| /* |
| * Copyright(c) 2016 - 2019 Intel Corporation. |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * BSD LICENSE |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * - Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * - Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * - Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| #include <linux/hash.h> |
| #include <linux/bitops.h> |
| #include <linux/lockdep.h> |
| #include <linux/vmalloc.h> |
| #include <linux/slab.h> |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_hdrs.h> |
| #include <rdma/opa_addr.h> |
| #include <rdma/uverbs_ioctl.h> |
| #include "qp.h" |
| #include "vt.h" |
| #include "trace.h" |
| |
| #define RVT_RWQ_COUNT_THRESHOLD 16 |
| |
| static void rvt_rc_timeout(struct timer_list *t); |
| |
| /* |
| * Convert the AETH RNR timeout code into the number of microseconds. |
| */ |
| static const u32 ib_rvt_rnr_table[32] = { |
| 655360, /* 00: 655.36 */ |
| 10, /* 01: .01 */ |
| 20, /* 02 .02 */ |
| 30, /* 03: .03 */ |
| 40, /* 04: .04 */ |
| 60, /* 05: .06 */ |
| 80, /* 06: .08 */ |
| 120, /* 07: .12 */ |
| 160, /* 08: .16 */ |
| 240, /* 09: .24 */ |
| 320, /* 0A: .32 */ |
| 480, /* 0B: .48 */ |
| 640, /* 0C: .64 */ |
| 960, /* 0D: .96 */ |
| 1280, /* 0E: 1.28 */ |
| 1920, /* 0F: 1.92 */ |
| 2560, /* 10: 2.56 */ |
| 3840, /* 11: 3.84 */ |
| 5120, /* 12: 5.12 */ |
| 7680, /* 13: 7.68 */ |
| 10240, /* 14: 10.24 */ |
| 15360, /* 15: 15.36 */ |
| 20480, /* 16: 20.48 */ |
| 30720, /* 17: 30.72 */ |
| 40960, /* 18: 40.96 */ |
| 61440, /* 19: 61.44 */ |
| 81920, /* 1A: 81.92 */ |
| 122880, /* 1B: 122.88 */ |
| 163840, /* 1C: 163.84 */ |
| 245760, /* 1D: 245.76 */ |
| 327680, /* 1E: 327.68 */ |
| 491520 /* 1F: 491.52 */ |
| }; |
| |
| /* |
| * Note that it is OK to post send work requests in the SQE and ERR |
| * states; rvt_do_send() will process them and generate error |
| * completions as per IB 1.2 C10-96. |
| */ |
| const int ib_rvt_state_ops[IB_QPS_ERR + 1] = { |
| [IB_QPS_RESET] = 0, |
| [IB_QPS_INIT] = RVT_POST_RECV_OK, |
| [IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK, |
| [IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | |
| RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK | |
| RVT_PROCESS_NEXT_SEND_OK, |
| [IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | |
| RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK, |
| [IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK | |
| RVT_POST_SEND_OK | RVT_FLUSH_SEND, |
| [IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV | |
| RVT_POST_SEND_OK | RVT_FLUSH_SEND, |
| }; |
| EXPORT_SYMBOL(ib_rvt_state_ops); |
| |
| /* platform specific: return the last level cache (llc) size, in KiB */ |
| static int rvt_wss_llc_size(void) |
| { |
| /* assume that the boot CPU value is universal for all CPUs */ |
| return boot_cpu_data.x86_cache_size; |
| } |
| |
| /* platform specific: cacheless copy */ |
| static void cacheless_memcpy(void *dst, void *src, size_t n) |
| { |
| /* |
| * Use the only available X64 cacheless copy. Add a __user cast |
| * to quiet sparse. The src agument is already in the kernel so |
| * there are no security issues. The extra fault recovery machinery |
| * is not invoked. |
| */ |
| __copy_user_nocache(dst, (void __user *)src, n, 0); |
| } |
| |
| void rvt_wss_exit(struct rvt_dev_info *rdi) |
| { |
| struct rvt_wss *wss = rdi->wss; |
| |
| if (!wss) |
| return; |
| |
| /* coded to handle partially initialized and repeat callers */ |
| kfree(wss->entries); |
| wss->entries = NULL; |
| kfree(rdi->wss); |
| rdi->wss = NULL; |
| } |
| |
| /** |
| * rvt_wss_init - Init wss data structures |
| * |
| * Return: 0 on success |
| */ |
| int rvt_wss_init(struct rvt_dev_info *rdi) |
| { |
| unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; |
| unsigned int wss_threshold = rdi->dparms.wss_threshold; |
| unsigned int wss_clean_period = rdi->dparms.wss_clean_period; |
| long llc_size; |
| long llc_bits; |
| long table_size; |
| long table_bits; |
| struct rvt_wss *wss; |
| int node = rdi->dparms.node; |
| |
| if (sge_copy_mode != RVT_SGE_COPY_ADAPTIVE) { |
| rdi->wss = NULL; |
| return 0; |
| } |
| |
| rdi->wss = kzalloc_node(sizeof(*rdi->wss), GFP_KERNEL, node); |
| if (!rdi->wss) |
| return -ENOMEM; |
| wss = rdi->wss; |
| |
| /* check for a valid percent range - default to 80 if none or invalid */ |
| if (wss_threshold < 1 || wss_threshold > 100) |
| wss_threshold = 80; |
| |
| /* reject a wildly large period */ |
| if (wss_clean_period > 1000000) |
| wss_clean_period = 256; |
| |
| /* reject a zero period */ |
| if (wss_clean_period == 0) |
| wss_clean_period = 1; |
| |
| /* |
| * Calculate the table size - the next power of 2 larger than the |
| * LLC size. LLC size is in KiB. |
| */ |
| llc_size = rvt_wss_llc_size() * 1024; |
| table_size = roundup_pow_of_two(llc_size); |
| |
| /* one bit per page in rounded up table */ |
| llc_bits = llc_size / PAGE_SIZE; |
| table_bits = table_size / PAGE_SIZE; |
| wss->pages_mask = table_bits - 1; |
| wss->num_entries = table_bits / BITS_PER_LONG; |
| |
| wss->threshold = (llc_bits * wss_threshold) / 100; |
| if (wss->threshold == 0) |
| wss->threshold = 1; |
| |
| wss->clean_period = wss_clean_period; |
| atomic_set(&wss->clean_counter, wss_clean_period); |
| |
| wss->entries = kcalloc_node(wss->num_entries, sizeof(*wss->entries), |
| GFP_KERNEL, node); |
| if (!wss->entries) { |
| rvt_wss_exit(rdi); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Advance the clean counter. When the clean period has expired, |
| * clean an entry. |
| * |
| * This is implemented in atomics to avoid locking. Because multiple |
| * variables are involved, it can be racy which can lead to slightly |
| * inaccurate information. Since this is only a heuristic, this is |
| * OK. Any innaccuracies will clean themselves out as the counter |
| * advances. That said, it is unlikely the entry clean operation will |
| * race - the next possible racer will not start until the next clean |
| * period. |
| * |
| * The clean counter is implemented as a decrement to zero. When zero |
| * is reached an entry is cleaned. |
| */ |
| static void wss_advance_clean_counter(struct rvt_wss *wss) |
| { |
| int entry; |
| int weight; |
| unsigned long bits; |
| |
| /* become the cleaner if we decrement the counter to zero */ |
| if (atomic_dec_and_test(&wss->clean_counter)) { |
| /* |
| * Set, not add, the clean period. This avoids an issue |
| * where the counter could decrement below the clean period. |
| * Doing a set can result in lost decrements, slowing the |
| * clean advance. Since this a heuristic, this possible |
| * slowdown is OK. |
| * |
| * An alternative is to loop, advancing the counter by a |
| * clean period until the result is > 0. However, this could |
| * lead to several threads keeping another in the clean loop. |
| * This could be mitigated by limiting the number of times |
| * we stay in the loop. |
| */ |
| atomic_set(&wss->clean_counter, wss->clean_period); |
| |
| /* |
| * Uniquely grab the entry to clean and move to next. |
| * The current entry is always the lower bits of |
| * wss.clean_entry. The table size, wss.num_entries, |
| * is always a power-of-2. |
| */ |
| entry = (atomic_inc_return(&wss->clean_entry) - 1) |
| & (wss->num_entries - 1); |
| |
| /* clear the entry and count the bits */ |
| bits = xchg(&wss->entries[entry], 0); |
| weight = hweight64((u64)bits); |
| /* only adjust the contended total count if needed */ |
| if (weight) |
| atomic_sub(weight, &wss->total_count); |
| } |
| } |
| |
| /* |
| * Insert the given address into the working set array. |
| */ |
| static void wss_insert(struct rvt_wss *wss, void *address) |
| { |
| u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss->pages_mask; |
| u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */ |
| u32 nr = page & (BITS_PER_LONG - 1); |
| |
| if (!test_and_set_bit(nr, &wss->entries[entry])) |
| atomic_inc(&wss->total_count); |
| |
| wss_advance_clean_counter(wss); |
| } |
| |
| /* |
| * Is the working set larger than the threshold? |
| */ |
| static inline bool wss_exceeds_threshold(struct rvt_wss *wss) |
| { |
| return atomic_read(&wss->total_count) >= wss->threshold; |
| } |
| |
| static void get_map_page(struct rvt_qpn_table *qpt, |
| struct rvt_qpn_map *map) |
| { |
| unsigned long page = get_zeroed_page(GFP_KERNEL); |
| |
| /* |
| * Free the page if someone raced with us installing it. |
| */ |
| |
| spin_lock(&qpt->lock); |
| if (map->page) |
| free_page(page); |
| else |
| map->page = (void *)page; |
| spin_unlock(&qpt->lock); |
| } |
| |
| /** |
| * init_qpn_table - initialize the QP number table for a device |
| * @qpt: the QPN table |
| */ |
| static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt) |
| { |
| u32 offset, i; |
| struct rvt_qpn_map *map; |
| int ret = 0; |
| |
| if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start)) |
| return -EINVAL; |
| |
| spin_lock_init(&qpt->lock); |
| |
| qpt->last = rdi->dparms.qpn_start; |
| qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift; |
| |
| /* |
| * Drivers may want some QPs beyond what we need for verbs let them use |
| * our qpn table. No need for two. Lets go ahead and mark the bitmaps |
| * for those. The reserved range must be *after* the range which verbs |
| * will pick from. |
| */ |
| |
| /* Figure out number of bit maps needed before reserved range */ |
| qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE; |
| |
| /* This should always be zero */ |
| offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK; |
| |
| /* Starting with the first reserved bit map */ |
| map = &qpt->map[qpt->nmaps]; |
| |
| rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n", |
| rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end); |
| for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) { |
| if (!map->page) { |
| get_map_page(qpt, map); |
| if (!map->page) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| set_bit(offset, map->page); |
| offset++; |
| if (offset == RVT_BITS_PER_PAGE) { |
| /* next page */ |
| qpt->nmaps++; |
| map++; |
| offset = 0; |
| } |
| } |
| return ret; |
| } |
| |
| /** |
| * free_qpn_table - free the QP number table for a device |
| * @qpt: the QPN table |
| */ |
| static void free_qpn_table(struct rvt_qpn_table *qpt) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(qpt->map); i++) |
| free_page((unsigned long)qpt->map[i].page); |
| } |
| |
| /** |
| * rvt_driver_qp_init - Init driver qp resources |
| * @rdi: rvt dev strucutre |
| * |
| * Return: 0 on success |
| */ |
| int rvt_driver_qp_init(struct rvt_dev_info *rdi) |
| { |
| int i; |
| int ret = -ENOMEM; |
| |
| if (!rdi->dparms.qp_table_size) |
| return -EINVAL; |
| |
| /* |
| * If driver is not doing any QP allocation then make sure it is |
| * providing the necessary QP functions. |
| */ |
| if (!rdi->driver_f.free_all_qps || |
| !rdi->driver_f.qp_priv_alloc || |
| !rdi->driver_f.qp_priv_free || |
| !rdi->driver_f.notify_qp_reset || |
| !rdi->driver_f.notify_restart_rc) |
| return -EINVAL; |
| |
| /* allocate parent object */ |
| rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL, |
| rdi->dparms.node); |
| if (!rdi->qp_dev) |
| return -ENOMEM; |
| |
| /* allocate hash table */ |
| rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size; |
| rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size); |
| rdi->qp_dev->qp_table = |
| kmalloc_array_node(rdi->qp_dev->qp_table_size, |
| sizeof(*rdi->qp_dev->qp_table), |
| GFP_KERNEL, rdi->dparms.node); |
| if (!rdi->qp_dev->qp_table) |
| goto no_qp_table; |
| |
| for (i = 0; i < rdi->qp_dev->qp_table_size; i++) |
| RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL); |
| |
| spin_lock_init(&rdi->qp_dev->qpt_lock); |
| |
| /* initialize qpn map */ |
| if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table)) |
| goto fail_table; |
| |
| spin_lock_init(&rdi->n_qps_lock); |
| |
| return 0; |
| |
| fail_table: |
| kfree(rdi->qp_dev->qp_table); |
| free_qpn_table(&rdi->qp_dev->qpn_table); |
| |
| no_qp_table: |
| kfree(rdi->qp_dev); |
| |
| return ret; |
| } |
| |
| /** |
| * free_all_qps - check for QPs still in use |
| * @rdi: rvt device info structure |
| * |
| * There should not be any QPs still in use. |
| * Free memory for table. |
| */ |
| static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi) |
| { |
| unsigned long flags; |
| struct rvt_qp *qp; |
| unsigned n, qp_inuse = 0; |
| spinlock_t *ql; /* work around too long line below */ |
| |
| if (rdi->driver_f.free_all_qps) |
| qp_inuse = rdi->driver_f.free_all_qps(rdi); |
| |
| qp_inuse += rvt_mcast_tree_empty(rdi); |
| |
| if (!rdi->qp_dev) |
| return qp_inuse; |
| |
| ql = &rdi->qp_dev->qpt_lock; |
| spin_lock_irqsave(ql, flags); |
| for (n = 0; n < rdi->qp_dev->qp_table_size; n++) { |
| qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n], |
| lockdep_is_held(ql)); |
| RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL); |
| |
| for (; qp; qp = rcu_dereference_protected(qp->next, |
| lockdep_is_held(ql))) |
| qp_inuse++; |
| } |
| spin_unlock_irqrestore(ql, flags); |
| synchronize_rcu(); |
| return qp_inuse; |
| } |
| |
| /** |
| * rvt_qp_exit - clean up qps on device exit |
| * @rdi: rvt dev structure |
| * |
| * Check for qp leaks and free resources. |
| */ |
| void rvt_qp_exit(struct rvt_dev_info *rdi) |
| { |
| u32 qps_inuse = rvt_free_all_qps(rdi); |
| |
| if (qps_inuse) |
| rvt_pr_err(rdi, "QP memory leak! %u still in use\n", |
| qps_inuse); |
| if (!rdi->qp_dev) |
| return; |
| |
| kfree(rdi->qp_dev->qp_table); |
| free_qpn_table(&rdi->qp_dev->qpn_table); |
| kfree(rdi->qp_dev); |
| } |
| |
| static inline unsigned mk_qpn(struct rvt_qpn_table *qpt, |
| struct rvt_qpn_map *map, unsigned off) |
| { |
| return (map - qpt->map) * RVT_BITS_PER_PAGE + off; |
| } |
| |
| /** |
| * alloc_qpn - Allocate the next available qpn or zero/one for QP type |
| * IB_QPT_SMI/IB_QPT_GSI |
| * @rdi: rvt device info structure |
| * @qpt: queue pair number table pointer |
| * @port_num: IB port number, 1 based, comes from core |
| * |
| * Return: The queue pair number |
| */ |
| static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt, |
| enum ib_qp_type type, u8 port_num) |
| { |
| u32 i, offset, max_scan, qpn; |
| struct rvt_qpn_map *map; |
| u32 ret; |
| |
| if (rdi->driver_f.alloc_qpn) |
| return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num); |
| |
| if (type == IB_QPT_SMI || type == IB_QPT_GSI) { |
| unsigned n; |
| |
| ret = type == IB_QPT_GSI; |
| n = 1 << (ret + 2 * (port_num - 1)); |
| spin_lock(&qpt->lock); |
| if (qpt->flags & n) |
| ret = -EINVAL; |
| else |
| qpt->flags |= n; |
| spin_unlock(&qpt->lock); |
| goto bail; |
| } |
| |
| qpn = qpt->last + qpt->incr; |
| if (qpn >= RVT_QPN_MAX) |
| qpn = qpt->incr | ((qpt->last & 1) ^ 1); |
| /* offset carries bit 0 */ |
| offset = qpn & RVT_BITS_PER_PAGE_MASK; |
| map = &qpt->map[qpn / RVT_BITS_PER_PAGE]; |
| max_scan = qpt->nmaps - !offset; |
| for (i = 0;;) { |
| if (unlikely(!map->page)) { |
| get_map_page(qpt, map); |
| if (unlikely(!map->page)) |
| break; |
| } |
| do { |
| if (!test_and_set_bit(offset, map->page)) { |
| qpt->last = qpn; |
| ret = qpn; |
| goto bail; |
| } |
| offset += qpt->incr; |
| /* |
| * This qpn might be bogus if offset >= BITS_PER_PAGE. |
| * That is OK. It gets re-assigned below |
| */ |
| qpn = mk_qpn(qpt, map, offset); |
| } while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX); |
| /* |
| * In order to keep the number of pages allocated to a |
| * minimum, we scan the all existing pages before increasing |
| * the size of the bitmap table. |
| */ |
| if (++i > max_scan) { |
| if (qpt->nmaps == RVT_QPNMAP_ENTRIES) |
| break; |
| map = &qpt->map[qpt->nmaps++]; |
| /* start at incr with current bit 0 */ |
| offset = qpt->incr | (offset & 1); |
| } else if (map < &qpt->map[qpt->nmaps]) { |
| ++map; |
| /* start at incr with current bit 0 */ |
| offset = qpt->incr | (offset & 1); |
| } else { |
| map = &qpt->map[0]; |
| /* wrap to first map page, invert bit 0 */ |
| offset = qpt->incr | ((offset & 1) ^ 1); |
| } |
| /* there can be no set bits in low-order QoS bits */ |
| WARN_ON(rdi->dparms.qos_shift > 1 && |
| offset & ((BIT(rdi->dparms.qos_shift - 1) - 1) << 1)); |
| qpn = mk_qpn(qpt, map, offset); |
| } |
| |
| ret = -ENOMEM; |
| |
| bail: |
| return ret; |
| } |
| |
| /** |
| * rvt_clear_mr_refs - Drop help mr refs |
| * @qp: rvt qp data structure |
| * @clr_sends: If shoudl clear send side or not |
| */ |
| static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends) |
| { |
| unsigned n; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| |
| if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags)) |
| rvt_put_ss(&qp->s_rdma_read_sge); |
| |
| rvt_put_ss(&qp->r_sge); |
| |
| if (clr_sends) { |
| while (qp->s_last != qp->s_head) { |
| struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last); |
| |
| rvt_put_qp_swqe(qp, wqe); |
| if (++qp->s_last >= qp->s_size) |
| qp->s_last = 0; |
| smp_wmb(); /* see qp_set_savail */ |
| } |
| if (qp->s_rdma_mr) { |
| rvt_put_mr(qp->s_rdma_mr); |
| qp->s_rdma_mr = NULL; |
| } |
| } |
| |
| for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) { |
| struct rvt_ack_entry *e = &qp->s_ack_queue[n]; |
| |
| if (e->rdma_sge.mr) { |
| rvt_put_mr(e->rdma_sge.mr); |
| e->rdma_sge.mr = NULL; |
| } |
| } |
| } |
| |
| /** |
| * rvt_swqe_has_lkey - return true if lkey is used by swqe |
| * @wqe - the send wqe |
| * @lkey - the lkey |
| * |
| * Test the swqe for using lkey |
| */ |
| static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey) |
| { |
| int i; |
| |
| for (i = 0; i < wqe->wr.num_sge; i++) { |
| struct rvt_sge *sge = &wqe->sg_list[i]; |
| |
| if (rvt_mr_has_lkey(sge->mr, lkey)) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * rvt_qp_sends_has_lkey - return true is qp sends use lkey |
| * @qp - the rvt_qp |
| * @lkey - the lkey |
| */ |
| static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey) |
| { |
| u32 s_last = qp->s_last; |
| |
| while (s_last != qp->s_head) { |
| struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last); |
| |
| if (rvt_swqe_has_lkey(wqe, lkey)) |
| return true; |
| |
| if (++s_last >= qp->s_size) |
| s_last = 0; |
| } |
| if (qp->s_rdma_mr) |
| if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey)) |
| return true; |
| return false; |
| } |
| |
| /** |
| * rvt_qp_acks_has_lkey - return true if acks have lkey |
| * @qp - the qp |
| * @lkey - the lkey |
| */ |
| static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey) |
| { |
| int i; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| |
| for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) { |
| struct rvt_ack_entry *e = &qp->s_ack_queue[i]; |
| |
| if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * rvt_qp_mr_clean - clean up remote ops for lkey |
| * @qp - the qp |
| * @lkey - the lkey that is being de-registered |
| * |
| * This routine checks if the lkey is being used by |
| * the qp. |
| * |
| * If so, the qp is put into an error state to elminate |
| * any references from the qp. |
| */ |
| void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey) |
| { |
| bool lastwqe = false; |
| |
| if (qp->ibqp.qp_type == IB_QPT_SMI || |
| qp->ibqp.qp_type == IB_QPT_GSI) |
| /* avoid special QPs */ |
| return; |
| spin_lock_irq(&qp->r_lock); |
| spin_lock(&qp->s_hlock); |
| spin_lock(&qp->s_lock); |
| |
| if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) |
| goto check_lwqe; |
| |
| if (rvt_ss_has_lkey(&qp->r_sge, lkey) || |
| rvt_qp_sends_has_lkey(qp, lkey) || |
| rvt_qp_acks_has_lkey(qp, lkey)) |
| lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR); |
| check_lwqe: |
| spin_unlock(&qp->s_lock); |
| spin_unlock(&qp->s_hlock); |
| spin_unlock_irq(&qp->r_lock); |
| if (lastwqe) { |
| struct ib_event ev; |
| |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_QP_LAST_WQE_REACHED; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| } |
| |
| /** |
| * rvt_remove_qp - remove qp form table |
| * @rdi: rvt dev struct |
| * @qp: qp to remove |
| * |
| * Remove the QP from the table so it can't be found asynchronously by |
| * the receive routine. |
| */ |
| static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) |
| { |
| struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; |
| u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); |
| unsigned long flags; |
| int removed = 1; |
| |
| spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); |
| |
| if (rcu_dereference_protected(rvp->qp[0], |
| lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { |
| RCU_INIT_POINTER(rvp->qp[0], NULL); |
| } else if (rcu_dereference_protected(rvp->qp[1], |
| lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) { |
| RCU_INIT_POINTER(rvp->qp[1], NULL); |
| } else { |
| struct rvt_qp *q; |
| struct rvt_qp __rcu **qpp; |
| |
| removed = 0; |
| qpp = &rdi->qp_dev->qp_table[n]; |
| for (; (q = rcu_dereference_protected(*qpp, |
| lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL; |
| qpp = &q->next) { |
| if (q == qp) { |
| RCU_INIT_POINTER(*qpp, |
| rcu_dereference_protected(qp->next, |
| lockdep_is_held(&rdi->qp_dev->qpt_lock))); |
| removed = 1; |
| trace_rvt_qpremove(qp, n); |
| break; |
| } |
| } |
| } |
| |
| spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); |
| if (removed) { |
| synchronize_rcu(); |
| rvt_put_qp(qp); |
| } |
| } |
| |
| /** |
| * rvt_alloc_rq - allocate memory for user or kernel buffer |
| * @rq: receive queue data structure |
| * @size: number of request queue entries |
| * @node: The NUMA node |
| * @udata: True if user data is available or not false |
| * |
| * Return: If memory allocation failed, return -ENONEM |
| * This function is used by both shared receive |
| * queues and non-shared receive queues to allocate |
| * memory. |
| */ |
| int rvt_alloc_rq(struct rvt_rq *rq, u32 size, int node, |
| struct ib_udata *udata) |
| { |
| if (udata) { |
| rq->wq = vmalloc_user(sizeof(struct rvt_rwq) + size); |
| if (!rq->wq) |
| goto bail; |
| /* need kwq with no buffers */ |
| rq->kwq = kzalloc_node(sizeof(*rq->kwq), GFP_KERNEL, node); |
| if (!rq->kwq) |
| goto bail; |
| rq->kwq->curr_wq = rq->wq->wq; |
| } else { |
| /* need kwq with buffers */ |
| rq->kwq = |
| vzalloc_node(sizeof(struct rvt_krwq) + size, node); |
| if (!rq->kwq) |
| goto bail; |
| rq->kwq->curr_wq = rq->kwq->wq; |
| } |
| |
| spin_lock_init(&rq->kwq->p_lock); |
| spin_lock_init(&rq->kwq->c_lock); |
| return 0; |
