blob: 014dedaa4dd28f342244d4ea6227e3f7aac361fc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2020 Intel Corporation. */
/*
* Some functions in this program are taken from
* Linux kernel samples/bpf/xdpsock* and modified
* for use.
*
* See test_xsk.sh for detailed information on test topology
* and prerequisite network setup.
*
* This test program contains two threads, each thread is single socket with
* a unique UMEM. It validates in-order packet delivery and packet content
* by sending packets to each other.
*
* Tests Information:
* ------------------
* These selftests test AF_XDP SKB and Native/DRV modes using veth
* Virtual Ethernet interfaces.
*
* The following tests are run:
*
* 1. AF_XDP SKB mode
* Generic mode XDP is driver independent, used when the driver does
* not have support for XDP. Works on any netdevice using sockets and
* generic XDP path. XDP hook from netif_receive_skb().
* a. nopoll - soft-irq processing
* b. poll - using poll() syscall
* c. Socket Teardown
* Create a Tx and a Rx socket, Tx from one socket, Rx on another. Destroy
* both sockets, then repeat multiple times. Only nopoll mode is used
* d. Bi-directional sockets
* Configure sockets as bi-directional tx/rx sockets, sets up fill and
* completion rings on each socket, tx/rx in both directions. Only nopoll
* mode is used
*
* 2. AF_XDP DRV/Native mode
* Works on any netdevice with XDP_REDIRECT support, driver dependent. Processes
* packets before SKB allocation. Provides better performance than SKB. Driver
* hook available just after DMA of buffer descriptor.
* a. nopoll
* b. poll
* c. Socket Teardown
* d. Bi-directional sockets
* - Only copy mode is supported because veth does not currently support
* zero-copy mode
*
* Total tests: 8
*
* Flow:
* -----
* - Single process spawns two threads: Tx and Rx
* - Each of these two threads attach to a veth interface within their assigned
* namespaces
* - Each thread Creates one AF_XDP socket connected to a unique umem for each
* veth interface
* - Tx thread Transmits 10k packets from veth<xxxx> to veth<yyyy>
* - Rx thread verifies if all 10k packets were received and delivered in-order,
* and have the right content
*
* Enable/disable debug mode:
* --------------------------
* To enable L2 - L4 headers and payload dump of each packet on STDOUT, add
* parameter -D to params array in test_xsk.sh, i.e. params=("-S" "-D")
*/
#define _GNU_SOURCE
#include <fcntl.h>
#include <errno.h>
#include <getopt.h>
#include <asm/barrier.h>
typedef __u16 __sum16;
#include <linux/if_link.h>
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <linux/udp.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <locale.h>
#include <poll.h>
#include <pthread.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <time.h>
#include <unistd.h>
#include <stdatomic.h>
#include <bpf/xsk.h>
#include "xdpxceiver.h"
#include "../kselftest.h"
static void __exit_with_error(int error, const char *file, const char *func, int line)
{
ksft_test_result_fail
("[%s:%s:%i]: ERROR: %d/\"%s\"\n", file, func, line, error, strerror(error));
ksft_exit_xfail();
}
#define exit_with_error(error) __exit_with_error(error, __FILE__, __func__, __LINE__)
#define print_ksft_result(void)\
(ksft_test_result_pass("PASS: %s %s %s%s\n", uut ? "DRV" : "SKB", opt_poll ? "POLL" :\
"NOPOLL", opt_teardown ? "Socket Teardown" : "",\
opt_bidi ? "Bi-directional Sockets" : ""))
static void pthread_init_mutex(void)
{
