value, |
| I915_READ(pp_stat_reg), |
| I915_READ(pp_ctrl_reg)); |
| |
| if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) { |
| DRM_ERROR("Panel status timeout: status %08x control %08x\n", |
| I915_READ(pp_stat_reg), |
| I915_READ(pp_ctrl_reg)); |
| } |
| |
| DRM_DEBUG_KMS("Wait complete\n"); |
| } |
| |
| static void wait_panel_on(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power on\n"); |
| wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); |
| } |
| |
| static void wait_panel_off(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power off time\n"); |
| wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); |
| } |
| |
| static void wait_panel_power_cycle(struct intel_dp *intel_dp) |
| { |
| DRM_DEBUG_KMS("Wait for panel power cycle\n"); |
| |
| /* When we disable the VDD override bit last we have to do the manual |
| * wait. */ |
| wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle, |
| intel_dp->panel_power_cycle_delay); |
| |
| wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); |
| } |
| |
| static void wait_backlight_on(struct intel_dp *intel_dp) |
| { |
| wait_remaining_ms_from_jiffies(intel_dp->last_power_on, |
| intel_dp->backlight_on_delay); |
| } |
| |
| static void edp_wait_backlight_off(struct intel_dp *intel_dp) |
| { |
| wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, |
| intel_dp->backlight_off_delay); |
| } |
| |
| /* Read the current pp_control value, unlocking the register if it |
| * is locked |
| */ |
| |
| static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 control; |
| |
| control = I915_READ(_pp_ctrl_reg(intel_dp)); |
| control &= ~PANEL_UNLOCK_MASK; |
| control |= PANEL_UNLOCK_REGS; |
| return control; |
| } |
| |
| static bool _edp_panel_vdd_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 pp; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| bool need_to_disable = !intel_dp->want_panel_vdd; |
| |
| if (!is_edp(intel_dp)) |
| return false; |
| |
| intel_dp->want_panel_vdd = true; |
| |
| if (edp_have_panel_vdd(intel_dp)) |
| return need_to_disable; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| DRM_DEBUG_KMS("Turning eDP VDD on\n"); |
| |
| if (!edp_have_panel_power(intel_dp)) |
| wait_panel_power_cycle(intel_dp); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp |= EDP_FORCE_VDD; |
| |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", |
| I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); |
| /* |
| * If the panel wasn't on, delay before accessing aux channel |
| */ |
| if (!edp_have_panel_power(intel_dp)) { |
| DRM_DEBUG_KMS("eDP was not running\n"); |
| msleep(intel_dp->panel_power_up_delay); |
| } |
| |
| return need_to_disable; |
| } |
| |
| void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) |
| { |
| if (is_edp(intel_dp)) { |
| bool vdd = _edp_panel_vdd_on(intel_dp); |
| |
| WARN(!vdd, "eDP VDD already requested on\n"); |
| } |
| } |
| |
| static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_stat_reg, pp_ctrl_reg; |
| |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| |
| if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) { |
| struct intel_digital_port *intel_dig_port = |
| dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| enum intel_display_power_domain power_domain; |
| |
| DRM_DEBUG_KMS("Turning eDP VDD off\n"); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| pp &= ~EDP_FORCE_VDD; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| pp_stat_reg = _pp_stat_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| /* Make sure sequencer is idle before allowing subsequent activity */ |
| DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", |
| I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); |
| |
| if ((pp & POWER_TARGET_ON) == 0) |
| intel_dp->last_power_cycle = jiffies; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| } |
| |
| static void edp_panel_vdd_work(struct work_struct *__work) |
| { |
| struct intel_dp *intel_dp = container_of(to_delayed_work(__work), |
| struct intel_dp, panel_vdd_work); |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| edp_panel_vdd_off_sync(intel_dp); |
| drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| } |
| |
| static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) |
| { |
| unsigned long delay; |
| |
| /* |
| * Queue the timer to fire a long time from now (relative to the power |
| * down delay) to keep the panel power up across a sequence of |
| * operations. |
| */ |
| delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); |
| schedule_delayed_work(&intel_dp->panel_vdd_work, delay); |
| } |
| |
| static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) |
| { |
| if (!is_edp(intel_dp)) |
| return; |
| |
| WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on"); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| if (sync) |
| edp_panel_vdd_off_sync(intel_dp); |
| else |
| edp_panel_vdd_schedule_off(intel_dp); |
| } |
| |
| void intel_edp_panel_on(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP power on\n"); |
| |
| if (edp_have_panel_power(intel_dp)) { |
| DRM_DEBUG_KMS("eDP power already on\n"); |
| return; |
| } |
| |
| wait_panel_power_cycle(intel_dp); |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| pp = ironlake_get_pp_control(intel_dp); |
| if (IS_GEN5(dev)) { |
| /* ILK workaround: disable reset around power sequence */ |
| pp &= ~PANEL_POWER_RESET; |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| } |
| |
| pp |= POWER_TARGET_ON; |
| if (!IS_GEN5(dev)) |
| pp |= PANEL_POWER_RESET; |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| wait_panel_on(intel_dp); |
| intel_dp->last_power_on = jiffies; |
| |
| if (IS_GEN5(dev)) { |
| pp |= PANEL_POWER_RESET; /* restore panel reset bit */ |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| } |
| } |
| |
| void intel_edp_panel_off(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("Turn eDP power off\n"); |
| |
| WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n"); |
| |
| pp = ironlake_get_pp_control(intel_dp); |
| /* We need to switch off panel power _and_ force vdd, for otherwise some |
| * panels get very unhappy and cease to work. */ |
| pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | |
| EDP_BLC_ENABLE); |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| intel_dp->want_panel_vdd = false; |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| |
| intel_dp->last_power_cycle = jiffies; |
| wait_panel_off(intel_dp); |
| |
| /* We got a reference when we enabled the VDD. */ |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_put(dev_priv, power_domain); |
| } |
| |
| void intel_edp_backlight_on(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| intel_panel_enable_backlight(intel_dp->attached_connector); |
| |
| /* |
| * If we enable the backlight right away following a panel power |
| * on, we may see slight flicker as the panel syncs with the eDP |
| * link. So delay a bit to make sure the image is solid before |
| * allowing it to appear. |
| */ |
| wait_backlight_on(intel_dp); |
| pp = ironlake_get_pp_control(intel_dp); |
| pp |= EDP_BLC_ENABLE; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| } |
| |
| void intel_edp_backlight_off(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp; |
| u32 pp_ctrl_reg; |
| |
| if (!is_edp(intel_dp)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| pp = ironlake_get_pp_control(intel_dp); |
| pp &= ~EDP_BLC_ENABLE; |
| |
| pp_ctrl_reg = _pp_ctrl_reg(intel_dp); |
| |
| I915_WRITE(pp_ctrl_reg, pp); |
| POSTING_READ(pp_ctrl_reg); |
| intel_dp->last_backlight_off = jiffies; |
| |
| edp_wait_backlight_off(intel_dp); |
| |
| intel_panel_disable_backlight(intel_dp->attached_connector); |
| } |
| |
| static void ironlake_edp_pll_on(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| DRM_DEBUG_KMS("\n"); |
| dpa_ctl = I915_READ(DP_A); |
| WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We don't adjust intel_dp->DP while tearing down the link, to |
| * facilitate link retraining (e.g. after hotplug). Hence clear all |
| * enable bits here to ensure that we don't enable too much. */ |
| intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); |
| intel_dp->DP |= DP_PLL_ENABLE; |
| I915_WRITE(DP_A, intel_dp->DP); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| static void ironlake_edp_pll_off(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| struct drm_device *dev = crtc->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 dpa_ctl; |
| |
| assert_pipe_disabled(dev_priv, |
| to_intel_crtc(crtc)->pipe); |
| |
| dpa_ctl = I915_READ(DP_A); |
| WARN((dpa_ctl & DP_PLL_ENABLE) == 0, |
| "dp pll off, should be on\n"); |
| WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n"); |
| |
| /* We can't rely on the value tracked for the DP register in |
| * intel_dp->DP because link_down must not change that (otherwise link |
| * re-training will fail. */ |
| dpa_ctl &= ~DP_PLL_ENABLE; |
| I915_WRITE(DP_A, dpa_ctl); |
| POSTING_READ(DP_A); |
| udelay(200); |
| } |
| |
| /* If the sink supports it, try to set the power state appropriately */ |
| void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) |
| { |
| int ret, i; |
| |
| /* Should have a valid DPCD by this point */ |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) |
| return; |
| |
| if (mode != DRM_MODE_DPMS_ON) { |
| ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D3); |
| if (ret != 1) |
| DRM_DEBUG_DRIVER("failed to write sink power state\n"); |
| } else { |
| /* |
| * When turning on, we need to retry for 1ms to give the sink |
| * time to wake up. |
| */ |
| for (i = 0; i < 3; i++) { |
| ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, |
| DP_SET_POWER_D0); |
| if (ret == 1) |
| break; |
| msleep(1); |
| } |
| } |
| } |
| |
| static bool intel_dp_get_hw_state(struct intel_encoder *encoder, |
| enum pipe *pipe) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| u32 tmp; |
| |
| power_domain = intel_display_port_power_domain(encoder); |
| if (!intel_display_power_enabled(dev_priv, power_domain)) |
| return false; |
| |
| tmp = I915_READ(intel_dp->output_reg); |
| |
| if (!(tmp & DP_PORT_EN)) |
| return false; |
| |
| if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) { |
| *pipe = PORT_TO_PIPE_CPT(tmp); |
| } else if (IS_CHERRYVIEW(dev)) { |
| *pipe = DP_PORT_TO_PIPE_CHV(tmp); |
| } else if (!HAS_PCH_CPT(dev) || port == PORT_A) { |
| *pipe = PORT_TO_PIPE(tmp); |
| } else { |
| u32 trans_sel; |
| u32 trans_dp; |
| int i; |
| |
| switch (intel_dp->output_reg) { |
| case PCH_DP_B: |
| trans_sel = TRANS_DP_PORT_SEL_B; |
| break; |
| case PCH_DP_C: |
| trans_sel = TRANS_DP_PORT_SEL_C; |
| break; |
| case PCH_DP_D: |
| trans_sel = TRANS_DP_PORT_SEL_D; |
| break; |
| default: |
| return true; |
| } |
| |
| for_each_pipe(i) { |
| trans_dp = I915_READ(TRANS_DP_CTL(i)); |
| if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) { |
| *pipe = i; |
| return true; |
| } |
| } |
| |
| DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", |
| intel_dp->output_reg); |
| } |
| |
| return true; |
| } |
| |
| static void intel_dp_get_config(struct intel_encoder *encoder, |
| struct intel_crtc_config *pipe_config) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| u32 tmp, flags = 0; |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc); |
| int dotclock; |
| |
| tmp = I915_READ(intel_dp->output_reg); |
| if (tmp & DP_AUDIO_OUTPUT_ENABLE) |
| pipe_config->has_audio = true; |
| |
| if ((port == PORT_A) || !HAS_PCH_CPT(dev)) { |
| if (tmp & DP_SYNC_HS_HIGH) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (tmp & DP_SYNC_VS_HIGH) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| } else { |
| tmp = I915_READ(TRANS_DP_CTL(crtc->pipe)); |
| if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PHSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NHSYNC; |
| |
| if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH) |
| flags |= DRM_MODE_FLAG_PVSYNC; |
| else |