| bail: |
| rvt_free_rq(rq); |
| return -ENOMEM; |
| } |
| |
| /** |
| * rvt_init_qp - initialize the QP state to the reset state |
| * @qp: the QP to init or reinit |
| * @type: the QP type |
| * |
| * This function is called from both rvt_create_qp() and |
| * rvt_reset_qp(). The difference is that the reset |
| * patch the necessary locks to protect against concurent |
| * access. |
| */ |
| static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, |
| enum ib_qp_type type) |
| { |
| qp->remote_qpn = 0; |
| qp->qkey = 0; |
| qp->qp_access_flags = 0; |
| qp->s_flags &= RVT_S_SIGNAL_REQ_WR; |
| qp->s_hdrwords = 0; |
| qp->s_wqe = NULL; |
| qp->s_draining = 0; |
| qp->s_next_psn = 0; |
| qp->s_last_psn = 0; |
| qp->s_sending_psn = 0; |
| qp->s_sending_hpsn = 0; |
| qp->s_psn = 0; |
| qp->r_psn = 0; |
| qp->r_msn = 0; |
| if (type == IB_QPT_RC) { |
| qp->s_state = IB_OPCODE_RC_SEND_LAST; |
| qp->r_state = IB_OPCODE_RC_SEND_LAST; |
| } else { |
| qp->s_state = IB_OPCODE_UC_SEND_LAST; |
| qp->r_state = IB_OPCODE_UC_SEND_LAST; |
| } |
| qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE; |
| qp->r_nak_state = 0; |
| qp->r_aflags = 0; |
| qp->r_flags = 0; |
| qp->s_head = 0; |
| qp->s_tail = 0; |
| qp->s_cur = 0; |
| qp->s_acked = 0; |
| qp->s_last = 0; |
| qp->s_ssn = 1; |
| qp->s_lsn = 0; |
| qp->s_mig_state = IB_MIG_MIGRATED; |
| qp->r_head_ack_queue = 0; |
| qp->s_tail_ack_queue = 0; |
| qp->s_acked_ack_queue = 0; |
| qp->s_num_rd_atomic = 0; |
| if (qp->r_rq.kwq) |
| qp->r_rq.kwq->count = qp->r_rq.size; |
| qp->r_sge.num_sge = 0; |
| atomic_set(&qp->s_reserved_used, 0); |
| } |
| |
| /** |
| * rvt_reset_qp - initialize the QP state to the reset state |
| * @qp: the QP to reset |
| * @type: the QP type |
| * |
| * r_lock, s_hlock, and s_lock are required to be held by the caller |
| */ |
| static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, |
| enum ib_qp_type type) |
| __must_hold(&qp->s_lock) |
| __must_hold(&qp->s_hlock) |
| __must_hold(&qp->r_lock) |
| { |
| lockdep_assert_held(&qp->r_lock); |
| lockdep_assert_held(&qp->s_hlock); |
| lockdep_assert_held(&qp->s_lock); |
| if (qp->state != IB_QPS_RESET) { |
| qp->state = IB_QPS_RESET; |
| |
| /* Let drivers flush their waitlist */ |
| rdi->driver_f.flush_qp_waiters(qp); |
| rvt_stop_rc_timers(qp); |
| qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT); |
| spin_unlock(&qp->s_lock); |
| spin_unlock(&qp->s_hlock); |
| spin_unlock_irq(&qp->r_lock); |
| |
| /* Stop the send queue and the retry timer */ |
| rdi->driver_f.stop_send_queue(qp); |
| rvt_del_timers_sync(qp); |
| /* Wait for things to stop */ |
| rdi->driver_f.quiesce_qp(qp); |
| |
| /* take qp out the hash and wait for it to be unused */ |
| rvt_remove_qp(rdi, qp); |
| |
| /* grab the lock b/c it was locked at call time */ |
| spin_lock_irq(&qp->r_lock); |
| spin_lock(&qp->s_hlock); |
| spin_lock(&qp->s_lock); |
| |
| rvt_clear_mr_refs(qp, 1); |
| /* |
| * Let the driver do any tear down or re-init it needs to for |
| * a qp that has been reset |
| */ |
| rdi->driver_f.notify_qp_reset(qp); |
| } |
| rvt_init_qp(rdi, qp, type); |
| lockdep_assert_held(&qp->r_lock); |
| lockdep_assert_held(&qp->s_hlock); |
| lockdep_assert_held(&qp->s_lock); |
| } |
| |
| /** rvt_free_qpn - Free a qpn from the bit map |
| * @qpt: QP table |
| * @qpn: queue pair number to free |
| */ |
| static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn) |
| { |
| struct rvt_qpn_map *map; |
| |
| map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE; |
| if (map->page) |
| clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page); |
| } |
| |
| /** |
| * get_allowed_ops - Given a QP type return the appropriate allowed OP |
| * @type: valid, supported, QP type |
| */ |
| static u8 get_allowed_ops(enum ib_qp_type type) |
| { |
| return type == IB_QPT_RC ? IB_OPCODE_RC : type == IB_QPT_UC ? |
| IB_OPCODE_UC : IB_OPCODE_UD; |
| } |
| |
| /** |
| * free_ud_wq_attr - Clean up AH attribute cache for UD QPs |
| * @qp: Valid QP with allowed_ops set |
| * |
| * The rvt_swqe data structure being used is a union, so this is |
| * only valid for UD QPs. |
| */ |
| static void free_ud_wq_attr(struct rvt_qp *qp) |
| { |
| struct rvt_swqe *wqe; |
| int i; |
| |
| for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { |
| wqe = rvt_get_swqe_ptr(qp, i); |
| kfree(wqe->ud_wr.attr); |
| wqe->ud_wr.attr = NULL; |
| } |
| } |
| |
| /** |
| * alloc_ud_wq_attr - AH attribute cache for UD QPs |
| * @qp: Valid QP with allowed_ops set |
| * @node: Numa node for allocation |
| * |
| * The rvt_swqe data structure being used is a union, so this is |
| * only valid for UD QPs. |
| */ |
| static int alloc_ud_wq_attr(struct rvt_qp *qp, int node) |
| { |
| struct rvt_swqe *wqe; |
| int i; |
| |
| for (i = 0; qp->allowed_ops == IB_OPCODE_UD && i < qp->s_size; i++) { |
| wqe = rvt_get_swqe_ptr(qp, i); |
| wqe->ud_wr.attr = kzalloc_node(sizeof(*wqe->ud_wr.attr), |
| GFP_KERNEL, node); |
| if (!wqe->ud_wr.attr) { |
| free_ud_wq_attr(qp); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * rvt_create_qp - create a queue pair for a device |
| * @ibpd: the protection domain who's device we create the queue pair for |
| * @init_attr: the attributes of the queue pair |
| * @udata: user data for libibverbs.so |
| * |
| * Queue pair creation is mostly an rvt issue. However, drivers have their own |
| * unique idea of what queue pair numbers mean. For instance there is a reserved |
| * range for PSM. |
| * |
| * Return: the queue pair on success, otherwise returns an errno. |
| * |
| * Called by the ib_create_qp() core verbs function. |
| */ |
| struct ib_qp *rvt_create_qp(struct ib_pd *ibpd, |
| struct ib_qp_init_attr *init_attr, |
| struct ib_udata *udata) |
| { |
| struct rvt_qp *qp; |
| int err; |
| struct rvt_swqe *swq = NULL; |
| size_t sz; |
| size_t sg_list_sz; |
| struct ib_qp *ret = ERR_PTR(-ENOMEM); |
| struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device); |
| void *priv = NULL; |
| size_t sqsize; |
| |
| if (!rdi) |
| return ERR_PTR(-EINVAL); |
| |
| if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge || |
| init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr || |
| init_attr->create_flags) |
| return ERR_PTR(-EINVAL); |
| |
| /* Check receive queue parameters if no SRQ is specified. */ |
| if (!init_attr->srq) { |
| if (init_attr->cap.max_recv_sge > |
| rdi->dparms.props.max_recv_sge || |
| init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr) |
| return ERR_PTR(-EINVAL); |
| |
| if (init_attr->cap.max_send_sge + |
| init_attr->cap.max_send_wr + |
| init_attr->cap.max_recv_sge + |
| init_attr->cap.max_recv_wr == 0) |
| return ERR_PTR(-EINVAL); |
| } |
| sqsize = |
| init_attr->cap.max_send_wr + 1 + |
| rdi->dparms.reserved_operations; |
| switch (init_attr->qp_type) { |
| case IB_QPT_SMI: |
| case IB_QPT_GSI: |
| if (init_attr->port_num == 0 || |
| init_attr->port_num > ibpd->device->phys_port_cnt) |
| return ERR_PTR(-EINVAL); |
| /* fall through */ |
| case IB_QPT_UC: |
| case IB_QPT_RC: |
| case IB_QPT_UD: |
| sz = struct_size(swq, sg_list, init_attr->cap.max_send_sge); |
| swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node); |
| if (!swq) |
| return ERR_PTR(-ENOMEM); |
| |
| sz = sizeof(*qp); |
| sg_list_sz = 0; |
| if (init_attr->srq) { |
| struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq); |
| |
| if (srq->rq.max_sge > 1) |
| sg_list_sz = sizeof(*qp->r_sg_list) * |
| (srq->rq.max_sge - 1); |
| } else if (init_attr->cap.max_recv_sge > 1) |
| sg_list_sz = sizeof(*qp->r_sg_list) * |
| (init_attr->cap.max_recv_sge - 1); |
| qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL, |
| rdi->dparms.node); |
| if (!qp) |
| goto bail_swq; |
| qp->allowed_ops = get_allowed_ops(init_attr->qp_type); |
| |
| RCU_INIT_POINTER(qp->next, NULL); |
| if (init_attr->qp_type == IB_QPT_RC) { |
| qp->s_ack_queue = |
| kcalloc_node(rvt_max_atomic(rdi), |
| sizeof(*qp->s_ack_queue), |
| GFP_KERNEL, |
| rdi->dparms.node); |
| if (!qp->s_ack_queue) |
| goto bail_qp; |
| } |
| /* initialize timers needed for rc qp */ |
| timer_setup(&qp->s_timer, rvt_rc_timeout, 0); |
| hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| qp->s_rnr_timer.function = rvt_rc_rnr_retry; |
| |
| /* |
| * Driver needs to set up it's private QP structure and do any |
| * initialization that is needed. |
| */ |
| priv = rdi->driver_f.qp_priv_alloc(rdi, qp); |
| if (IS_ERR(priv)) { |
| ret = priv; |
| goto bail_qp; |
| } |
| qp->priv = priv; |
| qp->timeout_jiffies = |
| usecs_to_jiffies((4096UL * (1UL << qp->timeout)) / |
| 1000UL); |
| if (init_attr->srq) { |
| sz = 0; |
| } else { |
| qp->r_rq.size = init_attr->cap.max_recv_wr + 1; |
| qp->r_rq.max_sge = init_attr->cap.max_recv_sge; |
| sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) + |
| sizeof(struct rvt_rwqe); |
| err = rvt_alloc_rq(&qp->r_rq, qp->r_rq.size * sz, |
| rdi->dparms.node, udata); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto bail_driver_priv; |
| } |
| } |
| |
| /* |
| * ib_create_qp() will initialize qp->ibqp |
| * except for qp->ibqp.qp_num. |
| */ |
| spin_lock_init(&qp->r_lock); |
| spin_lock_init(&qp->s_hlock); |
| spin_lock_init(&qp->s_lock); |
| atomic_set(&qp->refcount, 0); |
| atomic_set(&qp->local_ops_pending, 0); |
| init_waitqueue_head(&qp->wait); |
| INIT_LIST_HEAD(&qp->rspwait); |
| qp->state = IB_QPS_RESET; |
| qp->s_wq = swq; |
| qp->s_size = sqsize; |
| qp->s_avail = init_attr->cap.max_send_wr; |
| qp->s_max_sge = init_attr->cap.max_send_sge; |
| if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR) |
| qp->s_flags = RVT_S_SIGNAL_REQ_WR; |
| err = alloc_ud_wq_attr(qp, rdi->dparms.node); |
| if (err) { |
| ret = (ERR_PTR(err)); |
| goto bail_driver_priv; |
| } |
| |
| err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table, |
| init_attr->qp_type, |
| init_attr->port_num); |
| if (err < 0) { |
| ret = ERR_PTR(err); |
| goto bail_rq_wq; |
| } |
| qp->ibqp.qp_num = err; |
| qp->port_num = init_attr->port_num; |
| rvt_init_qp(rdi, qp, init_attr->qp_type); |
| if (rdi->driver_f.qp_priv_init) { |
| err = rdi->driver_f.qp_priv_init(rdi, qp, init_attr); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto bail_rq_wq; |
| } |
| } |
| break; |
| |
| default: |
| /* Don't support raw QPs */ |
| return ERR_PTR(-EINVAL); |
| } |
| |
| init_attr->cap.max_inline_data = 0; |
| |
| /* |
| * Return the address of the RWQ as the offset to mmap. |
| * See rvt_mmap() for details. |
| */ |
| if (udata && udata->outlen >= sizeof(__u64)) { |
| if (!qp->r_rq.wq) { |
| __u64 offset = 0; |
| |
| err = ib_copy_to_udata(udata, &offset, |
| sizeof(offset)); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto bail_qpn; |
| } |
| } else { |
| u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz; |
| |
| qp->ip = rvt_create_mmap_info(rdi, s, udata, |
| qp->r_rq.wq); |
| if (!qp->ip) { |
| ret = ERR_PTR(-ENOMEM); |
| goto bail_qpn; |
| } |
| |
| err = ib_copy_to_udata(udata, &qp->ip->offset, |
| sizeof(qp->ip->offset)); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto bail_ip; |
| } |
| } |
| qp->pid = current->pid; |
| } |
| |
| spin_lock(&rdi->n_qps_lock); |
| if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) { |
| spin_unlock(&rdi->n_qps_lock); |