pthread_mutex_init(&sync_mutex, NULL);
pthread_mutex_init(&sync_mutex_tx, NULL);
pthread_cond_init(&signal_rx_condition, NULL);
pthread_cond_init(&signal_tx_condition, NULL);
}
static void pthread_destroy_mutex(void)
{
pthread_mutex_destroy(&sync_mutex);
pthread_mutex_destroy(&sync_mutex_tx);
pthread_cond_destroy(&signal_rx_condition);
pthread_cond_destroy(&signal_tx_condition);
}
static void *memset32_htonl(void *dest, u32 val, u32 size)
{
u32 *ptr = (u32 *)dest;
int i;
val = htonl(val);
for (i = 0; i < (size & (~0x3)); i += 4)
ptr[i >> 2] = val;
for (; i < size; i++)
((char *)dest)[i] = ((char *)&val)[i & 3];
return dest;
}
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static inline unsigned short from32to16(unsigned int x)
{
/* add up 16-bit and 16-bit for 16+c bit */
x = (x & 0xffff) + (x >> 16);
/* add up carry.. */
x = (x & 0xffff) + (x >> 16);
return x;
}
/*
* Fold a partial checksum
* This function code has been taken from
* Linux kernel include/asm-generic/checksum.h
*/
static inline __u16 csum_fold(__u32 csum)
{
u32 sum = (__force u32)csum;
sum = (sum & 0xffff) + (sum >> 16);
sum = (sum & 0xffff) + (sum >> 16);
return (__force __u16)~sum;
}
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
static inline u32 from64to32(u64 x)
{
/* add up 32-bit and 32-bit for 32+c bit */
x = (x & 0xffffffff) + (x >> 32);
/* add up carry.. */
x = (x & 0xffffffff) + (x >> 32);
return (u32)x;
}
__u32 csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum);
/*
* This function code has been taken from
* Linux kernel lib/checksum.c
*/
__u32 csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum)
{
unsigned long long s = (__force u32)sum;
s += (__force u32)saddr;
s += (__force u32)daddr;
#ifdef __BIG_ENDIAN__
s += proto + len;
#else
s += (proto + len) << 8;
#endif
return (__force __u32)from64to32(s);
}
/*
* This function has been taken from
* Linux kernel include/asm-generic/checksum.h
*/
static inline __u16
csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum)
{
return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum));
}
static inline u16 udp_csum(u32 saddr, u32 daddr, u32 len, u8 proto, u16 *udp_pkt)
{
u32 csum = 0;
u32 cnt = 0;
/* udp hdr and data */
for (; cnt < len; cnt += 2)
csum += udp_pkt[cnt >> 1];
return csum_tcpudp_magic(saddr, daddr, len, proto, csum);
}
static void gen_eth_hdr(void *data, struct ethhdr *eth_hdr)
{
memcpy(eth_hdr->h_dest, ((struct ifobject *)data)->dst_mac, ETH_ALEN);
memcpy(eth_hdr->h_source, ((struct ifobject *)data)->src_mac, ETH_ALEN);
eth_hdr->h_proto = htons(ETH_P_IP);
}
static void gen_ip_hdr(void *data, struct iphdr *ip_hdr)
{
ip_hdr->version = IP_PKT_VER;
ip_hdr->ihl = 0x5;
ip_hdr->tos = IP_PKT_TOS;
ip_hdr->tot_len = htons(IP_PKT_SIZE);
ip_hdr->id = 0;
ip_hdr->frag_off = 0;
ip_hdr->ttl = IPDEFTTL;
ip_hdr->protocol = IPPROTO_UDP;
ip_hdr->saddr = ((struct ifobject *)data)->src_ip;
ip_hdr->daddr = ((struct ifobject *)data)->dst_ip;
ip_hdr->check = 0;
}
static void gen_udp_hdr(void *data, void *arg, struct udphdr *udp_hdr)
{
udp_hdr->source = htons(((struct ifobject *)arg)->src_port);
udp_hdr->dest = htons(((struct ifobject *)arg)->dst_port);
udp_hdr->len = htons(UDP_PKT_SIZE);
memset32_htonl(pkt_data + PKT_HDR_SIZE,
htonl(((struct generic_data *)data)->seqnum), UDP_PKT_DATA_SIZE);
}
static void gen_udp_csum(struct udphdr *udp_hdr, struct iphdr *ip_hdr)
{
udp_hdr->check = 0;
udp_hdr->check =
udp_csum(ip_hdr->saddr, ip_hdr->daddr, UDP_PKT_SIZE, IPPROTO_UDP, (u16 *)udp_hdr);