| flags |= DRM_MODE_FLAG_NVSYNC; |
| } |
| |
| pipe_config->adjusted_mode.flags |= flags; |
| |
| pipe_config->has_dp_encoder = true; |
| |
| intel_dp_get_m_n(crtc, pipe_config); |
| |
| if (port == PORT_A) { |
| if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ) |
| pipe_config->port_clock = 162000; |
| else |
| pipe_config->port_clock = 270000; |
| } |
| |
| dotclock = intel_dotclock_calculate(pipe_config->port_clock, |
| &pipe_config->dp_m_n); |
| |
| if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A) |
| ironlake_check_encoder_dotclock(pipe_config, dotclock); |
| |
| pipe_config->adjusted_mode.crtc_clock = dotclock; |
| |
| if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp && |
| pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) { |
| /* |
| * This is a big fat ugly hack. |
| * |
| * Some machines in UEFI boot mode provide us a VBT that has 18 |
| * bpp and 1.62 GHz link bandwidth for eDP, which for reasons |
| * unknown we fail to light up. Yet the same BIOS boots up with |
| * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as |
| * max, not what it tells us to use. |
| * |
| * Note: This will still be broken if the eDP panel is not lit |
| * up by the BIOS, and thus we can't get the mode at module |
| * load. |
| */ |
| DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", |
| pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp); |
| dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp; |
| } |
| } |
| |
| static bool is_edp_psr(struct intel_dp *intel_dp) |
| { |
| return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED; |
| } |
| |
| static bool intel_edp_is_psr_enabled(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!HAS_PSR(dev)) |
| return false; |
| |
| return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE; |
| } |
| |
| static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp, |
| struct edp_vsc_psr *vsc_psr) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc); |
| u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder); |
| u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder); |
| uint32_t *data = (uint32_t *) vsc_psr; |
| unsigned int i; |
| |
| /* As per BSPec (Pipe Video Data Island Packet), we need to disable |
| the video DIP being updated before program video DIP data buffer |
| registers for DIP being updated. */ |
| I915_WRITE(ctl_reg, 0); |
| POSTING_READ(ctl_reg); |
| |
| for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) { |
| if (i < sizeof(struct edp_vsc_psr)) |
| I915_WRITE(data_reg + i, *data++); |
| else |
| I915_WRITE(data_reg + i, 0); |
| } |
| |
| I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW); |
| POSTING_READ(ctl_reg); |
| } |
| |
| static void intel_edp_psr_setup(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct edp_vsc_psr psr_vsc; |
| |
| /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ |
| memset(&psr_vsc, 0, sizeof(psr_vsc)); |
| psr_vsc.sdp_header.HB0 = 0; |
| psr_vsc.sdp_header.HB1 = 0x7; |
| psr_vsc.sdp_header.HB2 = 0x2; |
| psr_vsc.sdp_header.HB3 = 0x8; |
| intel_edp_psr_write_vsc(intel_dp, &psr_vsc); |
| |
| /* Avoid continuous PSR exit by masking memup and hpd */ |
| I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP | |
| EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP); |
| } |
| |
| static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t aux_clock_divider; |
| int precharge = 0x3; |
| int msg_size = 5; /* Header(4) + Message(1) */ |
| bool only_standby = false; |
| |
| aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); |
| |
| if (IS_BROADWELL(dev) && dig_port->port != PORT_A) |
| only_standby = true; |
| |
| /* Enable PSR in sink */ |
| if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE); |
| else |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, |
| DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); |
| |
| /* Setup AUX registers */ |
| I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND); |
| I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION); |
| I915_WRITE(EDP_PSR_AUX_CTL(dev), |
| DP_AUX_CH_CTL_TIME_OUT_400us | |
| (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | |
| (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | |
| (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT)); |
| } |
| |
| static void intel_edp_psr_enable_source(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t max_sleep_time = 0x1f; |
| uint32_t idle_frames = 1; |
| uint32_t val = 0x0; |
| const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; |
| bool only_standby = false; |
| |
| if (IS_BROADWELL(dev) && dig_port->port != PORT_A) |
| only_standby = true; |
| |
| if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) { |
| val |= EDP_PSR_LINK_STANDBY; |
| val |= EDP_PSR_TP2_TP3_TIME_0us; |
| val |= EDP_PSR_TP1_TIME_0us; |
| val |= EDP_PSR_SKIP_AUX_EXIT; |
| val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0; |
| } else |
| val |= EDP_PSR_LINK_DISABLE; |
| |
| I915_WRITE(EDP_PSR_CTL(dev), val | |
| (IS_BROADWELL(dev) ? 0 : link_entry_time) | |
| max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT | |
| idle_frames << EDP_PSR_IDLE_FRAME_SHIFT | |
| EDP_PSR_ENABLE); |
| } |
| |
| static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc = dig_port->base.base.crtc; |
| struct intel_crtc *intel_crtc = to_intel_crtc(crtc); |
| |
| lockdep_assert_held(&dev_priv->psr.lock); |
| WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); |
| WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); |
| |
| dev_priv->psr.source_ok = false; |
| |
| if (IS_HASWELL(dev) && dig_port->port != PORT_A) { |
| DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n"); |
| return false; |
| } |
| |
| if (!i915.enable_psr) { |
| DRM_DEBUG_KMS("PSR disable by flag\n"); |
| return false; |
| } |
| |
| /* Below limitations aren't valid for Broadwell */ |
| if (IS_BROADWELL(dev)) |
| goto out; |
| |
| if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) & |
| S3D_ENABLE) { |
| DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); |
| return false; |
| } |
| |
| if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { |
| DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); |
| return false; |
| } |
| |
| out: |
| dev_priv->psr.source_ok = true; |
| return true; |
| } |
| |
| static void intel_edp_psr_do_enable(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); |
| WARN_ON(dev_priv->psr.active); |
| lockdep_assert_held(&dev_priv->psr.lock); |
| |
| /* Enable PSR on the panel */ |
| intel_edp_psr_enable_sink(intel_dp); |
| |
| /* Enable PSR on the host */ |
| intel_edp_psr_enable_source(intel_dp); |
| |
| dev_priv->psr.active = true; |
| } |
| |
| void intel_edp_psr_enable(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (!HAS_PSR(dev)) { |
| DRM_DEBUG_KMS("PSR not supported on this platform\n"); |
| return; |
| } |
| |
| if (!is_edp_psr(intel_dp)) { |
| DRM_DEBUG_KMS("PSR not supported by this panel\n"); |
| return; |
| } |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (dev_priv->psr.enabled) { |
| DRM_DEBUG_KMS("PSR already in use\n"); |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| dev_priv->psr.busy_frontbuffer_bits = 0; |
| |
| /* Setup PSR once */ |
| intel_edp_psr_setup(intel_dp); |
| |
| if (intel_edp_psr_match_conditions(intel_dp)) |
| dev_priv->psr.enabled = intel_dp; |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| void intel_edp_psr_disable(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| if (dev_priv->psr.active) { |
| I915_WRITE(EDP_PSR_CTL(dev), |
| I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE); |
| |
| /* Wait till PSR is idle */ |
| if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) & |
| EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10)) |
| DRM_ERROR("Timed out waiting for PSR Idle State\n"); |
| |
| dev_priv->psr.active = false; |
| } else { |
| WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE); |
| } |
| |
| dev_priv->psr.enabled = NULL; |
| mutex_unlock(&dev_priv->psr.lock); |
| |
| cancel_delayed_work_sync(&dev_priv->psr.work); |
| } |
| |
| static void intel_edp_psr_work(struct work_struct *work) |
| { |
| struct drm_i915_private *dev_priv = |
| container_of(work, typeof(*dev_priv), psr.work.work); |
| struct intel_dp *intel_dp = dev_priv->psr.enabled; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| intel_dp = dev_priv->psr.enabled; |
| |
| if (!intel_dp) |
| goto unlock; |
| |
| /* |
| * The delayed work can race with an invalidate hence we need to |
| * recheck. Since psr_flush first clears this and then reschedules we |
| * won't ever miss a flush when bailing out here. |
| */ |
| if (dev_priv->psr.busy_frontbuffer_bits) |
| goto unlock; |
| |
| intel_edp_psr_do_enable(intel_dp); |
| unlock: |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| static void intel_edp_psr_do_exit(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| if (dev_priv->psr.active) { |
| u32 val = I915_READ(EDP_PSR_CTL(dev)); |
| |
| WARN_ON(!(val & EDP_PSR_ENABLE)); |
| |
| I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE); |
| |
| dev_priv->psr.active = false; |
| } |
| |
| } |
| |
| void intel_edp_psr_invalidate(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| |
| intel_edp_psr_do_exit(dev); |
| |
| frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); |
| |
| dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| void intel_edp_psr_flush(struct drm_device *dev, |
| unsigned frontbuffer_bits) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| enum pipe pipe; |
| |
| mutex_lock(&dev_priv->psr.lock); |
| if (!dev_priv->psr.enabled) { |
| mutex_unlock(&dev_priv->psr.lock); |
| return; |
| } |
| |
| crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; |
| pipe = to_intel_crtc(crtc)->pipe; |
| dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; |
| |
| /* |
| * On Haswell sprite plane updates don't result in a psr invalidating |
| * signal in the hardware. Which means we need to manually fake this in |
| * software for all flushes, not just when we've seen a preceding |
| * invalidation through frontbuffer rendering. |
| */ |
| if (IS_HASWELL(dev) && |
| (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe))) |
| intel_edp_psr_do_exit(dev); |
| |
| if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) |
| schedule_delayed_work(&dev_priv->psr.work, |
| msecs_to_jiffies(100)); |
| mutex_unlock(&dev_priv->psr.lock); |
| } |
| |
| void intel_edp_psr_init(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work); |
| mutex_init(&dev_priv->psr.lock); |
| } |
| |
| static void intel_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| struct drm_device *dev = encoder->base.dev; |
| |
| /* Make sure the panel is off before trying to change the mode. But also |
| * ensure that we have vdd while we switch off the panel. */ |
| intel_edp_panel_vdd_on(intel_dp); |
| intel_edp_backlight_off(intel_dp); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); |
| intel_edp_panel_off(intel_dp); |
| |
| /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */ |
| if (!(port == PORT_A || IS_VALLEYVIEW(dev))) |
| intel_dp_link_down(intel_dp); |
| } |
| |
| static void g4x_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| if (port != PORT_A) |
| return; |
| |
| intel_dp_link_down(intel_dp); |
| ironlake_edp_pll_off(intel_dp); |
| } |
| |
| static void vlv_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_dp_link_down(intel_dp); |
| } |
| |
| static void chv_post_disable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| intel_dp_link_down(intel_dp); |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Propagate soft reset to data lane reset */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void intel_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| uint32_t dp_reg = I915_READ(intel_dp->output_reg); |
| |
| if (WARN_ON(dp_reg & DP_PORT_EN)) |
| return; |
| |
| intel_edp_panel_vdd_on(intel_dp); |
| intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); |