| ret = ERR_PTR(-ENOMEM); |
| goto bail_ip; |
| } |
| |
| rdi->n_qps_allocated++; |
| /* |
| * Maintain a busy_jiffies variable that will be added to the timeout |
| * period in mod_retry_timer and add_retry_timer. This busy jiffies |
| * is scaled by the number of rc qps created for the device to reduce |
| * the number of timeouts occurring when there is a large number of |
| * qps. busy_jiffies is incremented every rc qp scaling interval. |
| * The scaling interval is selected based on extensive performance |
| * evaluation of targeted workloads. |
| */ |
| if (init_attr->qp_type == IB_QPT_RC) { |
| rdi->n_rc_qps++; |
| rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; |
| } |
| spin_unlock(&rdi->n_qps_lock); |
| |
| if (qp->ip) { |
| spin_lock_irq(&rdi->pending_lock); |
| list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps); |
| spin_unlock_irq(&rdi->pending_lock); |
| } |
| |
| ret = &qp->ibqp; |
| |
| return ret; |
| |
| bail_ip: |
| if (qp->ip) |
| kref_put(&qp->ip->ref, rvt_release_mmap_info); |
| |
| bail_qpn: |
| rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); |
| |
| bail_rq_wq: |
| rvt_free_rq(&qp->r_rq); |
| free_ud_wq_attr(qp); |
| |
| bail_driver_priv: |
| rdi->driver_f.qp_priv_free(rdi, qp); |
| |
| bail_qp: |
| kfree(qp->s_ack_queue); |
| kfree(qp); |
| |
| bail_swq: |
| vfree(swq); |
| |
| return ret; |
| } |
| |
| /** |
| * rvt_error_qp - put a QP into the error state |
| * @qp: the QP to put into the error state |
| * @err: the receive completion error to signal if a RWQE is active |
| * |
| * Flushes both send and receive work queues. |
| * |
| * Return: true if last WQE event should be generated. |
| * The QP r_lock and s_lock should be held and interrupts disabled. |
| * If we are already in error state, just return. |
| */ |
| int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err) |
| { |
| struct ib_wc wc; |
| int ret = 0; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| |
| lockdep_assert_held(&qp->r_lock); |
| lockdep_assert_held(&qp->s_lock); |
| if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET) |
| goto bail; |
| |
| qp->state = IB_QPS_ERR; |
| |
| if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { |
| qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); |
| del_timer(&qp->s_timer); |
| } |
| |
| if (qp->s_flags & RVT_S_ANY_WAIT_SEND) |
| qp->s_flags &= ~RVT_S_ANY_WAIT_SEND; |
| |
| rdi->driver_f.notify_error_qp(qp); |
| |
| /* Schedule the sending tasklet to drain the send work queue. */ |
| if (READ_ONCE(qp->s_last) != qp->s_head) |
| rdi->driver_f.schedule_send(qp); |
| |
| rvt_clear_mr_refs(qp, 0); |
| |
| memset(&wc, 0, sizeof(wc)); |
| wc.qp = &qp->ibqp; |
| wc.opcode = IB_WC_RECV; |
| |
| if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) { |
| wc.wr_id = qp->r_wr_id; |
| wc.status = err; |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); |
| } |
| wc.status = IB_WC_WR_FLUSH_ERR; |
| |
| if (qp->r_rq.kwq) { |
| u32 head; |
| u32 tail; |
| struct rvt_rwq *wq = NULL; |
| struct rvt_krwq *kwq = NULL; |
| |
| spin_lock(&qp->r_rq.kwq->c_lock); |
| /* qp->ip used to validate if there is a user buffer mmaped */ |
| if (qp->ip) { |
| wq = qp->r_rq.wq; |
| head = RDMA_READ_UAPI_ATOMIC(wq->head); |
| tail = RDMA_READ_UAPI_ATOMIC(wq->tail); |
| } else { |
| kwq = qp->r_rq.kwq; |
| head = kwq->head; |
| tail = kwq->tail; |
| } |
| /* sanity check pointers before trusting them */ |
| if (head >= qp->r_rq.size) |
| head = 0; |
| if (tail >= qp->r_rq.size) |
| tail = 0; |
| while (tail != head) { |
| wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id; |
| if (++tail >= qp->r_rq.size) |
| tail = 0; |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); |
| } |
| if (qp->ip) |
| RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); |
| else |
| kwq->tail = tail; |
| spin_unlock(&qp->r_rq.kwq->c_lock); |
| } else if (qp->ibqp.event_handler) { |
| ret = 1; |
| } |
| |
| bail: |
| return ret; |
| } |
| EXPORT_SYMBOL(rvt_error_qp); |
| |
| /* |
| * Put the QP into the hash table. |
| * The hash table holds a reference to the QP. |
| */ |
| static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp) |
| { |
| struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; |
| unsigned long flags; |
| |
| rvt_get_qp(qp); |
| spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags); |
| |
| if (qp->ibqp.qp_num <= 1) { |
| rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp); |
| } else { |
| u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits); |
| |
| qp->next = rdi->qp_dev->qp_table[n]; |
| rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp); |
| trace_rvt_qpinsert(qp, n); |
| } |
| |
| spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags); |
| } |
| |
| /** |
| * rvt_modify_qp - modify the attributes of a queue pair |
| * @ibqp: the queue pair who's attributes we're modifying |
| * @attr: the new attributes |
| * @attr_mask: the mask of attributes to modify |
| * @udata: user data for libibverbs.so |
| * |
| * Return: 0 on success, otherwise returns an errno. |
| */ |
| int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, |
| int attr_mask, struct ib_udata *udata) |
| { |
| struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); |
| struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); |
| enum ib_qp_state cur_state, new_state; |
| struct ib_event ev; |
| int lastwqe = 0; |
| int mig = 0; |
| int pmtu = 0; /* for gcc warning only */ |
| int opa_ah; |
| |
| spin_lock_irq(&qp->r_lock); |
| spin_lock(&qp->s_hlock); |
| spin_lock(&qp->s_lock); |
| |
| cur_state = attr_mask & IB_QP_CUR_STATE ? |
| attr->cur_qp_state : qp->state; |
| new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state; |
| opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num); |
| |
| if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type, |
| attr_mask)) |
| goto inval; |
| |
| if (rdi->driver_f.check_modify_qp && |
| rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata)) |
| goto inval; |
| |
| if (attr_mask & IB_QP_AV) { |
| if (opa_ah) { |
| if (rdma_ah_get_dlid(&attr->ah_attr) >= |
| opa_get_mcast_base(OPA_MCAST_NR)) |
| goto inval; |
| } else { |
| if (rdma_ah_get_dlid(&attr->ah_attr) >= |
| be16_to_cpu(IB_MULTICAST_LID_BASE)) |
| goto inval; |
| } |
| |
| if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr)) |
| goto inval; |
| } |
| |
| if (attr_mask & IB_QP_ALT_PATH) { |
| if (opa_ah) { |
| if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= |
| opa_get_mcast_base(OPA_MCAST_NR)) |
| goto inval; |
| } else { |
| if (rdma_ah_get_dlid(&attr->alt_ah_attr) >= |
| be16_to_cpu(IB_MULTICAST_LID_BASE)) |
| goto inval; |
| } |
| |
| if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr)) |
| goto inval; |
| if (attr->alt_pkey_index >= rvt_get_npkeys(rdi)) |
| goto inval; |
| } |
| |
| if (attr_mask & IB_QP_PKEY_INDEX) |
| if (attr->pkey_index >= rvt_get_npkeys(rdi)) |
| goto inval; |
| |
| if (attr_mask & IB_QP_MIN_RNR_TIMER) |
| if (attr->min_rnr_timer > 31) |
| goto inval; |
| |
| if (attr_mask & IB_QP_PORT) |
| if (qp->ibqp.qp_type == IB_QPT_SMI || |
| qp->ibqp.qp_type == IB_QPT_GSI || |
| attr->port_num == 0 || |
| attr->port_num > ibqp->device->phys_port_cnt) |
| goto inval; |
| |
| if (attr_mask & IB_QP_DEST_QPN) |
| if (attr->dest_qp_num > RVT_QPN_MASK) |
| goto inval; |
| |
| if (attr_mask & IB_QP_RETRY_CNT) |
| if (attr->retry_cnt > 7) |
| goto inval; |
| |
| if (attr_mask & IB_QP_RNR_RETRY) |
| if (attr->rnr_retry > 7) |
| goto inval; |
| |
| /* |
| * Don't allow invalid path_mtu values. OK to set greater |
| * than the active mtu (or even the max_cap, if we have tuned |
| * that to a small mtu. We'll set qp->path_mtu |
| * to the lesser of requested attribute mtu and active, |
| * for packetizing messages. |
| * Note that the QP port has to be set in INIT and MTU in RTR. |
| */ |
| if (attr_mask & IB_QP_PATH_MTU) { |
| pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr); |
| if (pmtu < 0) |
| goto inval; |
| } |
| |
| if (attr_mask & IB_QP_PATH_MIG_STATE) { |
| if (attr->path_mig_state == IB_MIG_REARM) { |
| if (qp->s_mig_state == IB_MIG_ARMED) |
| goto inval; |
| if (new_state != IB_QPS_RTS) |
| goto inval; |
| } else if (attr->path_mig_state == IB_MIG_MIGRATED) { |
| if (qp->s_mig_state == IB_MIG_REARM) |
| goto inval; |
| if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD) |
| goto inval; |
| if (qp->s_mig_state == IB_MIG_ARMED) |
| mig = 1; |
| } else { |
| goto inval; |
| } |
| } |
| |
| if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) |
| if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic) |
| goto inval; |
| |
| switch (new_state) { |
| case IB_QPS_RESET: |
| if (qp->state != IB_QPS_RESET) |
| rvt_reset_qp(rdi, qp, ibqp->qp_type); |
| break; |
| |
| case IB_QPS_RTR: |
| /* Allow event to re-trigger if QP set to RTR more than once */ |
| qp->r_flags &= ~RVT_R_COMM_EST; |
| qp->state = new_state; |
| break; |
| |
| case IB_QPS_SQD: |
| qp->s_draining = qp->s_last != qp->s_cur; |
| qp->state = new_state; |
| break; |
| |
| case IB_QPS_SQE: |
| if (qp->ibqp.qp_type == IB_QPT_RC) |
| goto inval; |
| qp->state = new_state; |
| break; |
| |
| case IB_QPS_ERR: |
| lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); |
| break; |
| |
| default: |
| qp->state = new_state; |
| break; |
| } |
| |
| if (attr_mask & IB_QP_PKEY_INDEX) |
| qp->s_pkey_index = attr->pkey_index; |
| |
| if (attr_mask & IB_QP_PORT) |
| qp->port_num = attr->port_num; |
| |
| if (attr_mask & IB_QP_DEST_QPN) |
| qp->remote_qpn = attr->dest_qp_num; |
| |
| if (attr_mask & IB_QP_SQ_PSN) { |
| qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask; |
| qp->s_psn = qp->s_next_psn; |
| qp->s_sending_psn = qp->s_next_psn; |
| qp->s_last_psn = qp->s_next_psn - 1; |
| qp->s_sending_hpsn = qp->s_last_psn; |
| } |
| |
| if (attr_mask & IB_QP_RQ_PSN) |
| qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask; |
| |
| if (attr_mask & IB_QP_ACCESS_FLAGS) |
| qp->qp_access_flags = attr->qp_access_flags; |
| |
| if (attr_mask & IB_QP_AV) { |
| rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr); |
| qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr); |
| qp->srate_mbps = ib_rate_to_mbps(qp->s_srate); |
| } |
| |
| if (attr_mask & IB_QP_ALT_PATH) { |
| rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr); |
| qp->s_alt_pkey_index = attr->alt_pkey_index; |
| } |
| |
| if (attr_mask & IB_QP_PATH_MIG_STATE) { |
| qp->s_mig_state = attr->path_mig_state; |
| if (mig) { |
| qp->remote_ah_attr = qp->alt_ah_attr; |
| qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr); |
| qp->s_pkey_index = qp->s_alt_pkey_index; |
| } |
| } |
| |
| if (attr_mask & IB_QP_PATH_MTU) { |
| qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu); |
| qp->log_pmtu = ilog2(qp->pmtu); |
| } |
| |
| if (attr_mask & IB_QP_RETRY_CNT) { |
| qp->s_retry_cnt = attr->retry_cnt; |
| qp->s_retry = attr->retry_cnt; |
| } |
| |
| if (attr_mask & IB_QP_RNR_RETRY) { |
| qp->s_rnr_retry_cnt = attr->rnr_retry; |
| qp->s_rnr_retry = attr->rnr_retry; |
| } |
| |
| if (attr_mask & IB_QP_MIN_RNR_TIMER) |
| qp->r_min_rnr_timer = attr->min_rnr_timer; |
| |
| if (attr_mask & IB_QP_TIMEOUT) { |
| qp->timeout = attr->timeout; |
| qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout); |