}
static void gen_eth_frame(struct xsk_umem_info *umem, u64 addr)
{
memcpy(xsk_umem__get_data(umem->buffer, addr), pkt_data, PKT_SIZE);
}
static void xsk_configure_umem(struct ifobject *data, void *buffer, u64 size)
{
int ret;
data->umem = calloc(1, sizeof(struct xsk_umem_info));
if (!data->umem)
exit_with_error(errno);
ret = xsk_umem__create(&data->umem->umem, buffer, size,
&data->umem->fq, &data->umem->cq, NULL);
if (ret)
exit_with_error(ret);
data->umem->buffer = buffer;
}
static void xsk_populate_fill_ring(struct xsk_umem_info *umem)
{
int ret, i;
u32 idx;
ret = xsk_ring_prod__reserve(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS, &idx);
if (ret != XSK_RING_PROD__DEFAULT_NUM_DESCS)
exit_with_error(ret);
for (i = 0; i < XSK_RING_PROD__DEFAULT_NUM_DESCS; i++)
*xsk_ring_prod__fill_addr(&umem->fq, idx++) = i * XSK_UMEM__DEFAULT_FRAME_SIZE;
xsk_ring_prod__submit(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS);
}
static int xsk_configure_socket(struct ifobject *ifobject)
{
struct xsk_socket_config cfg;
struct xsk_ring_cons *rxr;
struct xsk_ring_prod *txr;
int ret;
ifobject->xsk = calloc(1, sizeof(struct xsk_socket_info));
if (!ifobject->xsk)
exit_with_error(errno);
ifobject->xsk->umem = ifobject->umem;
cfg.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS;
cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS;
cfg.libbpf_flags = 0;
cfg.xdp_flags = opt_xdp_flags;
cfg.bind_flags = opt_xdp_bind_flags;
if (!opt_bidi) {
rxr = (ifobject->fv.vector == rx) ? &ifobject->xsk->rx : NULL;
txr = (ifobject->fv.vector == tx) ? &ifobject->xsk->tx : NULL;
} else {
rxr = &ifobject->xsk->rx;
txr = &ifobject->xsk->tx;
}
ret = xsk_socket__create(&ifobject->xsk->xsk, ifobject->ifname,
opt_queue, ifobject->umem->umem, rxr, txr, &cfg);
if (ret)
return 1;
return 0;
}
static struct option long_options[] = {
{"interface", required_argument, 0, 'i'},
{"queue", optional_argument, 0, 'q'},
{"poll", no_argument, 0, 'p'},
{"xdp-skb", no_argument, 0, 'S'},
{"xdp-native", no_argument, 0, 'N'},
{"copy", no_argument, 0, 'c'},
{"tear-down", no_argument, 0, 'T'},
{"bidi", optional_argument, 0, 'B'},
{"debug", optional_argument, 0, 'D'},
{"tx-pkt-count", optional_argument, 0, 'C'},
{0, 0, 0, 0}
};
static void usage(const char *prog)
{
const char *str =
" Usage: %s [OPTIONS]\n"
" Options:\n"
" -i, --interface Use interface\n"
" -q, --queue=n Use queue n (default 0)\n"
" -p, --poll Use poll syscall\n"
" -S, --xdp-skb=n Use XDP SKB mode\n"
" -N, --xdp-native=n Enforce XDP DRV (native) mode\n"
" -c, --copy Force copy mode\n"
" -T, --tear-down Tear down sockets by repeatedly recreating them\n"
" -B, --bidi Bi-directional sockets test\n"
" -D, --debug Debug mode - dump packets L2 - L5\n"
" -C, --tx-pkt-count=n Number of packets to send\n";
ksft_print_msg(str, prog);
}
static bool switch_namespace(int idx)
{
char fqns[26] = "/var/run/netns/";
int nsfd;
strncat(fqns, ifdict[idx]->nsname, sizeof(fqns) - strlen(fqns) - 1);
nsfd = open(fqns, O_RDONLY);
if (nsfd == -1)
exit_with_error(errno);
if (setns(nsfd, 0) == -1)
exit_with_error(errno);
return true;
}
static void *nsswitchthread(void *args)
{
if (switch_namespace(((struct targs *)args)->idx)) {
ifdict[((struct targs *)args)->idx]->ifindex =
if_nametoindex(ifdict[((struct targs *)args)->idx]->ifname);
if (!ifdict[((struct targs *)args)->idx]->ifindex) {
ksft_test_result_fail
("ERROR: [%s] interface \"%s\" does not exist\n",