| intel_dp_start_link_train(intel_dp); |
| intel_edp_panel_on(intel_dp); |
| edp_panel_vdd_off(intel_dp, true); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| } |
| |
| static void g4x_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_enable_dp(encoder); |
| intel_edp_backlight_on(intel_dp); |
| } |
| |
| static void vlv_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| |
| intel_edp_backlight_on(intel_dp); |
| } |
| |
| static void g4x_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| |
| intel_dp_prepare(encoder); |
| |
| /* Only ilk+ has port A */ |
| if (dport->port == PORT_A) { |
| ironlake_set_pll_cpu_edp(intel_dp); |
| ironlake_edp_pll_on(intel_dp); |
| } |
| } |
| |
| static void vlv_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| struct edp_power_seq power_seq; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port)); |
| val = 0; |
| if (pipe) |
| val |= (1<<21); |
| else |
| val &= ~(1<<21); |
| val |= 0x001000c4; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| if (is_edp(intel_dp)) { |
| /* init power sequencer on this pipe and port */ |
| intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, |
| &power_seq); |
| } |
| |
| intel_enable_dp(encoder); |
| |
| vlv_wait_port_ready(dev_priv, dport); |
| } |
| |
| static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| intel_dp_prepare(encoder); |
| |
| /* Program Tx lane resets to default */ |
| mutex_lock(&dev_priv->dpio_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), |
| DPIO_PCS_TX_LANE2_RESET | |
| DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), |
| DPIO_PCS_CLK_CRI_RXEB_EIOS_EN | |
| DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN | |
| (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) | |
| DPIO_PCS_CLK_SOFT_RESET); |
| |
| /* Fix up inter-pair skew failure */ |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000); |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| static void chv_pre_enable_dp(struct intel_encoder *encoder) |
| { |
| struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct edp_power_seq power_seq; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| int data, i; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Deassert soft data lane reset*/ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch)); |
| val |= CHV_PCS_REQ_SOFTRESET_EN; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch)); |
| val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val); |
| |
| /* Program Tx lane latency optimal setting*/ |
| for (i = 0; i < 4; i++) { |
| /* Set the latency optimal bit */ |
| data = (i == 1) ? 0x0 : 0x6; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i), |
| data << DPIO_FRC_LATENCY_SHFIT); |
| |
| /* Set the upar bit */ |
| data = (i == 1) ? 0x0 : 0x1; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i), |
| data << DPIO_UPAR_SHIFT); |
| } |
| |
| /* Data lane stagger programming */ |
| /* FIXME: Fix up value only after power analysis */ |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| if (is_edp(intel_dp)) { |
| /* init power sequencer on this pipe and port */ |
| intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, |
| &power_seq); |
| } |
| |
| intel_enable_dp(encoder); |
| |
| vlv_wait_port_ready(dev_priv, dport); |
| } |
| |
| static void chv_dp_pre_pll_enable(struct intel_encoder *encoder) |
| { |
| struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); |
| struct drm_device *dev = encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(encoder->base.crtc); |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| u32 val; |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* program left/right clock distribution */ |
| if (pipe != PIPE_B) { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); |
| val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA1_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA1_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); |
| } else { |
| val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); |
| val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); |
| if (ch == DPIO_CH0) |
| val |= CHV_BUFLEFTENA2_FORCE; |
| if (ch == DPIO_CH1) |
| val |= CHV_BUFRIGHTENA2_FORCE; |
| vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); |
| } |
| |
| /* program clock channel usage */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch)); |
| val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE; |
| if (pipe != PIPE_B) |
| val &= ~CHV_PCS_USEDCLKCHANNEL; |
| else |
| val |= CHV_PCS_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val); |
| |
| /* |
| * This a a bit weird since generally CL |
| * matches the pipe, but here we need to |
| * pick the CL based on the port. |
| */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch)); |
| if (pipe != PIPE_B) |
| val &= ~CHV_CMN_USEDCLKCHANNEL; |
| else |
| val |= CHV_CMN_USEDCLKCHANNEL; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| } |
| |
| /* |
| * Native read with retry for link status and receiver capability reads for |
| * cases where the sink may still be asleep. |
| * |
| * Sinks are *supposed* to come up within 1ms from an off state, but we're also |
| * supposed to retry 3 times per the spec. |
| */ |
| static ssize_t |
| intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset, |
| void *buffer, size_t size) |
| { |
| ssize_t ret; |
| int i; |
| |
| for (i = 0; i < 3; i++) { |
| ret = drm_dp_dpcd_read(aux, offset, buffer, size); |
| if (ret == size) |
| return ret; |
| msleep(1); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Fetch AUX CH registers 0x202 - 0x207 which contain |
| * link status information |
| */ |
| static bool |
| intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| return intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_LANE0_1_STATUS, |
| link_status, |
| DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; |
| } |
| |
| /* These are source-specific values. */ |
| static uint8_t |
| intel_dp_voltage_max(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| if (IS_VALLEYVIEW(dev)) |
| return DP_TRAIN_VOLTAGE_SWING_1200; |
| else if (IS_GEN7(dev) && port == PORT_A) |
| return DP_TRAIN_VOLTAGE_SWING_800; |
| else if (HAS_PCH_CPT(dev) && port != PORT_A) |
| return DP_TRAIN_VOLTAGE_SWING_1200; |
| else |
| return DP_TRAIN_VOLTAGE_SWING_800; |
| } |
| |
| static uint8_t |
| intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| enum port port = dp_to_dig_port(intel_dp)->port; |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_9_5; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } else if (IS_VALLEYVIEW(dev)) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_9_5; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } else if (IS_GEN7(dev) && port == PORT_A) { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } else { |
| switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| return DP_TRAIN_PRE_EMPHASIS_6; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| return DP_TRAIN_PRE_EMPHASIS_3_5; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| default: |
| return DP_TRAIN_PRE_EMPHASIS_0; |
| } |
| } |
| } |
| |
| static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(dport->base.base.crtc); |
| unsigned long demph_reg_value, preemph_reg_value, |
| uniqtranscale_reg_value; |
| uint8_t train_set = intel_dp->train_set[0]; |
| enum dpio_channel port = vlv_dport_to_channel(dport); |
| int pipe = intel_crtc->pipe; |
| |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPHASIS_0: |
| preemph_reg_value = 0x0004000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| demph_reg_value = 0x2B405555; |
| uniqtranscale_reg_value = 0x552AB83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x5548B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| demph_reg_value = 0x2B245555; |
| uniqtranscale_reg_value = 0x5560B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| demph_reg_value = 0x2B405555; |
| uniqtranscale_reg_value = 0x5598DA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_3_5: |
| preemph_reg_value = 0x0002000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x5552B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| demph_reg_value = 0x2B404848; |
| uniqtranscale_reg_value = 0x5580B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| demph_reg_value = 0x2B404040; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_6: |
| preemph_reg_value = 0x0000000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| demph_reg_value = 0x2B305555; |
| uniqtranscale_reg_value = 0x5570B83A; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| demph_reg_value = 0x2B2B4040; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_9_5: |
| preemph_reg_value = 0x0006000; |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| demph_reg_value = 0x1B405555; |
| uniqtranscale_reg_value = 0x55ADDA3A; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), |
| uniqtranscale_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value); |
| vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000); |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| return 0; |
| } |
| |
| static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *dport = dp_to_dig_port(intel_dp); |
| struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc); |
| u32 deemph_reg_value, margin_reg_value, val; |
| uint8_t train_set = intel_dp->train_set[0]; |
| enum dpio_channel ch = vlv_dport_to_channel(dport); |
| enum pipe pipe = intel_crtc->pipe; |
| int i; |
| |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPHASIS_0: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| deemph_reg_value = 128; |
| margin_reg_value = 52; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| deemph_reg_value = 128; |
| margin_reg_value = 77; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| deemph_reg_value = 128; |
| margin_reg_value = 102; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| deemph_reg_value = 128; |
| margin_reg_value = 154; |
| /* FIXME extra to set for 1200 */ |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_3_5: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| deemph_reg_value = 85; |
| margin_reg_value = 78; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| deemph_reg_value = 85; |
| margin_reg_value = 116; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| deemph_reg_value = 85; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_6: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| deemph_reg_value = 64; |
| margin_reg_value = 104; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| deemph_reg_value = 64; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_9_5: |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| deemph_reg_value = 43; |
| margin_reg_value = 154; |
| break; |
| default: |
| return 0; |
| } |
| break; |
| default: |
| return 0; |
| } |
| |
| mutex_lock(&dev_priv->dpio_lock); |
| |
| /* Clear calc init */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3); |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| /* Program swing deemph */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i)); |
| val &= ~DPIO_SWING_DEEMPH9P5_MASK; |
| val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val); |
| } |
| |
| /* Program swing margin */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); |
| val &= ~DPIO_SWING_MARGIN_MASK; |
| val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); |
| } |
| |
| /* Disable unique transition scale */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); |
| val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); |
| } |
| |
| if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK) |
| == DP_TRAIN_PRE_EMPHASIS_0) && |
| ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK) |
| == DP_TRAIN_VOLTAGE_SWING_1200)) { |
| |
| /* |
| * The document said it needs to set bit 27 for ch0 and bit 26 |
| * for ch1. Might be a typo in the doc. |
| * For now, for this unique transition scale selection, set bit |