| } |
| |
| if (attr_mask & IB_QP_QKEY) |
| qp->qkey = attr->qkey; |
| |
| if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) |
| qp->r_max_rd_atomic = attr->max_dest_rd_atomic; |
| |
| if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) |
| qp->s_max_rd_atomic = attr->max_rd_atomic; |
| |
| if (rdi->driver_f.modify_qp) |
| rdi->driver_f.modify_qp(qp, attr, attr_mask, udata); |
| |
| spin_unlock(&qp->s_lock); |
| spin_unlock(&qp->s_hlock); |
| spin_unlock_irq(&qp->r_lock); |
| |
| if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) |
| rvt_insert_qp(rdi, qp); |
| |
| if (lastwqe) { |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_QP_LAST_WQE_REACHED; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| if (mig) { |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_PATH_MIG; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| return 0; |
| |
| inval: |
| spin_unlock(&qp->s_lock); |
| spin_unlock(&qp->s_hlock); |
| spin_unlock_irq(&qp->r_lock); |
| return -EINVAL; |
| } |
| |
| /** |
| * rvt_destroy_qp - destroy a queue pair |
| * @ibqp: the queue pair to destroy |
| * |
| * Note that this can be called while the QP is actively sending or |
| * receiving! |
| * |
| * Return: 0 on success. |
| */ |
| int rvt_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) |
| { |
| struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); |
| struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); |
| |
| spin_lock_irq(&qp->r_lock); |
| spin_lock(&qp->s_hlock); |
| spin_lock(&qp->s_lock); |
| rvt_reset_qp(rdi, qp, ibqp->qp_type); |
| spin_unlock(&qp->s_lock); |
| spin_unlock(&qp->s_hlock); |
| spin_unlock_irq(&qp->r_lock); |
| |
| wait_event(qp->wait, !atomic_read(&qp->refcount)); |
| /* qpn is now available for use again */ |
| rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num); |
| |
| spin_lock(&rdi->n_qps_lock); |
| rdi->n_qps_allocated--; |
| if (qp->ibqp.qp_type == IB_QPT_RC) { |
| rdi->n_rc_qps--; |
| rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL; |
| } |
| spin_unlock(&rdi->n_qps_lock); |
| |
| if (qp->ip) |
| kref_put(&qp->ip->ref, rvt_release_mmap_info); |
| kvfree(qp->r_rq.kwq); |
| rdi->driver_f.qp_priv_free(rdi, qp); |
| kfree(qp->s_ack_queue); |
| rdma_destroy_ah_attr(&qp->remote_ah_attr); |
| rdma_destroy_ah_attr(&qp->alt_ah_attr); |
| free_ud_wq_attr(qp); |
| vfree(qp->s_wq); |
| kfree(qp); |
| return 0; |
| } |
| |
| /** |
| * rvt_query_qp - query an ipbq |
| * @ibqp: IB qp to query |
| * @attr: attr struct to fill in |
| * @attr_mask: attr mask ignored |
| * @init_attr: struct to fill in |
| * |
| * Return: always 0 |
| */ |
| int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr, |
| int attr_mask, struct ib_qp_init_attr *init_attr) |
| { |
| struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); |
| struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); |
| |
| attr->qp_state = qp->state; |
| attr->cur_qp_state = attr->qp_state; |
| attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu); |
| attr->path_mig_state = qp->s_mig_state; |
| attr->qkey = qp->qkey; |
| attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask; |
| attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask; |
| attr->dest_qp_num = qp->remote_qpn; |
| attr->qp_access_flags = qp->qp_access_flags; |
| attr->cap.max_send_wr = qp->s_size - 1 - |
| rdi->dparms.reserved_operations; |
| attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1; |
| attr->cap.max_send_sge = qp->s_max_sge; |
| attr->cap.max_recv_sge = qp->r_rq.max_sge; |
| attr->cap.max_inline_data = 0; |
| attr->ah_attr = qp->remote_ah_attr; |
| attr->alt_ah_attr = qp->alt_ah_attr; |
| attr->pkey_index = qp->s_pkey_index; |
| attr->alt_pkey_index = qp->s_alt_pkey_index; |
| attr->en_sqd_async_notify = 0; |
| attr->sq_draining = qp->s_draining; |
| attr->max_rd_atomic = qp->s_max_rd_atomic; |
| attr->max_dest_rd_atomic = qp->r_max_rd_atomic; |
| attr->min_rnr_timer = qp->r_min_rnr_timer; |
| attr->port_num = qp->port_num; |
| attr->timeout = qp->timeout; |
| attr->retry_cnt = qp->s_retry_cnt; |
| attr->rnr_retry = qp->s_rnr_retry_cnt; |
| attr->alt_port_num = |
| rdma_ah_get_port_num(&qp->alt_ah_attr); |
| attr->alt_timeout = qp->alt_timeout; |
| |
| init_attr->event_handler = qp->ibqp.event_handler; |
| init_attr->qp_context = qp->ibqp.qp_context; |
| init_attr->send_cq = qp->ibqp.send_cq; |
| init_attr->recv_cq = qp->ibqp.recv_cq; |
| init_attr->srq = qp->ibqp.srq; |
| init_attr->cap = attr->cap; |
| if (qp->s_flags & RVT_S_SIGNAL_REQ_WR) |
| init_attr->sq_sig_type = IB_SIGNAL_REQ_WR; |
| else |
| init_attr->sq_sig_type = IB_SIGNAL_ALL_WR; |
| init_attr->qp_type = qp->ibqp.qp_type; |
| init_attr->port_num = qp->port_num; |
| return 0; |
| } |
| |
| /** |
| * rvt_post_receive - post a receive on a QP |
| * @ibqp: the QP to post the receive on |
| * @wr: the WR to post |
| * @bad_wr: the first bad WR is put here |
| * |
| * This may be called from interrupt context. |
| * |
| * Return: 0 on success otherwise errno |
| */ |
| int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, |
| const struct ib_recv_wr **bad_wr) |
| { |
| struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); |
| struct rvt_krwq *wq = qp->r_rq.kwq; |
| unsigned long flags; |
| int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) && |
| !qp->ibqp.srq; |
| |
| /* Check that state is OK to post receive. */ |
| if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) { |
| *bad_wr = wr; |
| return -EINVAL; |
| } |
| |
| for (; wr; wr = wr->next) { |
| struct rvt_rwqe *wqe; |
| u32 next; |
| int i; |
| |
| if ((unsigned)wr->num_sge > qp->r_rq.max_sge) { |
| *bad_wr = wr; |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&qp->r_rq.kwq->p_lock, flags); |
| next = wq->head + 1; |
| if (next >= qp->r_rq.size) |
| next = 0; |
| if (next == READ_ONCE(wq->tail)) { |
| spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); |
| *bad_wr = wr; |
| return -ENOMEM; |
| } |
| if (unlikely(qp_err_flush)) { |
| struct ib_wc wc; |
| |
| memset(&wc, 0, sizeof(wc)); |
| wc.qp = &qp->ibqp; |
| wc.opcode = IB_WC_RECV; |
| wc.wr_id = wr->wr_id; |
| wc.status = IB_WC_WR_FLUSH_ERR; |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); |
| } else { |
| wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head); |
| wqe->wr_id = wr->wr_id; |
| wqe->num_sge = wr->num_sge; |
| for (i = 0; i < wr->num_sge; i++) { |
| wqe->sg_list[i].addr = wr->sg_list[i].addr; |
| wqe->sg_list[i].length = wr->sg_list[i].length; |
| wqe->sg_list[i].lkey = wr->sg_list[i].lkey; |
| } |
| /* |
| * Make sure queue entry is written |
| * before the head index. |
| */ |
| smp_store_release(&wq->head, next); |
| } |
| spin_unlock_irqrestore(&qp->r_rq.kwq->p_lock, flags); |
| } |
| return 0; |
| } |
| |
| /** |
| * rvt_qp_valid_operation - validate post send wr request |
| * @qp - the qp |
| * @post-parms - the post send table for the driver |
| * @wr - the work request |
| * |
| * The routine validates the operation based on the |
| * validation table an returns the length of the operation |
| * which can extend beyond the ib_send_bw. Operation |
| * dependent flags key atomic operation validation. |
| * |
| * There is an exception for UD qps that validates the pd and |
| * overrides the length to include the additional UD specific |
| * length. |
| * |
| * Returns a negative error or the length of the work request |
| * for building the swqe. |
| */ |
| static inline int rvt_qp_valid_operation( |
| struct rvt_qp *qp, |
| const struct rvt_operation_params *post_parms, |
| const struct ib_send_wr *wr) |
| { |
| int len; |
| |
| if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length) |
| return -EINVAL; |
| if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type))) |
| return -EINVAL; |
| if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) && |
| ibpd_to_rvtpd(qp->ibqp.pd)->user) |
| return -EINVAL; |
| if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE && |
| (wr->num_sge == 0 || |
| wr->sg_list[0].length < sizeof(u64) || |
| wr->sg_list[0].addr & (sizeof(u64) - 1))) |
| return -EINVAL; |
| if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC && |
| !qp->s_max_rd_atomic) |
| return -EINVAL; |
| len = post_parms[wr->opcode].length; |
| /* UD specific */ |
| if (qp->ibqp.qp_type != IB_QPT_UC && |
| qp->ibqp.qp_type != IB_QPT_RC) { |
| if (qp->ibqp.pd != ud_wr(wr)->ah->pd) |
| return -EINVAL; |
| len = sizeof(struct ib_ud_wr); |
| } |
| return len; |
| } |
| |
| /** |
| * rvt_qp_is_avail - determine queue capacity |
| * @qp: the qp |
| * @rdi: the rdmavt device |
| * @reserved_op: is reserved operation |
| * |
| * This assumes the s_hlock is held but the s_last |
| * qp variable is uncontrolled. |
| * |
| * For non reserved operations, the qp->s_avail |
| * may be changed. |
| * |
| * The return value is zero or a -ENOMEM. |
| */ |
| static inline int rvt_qp_is_avail( |
| struct rvt_qp *qp, |
| struct rvt_dev_info *rdi, |
| bool reserved_op) |
| { |
| u32 slast; |
| u32 avail; |
| u32 reserved_used; |
| |
| /* see rvt_qp_wqe_unreserve() */ |
| smp_mb__before_atomic(); |
| if (unlikely(reserved_op)) { |
| /* see rvt_qp_wqe_unreserve() */ |
| reserved_used = atomic_read(&qp->s_reserved_used); |
| if (reserved_used >= rdi->dparms.reserved_operations) |
| return -ENOMEM; |
| return 0; |
| } |
| /* non-reserved operations */ |
| if (likely(qp->s_avail)) |
| return 0; |
| /* See rvt_qp_complete_swqe() */ |
| slast = smp_load_acquire(&qp->s_last); |
| if (qp->s_head >= slast) |
| avail = qp->s_size - (qp->s_head - slast); |
| else |
| avail = slast - qp->s_head; |
| |
| reserved_used = atomic_read(&qp->s_reserved_used); |
| avail = avail - 1 - |
| (rdi->dparms.reserved_operations - reserved_used); |
| /* insure we don't assign a negative s_avail */ |
| if ((s32)avail <= 0) |
| return -ENOMEM; |
| qp->s_avail = avail; |
| if (WARN_ON(qp->s_avail > |
| (qp->s_size - 1 - rdi->dparms.reserved_operations))) |
| rvt_pr_err(rdi, |
| "More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u", |
| qp->ibqp.qp_num, qp->s_size, qp->s_avail, |
| qp->s_head, qp->s_tail, qp->s_cur, |
| qp->s_acked, qp->s_last); |
| return 0; |
| } |
| |
| /** |
| * rvt_post_one_wr - post one RC, UC, or UD send work request |
| * @qp: the QP to post on |
| * @wr: the work request to send |
| */ |
| static int rvt_post_one_wr(struct rvt_qp *qp, |
| const struct ib_send_wr *wr, |
| bool *call_send) |
| { |
| struct rvt_swqe *wqe; |
| u32 next; |
| int i; |
| int j; |
| int acc; |
| struct rvt_lkey_table *rkt; |
| struct rvt_pd *pd; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| u8 log_pmtu; |
| int ret; |
| size_t cplen; |
| bool reserved_op; |
| int local_ops_delayed = 0; |
| |
| BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE)); |
| |
| /* IB spec says that num_sge == 0 is OK. */ |
| if (unlikely(wr->num_sge > qp->s_max_sge)) |
| return -EINVAL; |
| |
| ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr); |
| if (ret < 0) |
| return ret; |
| cplen = ret; |
| |
| /* |
| * Local operations include fast register and local invalidate. |
| * Fast register needs to be processed immediately because the |
| * registered lkey may be used by following work requests and the |