__func__, ifdict[((struct targs *)args)->idx]->ifname);
((struct targs *)args)->retptr = false;
} else {
ksft_print_msg("Interface found: %s\n",
ifdict[((struct targs *)args)->idx]->ifname);
((struct targs *)args)->retptr = true;
}
} else {
((struct targs *)args)->retptr = false;
}
pthread_exit(NULL);
}
static int validate_interfaces(void)
{
bool ret = true;
for (int i = 0; i < MAX_INTERFACES; i++) {
if (!strcmp(ifdict[i]->ifname, "")) {
ret = false;
ksft_test_result_fail("ERROR: interfaces: -i <int>,<ns> -i <int>,<ns>.");
}
if (strcmp(ifdict[i]->nsname, "")) {
struct targs *targs;
targs = (struct targs *)malloc(sizeof(struct targs));
if (!targs)
exit_with_error(errno);
targs->idx = i;
if (pthread_create(&ns_thread, NULL, nsswitchthread, (void *)targs))
exit_with_error(errno);
pthread_join(ns_thread, NULL);
if (targs->retptr)
ksft_print_msg("NS switched: %s\n", ifdict[i]->nsname);
free(targs);
} else {
ifdict[i]->ifindex = if_nametoindex(ifdict[i]->ifname);
if (!ifdict[i]->ifindex) {
ksft_test_result_fail
("ERROR: interface \"%s\" does not exist\n", ifdict[i]->ifname);
ret = false;
} else {
ksft_print_msg("Interface found: %s\n", ifdict[i]->ifname);
}
}
}
return ret;
}
static void parse_command_line(int argc, char **argv)
{
int option_index, interface_index = 0, c;
opterr = 0;
for (;;) {
c = getopt_long(argc, argv, "i:q:pSNcTBDC:", long_options, &option_index);
if (c == -1)
break;
switch (c) {
case 'i':
if (interface_index == MAX_INTERFACES)
break;
char *sptr, *token;
sptr = strndupa(optarg, strlen(optarg));
memcpy(ifdict[interface_index]->ifname,
strsep(&sptr, ","), MAX_INTERFACE_NAME_CHARS);
token = strsep(&sptr, ",");
if (token)
memcpy(ifdict[interface_index]->nsname, token,
MAX_INTERFACES_NAMESPACE_CHARS);
interface_index++;
break;
case 'q':
opt_queue = atoi(optarg);
break;
case 'p':
opt_poll = 1;
break;
case 'S':
opt_xdp_flags |= XDP_FLAGS_SKB_MODE;
opt_xdp_bind_flags |= XDP_COPY;
uut = ORDER_CONTENT_VALIDATE_XDP_SKB;
break;
case 'N':
opt_xdp_flags |= XDP_FLAGS_DRV_MODE;
opt_xdp_bind_flags |= XDP_COPY;
uut = ORDER_CONTENT_VALIDATE_XDP_DRV;
break;
case 'c':
opt_xdp_bind_flags |= XDP_COPY;
break;
case 'T':
opt_teardown = 1;
break;
case 'B':
opt_bidi = 1;
break;
case 'D':
debug_pkt_dump = 1;
break;
case 'C':
opt_pkt_count = atoi(optarg);
break;
default:
usage(basename(argv[0]));
ksft_exit_xfail();
}
}
if (!validate_interfaces()) {
usage(basename(argv[0]));
ksft_exit_xfail();
}
}
static void kick_tx(struct xsk_socket_info *xsk)
{
int ret;
ret = sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
if (ret >= 0 || errno == ENOBUFS || errno == EAGAIN || errno == EBUSY || errno == ENETDOWN)
return;
exit_with_error(errno);
}
static inline void complete_tx_only(struct xsk_socket_info *xsk, int batch_size)
{
unsigned int rcvd;
u32 idx;
if (!xsk->outstanding_tx)
return;
if (!NEED_WAKEUP || xsk_ring_prod__needs_wakeup(&xsk->tx))
kick_tx(xsk);
rcvd = xsk_ring_cons__peek(&xsk->umem->cq, batch_size, &idx);
if (rcvd) {
xsk_ring_cons__release(&xsk->umem->cq, rcvd);
xsk->outstanding_tx -= rcvd;
xsk->tx_npkts += rcvd;
}
}
static void rx_pkt(struct xsk_socket_info *xsk, struct pollfd *fds)
{
unsigned int rcvd, i;
u32 idx_rx = 0, idx_fq = 0;
int ret;
rcvd = xsk_ring_cons__peek(&xsk->rx, BATCH_SIZE, &idx_rx);
if (!rcvd) {
if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) {
ret = poll(fds, 1, POLL_TMOUT);
if (ret < 0)
exit_with_error(ret);
}
return;
}
ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq);