| * 27 for ch0 and ch1. |
| */ |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i)); |
| val |= DPIO_TX_UNIQ_TRANS_SCALE_EN; |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val); |
| } |
| |
| for (i = 0; i < 4; i++) { |
| val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i)); |
| val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT); |
| val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT); |
| vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val); |
| } |
| } |
| |
| /* Start swing calculation */ |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val); |
| |
| val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch)); |
| val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3; |
| vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val); |
| |
| /* LRC Bypass */ |
| val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30); |
| val |= DPIO_LRC_BYPASS; |
| vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val); |
| |
| mutex_unlock(&dev_priv->dpio_lock); |
| |
| return 0; |
| } |
| |
| static void |
| intel_get_adjust_train(struct intel_dp *intel_dp, |
| const uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| uint8_t v = 0; |
| uint8_t p = 0; |
| int lane; |
| uint8_t voltage_max; |
| uint8_t preemph_max; |
| |
| for (lane = 0; lane < intel_dp->lane_count; lane++) { |
| uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane); |
| uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane); |
| |
| if (this_v > v) |
| v = this_v; |
| if (this_p > p) |
| p = this_p; |
| } |
| |
| voltage_max = intel_dp_voltage_max(intel_dp); |
| if (v >= voltage_max) |
| v = voltage_max | DP_TRAIN_MAX_SWING_REACHED; |
| |
| preemph_max = intel_dp_pre_emphasis_max(intel_dp, v); |
| if (p >= preemph_max) |
| p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; |
| |
| for (lane = 0; lane < 4; lane++) |
| intel_dp->train_set[lane] = v | p; |
| } |
| |
| static uint32_t |
| intel_gen4_signal_levels(uint8_t train_set) |
| { |
| uint32_t signal_levels = 0; |
| |
| switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { |
| case DP_TRAIN_VOLTAGE_SWING_400: |
| default: |
| signal_levels |= DP_VOLTAGE_0_4; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_600: |
| signal_levels |= DP_VOLTAGE_0_6; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_800: |
| signal_levels |= DP_VOLTAGE_0_8; |
| break; |
| case DP_TRAIN_VOLTAGE_SWING_1200: |
| signal_levels |= DP_VOLTAGE_1_2; |
| break; |
| } |
| switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { |
| case DP_TRAIN_PRE_EMPHASIS_0: |
| default: |
| signal_levels |= DP_PRE_EMPHASIS_0; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_3_5: |
| signal_levels |= DP_PRE_EMPHASIS_3_5; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_6: |
| signal_levels |= DP_PRE_EMPHASIS_6; |
| break; |
| case DP_TRAIN_PRE_EMPHASIS_9_5: |
| signal_levels |= DP_PRE_EMPHASIS_9_5; |
| break; |
| } |
| return signal_levels; |
| } |
| |
| /* Gen6's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| intel_gen6_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: |
| return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: |
| case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; |
| } |
| } |
| |
| /* Gen7's DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| intel_gen7_edp_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_400MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_400MV_3_5DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: |
| return EDP_LINK_TRAIN_400MV_6DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_600MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_600MV_3_5DB_IVB; |
| |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: |
| return EDP_LINK_TRAIN_800MV_0DB_IVB; |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return EDP_LINK_TRAIN_800MV_3_5DB_IVB; |
| |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return EDP_LINK_TRAIN_500MV_0DB_IVB; |
| } |
| } |
| |
| /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */ |
| static uint32_t |
| intel_hsw_signal_levels(uint8_t train_set) |
| { |
| int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | |
| DP_TRAIN_PRE_EMPHASIS_MASK); |
| switch (signal_levels) { |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0: |
| return DDI_BUF_EMP_400MV_0DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return DDI_BUF_EMP_400MV_3_5DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6: |
| return DDI_BUF_EMP_400MV_6DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5: |
| return DDI_BUF_EMP_400MV_9_5DB_HSW; |
| |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0: |
| return DDI_BUF_EMP_600MV_0DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return DDI_BUF_EMP_600MV_3_5DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6: |
| return DDI_BUF_EMP_600MV_6DB_HSW; |
| |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0: |
| return DDI_BUF_EMP_800MV_0DB_HSW; |
| case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5: |
| return DDI_BUF_EMP_800MV_3_5DB_HSW; |
| default: |
| DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" |
| "0x%x\n", signal_levels); |
| return DDI_BUF_EMP_400MV_0DB_HSW; |
| } |
| } |
| |
| /* Properly updates "DP" with the correct signal levels. */ |
| static void |
| intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum port port = intel_dig_port->port; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| uint32_t signal_levels, mask; |
| uint8_t train_set = intel_dp->train_set[0]; |
| |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| signal_levels = intel_hsw_signal_levels(train_set); |
| mask = DDI_BUF_EMP_MASK; |
| } else if (IS_CHERRYVIEW(dev)) { |
| signal_levels = intel_chv_signal_levels(intel_dp); |
| mask = 0; |
| } else if (IS_VALLEYVIEW(dev)) { |
| signal_levels = intel_vlv_signal_levels(intel_dp); |
| mask = 0; |
| } else if (IS_GEN7(dev) && port == PORT_A) { |
| signal_levels = intel_gen7_edp_signal_levels(train_set); |
| mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; |
| } else if (IS_GEN6(dev) && port == PORT_A) { |
| signal_levels = intel_gen6_edp_signal_levels(train_set); |
| mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; |
| } else { |
| signal_levels = intel_gen4_signal_levels(train_set); |
| mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; |
| } |
| |
| DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); |
| |
| *DP = (*DP & ~mask) | signal_levels; |
| } |
| |
| static bool |
| intel_dp_set_link_train(struct intel_dp *intel_dp, |
| uint32_t *DP, |
| uint8_t dp_train_pat) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| uint8_t buf[sizeof(intel_dp->train_set) + 1]; |
| int ret, len; |
| |
| if (HAS_DDI(dev)) { |
| uint32_t temp = I915_READ(DP_TP_CTL(port)); |
| |
| if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) |
| temp |= DP_TP_CTL_SCRAMBLE_DISABLE; |
| else |
| temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; |
| |
| temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; |
| |
| break; |
| case DP_TRAINING_PATTERN_1: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT1; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT2; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| temp |= DP_TP_CTL_LINK_TRAIN_PAT3; |
| break; |
| } |
| I915_WRITE(DP_TP_CTL(port), temp); |
| |
| } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { |
| *DP &= ~DP_LINK_TRAIN_MASK_CPT; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| *DP |= DP_LINK_TRAIN_OFF_CPT; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| *DP |= DP_LINK_TRAIN_PAT_1_CPT; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| *DP |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| *DP |= DP_LINK_TRAIN_PAT_2_CPT; |
| break; |
| } |
| |
| } else { |
| if (IS_CHERRYVIEW(dev)) |
| *DP &= ~DP_LINK_TRAIN_MASK_CHV; |
| else |
| *DP &= ~DP_LINK_TRAIN_MASK; |
| |
| switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { |
| case DP_TRAINING_PATTERN_DISABLE: |
| *DP |= DP_LINK_TRAIN_OFF; |
| break; |
| case DP_TRAINING_PATTERN_1: |
| *DP |= DP_LINK_TRAIN_PAT_1; |
| break; |
| case DP_TRAINING_PATTERN_2: |
| *DP |= DP_LINK_TRAIN_PAT_2; |
| break; |
| case DP_TRAINING_PATTERN_3: |
| if (IS_CHERRYVIEW(dev)) { |
| *DP |= DP_LINK_TRAIN_PAT_3_CHV; |
| } else { |
| DRM_ERROR("DP training pattern 3 not supported\n"); |
| *DP |= DP_LINK_TRAIN_PAT_2; |
| } |
| break; |
| } |
| } |
| |
| I915_WRITE(intel_dp->output_reg, *DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| buf[0] = dp_train_pat; |
| if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) == |
| DP_TRAINING_PATTERN_DISABLE) { |
| /* don't write DP_TRAINING_LANEx_SET on disable */ |
| len = 1; |
| } else { |
| /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */ |
| memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count); |
| len = intel_dp->lane_count + 1; |
| } |
| |
| ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET, |
| buf, len); |
| |
| return ret == len; |
| } |
| |
| static bool |
| intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP, |
| uint8_t dp_train_pat) |
| { |
| memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set)); |
| intel_dp_set_signal_levels(intel_dp, DP); |
| return intel_dp_set_link_train(intel_dp, DP, dp_train_pat); |
| } |
| |
| static bool |
| intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP, |
| const uint8_t link_status[DP_LINK_STATUS_SIZE]) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| |
| intel_get_adjust_train(intel_dp, link_status); |
| intel_dp_set_signal_levels(intel_dp, DP); |
| |
| I915_WRITE(intel_dp->output_reg, *DP); |
| POSTING_READ(intel_dp->output_reg); |
| |
| ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET, |
| intel_dp->train_set, intel_dp->lane_count); |
| |
| return ret == intel_dp->lane_count; |
| } |
| |
| static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| uint32_t val; |
| |
| if (!HAS_DDI(dev)) |
| return; |
| |
| val = I915_READ(DP_TP_CTL(port)); |
| val &= ~DP_TP_CTL_LINK_TRAIN_MASK; |
| val |= DP_TP_CTL_LINK_TRAIN_IDLE; |
| I915_WRITE(DP_TP_CTL(port), val); |
| |
| /* |
| * On PORT_A we can have only eDP in SST mode. There the only reason |
| * we need to set idle transmission mode is to work around a HW issue |
| * where we enable the pipe while not in idle link-training mode. |
| * In this case there is requirement to wait for a minimum number of |
| * idle patterns to be sent. |
| */ |
| if (port == PORT_A) |
| return; |
| |
| if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE), |
| 1)) |
| DRM_ERROR("Timed out waiting for DP idle patterns\n"); |
| } |
| |
| /* Enable corresponding port and start training pattern 1 */ |
| void |
| intel_dp_start_link_train(struct intel_dp *intel_dp) |
| { |
| struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base; |
| struct drm_device *dev = encoder->dev; |
| int i; |
| uint8_t voltage; |
| int voltage_tries, loop_tries; |
| uint32_t DP = intel_dp->DP; |
| uint8_t link_config[2]; |
| |
| if (HAS_DDI(dev)) |
| intel_ddi_prepare_link_retrain(encoder); |
| |
| /* Write the link configuration data */ |
| link_config[0] = intel_dp->link_bw; |
| link_config[1] = intel_dp->lane_count; |
| if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) |
| link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; |
| drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2); |
| |
| link_config[0] = 0; |
| link_config[1] = DP_SET_ANSI_8B10B; |
| drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2); |
| |
| DP |= DP_PORT_EN; |
| |
| /* clock recovery */ |
| if (!intel_dp_reset_link_train(intel_dp, &DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE)) { |
| DRM_ERROR("failed to enable link training\n"); |
| return; |
| } |
| |
| voltage = 0xff; |
| voltage_tries = 0; |
| loop_tries = 0; |
| for (;;) { |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| DRM_ERROR("failed to get link status\n"); |
| break; |
| } |
| |