| * lkey needs to be valid at the time those requests are posted. |
| * Local invalidate can be processed immediately if fencing is |
| * not required and no previous local invalidate ops are pending. |
| * Signaled local operations that have been processed immediately |
| * need to have requests with "completion only" flags set posted |
| * to the send queue in order to generate completions. |
| */ |
| if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) { |
| switch (wr->opcode) { |
| case IB_WR_REG_MR: |
| ret = rvt_fast_reg_mr(qp, |
| reg_wr(wr)->mr, |
| reg_wr(wr)->key, |
| reg_wr(wr)->access); |
| if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) |
| return ret; |
| break; |
| case IB_WR_LOCAL_INV: |
| if ((wr->send_flags & IB_SEND_FENCE) || |
| atomic_read(&qp->local_ops_pending)) { |
| local_ops_delayed = 1; |
| } else { |
| ret = rvt_invalidate_rkey( |
| qp, wr->ex.invalidate_rkey); |
| if (ret || !(wr->send_flags & IB_SEND_SIGNALED)) |
| return ret; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| reserved_op = rdi->post_parms[wr->opcode].flags & |
| RVT_OPERATION_USE_RESERVE; |
| /* check for avail */ |
| ret = rvt_qp_is_avail(qp, rdi, reserved_op); |
| if (ret) |
| return ret; |
| next = qp->s_head + 1; |
| if (next >= qp->s_size) |
| next = 0; |
| |
| rkt = &rdi->lkey_table; |
| pd = ibpd_to_rvtpd(qp->ibqp.pd); |
| wqe = rvt_get_swqe_ptr(qp, qp->s_head); |
| |
| /* cplen has length from above */ |
| memcpy(&wqe->wr, wr, cplen); |
| |
| wqe->length = 0; |
| j = 0; |
| if (wr->num_sge) { |
| struct rvt_sge *last_sge = NULL; |
| |
| acc = wr->opcode >= IB_WR_RDMA_READ ? |
| IB_ACCESS_LOCAL_WRITE : 0; |
| for (i = 0; i < wr->num_sge; i++) { |
| u32 length = wr->sg_list[i].length; |
| |
| if (length == 0) |
| continue; |
| ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge, |
| &wr->sg_list[i], acc); |
| if (unlikely(ret < 0)) |
| goto bail_inval_free; |
| wqe->length += length; |
| if (ret) |
| last_sge = &wqe->sg_list[j]; |
| j += ret; |
| } |
| wqe->wr.num_sge = j; |
| } |
| |
| /* |
| * Calculate and set SWQE PSN values prior to handing it off |
| * to the driver's check routine. This give the driver the |
| * opportunity to adjust PSN values based on internal checks. |
| */ |
| log_pmtu = qp->log_pmtu; |
| if (qp->allowed_ops == IB_OPCODE_UD) { |
| struct rvt_ah *ah = rvt_get_swqe_ah(wqe); |
| |
| log_pmtu = ah->log_pmtu; |
| rdma_copy_ah_attr(wqe->ud_wr.attr, &ah->attr); |
| } |
| |
| if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) { |
| if (local_ops_delayed) |
| atomic_inc(&qp->local_ops_pending); |
| else |
| wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY; |
| wqe->ssn = 0; |
| wqe->psn = 0; |
| wqe->lpsn = 0; |
| } else { |
| wqe->ssn = qp->s_ssn++; |
| wqe->psn = qp->s_next_psn; |
| wqe->lpsn = wqe->psn + |
| (wqe->length ? |
| ((wqe->length - 1) >> log_pmtu) : |
| 0); |
| } |
| |
| /* general part of wqe valid - allow for driver checks */ |
| if (rdi->driver_f.setup_wqe) { |
| ret = rdi->driver_f.setup_wqe(qp, wqe, call_send); |
| if (ret < 0) |
| goto bail_inval_free_ref; |
| } |
| |
| if (!(rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) |
| qp->s_next_psn = wqe->lpsn + 1; |
| |
| if (unlikely(reserved_op)) { |
| wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; |
| rvt_qp_wqe_reserve(qp, wqe); |
| } else { |
| wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; |
| qp->s_avail--; |
| } |
| trace_rvt_post_one_wr(qp, wqe, wr->num_sge); |
| smp_wmb(); /* see request builders */ |
| qp->s_head = next; |
| |
| return 0; |
| |
| bail_inval_free_ref: |
| if (qp->allowed_ops == IB_OPCODE_UD) |
| rdma_destroy_ah_attr(wqe->ud_wr.attr); |
| bail_inval_free: |
| /* release mr holds */ |
| while (j) { |
| struct rvt_sge *sge = &wqe->sg_list[--j]; |
| |
| rvt_put_mr(sge->mr); |
| } |
| return ret; |
| } |
| |
| /** |
| * rvt_post_send - post a send on a QP |
| * @ibqp: the QP to post the send on |
| * @wr: the list of work requests to post |
| * @bad_wr: the first bad WR is put here |
| * |
| * This may be called from interrupt context. |
| * |
| * Return: 0 on success else errno |
| */ |
| int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, |
| const struct ib_send_wr **bad_wr) |
| { |
| struct rvt_qp *qp = ibqp_to_rvtqp(ibqp); |
| struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); |
| unsigned long flags = 0; |
| bool call_send; |
| unsigned nreq = 0; |
| int err = 0; |
| |
| spin_lock_irqsave(&qp->s_hlock, flags); |
| |
| /* |
| * Ensure QP state is such that we can send. If not bail out early, |
| * there is no need to do this every time we post a send. |
| */ |
| if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) { |
| spin_unlock_irqrestore(&qp->s_hlock, flags); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the send queue is empty, and we only have a single WR then just go |
| * ahead and kick the send engine into gear. Otherwise we will always |
| * just schedule the send to happen later. |
| */ |
| call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next; |
| |
| for (; wr; wr = wr->next) { |
| err = rvt_post_one_wr(qp, wr, &call_send); |
| if (unlikely(err)) { |
| *bad_wr = wr; |
| goto bail; |
| } |
| nreq++; |
| } |
| bail: |
| spin_unlock_irqrestore(&qp->s_hlock, flags); |
| if (nreq) { |
| /* |
| * Only call do_send if there is exactly one packet, and the |
| * driver said it was ok. |
| */ |
| if (nreq == 1 && call_send) |
| rdi->driver_f.do_send(qp); |
| else |
| rdi->driver_f.schedule_send_no_lock(qp); |
| } |
| return err; |
| } |
| |
| /** |
| * rvt_post_srq_receive - post a receive on a shared receive queue |
| * @ibsrq: the SRQ to post the receive on |
| * @wr: the list of work requests to post |
| * @bad_wr: A pointer to the first WR to cause a problem is put here |
| * |
| * This may be called from interrupt context. |
| * |
| * Return: 0 on success else errno |
| */ |
| int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, |
| const struct ib_recv_wr **bad_wr) |
| { |
| struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq); |
| struct rvt_krwq *wq; |
| unsigned long flags; |
| |
| for (; wr; wr = wr->next) { |
| struct rvt_rwqe *wqe; |
| u32 next; |
| int i; |
| |
| if ((unsigned)wr->num_sge > srq->rq.max_sge) { |
| *bad_wr = wr; |
| return -EINVAL; |
| } |
| |
| spin_lock_irqsave(&srq->rq.kwq->p_lock, flags); |
| wq = srq->rq.kwq; |
| next = wq->head + 1; |
| if (next >= srq->rq.size) |
| next = 0; |
| if (next == READ_ONCE(wq->tail)) { |
| spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); |
| *bad_wr = wr; |
| return -ENOMEM; |
| } |
| |
| wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head); |
| wqe->wr_id = wr->wr_id; |
| wqe->num_sge = wr->num_sge; |
| for (i = 0; i < wr->num_sge; i++) { |
| wqe->sg_list[i].addr = wr->sg_list[i].addr; |
| wqe->sg_list[i].length = wr->sg_list[i].length; |
| wqe->sg_list[i].lkey = wr->sg_list[i].lkey; |
| } |
| /* Make sure queue entry is written before the head index. */ |
| smp_store_release(&wq->head, next); |
| spin_unlock_irqrestore(&srq->rq.kwq->p_lock, flags); |
| } |
| return 0; |
| } |
| |
| /* |
| * rvt used the internal kernel struct as part of its ABI, for now make sure |
| * the kernel struct does not change layout. FIXME: rvt should never cast the |
| * user struct to a kernel struct. |
| */ |
| static struct ib_sge *rvt_cast_sge(struct rvt_wqe_sge *sge) |
| { |
| BUILD_BUG_ON(offsetof(struct ib_sge, addr) != |
| offsetof(struct rvt_wqe_sge, addr)); |
| BUILD_BUG_ON(offsetof(struct ib_sge, length) != |
| offsetof(struct rvt_wqe_sge, length)); |
| BUILD_BUG_ON(offsetof(struct ib_sge, lkey) != |
| offsetof(struct rvt_wqe_sge, lkey)); |
| return (struct ib_sge *)sge; |
| } |
| |
| /* |
| * Validate a RWQE and fill in the SGE state. |
| * Return 1 if OK. |
| */ |
| static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe) |
| { |
| int i, j, ret; |
| struct ib_wc wc; |
| struct rvt_lkey_table *rkt; |
| struct rvt_pd *pd; |
| struct rvt_sge_state *ss; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| |
| rkt = &rdi->lkey_table; |
| pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd); |
| ss = &qp->r_sge; |
| ss->sg_list = qp->r_sg_list; |
| qp->r_len = 0; |
| for (i = j = 0; i < wqe->num_sge; i++) { |
| if (wqe->sg_list[i].length == 0) |
| continue; |
| /* Check LKEY */ |
| ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge, |
| NULL, rvt_cast_sge(&wqe->sg_list[i]), |
| IB_ACCESS_LOCAL_WRITE); |
| if (unlikely(ret <= 0)) |
| goto bad_lkey; |
| qp->r_len += wqe->sg_list[i].length; |
| j++; |
| } |
| ss->num_sge = j; |
| ss->total_len = qp->r_len; |
| return 1; |
| |
| bad_lkey: |
| while (j) { |
| struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge; |
| |
| rvt_put_mr(sge->mr); |
| } |
| ss->num_sge = 0; |
| memset(&wc, 0, sizeof(wc)); |
| wc.wr_id = wqe->wr_id; |
| wc.status = IB_WC_LOC_PROT_ERR; |
| wc.opcode = IB_WC_RECV; |
| wc.qp = &qp->ibqp; |
| /* Signal solicited completion event. */ |
| rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1); |
| return 0; |
| } |
| |
| /** |
| * get_count - count numbers of request work queue entries |
| * in circular buffer |
| * @rq: data structure for request queue entry |
| * @tail: tail indices of the circular buffer |
| * @head: head indices of the circular buffer |
| * |
| * Return - total number of entries in the circular buffer |
| */ |
| static u32 get_count(struct rvt_rq *rq, u32 tail, u32 head) |
| { |
| u32 count; |
| |
| count = head; |
| |
| if (count >= rq->size) |
| count = 0; |
| if (count < tail) |
| count += rq->size - tail; |
| else |
| count -= tail; |
| |
| return count; |
| } |
| |
| /** |
| * get_rvt_head - get head indices of the circular buffer |
| * @rq: data structure for request queue entry |
| * @ip: the QP |
| * |
| * Return - head index value |
| */ |
| static inline u32 get_rvt_head(struct rvt_rq *rq, void *ip) |
| { |
| u32 head; |
| |
| if (ip) |
| head = RDMA_READ_UAPI_ATOMIC(rq->wq->head); |
| else |
| head = rq->kwq->head; |
| |
| return head; |
| } |
| |
| /** |
| * rvt_get_rwqe - copy the next RWQE into the QP's RWQE |
| * @qp: the QP |
| * @wr_id_only: update qp->r_wr_id only, not qp->r_sge |
| * |
| * Return -1 if there is a local error, 0 if no RWQE is available, |
| * otherwise return 1. |
| * |
| * Can be called from interrupt level. |
| */ |
| int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only) |
| { |
| unsigned long flags; |
| struct rvt_rq *rq; |
| struct rvt_krwq *kwq = NULL; |
| struct rvt_rwq *wq; |
| struct rvt_srq *srq; |
| struct rvt_rwqe *wqe; |
| void (*handler)(struct ib_event *, void *); |
| u32 tail; |
| u32 head; |
| int ret; |
| void *ip = NULL; |
| |
| if (qp->ibqp.srq) { |
| srq = ibsrq_to_rvtsrq(qp->ibqp.srq); |
| handler = srq->ibsrq.event_handler; |
| rq = &srq->rq; |
| ip = srq->ip; |
| } else { |
| srq = NULL; |
| handler = NULL; |
| rq = &qp->r_rq; |
| ip = qp->ip; |
| } |
| |
| spin_lock_irqsave(&rq->kwq->c_lock, flags); |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { |
| ret = 0; |
| goto unlock; |
| } |
| kwq = rq->kwq; |
| if (ip) { |
| wq = rq->wq; |
| tail = RDMA_READ_UAPI_ATOMIC(wq->tail); |
| } else { |
| tail = kwq->tail; |
| } |
| |
| /* Validate tail before using it since it is user writable. */ |