while (ret != rcvd) {
if (ret < 0)
exit_with_error(ret);
if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) {
ret = poll(fds, 1, POLL_TMOUT);
if (ret < 0)
exit_with_error(ret);
}
ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq);
}
for (i = 0; i < rcvd; i++) {
u64 addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr;
(void)xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len;
u64 orig = xsk_umem__extract_addr(addr);
addr = xsk_umem__add_offset_to_addr(addr);
pkt_node_rx = malloc(sizeof(struct pkt) + PKT_SIZE);
if (!pkt_node_rx)
exit_with_error(errno);
pkt_node_rx->pkt_frame = (char *)malloc(PKT_SIZE);
if (!pkt_node_rx->pkt_frame)
exit_with_error(errno);
memcpy(pkt_node_rx->pkt_frame, xsk_umem__get_data(xsk->umem->buffer, addr),
PKT_SIZE);
TAILQ_INSERT_HEAD(&head, pkt_node_rx, pkt_nodes);
*xsk_ring_prod__fill_addr(&xsk->umem->fq, idx_fq++) = orig;
}
xsk_ring_prod__submit(&xsk->umem->fq, rcvd);
xsk_ring_cons__release(&xsk->rx, rcvd);
xsk->rx_npkts += rcvd;
}
static void tx_only(struct xsk_socket_info *xsk, u32 *frameptr, int batch_size)
{
u32 idx;
unsigned int i;
while (xsk_ring_prod__reserve(&xsk->tx, batch_size, &idx) < batch_size)
complete_tx_only(xsk, batch_size);
for (i = 0; i < batch_size; i++) {
struct xdp_desc *tx_desc = xsk_ring_prod__tx_desc(&xsk->tx, idx + i);
tx_desc->addr = (*frameptr + i) << XSK_UMEM__DEFAULT_FRAME_SHIFT;
tx_desc->len = PKT_SIZE;
}
xsk_ring_prod__submit(&xsk->tx, batch_size);
xsk->outstanding_tx += batch_size;
*frameptr += batch_size;
*frameptr %= num_frames;
complete_tx_only(xsk, batch_size);
}
static inline int get_batch_size(int pkt_cnt)
{
if (!opt_pkt_count)
return BATCH_SIZE;
if (pkt_cnt + BATCH_SIZE <= opt_pkt_count)
return BATCH_SIZE;
return opt_pkt_count - pkt_cnt;
}
static void complete_tx_only_all(void *arg)
{
bool pending;
do {
pending = false;
if (((struct ifobject *)arg)->xsk->outstanding_tx) {
complete_tx_only(((struct ifobject *)
arg)->xsk, BATCH_SIZE);
pending = !!((struct ifobject *)arg)->xsk->outstanding_tx;
}
} while (pending);
}
static void tx_only_all(void *arg)
{
struct pollfd fds[MAX_SOCKS] = { };
u32 frame_nb = 0;
int pkt_cnt = 0;
int ret;
fds[0].fd = xsk_socket__fd(((struct ifobject *)arg)->xsk->xsk);
fds[0].events = POLLOUT;
while ((opt_pkt_count && pkt_cnt < opt_pkt_count) || !opt_pkt_count) {
int batch_size = get_batch_size(pkt_cnt);
if (opt_poll) {
ret = poll(fds, 1, POLL_TMOUT);
if (ret <= 0)
continue;
if (!(fds[0].revents & POLLOUT))
continue;
}
tx_only(((struct ifobject *)arg)->xsk, &frame_nb, batch_size);
pkt_cnt += batch_size;
}
if (opt_pkt_count)
complete_tx_only_all(arg);
}
static void worker_pkt_dump(void)
{
struct in_addr ipaddr;
fprintf(stdout, "---------------------------------------\n");
for (int iter = 0; iter < num_frames - 1; iter++) {
/*extract L2 frame */
fprintf(stdout, "DEBUG>> L2: dst mac: ");
for (int i = 0; i < ETH_ALEN; i++)
fprintf(stdout, "%02X", ((struct ethhdr *)
pkt_buf[iter]->payload)->h_dest[i]);
fprintf(stdout, "\nDEBUG>> L2: src mac: ");
for (int i = 0; i < ETH_ALEN; i++)
fprintf(stdout, "%02X", ((struct ethhdr *)
pkt_buf[iter]->payload)->h_source[i]);
/*extract L3 frame */
fprintf(stdout, "\nDEBUG>> L3: ip_hdr->ihl: %02X\n",
((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->ihl);
ipaddr.s_addr =
((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->saddr;
fprintf(stdout, "DEBUG>> L3: ip_hdr->saddr: %s\n", inet_ntoa(ipaddr));
ipaddr.s_addr =