| if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("clock recovery OK\n"); |
| break; |
| } |
| |
| /* Check to see if we've tried the max voltage */ |
| for (i = 0; i < intel_dp->lane_count; i++) |
| if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) |
| break; |
| if (i == intel_dp->lane_count) { |
| ++loop_tries; |
| if (loop_tries == 5) { |
| DRM_ERROR("too many full retries, give up\n"); |
| break; |
| } |
| intel_dp_reset_link_train(intel_dp, &DP, |
| DP_TRAINING_PATTERN_1 | |
| DP_LINK_SCRAMBLING_DISABLE); |
| voltage_tries = 0; |
| continue; |
| } |
| |
| /* Check to see if we've tried the same voltage 5 times */ |
| if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { |
| ++voltage_tries; |
| if (voltage_tries == 5) { |
| DRM_ERROR("too many voltage retries, give up\n"); |
| break; |
| } |
| } else |
| voltage_tries = 0; |
| voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; |
| |
| /* Update training set as requested by target */ |
| if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { |
| DRM_ERROR("failed to update link training\n"); |
| break; |
| } |
| } |
| |
| intel_dp->DP = DP; |
| } |
| |
| void |
| intel_dp_complete_link_train(struct intel_dp *intel_dp) |
| { |
| bool channel_eq = false; |
| int tries, cr_tries; |
| uint32_t DP = intel_dp->DP; |
| uint32_t training_pattern = DP_TRAINING_PATTERN_2; |
| |
| /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/ |
| if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3) |
| training_pattern = DP_TRAINING_PATTERN_3; |
| |
| /* channel equalization */ |
| if (!intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE)) { |
| DRM_ERROR("failed to start channel equalization\n"); |
| return; |
| } |
| |
| tries = 0; |
| cr_tries = 0; |
| channel_eq = false; |
| for (;;) { |
| uint8_t link_status[DP_LINK_STATUS_SIZE]; |
| |
| if (cr_tries > 5) { |
| DRM_ERROR("failed to train DP, aborting\n"); |
| break; |
| } |
| |
| drm_dp_link_train_channel_eq_delay(intel_dp->dpcd); |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| DRM_ERROR("failed to get link status\n"); |
| break; |
| } |
| |
| /* Make sure clock is still ok */ |
| if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) { |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE); |
| cr_tries++; |
| continue; |
| } |
| |
| if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { |
| channel_eq = true; |
| break; |
| } |
| |
| /* Try 5 times, then try clock recovery if that fails */ |
| if (tries > 5) { |
| intel_dp_link_down(intel_dp); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_set_link_train(intel_dp, &DP, |
| training_pattern | |
| DP_LINK_SCRAMBLING_DISABLE); |
| tries = 0; |
| cr_tries++; |
| continue; |
| } |
| |
| /* Update training set as requested by target */ |
| if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) { |
| DRM_ERROR("failed to update link training\n"); |
| break; |
| } |
| ++tries; |
| } |
| |
| intel_dp_set_idle_link_train(intel_dp); |
| |
| intel_dp->DP = DP; |
| |
| if (channel_eq) |
| DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n"); |
| |
| } |
| |
| void intel_dp_stop_link_train(struct intel_dp *intel_dp) |
| { |
| intel_dp_set_link_train(intel_dp, &intel_dp->DP, |
| DP_TRAINING_PATTERN_DISABLE); |
| } |
| |
| static void |
| intel_dp_link_down(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum port port = intel_dig_port->port; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(intel_dig_port->base.base.crtc); |
| uint32_t DP = intel_dp->DP; |
| |
| if (WARN_ON(HAS_DDI(dev))) |
| return; |
| |
| if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) |
| return; |
| |
| DRM_DEBUG_KMS("\n"); |
| |
| if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) { |
| DP &= ~DP_LINK_TRAIN_MASK_CPT; |
| I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT); |
| } else { |
| if (IS_CHERRYVIEW(dev)) |
| DP &= ~DP_LINK_TRAIN_MASK_CHV; |
| else |
| DP &= ~DP_LINK_TRAIN_MASK; |
| I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); |
| } |
| POSTING_READ(intel_dp->output_reg); |
| |
| if (HAS_PCH_IBX(dev) && |
| I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) { |
| struct drm_crtc *crtc = intel_dig_port->base.base.crtc; |
| |
| /* Hardware workaround: leaving our transcoder select |
| * set to transcoder B while it's off will prevent the |
| * corresponding HDMI output on transcoder A. |
| * |
| * Combine this with another hardware workaround: |
| * transcoder select bit can only be cleared while the |
| * port is enabled. |
| */ |
| DP &= ~DP_PIPEB_SELECT; |
| I915_WRITE(intel_dp->output_reg, DP); |
| |
| /* Changes to enable or select take place the vblank |
| * after being written. |
| */ |
| if (WARN_ON(crtc == NULL)) { |
| /* We should never try to disable a port without a crtc |
| * attached. For paranoia keep the code around for a |
| * bit. */ |
| POSTING_READ(intel_dp->output_reg); |
| msleep(50); |
| } else |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| } |
| |
| DP &= ~DP_AUDIO_OUTPUT_ENABLE; |
| I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); |
| POSTING_READ(intel_dp->output_reg); |
| msleep(intel_dp->panel_power_down_delay); |
| } |
| |
| static bool |
| intel_dp_get_dpcd(struct intel_dp *intel_dp) |
| { |
| struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| |
| char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3]; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd, |
| sizeof(intel_dp->dpcd)) < 0) |
| return false; /* aux transfer failed */ |
| |
| hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd), |
| 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false); |
| DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump); |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0) |
| return false; /* DPCD not present */ |
| |
| /* Check if the panel supports PSR */ |
| memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd)); |
| if (is_edp(intel_dp)) { |
| intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT, |
| intel_dp->psr_dpcd, |
| sizeof(intel_dp->psr_dpcd)); |
| if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { |
| dev_priv->psr.sink_support = true; |
| DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); |
| } |
| } |
| |
| /* Training Pattern 3 support */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 && |
| intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) { |
| intel_dp->use_tps3 = true; |
| DRM_DEBUG_KMS("Displayport TPS3 supported"); |
| } else |
| intel_dp->use_tps3 = false; |
| |
| if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & |
| DP_DWN_STRM_PORT_PRESENT)) |
| return true; /* native DP sink */ |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) |
| return true; /* no per-port downstream info */ |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, |
| intel_dp->downstream_ports, |
| DP_MAX_DOWNSTREAM_PORTS) < 0) |
| return false; /* downstream port status fetch failed */ |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_probe_oui(struct intel_dp *intel_dp) |
| { |
| u8 buf[3]; |
| |
| if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) |
| return; |
| |
| intel_edp_panel_vdd_on(intel_dp); |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3) |
| DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3) |
| DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n", |
| buf[0], buf[1], buf[2]); |
| |
| edp_panel_vdd_off(intel_dp, false); |
| } |
| |
| static bool |
| intel_dp_probe_mst(struct intel_dp *intel_dp) |
| { |
| u8 buf[1]; |
| |
| if (!intel_dp->can_mst) |
| return false; |
| |
| if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) |
| return false; |
| |
| _edp_panel_vdd_on(intel_dp); |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) { |
| if (buf[0] & DP_MST_CAP) { |
| DRM_DEBUG_KMS("Sink is MST capable\n"); |
| intel_dp->is_mst = true; |
| } else { |
| DRM_DEBUG_KMS("Sink is not MST capable\n"); |
| intel_dp->is_mst = false; |
| } |
| } |
| edp_panel_vdd_off(intel_dp, false); |
| |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| return intel_dp->is_mst; |
| } |
| |
| int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc) |
| { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct intel_crtc *intel_crtc = |
| to_intel_crtc(intel_dig_port->base.base.crtc); |
| u8 buf[1]; |
| |
| if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0) |
| return -EAGAIN; |
| |
| if (!(buf[0] & DP_TEST_CRC_SUPPORTED)) |
| return -ENOTTY; |
| |
| if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, |
| DP_TEST_SINK_START) < 0) |
| return -EAGAIN; |
| |
| /* Wait 2 vblanks to be sure we will have the correct CRC value */ |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| intel_wait_for_vblank(dev, intel_crtc->pipe); |
| |
| if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) |
| return -EAGAIN; |
| |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0); |
| return 0; |
| } |
| |
| static bool |
| intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) |
| { |
| return intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector, 1) == 1; |
| } |
| |
| static bool |
| intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) |
| { |
| int ret; |
| |
| ret = intel_dp_dpcd_read_wake(&intel_dp->aux, |
| DP_SINK_COUNT_ESI, |
| sink_irq_vector, 14); |
| if (ret != 14) |
| return false; |
| |
| return true; |
| } |
| |
| static void |
| intel_dp_handle_test_request(struct intel_dp *intel_dp) |
| { |
| /* NAK by default */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK); |
| } |
| |
| static int |
| intel_dp_check_mst_status(struct intel_dp *intel_dp) |
| { |
| bool bret; |
| |
| if (intel_dp->is_mst) { |
| u8 esi[16] = { 0 }; |
| int ret = 0; |
| int retry; |
| bool handled; |
| bret = intel_dp_get_sink_irq_esi(intel_dp, esi); |
| go_again: |
| if (bret == true) { |
| |
| /* check link status - esi[10] = 0x200c */ |
| if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| } |
| |
| DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]); |
| ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); |
| |
| if (handled) { |
| for (retry = 0; retry < 3; retry++) { |
| int wret; |
| wret = drm_dp_dpcd_write(&intel_dp->aux, |
| DP_SINK_COUNT_ESI+1, |
| &esi[1], 3); |
| if (wret == 3) { |
| break; |
| } |
| } |
| |
| bret = intel_dp_get_sink_irq_esi(intel_dp, esi); |
| if (bret == true) { |
| DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]); |
| goto go_again; |
| } |
| } else |
| ret = 0; |
| |
| return ret; |
| } else { |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); |
| intel_dp->is_mst = false; |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| /* send a hotplug event */ |
| drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev); |
| } |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * According to DP spec |
| * 5.1.2: |
| * 1. Read DPCD |
| * 2. Configure link according to Receiver Capabilities |
| * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 |
| * 4. Check link status on receipt of hot-plug interrupt |
| */ |
| void |
| intel_dp_check_link_status(struct intel_dp *intel_dp) |
| { |
| struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; |
| u8 sink_irq_vector; |
| u8 link_status[DP_LINK_STATUS_SIZE]; |
| |
| /* FIXME: This access isn't protected by any locks. */ |
| if (!intel_encoder->connectors_active) |
| return; |
| |
| if (WARN_ON(!intel_encoder->base.crtc)) |
| return; |
| |
| /* Try to read receiver status if the link appears to be up */ |
| if (!intel_dp_get_link_status(intel_dp, link_status)) { |
| return; |
| } |
| |
| /* Now read the DPCD to see if it's actually running */ |
| if (!intel_dp_get_dpcd(intel_dp)) { |
| return; |
| } |
| |
| /* Try to read the source of the interrupt */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) { |
| /* Clear interrupt source */ |
| drm_dp_dpcd_writeb(&intel_dp->aux, |
| DP_DEVICE_SERVICE_IRQ_VECTOR, |
| sink_irq_vector); |
| |
| if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) |