| if (tail >= rq->size) |
| tail = 0; |
| |
| if (kwq->count < RVT_RWQ_COUNT_THRESHOLD) { |
| head = get_rvt_head(rq, ip); |
| kwq->count = get_count(rq, tail, head); |
| } |
| if (unlikely(kwq->count == 0)) { |
| ret = 0; |
| goto unlock; |
| } |
| /* Make sure entry is read after the count is read. */ |
| smp_rmb(); |
| wqe = rvt_get_rwqe_ptr(rq, tail); |
| /* |
| * Even though we update the tail index in memory, the verbs |
| * consumer is not supposed to post more entries until a |
| * completion is generated. |
| */ |
| if (++tail >= rq->size) |
| tail = 0; |
| if (ip) |
| RDMA_WRITE_UAPI_ATOMIC(wq->tail, tail); |
| else |
| kwq->tail = tail; |
| if (!wr_id_only && !init_sge(qp, wqe)) { |
| ret = -1; |
| goto unlock; |
| } |
| qp->r_wr_id = wqe->wr_id; |
| |
| kwq->count--; |
| ret = 1; |
| set_bit(RVT_R_WRID_VALID, &qp->r_aflags); |
| if (handler) { |
| /* |
| * Validate head pointer value and compute |
| * the number of remaining WQEs. |
| */ |
| if (kwq->count < srq->limit) { |
| kwq->count = get_count(rq, tail, get_rvt_head(rq, ip)); |
| if (kwq->count < srq->limit) { |
| struct ib_event ev; |
| |
| srq->limit = 0; |
| spin_unlock_irqrestore(&rq->kwq->c_lock, flags); |
| ev.device = qp->ibqp.device; |
| ev.element.srq = qp->ibqp.srq; |
| ev.event = IB_EVENT_SRQ_LIMIT_REACHED; |
| handler(&ev, srq->ibsrq.srq_context); |
| goto bail; |
| } |
| } |
| } |
| unlock: |
| spin_unlock_irqrestore(&rq->kwq->c_lock, flags); |
| bail: |
| return ret; |
| } |
| EXPORT_SYMBOL(rvt_get_rwqe); |
| |
| /** |
| * qp_comm_est - handle trap with QP established |
| * @qp: the QP |
| */ |
| void rvt_comm_est(struct rvt_qp *qp) |
| { |
| qp->r_flags |= RVT_R_COMM_EST; |
| if (qp->ibqp.event_handler) { |
| struct ib_event ev; |
| |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_COMM_EST; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| } |
| EXPORT_SYMBOL(rvt_comm_est); |
| |
| void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err) |
| { |
| unsigned long flags; |
| int lastwqe; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| lastwqe = rvt_error_qp(qp, err); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| |
| if (lastwqe) { |
| struct ib_event ev; |
| |
| ev.device = qp->ibqp.device; |
| ev.element.qp = &qp->ibqp; |
| ev.event = IB_EVENT_QP_LAST_WQE_REACHED; |
| qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); |
| } |
| } |
| EXPORT_SYMBOL(rvt_rc_error); |
| |
| /* |
| * rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table |
| * @index - the index |
| * return usec from an index into ib_rvt_rnr_table |
| */ |
| unsigned long rvt_rnr_tbl_to_usec(u32 index) |
| { |
| return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)]; |
| } |
| EXPORT_SYMBOL(rvt_rnr_tbl_to_usec); |
| |
| static inline unsigned long rvt_aeth_to_usec(u32 aeth) |
| { |
| return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) & |
| IB_AETH_CREDIT_MASK]; |
| } |
| |
| /* |
| * rvt_add_retry_timer_ext - add/start a retry timer |
| * @qp - the QP |
| * @shift - timeout shift to wait for multiple packets |
| * add a retry timer on the QP |
| */ |
| void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift) |
| { |
| struct ib_qp *ibqp = &qp->ibqp; |
| struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); |
| |
| lockdep_assert_held(&qp->s_lock); |
| qp->s_flags |= RVT_S_TIMER; |
| /* 4.096 usec. * (1 << qp->timeout) */ |
| qp->s_timer.expires = jiffies + rdi->busy_jiffies + |
| (qp->timeout_jiffies << shift); |
| add_timer(&qp->s_timer); |
| } |
| EXPORT_SYMBOL(rvt_add_retry_timer_ext); |
| |
| /** |
| * rvt_add_rnr_timer - add/start an rnr timer on the QP |
| * @qp: the QP |
| * @aeth: aeth of RNR timeout, simulated aeth for loopback |
| */ |
| void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth) |
| { |
| u32 to; |
| |
| lockdep_assert_held(&qp->s_lock); |
| qp->s_flags |= RVT_S_WAIT_RNR; |
| to = rvt_aeth_to_usec(aeth); |
| trace_rvt_rnrnak_add(qp, to); |
| hrtimer_start(&qp->s_rnr_timer, |
| ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED); |
| } |
| EXPORT_SYMBOL(rvt_add_rnr_timer); |
| |
| /** |
| * rvt_stop_rc_timers - stop all timers |
| * @qp: the QP |
| * stop any pending timers |
| */ |
| void rvt_stop_rc_timers(struct rvt_qp *qp) |
| { |
| lockdep_assert_held(&qp->s_lock); |
| /* Remove QP from all timers */ |
| if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) { |
| qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR); |
| del_timer(&qp->s_timer); |
| hrtimer_try_to_cancel(&qp->s_rnr_timer); |
| } |
| } |
| EXPORT_SYMBOL(rvt_stop_rc_timers); |
| |
| /** |
| * rvt_stop_rnr_timer - stop an rnr timer |
| * @qp - the QP |
| * |
| * stop an rnr timer and return if the timer |
| * had been pending. |
| */ |
| static void rvt_stop_rnr_timer(struct rvt_qp *qp) |
| { |
| lockdep_assert_held(&qp->s_lock); |
| /* Remove QP from rnr timer */ |
| if (qp->s_flags & RVT_S_WAIT_RNR) { |
| qp->s_flags &= ~RVT_S_WAIT_RNR; |
| trace_rvt_rnrnak_stop(qp, 0); |
| } |
| } |
| |
| /** |
| * rvt_del_timers_sync - wait for any timeout routines to exit |
| * @qp: the QP |
| */ |
| void rvt_del_timers_sync(struct rvt_qp *qp) |
| { |
| del_timer_sync(&qp->s_timer); |
| hrtimer_cancel(&qp->s_rnr_timer); |
| } |
| EXPORT_SYMBOL(rvt_del_timers_sync); |
| |
| /* |
| * This is called from s_timer for missing responses. |
| */ |
| static void rvt_rc_timeout(struct timer_list *t) |
| { |
| struct rvt_qp *qp = from_timer(qp, t, s_timer); |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qp->r_lock, flags); |
| spin_lock(&qp->s_lock); |
| if (qp->s_flags & RVT_S_TIMER) { |
| struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1]; |
| |
| qp->s_flags &= ~RVT_S_TIMER; |
| rvp->n_rc_timeouts++; |
| del_timer(&qp->s_timer); |
| trace_rvt_rc_timeout(qp, qp->s_last_psn + 1); |
| if (rdi->driver_f.notify_restart_rc) |
| rdi->driver_f.notify_restart_rc(qp, |
| qp->s_last_psn + 1, |
| 1); |
| rdi->driver_f.schedule_send(qp); |
| } |
| spin_unlock(&qp->s_lock); |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| } |
| |
| /* |
| * This is called from s_timer for RNR timeouts. |
| */ |
| enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t) |
| { |
| struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer); |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&qp->s_lock, flags); |
| rvt_stop_rnr_timer(qp); |
| trace_rvt_rnrnak_timeout(qp, 0); |
| rdi->driver_f.schedule_send(qp); |
| spin_unlock_irqrestore(&qp->s_lock, flags); |
| return HRTIMER_NORESTART; |
| } |
| EXPORT_SYMBOL(rvt_rc_rnr_retry); |
| |
| /** |
| * rvt_qp_iter_init - initial for QP iteration |
| * @rdi: rvt devinfo |
| * @v: u64 value |
| * @cb: user-defined callback |
| * |
| * This returns an iterator suitable for iterating QPs |
| * in the system. |
| * |
| * The @cb is a user-defined callback and @v is a 64-bit |
| * value passed to and relevant for processing in the |
| * @cb. An example use case would be to alter QP processing |
| * based on criteria not part of the rvt_qp. |
| * |
| * Use cases that require memory allocation to succeed |
| * must preallocate appropriately. |
| * |
| * Return: a pointer to an rvt_qp_iter or NULL |
| */ |
| struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, |
| u64 v, |
| void (*cb)(struct rvt_qp *qp, u64 v)) |
| { |
| struct rvt_qp_iter *i; |
| |
| i = kzalloc(sizeof(*i), GFP_KERNEL); |
| if (!i) |
| return NULL; |
| |
| i->rdi = rdi; |
| /* number of special QPs (SMI/GSI) for device */ |
| i->specials = rdi->ibdev.phys_port_cnt * 2; |
| i->v = v; |
| i->cb = cb; |
| |
| return i; |
| } |
| EXPORT_SYMBOL(rvt_qp_iter_init); |
| |
| /** |
| * rvt_qp_iter_next - return the next QP in iter |
| * @iter: the iterator |
| * |
| * Fine grained QP iterator suitable for use |
| * with debugfs seq_file mechanisms. |
| * |
| * Updates iter->qp with the current QP when the return |
| * value is 0. |
| * |
| * Return: 0 - iter->qp is valid 1 - no more QPs |
| */ |
| int rvt_qp_iter_next(struct rvt_qp_iter *iter) |
| __must_hold(RCU) |
| { |
| int n = iter->n; |
| int ret = 1; |
| struct rvt_qp *pqp = iter->qp; |
| struct rvt_qp *qp; |
| struct rvt_dev_info *rdi = iter->rdi; |
| |
| /* |
| * The approach is to consider the special qps |
| * as additional table entries before the |
| * real hash table. Since the qp code sets |
| * the qp->next hash link to NULL, this works just fine. |
| * |
| * iter->specials is 2 * # ports |
| * |
| * n = 0..iter->specials is the special qp indices |
| * |
| * n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are |
| * the potential hash bucket entries |
| * |
| */ |
| for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) { |
| if (pqp) { |
| qp = rcu_dereference(pqp->next); |
| } else { |
| if (n < iter->specials) { |
| struct rvt_ibport *rvp; |
| int pidx; |
| |
| pidx = n % rdi->ibdev.phys_port_cnt; |
| rvp = rdi->ports[pidx]; |
| qp = rcu_dereference(rvp->qp[n & 1]); |
| } else { |
| qp = rcu_dereference( |
| rdi->qp_dev->qp_table[ |
| (n - iter->specials)]); |
| } |
| } |
| pqp = qp; |
| if (qp) { |
| iter->qp = qp; |
| iter->n = n; |
| return 0; |
| } |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL(rvt_qp_iter_next); |
| |
| /** |
| * rvt_qp_iter - iterate all QPs |
| * @rdi: rvt devinfo |
| * @v: a 64-bit value |
| * @cb: a callback |
| * |
| * This provides a way for iterating all QPs. |
| * |
| * The @cb is a user-defined callback and @v is a 64-bit |
| * value passed to and relevant for processing in the |
| * cb. An example use case would be to alter QP processing |
| * based on criteria not part of the rvt_qp. |
| * |
| * The code has an internal iterator to simplify |
| * non seq_file use cases. |
| */ |
| void rvt_qp_iter(struct rvt_dev_info *rdi, |
| u64 v, |
| void (*cb)(struct rvt_qp *qp, u64 v)) |
| { |
| int ret; |
| struct rvt_qp_iter i = { |
| .rdi = rdi, |
| .specials = rdi->ibdev.phys_port_cnt * 2, |
| .v = v, |
| .cb = cb |
| }; |
| |
| rcu_read_lock(); |
| do { |
| ret = rvt_qp_iter_next(&i); |
| if (!ret) { |
| rvt_get_qp(i.qp); |
| rcu_read_unlock(); |
| i.cb(i.qp, i.v); |
| rcu_read_lock(); |
| rvt_put_qp(i.qp); |
| } |
| } while (!ret); |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(rvt_qp_iter); |
| |
| /* |
| * This should be called with s_lock held. |
| */ |
| void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, |
| enum ib_wc_status status) |
| { |
| u32 old_last, last; |
| struct rvt_dev_info *rdi; |
| |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND)) |
| return; |
| rdi = ib_to_rvt(qp->ibqp.device); |
| |
| old_last = qp->s_last; |
| trace_rvt_qp_send_completion(qp, wqe, old_last); |
| last = rvt_qp_complete_swqe(qp, wqe, rdi->wc_opcode[wqe->wr.opcode], |
| status); |
| if (qp->s_acked == old_last) |
| qp->s_acked = last; |
| if (qp->s_cur == old_last) |
| qp->s_cur = last; |
| if (qp->s_tail == old_last) |
| qp->s_tail = last; |
| if (qp->state == IB_QPS_SQD && last == qp->s_cur) |
| qp->s_draining = 0; |
| } |
| EXPORT_SYMBOL(rvt_send_complete); |
| |
| /** |
| * rvt_copy_sge - copy data to SGE memory |
| * @qp: associated QP |
| * @ss: the SGE state |
| * @data: the data to copy |
| * @length: the length of the data |
| * @release: boolean to release MR |
| * @copy_last: do a separate copy of the last 8 bytes |
| */ |