((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->daddr;
fprintf(stdout, "DEBUG>> L3: ip_hdr->daddr: %s\n", inet_ntoa(ipaddr));
/*extract L4 frame */
fprintf(stdout, "DEBUG>> L4: udp_hdr->src: %d\n",
ntohs(((struct udphdr *)(pkt_buf[iter]->payload +
sizeof(struct ethhdr) +
sizeof(struct iphdr)))->source));
fprintf(stdout, "DEBUG>> L4: udp_hdr->dst: %d\n",
ntohs(((struct udphdr *)(pkt_buf[iter]->payload +
sizeof(struct ethhdr) +
sizeof(struct iphdr)))->dest));
/*extract L5 frame */
int payload = *((uint32_t *)(pkt_buf[iter]->payload + PKT_HDR_SIZE));
if (payload == EOT) {
ksft_print_msg("End-of-tranmission frame received\n");
fprintf(stdout, "---------------------------------------\n");
break;
}
fprintf(stdout, "DEBUG>> L5: payload: %d\n", payload);
fprintf(stdout, "---------------------------------------\n");
}
}
static void worker_pkt_validate(void)
{
u32 payloadseqnum = -2;
while (1) {
pkt_node_rx_q = malloc(sizeof(struct pkt));
pkt_node_rx_q = TAILQ_LAST(&head, head_s);
if (!pkt_node_rx_q)
break;
/*do not increment pktcounter if !(tos=0x9 and ipv4) */
if ((((struct iphdr *)(pkt_node_rx_q->pkt_frame +
sizeof(struct ethhdr)))->version == IP_PKT_VER)
&& (((struct iphdr *)(pkt_node_rx_q->pkt_frame + sizeof(struct ethhdr)))->tos ==
IP_PKT_TOS)) {
payloadseqnum = *((uint32_t *) (pkt_node_rx_q->pkt_frame + PKT_HDR_SIZE));
if (debug_pkt_dump && payloadseqnum != EOT) {
pkt_obj = (struct pkt_frame *)malloc(sizeof(struct pkt_frame));
pkt_obj->payload = (char *)malloc(PKT_SIZE);
memcpy(pkt_obj->payload, pkt_node_rx_q->pkt_frame, PKT_SIZE);
pkt_buf[payloadseqnum] = pkt_obj;
}
if (payloadseqnum == EOT) {
ksft_print_msg("End-of-tranmission frame received: PASS\n");
sigvar = 1;
break;
}
if (prev_pkt + 1 != payloadseqnum) {
ksft_test_result_fail
("ERROR: [%s] prev_pkt [%d], payloadseqnum [%d]\n",
__func__, prev_pkt, payloadseqnum);
ksft_exit_xfail();
}
TAILQ_REMOVE(&head, pkt_node_rx_q, pkt_nodes);
free(pkt_node_rx_q->pkt_frame);
free(pkt_node_rx_q);
pkt_node_rx_q = NULL;
prev_pkt = payloadseqnum;
pkt_counter++;
} else {
ksft_print_msg("Invalid frame received: ");
ksft_print_msg("[IP_PKT_VER: %02X], [IP_PKT_TOS: %02X]\n",
((struct iphdr *)(pkt_node_rx_q->pkt_frame +
sizeof(struct ethhdr)))->version,
((struct iphdr *)(pkt_node_rx_q->pkt_frame +
sizeof(struct ethhdr)))->tos);
TAILQ_REMOVE(&head, pkt_node_rx_q, pkt_nodes);
free(pkt_node_rx_q->pkt_frame);
free(pkt_node_rx_q);
pkt_node_rx_q = NULL;
}
}
}
static void thread_common_ops(void *arg, void *bufs, pthread_mutex_t *mutexptr,
atomic_int *spinningptr)
{
int ctr = 0;
int ret;
xsk_configure_umem((struct ifobject *)arg, bufs, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE);
ret = xsk_configure_socket((struct ifobject *)arg);
/* Retry Create Socket if it fails as xsk_socket__create()
* is asynchronous
*
* Essential to lock Mutex here to prevent Tx thread from
* entering before Rx and causing a deadlock
*/
pthread_mutex_lock(mutexptr);
while (ret && ctr < SOCK_RECONF_CTR) {
atomic_store(spinningptr, 1);
xsk_configure_umem((struct ifobject *)arg,
bufs, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE);
ret = xsk_configure_socket((struct ifobject *)arg);
usleep(USLEEP_MAX);
ctr++;
}
atomic_store(spinningptr, 0);
pthread_mutex_unlock(mutexptr);
if (ctr >= SOCK_RECONF_CTR)
exit_with_error(ret);
}
static void *worker_testapp_validate(void *arg)
{
struct udphdr *udp_hdr =
(struct udphdr *)(pkt_data + sizeof(struct ethhdr) + sizeof(struct iphdr));