| intel_dp_handle_test_request(intel_dp); |
| if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) |
| DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); |
| } |
| |
| if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) { |
| DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n", |
| intel_encoder->base.name); |
| intel_dp_start_link_train(intel_dp); |
| intel_dp_complete_link_train(intel_dp); |
| intel_dp_stop_link_train(intel_dp); |
| } |
| } |
| |
| /* XXX this is probably wrong for multiple downstream ports */ |
| static enum drm_connector_status |
| intel_dp_detect_dpcd(struct intel_dp *intel_dp) |
| { |
| uint8_t *dpcd = intel_dp->dpcd; |
| uint8_t type; |
| |
| if (!intel_dp_get_dpcd(intel_dp)) |
| return connector_status_disconnected; |
| |
| /* if there's no downstream port, we're done */ |
| if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT)) |
| return connector_status_connected; |
| |
| /* If we're HPD-aware, SINK_COUNT changes dynamically */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && |
| intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { |
| uint8_t reg; |
| |
| if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT, |
| ®, 1) < 0) |
| return connector_status_unknown; |
| |
| return DP_GET_SINK_COUNT(reg) ? connector_status_connected |
| : connector_status_disconnected; |
| } |
| |
| /* If no HPD, poke DDC gently */ |
| if (drm_probe_ddc(&intel_dp->aux.ddc)) |
| return connector_status_connected; |
| |
| /* Well we tried, say unknown for unreliable port types */ |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { |
| type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; |
| if (type == DP_DS_PORT_TYPE_VGA || |
| type == DP_DS_PORT_TYPE_NON_EDID) |
| return connector_status_unknown; |
| } else { |
| type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & |
| DP_DWN_STRM_PORT_TYPE_MASK; |
| if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || |
| type == DP_DWN_STRM_PORT_TYPE_OTHER) |
| return connector_status_unknown; |
| } |
| |
| /* Anything else is out of spec, warn and ignore */ |
| DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); |
| return connector_status_disconnected; |
| } |
| |
| static enum drm_connector_status |
| ironlake_dp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| enum drm_connector_status status; |
| |
| /* Can't disconnect eDP, but you can close the lid... */ |
| if (is_edp(intel_dp)) { |
| status = intel_panel_detect(dev); |
| if (status == connector_status_unknown) |
| status = connector_status_connected; |
| return status; |
| } |
| |
| if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) |
| return connector_status_disconnected; |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static enum drm_connector_status |
| g4x_dp_detect(struct intel_dp *intel_dp) |
| { |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| uint32_t bit; |
| |
| /* Can't disconnect eDP, but you can close the lid... */ |
| if (is_edp(intel_dp)) { |
| enum drm_connector_status status; |
| |
| status = intel_panel_detect(dev); |
| if (status == connector_status_unknown) |
| status = connector_status_connected; |
| return status; |
| } |
| |
| if (IS_VALLEYVIEW(dev)) { |
| switch (intel_dig_port->port) { |
| case PORT_B: |
| bit = PORTB_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| case PORT_C: |
| bit = PORTC_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| case PORT_D: |
| bit = PORTD_HOTPLUG_LIVE_STATUS_VLV; |
| break; |
| default: |
| return connector_status_unknown; |
| } |
| } else { |
| switch (intel_dig_port->port) { |
| case PORT_B: |
| bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| case PORT_C: |
| bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| case PORT_D: |
| bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; |
| break; |
| default: |
| return connector_status_unknown; |
| } |
| } |
| |
| if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0) |
| return connector_status_disconnected; |
| |
| return intel_dp_detect_dpcd(intel_dp); |
| } |
| |
| static struct edid * |
| intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| /* use cached edid if we have one */ |
| if (intel_connector->edid) { |
| /* invalid edid */ |
| if (IS_ERR(intel_connector->edid)) |
| return NULL; |
| |
| return drm_edid_duplicate(intel_connector->edid); |
| } |
| |
| return drm_get_edid(connector, adapter); |
| } |
| |
| static int |
| intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| /* use cached edid if we have one */ |
| if (intel_connector->edid) { |
| /* invalid edid */ |
| if (IS_ERR(intel_connector->edid)) |
| return 0; |
| |
| return intel_connector_update_modes(connector, |
| intel_connector->edid); |
| } |
| |
| return intel_ddc_get_modes(connector, adapter); |
| } |
| |
| static enum drm_connector_status |
| intel_dp_detect(struct drm_connector *connector, bool force) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = connector->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum drm_connector_status status; |
| enum intel_display_power_domain power_domain; |
| struct edid *edid = NULL; |
| bool ret; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", |
| connector->base.id, connector->name); |
| |
| if (intel_dp->is_mst) { |
| /* MST devices are disconnected from a monitor POV */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| status = connector_status_disconnected; |
| goto out; |
| } |
| |
| intel_dp->has_audio = false; |
| |
| if (HAS_PCH_SPLIT(dev)) |
| status = ironlake_dp_detect(intel_dp); |
| else |
| status = g4x_dp_detect(intel_dp); |
| |
| if (status != connector_status_connected) |
| goto out; |
| |
| intel_dp_probe_oui(intel_dp); |
| |
| ret = intel_dp_probe_mst(intel_dp); |
| if (ret) { |
| /* if we are in MST mode then this connector |
| won't appear connected or have anything with EDID on it */ |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| status = connector_status_disconnected; |
| goto out; |
| } |
| |
| if (intel_dp->force_audio != HDMI_AUDIO_AUTO) { |
| intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON); |
| } else { |
| edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc); |
| if (edid) { |
| intel_dp->has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| } |
| |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| status = connector_status_connected; |
| |
| out: |
| intel_display_power_put(dev_priv, power_domain); |
| return status; |
| } |
| |
| static int intel_dp_get_modes(struct drm_connector *connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct drm_device *dev = connector->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| int ret; |
| |
| /* We should parse the EDID data and find out if it has an audio sink |
| */ |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc); |
| intel_display_power_put(dev_priv, power_domain); |
| if (ret) |
| return ret; |
| |
| /* if eDP has no EDID, fall back to fixed mode */ |
| if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) { |
| struct drm_display_mode *mode; |
| mode = drm_mode_duplicate(dev, |
| intel_connector->panel.fixed_mode); |
| if (mode) { |
| drm_mode_probed_add(connector, mode); |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static bool |
| intel_dp_detect_audio(struct drm_connector *connector) |
| { |
| struct intel_dp *intel_dp = intel_attached_dp(connector); |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = connector->dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum intel_display_power_domain power_domain; |
| struct edid *edid; |
| bool has_audio = false; |
| |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc); |
| if (edid) { |
| has_audio = drm_detect_monitor_audio(edid); |
| kfree(edid); |
| } |
| |
| intel_display_power_put(dev_priv, power_domain); |
| |
| return has_audio; |
| } |
| |
| static int |
| intel_dp_set_property(struct drm_connector *connector, |
| struct drm_property *property, |
| uint64_t val) |
| { |
| struct drm_i915_private *dev_priv = connector->dev->dev_private; |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| struct intel_encoder *intel_encoder = intel_attached_encoder(connector); |
| struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| int ret; |
| |
| ret = drm_object_property_set_value(&connector->base, property, val); |
| if (ret) |
| return ret; |
| |
| if (property == dev_priv->force_audio_property) { |
| int i = val; |
| bool has_audio; |
| |
| if (i == intel_dp->force_audio) |
| return 0; |
| |
| intel_dp->force_audio = i; |
| |
| if (i == HDMI_AUDIO_AUTO) |
| has_audio = intel_dp_detect_audio(connector); |
| else |
| has_audio = (i == HDMI_AUDIO_ON); |
| |
| if (has_audio == intel_dp->has_audio) |
| return 0; |
| |
| intel_dp->has_audio = has_audio; |
| goto done; |
| } |
| |
| if (property == dev_priv->broadcast_rgb_property) { |
| bool old_auto = intel_dp->color_range_auto; |
| uint32_t old_range = intel_dp->color_range; |
| |
| switch (val) { |
| case INTEL_BROADCAST_RGB_AUTO: |
| intel_dp->color_range_auto = true; |
| break; |
| case INTEL_BROADCAST_RGB_FULL: |
| intel_dp->color_range_auto = false; |
| intel_dp->color_range = 0; |
| break; |
| case INTEL_BROADCAST_RGB_LIMITED: |
| intel_dp->color_range_auto = false; |
| intel_dp->color_range = DP_COLOR_RANGE_16_235; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (old_auto == intel_dp->color_range_auto && |
| old_range == intel_dp->color_range) |
| return 0; |
| |
| goto done; |
| } |
| |
| if (is_edp(intel_dp) && |
| property == connector->dev->mode_config.scaling_mode_property) { |
| if (val == DRM_MODE_SCALE_NONE) { |
| DRM_DEBUG_KMS("no scaling not supported\n"); |
| return -EINVAL; |
| } |
| |
| if (intel_connector->panel.fitting_mode == val) { |
| /* the eDP scaling property is not changed */ |
| return 0; |
| } |
| intel_connector->panel.fitting_mode = val; |
| |
| goto done; |
| } |
| |
| return -EINVAL; |
| |
| done: |
| if (intel_encoder->base.crtc) |
| intel_crtc_restore_mode(intel_encoder->base.crtc); |
| |
| return 0; |
| } |
| |
| static void |
| intel_dp_connector_destroy(struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| if (!IS_ERR_OR_NULL(intel_connector->edid)) |
| kfree(intel_connector->edid); |
| |
| /* Can't call is_edp() since the encoder may have been destroyed |
| * already. */ |
| if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) |
| intel_panel_fini(&intel_connector->panel); |
| |
| drm_connector_cleanup(connector); |
| kfree(connector); |
| } |
| |
| void intel_dp_encoder_destroy(struct drm_encoder *encoder) |
| { |
| struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct drm_device *dev = intel_dp_to_dev(intel_dp); |
| |
| drm_dp_aux_unregister(&intel_dp->aux); |
| intel_dp_mst_encoder_cleanup(intel_dig_port); |
| drm_encoder_cleanup(encoder); |
| if (is_edp(intel_dp)) { |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| edp_panel_vdd_off_sync(intel_dp); |
| drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| if (intel_dp->edp_notifier.notifier_call) { |
| unregister_reboot_notifier(&intel_dp->edp_notifier); |
| intel_dp->edp_notifier.notifier_call = NULL; |
| } |
| } |
| kfree(intel_dig_port); |
| } |
| |
| static void intel_dp_encoder_reset(struct drm_encoder *encoder) |
| { |
| intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder)); |
| } |
| |
| static const struct drm_connector_funcs intel_dp_connector_funcs = { |
| .dpms = intel_connector_dpms, |
| .detect = intel_dp_detect, |
| .fill_modes = drm_helper_probe_single_connector_modes, |
| .set_property = intel_dp_set_property, |
| .destroy = intel_dp_connector_destroy, |
| }; |
| |
| static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { |
| .get_modes = intel_dp_get_modes, |
| .mode_valid = intel_dp_mode_valid, |
| .best_encoder = intel_best_encoder, |
| }; |
| |
| static const struct drm_encoder_funcs intel_dp_enc_funcs = { |
| .reset = intel_dp_encoder_reset, |
| .destroy = intel_dp_encoder_destroy, |
| }; |