| void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, |
| void *data, u32 length, |
| bool release, bool copy_last) |
| { |
| struct rvt_sge *sge = &ss->sge; |
| int i; |
| bool in_last = false; |
| bool cacheless_copy = false; |
| struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); |
| struct rvt_wss *wss = rdi->wss; |
| unsigned int sge_copy_mode = rdi->dparms.sge_copy_mode; |
| |
| if (sge_copy_mode == RVT_SGE_COPY_CACHELESS) { |
| cacheless_copy = length >= PAGE_SIZE; |
| } else if (sge_copy_mode == RVT_SGE_COPY_ADAPTIVE) { |
| if (length >= PAGE_SIZE) { |
| /* |
| * NOTE: this *assumes*: |
| * o The first vaddr is the dest. |
| * o If multiple pages, then vaddr is sequential. |
| */ |
| wss_insert(wss, sge->vaddr); |
| if (length >= (2 * PAGE_SIZE)) |
| wss_insert(wss, (sge->vaddr + PAGE_SIZE)); |
| |
| cacheless_copy = wss_exceeds_threshold(wss); |
| } else { |
| wss_advance_clean_counter(wss); |
| } |
| } |
| |
| if (copy_last) { |
| if (length > 8) { |
| length -= 8; |
| } else { |
| copy_last = false; |
| in_last = true; |
| } |
| } |
| |
| again: |
| while (length) { |
| u32 len = rvt_get_sge_length(sge, length); |
| |
| WARN_ON_ONCE(len == 0); |
| if (unlikely(in_last)) { |
| /* enforce byte transfer ordering */ |
| for (i = 0; i < len; i++) |
| ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i]; |
| } else if (cacheless_copy) { |
| cacheless_memcpy(sge->vaddr, data, len); |
| } else { |
| memcpy(sge->vaddr, data, len); |
| } |
| rvt_update_sge(ss, len, release); |
| data += len; |
| length -= len; |
| } |
| |
| if (copy_last) { |
| copy_last = false; |
| in_last = true; |
| length = 8; |
| goto again; |
| } |
| } |
| EXPORT_SYMBOL(rvt_copy_sge); |
| |
| static enum ib_wc_status loopback_qp_drop(struct rvt_ibport *rvp, |
| struct rvt_qp *sqp) |
| { |
| rvp->n_pkt_drops++; |
| /* |
| * For RC, the requester would timeout and retry so |
| * shortcut the timeouts and just signal too many retries. |
| */ |
| return sqp->ibqp.qp_type == IB_QPT_RC ? |
| IB_WC_RETRY_EXC_ERR : IB_WC_SUCCESS; |
| } |
| |
| /** |
| * ruc_loopback - handle UC and RC loopback requests |
| * @sqp: the sending QP |
| * |
| * This is called from rvt_do_send() to forward a WQE addressed to the same HFI |
| * Note that although we are single threaded due to the send engine, we still |
| * have to protect against post_send(). We don't have to worry about |
| * receive interrupts since this is a connected protocol and all packets |
| * will pass through here. |
| */ |
| void rvt_ruc_loopback(struct rvt_qp *sqp) |
| { |
| struct rvt_ibport *rvp = NULL; |
| struct rvt_dev_info *rdi = ib_to_rvt(sqp->ibqp.device); |
| struct rvt_qp *qp; |
| struct rvt_swqe *wqe; |
| struct rvt_sge *sge; |
| unsigned long flags; |
| struct ib_wc wc; |
| u64 sdata; |
| atomic64_t *maddr; |
| enum ib_wc_status send_status; |
| bool release; |
| int ret; |
| bool copy_last = false; |
| int local_ops = 0; |
| |
| rcu_read_lock(); |
| rvp = rdi->ports[sqp->port_num - 1]; |
| |
| /* |
| * Note that we check the responder QP state after |
| * checking the requester's state. |
| */ |
| |
| qp = rvt_lookup_qpn(ib_to_rvt(sqp->ibqp.device), rvp, |
| sqp->remote_qpn); |
| |
| spin_lock_irqsave(&sqp->s_lock, flags); |
| |
| /* Return if we are already busy processing a work request. */ |
| if ((sqp->s_flags & (RVT_S_BUSY | RVT_S_ANY_WAIT)) || |
| !(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_OR_FLUSH_SEND)) |
| goto unlock; |
| |
| sqp->s_flags |= RVT_S_BUSY; |
| |
| again: |
| if (sqp->s_last == READ_ONCE(sqp->s_head)) |
| goto clr_busy; |
| wqe = rvt_get_swqe_ptr(sqp, sqp->s_last); |
| |
| /* Return if it is not OK to start a new work request. */ |
| if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_NEXT_SEND_OK)) { |
| if (!(ib_rvt_state_ops[sqp->state] & RVT_FLUSH_SEND)) |
| goto clr_busy; |
| /* We are in the error state, flush the work request. */ |
| send_status = IB_WC_WR_FLUSH_ERR; |
| goto flush_send; |
| } |
| |
| /* |
| * We can rely on the entry not changing without the s_lock |
| * being held until we update s_last. |
| * We increment s_cur to indicate s_last is in progress. |
| */ |
| if (sqp->s_last == sqp->s_cur) { |
| if (++sqp->s_cur >= sqp->s_size) |
| sqp->s_cur = 0; |
| } |
| spin_unlock_irqrestore(&sqp->s_lock, flags); |
| |
| if (!qp) { |
| send_status = loopback_qp_drop(rvp, sqp); |
| goto serr_no_r_lock; |
| } |
| spin_lock_irqsave(&qp->r_lock, flags); |
| if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) || |
| qp->ibqp.qp_type != sqp->ibqp.qp_type) { |
| send_status = loopback_qp_drop(rvp, sqp); |
| goto serr; |
| } |
| |
| memset(&wc, 0, sizeof(wc)); |
| send_status = IB_WC_SUCCESS; |
| |
| release = true; |
| sqp->s_sge.sge = wqe->sg_list[0]; |
| sqp->s_sge.sg_list = wqe->sg_list + 1; |
| sqp->s_sge.num_sge = wqe->wr.num_sge; |
| sqp->s_len = wqe->length; |
| switch (wqe->wr.opcode) { |
| case IB_WR_REG_MR: |
| goto send_comp; |
| |
| case IB_WR_LOCAL_INV: |
| if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { |
| if (rvt_invalidate_rkey(sqp, |
| wqe->wr.ex.invalidate_rkey)) |
| send_status = IB_WC_LOC_PROT_ERR; |
| local_ops = 1; |
| } |
| goto send_comp; |
| |
| case IB_WR_SEND_WITH_INV: |
| case IB_WR_SEND_WITH_IMM: |
| case IB_WR_SEND: |
| ret = rvt_get_rwqe(qp, false); |
| if (ret < 0) |
| goto op_err; |
| if (!ret) |
| goto rnr_nak; |
| if (wqe->length > qp->r_len) |
| goto inv_err; |
| switch (wqe->wr.opcode) { |
| case IB_WR_SEND_WITH_INV: |
| if (!rvt_invalidate_rkey(qp, |
| wqe->wr.ex.invalidate_rkey)) { |
| wc.wc_flags = IB_WC_WITH_INVALIDATE; |
| wc.ex.invalidate_rkey = |
| wqe->wr.ex.invalidate_rkey; |
| } |
| break; |
| case IB_WR_SEND_WITH_IMM: |
| wc.wc_flags = IB_WC_WITH_IMM; |
| wc.ex.imm_data = wqe->wr.ex.imm_data; |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case IB_WR_RDMA_WRITE_WITH_IMM: |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) |
| goto inv_err; |
| wc.wc_flags = IB_WC_WITH_IMM; |
| wc.ex.imm_data = wqe->wr.ex.imm_data; |
| ret = rvt_get_rwqe(qp, true); |
| if (ret < 0) |
| goto op_err; |
| if (!ret) |
| goto rnr_nak; |
| /* skip copy_last set and qp_access_flags recheck */ |
| goto do_write; |
| case IB_WR_RDMA_WRITE: |
| copy_last = rvt_is_user_qp(qp); |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) |
| goto inv_err; |
| do_write: |
| if (wqe->length == 0) |
| break; |
| if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, wqe->length, |
| wqe->rdma_wr.remote_addr, |
| wqe->rdma_wr.rkey, |
| IB_ACCESS_REMOTE_WRITE))) |
| goto acc_err; |
| qp->r_sge.sg_list = NULL; |
| qp->r_sge.num_sge = 1; |
| qp->r_sge.total_len = wqe->length; |
| break; |
| |
| case IB_WR_RDMA_READ: |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) |
| goto inv_err; |
| if (unlikely(!rvt_rkey_ok(qp, &sqp->s_sge.sge, wqe->length, |
| wqe->rdma_wr.remote_addr, |
| wqe->rdma_wr.rkey, |
| IB_ACCESS_REMOTE_READ))) |
| goto acc_err; |
| release = false; |
| sqp->s_sge.sg_list = NULL; |
| sqp->s_sge.num_sge = 1; |
| qp->r_sge.sge = wqe->sg_list[0]; |
| qp->r_sge.sg_list = wqe->sg_list + 1; |
| qp->r_sge.num_sge = wqe->wr.num_sge; |
| qp->r_sge.total_len = wqe->length; |
| break; |
| |
| case IB_WR_ATOMIC_CMP_AND_SWP: |
| case IB_WR_ATOMIC_FETCH_AND_ADD: |
| if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) |
| goto inv_err; |
| if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), |
| wqe->atomic_wr.remote_addr, |
| wqe->atomic_wr.rkey, |
| IB_ACCESS_REMOTE_ATOMIC))) |
| goto acc_err; |
| /* Perform atomic OP and save result. */ |
| maddr = (atomic64_t *)qp->r_sge.sge.vaddr; |
| sdata = wqe->atomic_wr.compare_add; |
| *(u64 *)sqp->s_sge.sge.vaddr = |
| (wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) ? |
| (u64)atomic64_add_return(sdata, maddr) - sdata : |
| (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, |
| sdata, wqe->atomic_wr.swap); |
| rvt_put_mr(qp->r_sge.sge.mr); |
| qp->r_sge.num_sge = 0; |
| goto send_comp; |
| |
| default: |
| send_status = IB_WC_LOC_QP_OP_ERR; |
| goto serr; |
| } |
| |
| sge = &sqp->s_sge.sge; |
| while (sqp->s_len) { |
| u32 len = rvt_get_sge_length(sge, sqp->s_len); |
| |
| WARN_ON_ONCE(len == 0); |
| rvt_copy_sge(qp, &qp->r_sge, sge->vaddr, |
| len, release, copy_last); |
| rvt_update_sge(&sqp->s_sge, len, !release); |
| sqp->s_len -= len; |
| } |
| if (release) |
| rvt_put_ss(&qp->r_sge); |
| |
| if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) |
| goto send_comp; |
| |
| if (wqe->wr.opcode == IB_WR_RDMA_WRITE_WITH_IMM) |
| wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; |
| else |
| wc.opcode = IB_WC_RECV; |
| wc.wr_id = qp->r_wr_id; |
| wc.status = IB_WC_SUCCESS; |
| wc.byte_len = wqe->length; |
| wc.qp = &qp->ibqp; |
| wc.src_qp = qp->remote_qpn; |
| wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; |
| wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); |
| wc.port_num = 1; |
| /* Signal completion event if the solicited bit is set. */ |
| rvt_recv_cq(qp, &wc, wqe->wr.send_flags & IB_SEND_SOLICITED); |
| |
| send_comp: |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| spin_lock_irqsave(&sqp->s_lock, flags); |
| rvp->n_loop_pkts++; |
| flush_send: |
| sqp->s_rnr_retry = sqp->s_rnr_retry_cnt; |
| rvt_send_complete(sqp, wqe, send_status); |
| if (local_ops) { |
| atomic_dec(&sqp->local_ops_pending); |
| local_ops = 0; |
| } |
| goto again; |
| |
| rnr_nak: |
| /* Handle RNR NAK */ |
| if (qp->ibqp.qp_type == IB_QPT_UC) |
| goto send_comp; |
| rvp->n_rnr_naks++; |
| /* |
| * Note: we don't need the s_lock held since the BUSY flag |
| * makes this single threaded. |
| */ |
| if (sqp->s_rnr_retry == 0) { |
| send_status = IB_WC_RNR_RETRY_EXC_ERR; |
| goto serr; |
| } |
| if (sqp->s_rnr_retry_cnt < 7) |
| sqp->s_rnr_retry--; |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| spin_lock_irqsave(&sqp->s_lock, flags); |
| if (!(ib_rvt_state_ops[sqp->state] & RVT_PROCESS_RECV_OK)) |
| goto clr_busy; |
| rvt_add_rnr_timer(sqp, qp->r_min_rnr_timer << |
| IB_AETH_CREDIT_SHIFT); |
| goto clr_busy; |
| |
| op_err: |
| send_status = IB_WC_REM_OP_ERR; |
| wc.status = IB_WC_LOC_QP_OP_ERR; |
| goto err; |
| |
| inv_err: |
| send_status = |
| sqp->ibqp.qp_type == IB_QPT_RC ? |
| IB_WC_REM_INV_REQ_ERR : |
| IB_WC_SUCCESS; |
| wc.status = IB_WC_LOC_QP_OP_ERR; |
| goto err; |
| |
| acc_err: |
| send_status = IB_WC_REM_ACCESS_ERR; |
| wc.status = IB_WC_LOC_PROT_ERR; |
| err: |
| /* responder goes to error state */ |
| rvt_rc_error(qp, wc.status); |
| |
| serr: |
| spin_unlock_irqrestore(&qp->r_lock, flags); |
| serr_no_r_lock: |
| spin_lock_irqsave(&sqp->s_lock, flags); |
| rvt_send_complete(sqp, wqe, send_status); |
| if (sqp->ibqp.qp_type == IB_QPT_RC) { |
| int lastwqe = rvt_error_qp(sqp, IB_WC_WR_FLUSH_ERR); |
| |
| sqp->s_flags &= ~RVT_S_BUSY; |
| spin_unlock_irqrestore(&sqp->s_lock, flags); |
| if (lastwqe) { |
| struct ib_event ev; |
| |
| ev.device = sqp->ibqp.device; |
| ev.element.qp = &sqp->ibqp; |
| ev.event = IB_EVENT_QP_LAST_WQE_REACHED; |
| sqp->ibqp.event_handler(&ev, sqp->ibqp.qp_context); |
| } |
| goto done; |
| } |
| clr_busy: |
| sqp->s_flags &= ~RVT_S_BUSY; |
| unlock: |
| spin_unlock_irqrestore(&sqp->s_lock, flags); |
| done: |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL(rvt_ruc_loopback); |