struct generic_data *data = (struct generic_data *)malloc(sizeof(struct generic_data));
struct iphdr *ip_hdr = (struct iphdr *)(pkt_data + sizeof(struct ethhdr));
struct ethhdr *eth_hdr = (struct ethhdr *)pkt_data;
void *bufs = NULL;
pthread_attr_setstacksize(&attr, THREAD_STACK);
if (!bidi_pass) {
bufs = mmap(NULL, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE,
PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (bufs == MAP_FAILED)
exit_with_error(errno);
if (strcmp(((struct ifobject *)arg)->nsname, ""))
switch_namespace(((struct ifobject *)arg)->ifdict_index);
}
if (((struct ifobject *)arg)->fv.vector == tx) {
int spinningrxctr = 0;
if (!bidi_pass)
thread_common_ops(arg, bufs, &sync_mutex_tx, &spinning_tx);
while (atomic_load(&spinning_rx) && spinningrxctr < SOCK_RECONF_CTR) {
spinningrxctr++;
usleep(USLEEP_MAX);
}
ksft_print_msg("Interface [%s] vector [Tx]\n", ((struct ifobject *)arg)->ifname);
for (int i = 0; i < num_frames; i++) {
/*send EOT frame */
if (i == (num_frames - 1))
data->seqnum = -1;
else
data->seqnum = i;
gen_udp_hdr((void *)data, (void *)arg, udp_hdr);
gen_ip_hdr((void *)arg, ip_hdr);
gen_udp_csum(udp_hdr, ip_hdr);
gen_eth_hdr((void *)arg, eth_hdr);
gen_eth_frame(((struct ifobject *)arg)->umem,
i * XSK_UMEM__DEFAULT_FRAME_SIZE);
}
free(data);
ksft_print_msg("Sending %d packets on interface %s\n",
(opt_pkt_count - 1), ((struct ifobject *)arg)->ifname);
tx_only_all(arg);
} else if (((struct ifobject *)arg)->fv.vector == rx) {
struct pollfd fds[MAX_SOCKS] = { };
int ret;
if (!bidi_pass)
thread_common_ops(arg, bufs, &sync_mutex_tx, &spinning_rx);
ksft_print_msg("Interface [%s] vector [Rx]\n", ((struct ifobject *)arg)->ifname);
xsk_populate_fill_ring(((struct ifobject *)arg)->umem);
TAILQ_INIT(&head);
if (debug_pkt_dump) {
pkt_buf = malloc(sizeof(struct pkt_frame **) * num_frames);
if (!pkt_buf)
exit_with_error(errno);
}
fds[0].fd = xsk_socket__fd(((struct ifobject *)arg)->xsk->xsk);
fds[0].events = POLLIN;
pthread_mutex_lock(&sync_mutex);
pthread_cond_signal(&signal_rx_condition);
pthread_mutex_unlock(&sync_mutex);
while (1) {
if (opt_poll) {
ret = poll(fds, 1, POLL_TMOUT);
if (ret <= 0)
continue;
}
rx_pkt(((struct ifobject *)arg)->xsk, fds);
worker_pkt_validate();
if (sigvar)
break;
}
ksft_print_msg("Received %d packets on interface %s\n",
pkt_counter, ((struct ifobject *)arg)->ifname);
if (opt_teardown)
ksft_print_msg("Destroying socket\n");
}
if (!opt_bidi || (opt_bidi && bidi_pass)) {
xsk_socket__delete(((struct ifobject *)arg)->xsk->xsk);
(void)xsk_umem__delete(((struct ifobject *)arg)->umem->umem);
}
pthread_exit(NULL);
}
static void testapp_validate(void)
{
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, THREAD_STACK);
if (opt_bidi && bidi_pass) {
pthread_init_mutex();
if (!switching_notify) {
ksft_print_msg("Switching Tx/Rx vectors\n");
switching_notify++;
}
}
pthread_mutex_lock(&sync_mutex);
/*Spawn RX thread */
if (!opt_bidi || (opt_bidi && !bidi_pass)) {
if (pthread_create(&t0, &attr, worker_testapp_validate, (void *)ifdict[1]))
exit_with_error(errno);
} else if (opt_bidi && bidi_pass) {
/*switch Tx/Rx vectors */
ifdict[0]->fv.vector = rx;
if (pthread_create(&t0, &attr, worker_testapp_validate, (void *)ifdict[0]))
exit_with_error(errno);
}
struct timespec max_wait = { 0, 0 };
if (clock_gettime(CLOCK_REALTIME, &max_wait))
exit_with_error(errno);
max_wait.tv_sec += TMOUT_SEC;
if (pthread_cond_timedwait(&signal_rx_condition, &sync_mutex, &max_wait) == ETIMEDOUT)