| |
| void |
| intel_dp_hot_plug(struct intel_encoder *intel_encoder) |
| { |
| return; |
| } |
| |
| bool |
| intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) |
| { |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int ret; |
| if (intel_dig_port->base.type != INTEL_OUTPUT_EDP) |
| intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT; |
| |
| DRM_DEBUG_KMS("got hpd irq on port %d - %s\n", intel_dig_port->port, |
| long_hpd ? "long" : "short"); |
| |
| if (long_hpd) { |
| if (!ibx_digital_port_connected(dev_priv, intel_dig_port)) |
| goto mst_fail; |
| |
| if (!intel_dp_get_dpcd(intel_dp)) { |
| goto mst_fail; |
| } |
| |
| intel_dp_probe_oui(intel_dp); |
| |
| if (!intel_dp_probe_mst(intel_dp)) |
| goto mst_fail; |
| |
| } else { |
| if (intel_dp->is_mst) { |
| ret = intel_dp_check_mst_status(intel_dp); |
| if (ret == -EINVAL) |
| goto mst_fail; |
| } |
| |
| if (!intel_dp->is_mst) { |
| /* |
| * we'll check the link status via the normal hot plug path later - |
| * but for short hpds we should check it now |
| */ |
| intel_dp_check_link_status(intel_dp); |
| } |
| } |
| return false; |
| mst_fail: |
| /* if we were in MST mode, and device is not there get out of MST mode */ |
| if (intel_dp->is_mst) { |
| DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); |
| intel_dp->is_mst = false; |
| drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); |
| } |
| return true; |
| } |
| |
| /* Return which DP Port should be selected for Transcoder DP control */ |
| int |
| intel_trans_dp_port_sel(struct drm_crtc *crtc) |
| { |
| struct drm_device *dev = crtc->dev; |
| struct intel_encoder *intel_encoder; |
| struct intel_dp *intel_dp; |
| |
| for_each_encoder_on_crtc(dev, crtc, intel_encoder) { |
| intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| |
| if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT || |
| intel_encoder->type == INTEL_OUTPUT_EDP) |
| return intel_dp->output_reg; |
| } |
| |
| return -1; |
| } |
| |
| /* check the VBT to see whether the eDP is on DP-D port */ |
| bool intel_dp_is_edp(struct drm_device *dev, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| union child_device_config *p_child; |
| int i; |
| static const short port_mapping[] = { |
| [PORT_B] = PORT_IDPB, |
| [PORT_C] = PORT_IDPC, |
| [PORT_D] = PORT_IDPD, |
| }; |
| |
| if (port == PORT_A) |
| return true; |
| |
| if (!dev_priv->vbt.child_dev_num) |
| return false; |
| |
| for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { |
| p_child = dev_priv->vbt.child_dev + i; |
| |
| if (p_child->common.dvo_port == port_mapping[port] && |
| (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) == |
| (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS)) |
| return true; |
| } |
| return false; |
| } |
| |
| void |
| intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) |
| { |
| struct intel_connector *intel_connector = to_intel_connector(connector); |
| |
| intel_attach_force_audio_property(connector); |
| intel_attach_broadcast_rgb_property(connector); |
| intel_dp->color_range_auto = true; |
| |
| if (is_edp(intel_dp)) { |
| drm_mode_create_scaling_mode_property(connector->dev); |
| drm_object_attach_property( |
| &connector->base, |
| connector->dev->mode_config.scaling_mode_property, |
| DRM_MODE_SCALE_ASPECT); |
| intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT; |
| } |
| } |
| |
| static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) |
| { |
| intel_dp->last_power_cycle = jiffies; |
| intel_dp->last_power_on = jiffies; |
| intel_dp->last_backlight_off = jiffies; |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer(struct drm_device *dev, |
| struct intel_dp *intel_dp, |
| struct edp_power_seq *out) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct edp_power_seq cur, vbt, spec, final; |
| u32 pp_on, pp_off, pp_div, pp; |
| int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| pp_ctrl_reg = PCH_PP_CONTROL; |
| pp_on_reg = PCH_PP_ON_DELAYS; |
| pp_off_reg = PCH_PP_OFF_DELAYS; |
| pp_div_reg = PCH_PP_DIVISOR; |
| } else { |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe); |
| pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); |
| pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| } |
| |
| /* Workaround: Need to write PP_CONTROL with the unlock key as |
| * the very first thing. */ |
| pp = ironlake_get_pp_control(intel_dp); |
| I915_WRITE(pp_ctrl_reg, pp); |
| |
| pp_on = I915_READ(pp_on_reg); |
| pp_off = I915_READ(pp_off_reg); |
| pp_div = I915_READ(pp_div_reg); |
| |
| /* Pull timing values out of registers */ |
| cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> |
| PANEL_POWER_UP_DELAY_SHIFT; |
| |
| cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> |
| PANEL_LIGHT_ON_DELAY_SHIFT; |
| |
| cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> |
| PANEL_LIGHT_OFF_DELAY_SHIFT; |
| |
| cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> |
| PANEL_POWER_DOWN_DELAY_SHIFT; |
| |
| cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> |
| PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; |
| |
| DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); |
| |
| vbt = dev_priv->vbt.edp_pps; |
| |
| /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of |
| * our hw here, which are all in 100usec. */ |
| spec.t1_t3 = 210 * 10; |
| spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ |
| spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ |
| spec.t10 = 500 * 10; |
| /* This one is special and actually in units of 100ms, but zero |
| * based in the hw (so we need to add 100 ms). But the sw vbt |
| * table multiplies it with 1000 to make it in units of 100usec, |
| * too. */ |
| spec.t11_t12 = (510 + 100) * 10; |
| |
| DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", |
| vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12); |
| |
| /* Use the max of the register settings and vbt. If both are |
| * unset, fall back to the spec limits. */ |
| #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \ |
| spec.field : \ |
| max(cur.field, vbt.field)) |
| assign_final(t1_t3); |
| assign_final(t8); |
| assign_final(t9); |
| assign_final(t10); |
| assign_final(t11_t12); |
| #undef assign_final |
| |
| #define get_delay(field) (DIV_ROUND_UP(final.field, 10)) |
| intel_dp->panel_power_up_delay = get_delay(t1_t3); |
| intel_dp->backlight_on_delay = get_delay(t8); |
| intel_dp->backlight_off_delay = get_delay(t9); |
| intel_dp->panel_power_down_delay = get_delay(t10); |
| intel_dp->panel_power_cycle_delay = get_delay(t11_t12); |
| #undef get_delay |
| |
| DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", |
| intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, |
| intel_dp->panel_power_cycle_delay); |
| |
| DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", |
| intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); |
| |
| if (out) |
| *out = final; |
| } |
| |
| static void |
| intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev, |
| struct intel_dp *intel_dp, |
| struct edp_power_seq *seq) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| u32 pp_on, pp_off, pp_div, port_sel = 0; |
| int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev); |
| int pp_on_reg, pp_off_reg, pp_div_reg; |
| |
| if (HAS_PCH_SPLIT(dev)) { |
| pp_on_reg = PCH_PP_ON_DELAYS; |
| pp_off_reg = PCH_PP_OFF_DELAYS; |
| pp_div_reg = PCH_PP_DIVISOR; |
| } else { |
| enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); |
| |
| pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe); |
| pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe); |
| pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe); |
| } |
| |
| /* |
| * And finally store the new values in the power sequencer. The |
| * backlight delays are set to 1 because we do manual waits on them. For |
| * T8, even BSpec recommends doing it. For T9, if we don't do this, |
| * we'll end up waiting for the backlight off delay twice: once when we |
| * do the manual sleep, and once when we disable the panel and wait for |
| * the PP_STATUS bit to become zero. |
| */ |
| pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | |
| (1 << PANEL_LIGHT_ON_DELAY_SHIFT); |
| pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) | |
| (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); |
| /* Compute the divisor for the pp clock, simply match the Bspec |
| * formula. */ |
| pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; |
| pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) |
| << PANEL_POWER_CYCLE_DELAY_SHIFT); |
| |
| /* Haswell doesn't have any port selection bits for the panel |
| * power sequencer any more. */ |
| if (IS_VALLEYVIEW(dev)) { |
| if (dp_to_dig_port(intel_dp)->port == PORT_B) |
| port_sel = PANEL_PORT_SELECT_DPB_VLV; |
| else |
| port_sel = PANEL_PORT_SELECT_DPC_VLV; |
| } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) { |
| if (dp_to_dig_port(intel_dp)->port == PORT_A) |
| port_sel = PANEL_PORT_SELECT_DPA; |
| else |
| port_sel = PANEL_PORT_SELECT_DPD; |
| } |
| |
| pp_on |= port_sel; |
| |
| I915_WRITE(pp_on_reg, pp_on); |
| I915_WRITE(pp_off_reg, pp_off); |
| I915_WRITE(pp_div_reg, pp_div); |
| |
| DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", |
| I915_READ(pp_on_reg), |
| I915_READ(pp_off_reg), |
| I915_READ(pp_div_reg)); |
| } |
| |
| void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_encoder *encoder; |
| struct intel_dp *intel_dp = NULL; |
| struct intel_crtc_config *config = NULL; |
| struct intel_crtc *intel_crtc = NULL; |
| struct intel_connector *intel_connector = dev_priv->drrs.connector; |
| u32 reg, val; |
| enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR; |
| |
| if (refresh_rate <= 0) { |
| DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); |
| return; |
| } |
| |
| if (intel_connector == NULL) { |
| DRM_DEBUG_KMS("DRRS supported for eDP only.\n"); |
| return; |
| } |
| |
| /* |
| * FIXME: This needs proper synchronization with psr state. But really |
| * hard to tell without seeing the user of this function of this code. |
| * Check locking and ordering once that lands. |
| */ |
| if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) { |
| DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n"); |
| return; |
| } |
| |
| encoder = intel_attached_encoder(&intel_connector->base); |
| intel_dp = enc_to_intel_dp(&encoder->base); |
| intel_crtc = encoder->new_crtc; |
| |
| if (!intel_crtc) { |
| DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); |
| return; |
| } |
| |
| config = &intel_crtc->config; |
| |
| if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) { |
| DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); |
| return; |
| } |
| |
| if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate) |
| index = DRRS_LOW_RR; |
| |
| if (index == intel_dp->drrs_state.refresh_rate_type) { |
| DRM_DEBUG_KMS( |
| "DRRS requested for previously set RR...ignoring\n"); |
| return; |
| } |
| |
| if (!intel_crtc->active) { |
| DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); |
| return; |
| } |
| |
| if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) { |
| reg = PIPECONF(intel_crtc->config.cpu_transcoder); |
| val = I915_READ(reg); |
| if (index > DRRS_HIGH_RR) { |
| val |= PIPECONF_EDP_RR_MODE_SWITCH; |
| intel_dp_set_m_n(intel_crtc); |
| } else { |
| val &= ~PIPECONF_EDP_RR_MODE_SWITCH; |
| } |
| I915_WRITE(reg, val); |
| } |
| |
| /* |
| * mutex taken to ensure that there is no race between differnt |
| * drrs calls trying to update refresh rate. This scenario may occur |
| * in future when idleness detection based DRRS in kernel and |
| * possible calls from user space to set differnt RR are made. |
| */ |
| |
| mutex_lock(&intel_dp->drrs_state.mutex); |
| |
| intel_dp->drrs_state.refresh_rate_type = index; |
| |
| mutex_unlock(&intel_dp->drrs_state.mutex); |
| |
| DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); |
| } |
| |
| static struct drm_display_mode * |
| intel_dp_drrs_init(struct intel_digital_port *intel_dig_port, |
| struct intel_connector *intel_connector, |
| struct drm_display_mode *fixed_mode) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct drm_device *dev = intel_dig_port->base.base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *downclock_mode = NULL; |
| |
| if (INTEL_INFO(dev)->gen <= 6) { |
| DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); |
| return NULL; |
| } |
| |
| if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { |
| DRM_INFO("VBT doesn't support DRRS\n"); |
| return NULL; |
| } |
| |
| downclock_mode = intel_find_panel_downclock |
| (dev, fixed_mode, connector); |
| |
| if (!downclock_mode) { |
| DRM_INFO("DRRS not supported\n"); |
| return NULL; |
| } |
| |
| dev_priv->drrs.connector = intel_connector; |
| |
| mutex_init(&intel_dp->drrs_state.mutex); |
| |
| intel_dp->drrs_state.type = dev_priv->vbt.drrs_type; |
| |
| intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR; |
| DRM_INFO("seamless DRRS supported for eDP panel.\n"); |
| return downclock_mode; |
| } |
| |
| void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder) |
| { |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_dp *intel_dp; |
| enum intel_display_power_domain power_domain; |
| |
| if (intel_encoder->type != INTEL_OUTPUT_EDP) |
| return; |
| |
| intel_dp = enc_to_intel_dp(&intel_encoder->base); |
| if (!edp_have_panel_vdd(intel_dp)) |
| return; |
| /* |
| * The VDD bit needs a power domain reference, so if the bit is |
| * already enabled when we boot or resume, grab this reference and |
| * schedule a vdd off, so we don't hold on to the reference |
| * indefinitely. |
| */ |
| DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); |
| power_domain = intel_display_port_power_domain(intel_encoder); |
| intel_display_power_get(dev_priv, power_domain); |
| |
| edp_panel_vdd_schedule_off(intel_dp); |
| } |
| |
| static bool intel_edp_init_connector(struct intel_dp *intel_dp, |
| struct intel_connector *intel_connector, |
| struct edp_power_seq *power_seq) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct drm_display_mode *fixed_mode = NULL; |
| struct drm_display_mode *downclock_mode = NULL; |
| bool has_dpcd; |
| struct drm_display_mode *scan; |
| struct edid *edid; |
| |
| intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED; |
| |
| if (!is_edp(intel_dp)) |
| return true; |
| |
| intel_edp_panel_vdd_sanitize(intel_encoder); |
| |
| /* Cache DPCD and EDID for edp. */ |
| intel_edp_panel_vdd_on(intel_dp); |
| has_dpcd = intel_dp_get_dpcd(intel_dp); |
| edp_panel_vdd_off(intel_dp, false); |
| |
| if (has_dpcd) { |
| if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) |
| dev_priv->no_aux_handshake = |
| intel_dp->dpcd[DP_MAX_DOWNSPREAD] & |
| DP_NO_AUX_HANDSHAKE_LINK_TRAINING; |
| } else { |
| /* if this fails, presume the device is a ghost */ |
| DRM_INFO("failed to retrieve link info, disabling eDP\n"); |
| return false; |
| } |
| |
| /* We now know it's not a ghost, init power sequence regs. */ |
| intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq); |
| |
| mutex_lock(&dev->mode_config.mutex); |
| edid = drm_get_edid(connector, &intel_dp->aux.ddc); |
| if (edid) { |
| if (drm_add_edid_modes(connector, edid)) { |
| drm_mode_connector_update_edid_property(connector, |
| edid); |
| drm_edid_to_eld(connector, edid); |
| } else { |
| kfree(edid); |
| edid = ERR_PTR(-EINVAL); |
| } |
| } else { |
| edid = ERR_PTR(-ENOENT); |
| } |
| intel_connector->edid = edid; |
| |
| /* prefer fixed mode from EDID if available */ |
| list_for_each_entry(scan, &connector->probed_modes, head) { |
| if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { |
| fixed_mode = drm_mode_duplicate(dev, scan); |
| downclock_mode = intel_dp_drrs_init( |
| intel_dig_port, |
| intel_connector, fixed_mode); |
| break; |
| } |
| } |
| |
| /* fallback to VBT if available for eDP */ |
| if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { |
| fixed_mode = drm_mode_duplicate(dev, |
| dev_priv->vbt.lfp_lvds_vbt_mode); |
| if (fixed_mode) |
| fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; |
| } |
| mutex_unlock(&dev->mode_config.mutex); |
| |
| if (IS_VALLEYVIEW(dev)) { |
| intel_dp->edp_notifier.notifier_call = edp_notify_handler; |
| register_reboot_notifier(&intel_dp->edp_notifier); |
| } |
| |
| intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); |
| intel_panel_setup_backlight(connector); |
| |
| return true; |
| } |
| |
| bool |
| intel_dp_init_connector(struct intel_digital_port *intel_dig_port, |
| struct intel_connector *intel_connector) |
| { |
| struct drm_connector *connector = &intel_connector->base; |
| struct intel_dp *intel_dp = &intel_dig_port->dp; |
| struct intel_encoder *intel_encoder = &intel_dig_port->base; |
| struct drm_device *dev = intel_encoder->base.dev; |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| enum port port = intel_dig_port->port; |
| struct edp_power_seq power_seq = { 0 }; |
| int type; |
| |
| /* intel_dp vfuncs */ |
| if (IS_VALLEYVIEW(dev)) |
| intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider; |
| else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) |
| intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; |
| else if (HAS_PCH_SPLIT(dev)) |
| intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; |
| else |
| intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider; |
| |
| intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl; |
| |
| /* Preserve the current hw state. */ |
| intel_dp->DP = I915_READ(intel_dp->output_reg); |
| intel_dp->attached_connector = intel_connector; |
| |
| if (intel_dp_is_edp(dev, port)) |
| type = DRM_MODE_CONNECTOR_eDP; |
| else |
| type = DRM_MODE_CONNECTOR_DisplayPort; |
| |
| /* |
| * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but |
| * for DP the encoder type can be set by the caller to |
| * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. |
| */ |
| if (type == DRM_MODE_CONNECTOR_eDP) |
| intel_encoder->type = INTEL_OUTPUT_EDP; |
| |
| DRM_DEBUG_KMS("Adding %s connector on port %c\n", |
| type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", |
| port_name(port)); |
| |
| drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); |
| drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); |
| |
| connector->interlace_allowed = true; |
| connector->doublescan_allowed = 0; |
| |
| INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, |
| edp_panel_vdd_work); |
| |
| intel_connector_attach_encoder(intel_connector, intel_encoder); |
| drm_connector_register(connector); |
| |
| if (HAS_DDI(dev)) |
| intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; |
| else |
| intel_connector->get_hw_state = intel_connector_get_hw_state; |
| intel_connector->unregister = intel_dp_connector_unregister; |
| |
| /* Set up the hotplug pin. */ |
| switch (port) { |
| case PORT_A: |
| intel_encoder->hpd_pin = HPD_PORT_A; |
| break; |
| case PORT_B: |
| intel_encoder->hpd_pin = HPD_PORT_B; |
| break; |
| case PORT_C: |
| intel_encoder->hpd_pin = HPD_PORT_C; |
| break; |
| case PORT_D: |
| intel_encoder->hpd_pin = HPD_PORT_D; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (is_edp(intel_dp)) { |
| intel_dp_init_panel_power_timestamps(intel_dp); |
| intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq); |
| } |
| |
| intel_dp_aux_init(intel_dp, intel_connector); |
| |
| /* init MST on ports that can support it */ |
| if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { |
| if (port == PORT_B || port == PORT_C || port == PORT_D) { |
| intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id); |
| } |
| } |
| |
| if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) { |
| drm_dp_aux_unregister(&intel_dp->aux); |
| if (is_edp(intel_dp)) { |
| cancel_delayed_work_sync(&intel_dp->panel_vdd_work); |
| drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); |
| edp_panel_vdd_off_sync(intel_dp); |
| drm_modeset_unlock(&dev->mode_config.connection_mutex); |
| } |
| drm_connector_unregister(connector); |
| drm_connector_cleanup(connector); |
| return false; |
| } |
| |
| intel_dp_add_properties(intel_dp, connector); |
| |
| /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written |
| * 0xd. Failure to do so will result in spurious interrupts being |
| * generated on the port when a cable is not attached. |
| */ |
| if (IS_G4X(dev) && !IS_GM45(dev)) { |
| u32 temp = I915_READ(PEG_BAND_GAP_DATA); |
| I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); |
| } |
| |
| return true; |
| } |
| |
| void |
| intel_dp_init(struct drm_device *dev, int output_reg, enum port port) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| struct intel_digital_port *intel_dig_port; |
| struct intel_encoder *intel_encoder; |
| struct drm_encoder *encoder; |
| struct intel_connector *intel_connector; |
| |
| intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); |
| if (!intel_dig_port) |
| return; |
| |
| intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); |
| if (!intel_connector) { |
| kfree(intel_dig_port); |
| return; |
| } |
| |
| intel_encoder = &intel_dig_port->base; |
| encoder = &intel_encoder->base; |
| |
| drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs, |
| DRM_MODE_ENCODER_TMDS); |
| |
| intel_encoder->compute_config = intel_dp_compute_config; |
| intel_encoder->disable = intel_disable_dp; |
| intel_encoder->get_hw_state = intel_dp_get_hw_state; |
| intel_encoder->get_config = intel_dp_get_config; |
| if (IS_CHERRYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; |
| intel_encoder->pre_enable = chv_pre_enable_dp; |
| intel_encoder->enable = vlv_enable_dp; |
| intel_encoder->post_disable = chv_post_disable_dp; |
| } else if (IS_VALLEYVIEW(dev)) { |
| intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; |
| intel_encoder->pre_enable = vlv_pre_enable_dp; |
| intel_encoder->enable = vlv_enable_dp; |
| intel_encoder->post_disable = vlv_post_disable_dp; |
| } else { |
| intel_encoder->pre_enable = g4x_pre_enable_dp; |
| intel_encoder->enable = g4x_enable_dp; |
| intel_encoder->post_disable = g4x_post_disable_dp; |
| } |
| |
| intel_dig_port->port = port; |
| intel_dig_port->dp.output_reg = output_reg; |
| |
| intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT; |
| if (IS_CHERRYVIEW(dev)) { |
| if (port == PORT_D) |
| intel_encoder->crtc_mask = 1 << 2; |
| else |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1); |
| } else { |
| intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); |
| } |
| intel_encoder->cloneable = 0; |
| intel_encoder->hot_plug = intel_dp_hot_plug; |
| |
| intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; |
| dev_priv->hpd_irq_port[port] = intel_dig_port; |
| |
| if (!intel_dp_init_connector(intel_dig_port, intel_connector)) { |
| drm_encoder_cleanup(encoder); |
| kfree(intel_dig_port); |
| kfree(intel_connector); |
| } |
| } |
| |
| void intel_dp_mst_suspend(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| /* disable MST */ |
| for (i = 0; i < I915_MAX_PORTS; i++) { |
| struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i]; |
| if (!intel_dig_port) |
| continue; |
| |
| if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { |
| if (!intel_dig_port->dp.can_mst) |
| continue; |
| if (intel_dig_port->dp.is_mst) |
| drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr); |
| } |
| } |
| } |
| |
| void intel_dp_mst_resume(struct drm_device *dev) |
| { |
| struct drm_i915_private *dev_priv = dev->dev_private; |
| int i; |
| |
| for (i = 0; i < I915_MAX_PORTS; i++) { |
| struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i]; |
| if (!intel_dig_port) |
| continue; |
| if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) { |
| int ret; |
| |
| if (!intel_dig_port->dp.can_mst) |
| continue; |
| |
| ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr); |
| if (ret != 0) { |
| intel_dp_check_mst_status(&intel_dig_port->dp); |
| } |
| } |
| } |
| } |