exit_with_error(errno);
pthread_mutex_unlock(&sync_mutex);
/*Spawn TX thread */
if (!opt_bidi || (opt_bidi && !bidi_pass)) {
if (pthread_create(&t1, &attr, worker_testapp_validate, (void *)ifdict[0]))
exit_with_error(errno);
} else if (opt_bidi && bidi_pass) {
/*switch Tx/Rx vectors */
ifdict[1]->fv.vector = tx;
if (pthread_create(&t1, &attr, worker_testapp_validate, (void *)ifdict[1]))
exit_with_error(errno);
}
pthread_join(t1, NULL);
pthread_join(t0, NULL);
if (debug_pkt_dump) {
worker_pkt_dump();
for (int iter = 0; iter < num_frames - 1; iter++) {
free(pkt_buf[iter]->payload);
free(pkt_buf[iter]);
}
free(pkt_buf);
}
if (!opt_teardown && !opt_bidi)
print_ksft_result();
}
static void testapp_sockets(void)
{
for (int i = 0; i < (opt_teardown ? MAX_TEARDOWN_ITER : MAX_BIDI_ITER); i++) {
pkt_counter = 0;
prev_pkt = -1;
sigvar = 0;
ksft_print_msg("Creating socket\n");
testapp_validate();
opt_bidi ? bidi_pass++ : bidi_pass;
}
print_ksft_result();
}
static void init_iface_config(void *ifaceconfig)
{
/*Init interface0 */
ifdict[0]->fv.vector = tx;
memcpy(ifdict[0]->dst_mac, ((struct ifaceconfigobj *)ifaceconfig)->dst_mac, ETH_ALEN);
memcpy(ifdict[0]->src_mac, ((struct ifaceconfigobj *)ifaceconfig)->src_mac, ETH_ALEN);
ifdict[0]->dst_ip = ((struct ifaceconfigobj *)ifaceconfig)->dst_ip.s_addr;
ifdict[0]->src_ip = ((struct ifaceconfigobj *)ifaceconfig)->src_ip.s_addr;
ifdict[0]->dst_port = ((struct ifaceconfigobj *)ifaceconfig)->dst_port;
ifdict[0]->src_port = ((struct ifaceconfigobj *)ifaceconfig)->src_port;
/*Init interface1 */
ifdict[1]->fv.vector = rx;
memcpy(ifdict[1]->dst_mac, ((struct ifaceconfigobj *)ifaceconfig)->src_mac, ETH_ALEN);
memcpy(ifdict[1]->src_mac, ((struct ifaceconfigobj *)ifaceconfig)->dst_mac, ETH_ALEN);
ifdict[1]->dst_ip = ((struct ifaceconfigobj *)ifaceconfig)->src_ip.s_addr;
ifdict[1]->src_ip = ((struct ifaceconfigobj *)ifaceconfig)->dst_ip.s_addr;
ifdict[1]->dst_port = ((struct ifaceconfigobj *)ifaceconfig)->src_port;
ifdict[1]->src_port = ((struct ifaceconfigobj *)ifaceconfig)->dst_port;
}
int main(int argc, char **argv)
{
struct rlimit _rlim = { RLIM_INFINITY, RLIM_INFINITY };
if (setrlimit(RLIMIT_MEMLOCK, &_rlim))
exit_with_error(errno);
const char *MAC1 = "\x00\x0A\x56\x9E\xEE\x62";
const char *MAC2 = "\x00\x0A\x56\x9E\xEE\x61";
const char *IP1 = "192.168.100.162";
const char *IP2 = "192.168.100.161";
u16 UDP_DST_PORT = 2020;
u16 UDP_SRC_PORT = 2121;
ifaceconfig = (struct ifaceconfigobj *)malloc(sizeof(struct ifaceconfigobj));
memcpy(ifaceconfig->dst_mac, MAC1, ETH_ALEN);
memcpy(ifaceconfig->src_mac, MAC2, ETH_ALEN);
inet_aton(IP1, &ifaceconfig->dst_ip);
inet_aton(IP2, &ifaceconfig->src_ip);
ifaceconfig->dst_port = UDP_DST_PORT;
ifaceconfig->src_port = UDP_SRC_PORT;
for (int i = 0; i < MAX_INTERFACES; i++) {
ifdict[i] = (struct ifobject *)malloc(sizeof(struct ifobject));
if (!ifdict[i])
exit_with_error(errno);
ifdict[i]->ifdict_index = i;
}
setlocale(LC_ALL, "");
parse_command_line(argc, argv);
num_frames = ++opt_pkt_count;
init_iface_config((void *)ifaceconfig);
pthread_init_mutex();
ksft_set_plan(1);
if (!opt_teardown && !opt_bidi) {
testapp_validate();
} else if (opt_teardown && opt_bidi) {
ksft_test_result_fail("ERROR: parameters -T and -B cannot be used together\n");
ksft_exit_xfail();
} else {
testapp_sockets();
}
for (int i = 0; i < MAX_INTERFACES; i++)
free(ifdict[i]);
pthread_destroy_mutex();
ksft_exit_pass();
return 0;
}