| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include "habanalabs.h" |
| #include "../include/common/hl_boot_if.h" |
| |
| #include <linux/firmware.h> |
| #include <linux/slab.h> |
| |
| #define FW_FILE_MAX_SIZE 0x1400000 /* maximum size of 20MB */ |
| /** |
| * hl_fw_load_fw_to_device() - Load F/W code to device's memory. |
| * |
| * @hdev: pointer to hl_device structure. |
| * @fw_name: the firmware image name |
| * @dst: IO memory mapped address space to copy firmware to |
| * @src_offset: offset in src FW to copy from |
| * @size: amount of bytes to copy (0 to copy the whole binary) |
| * |
| * Copy fw code from firmware file to device memory. |
| * |
| * Return: 0 on success, non-zero for failure. |
| */ |
| int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name, |
| void __iomem *dst, u32 src_offset, u32 size) |
| { |
| const struct firmware *fw; |
| const void *fw_data; |
| size_t fw_size; |
| int rc; |
| |
| rc = request_firmware(&fw, fw_name, hdev->dev); |
| if (rc) { |
| dev_err(hdev->dev, "Firmware file %s is not found!\n", fw_name); |
| goto out; |
| } |
| |
| fw_size = fw->size; |
| if ((fw_size % 4) != 0) { |
| dev_err(hdev->dev, "Illegal %s firmware size %zu\n", |
| fw_name, fw_size); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size); |
| |
| if (fw_size > FW_FILE_MAX_SIZE) { |
| dev_err(hdev->dev, |
| "FW file size %zu exceeds maximum of %u bytes\n", |
| fw_size, FW_FILE_MAX_SIZE); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (size - src_offset > fw_size) { |
| dev_err(hdev->dev, |
| "size to copy(%u) and offset(%u) are invalid\n", |
| size, src_offset); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (size) |
| fw_size = size; |
| |
| fw_data = (const void *) fw->data; |
| |
| memcpy_toio(dst, fw_data + src_offset, fw_size); |
| |
| out: |
| release_firmware(fw); |
| return rc; |
| } |
| |
| int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode) |
| { |
| struct cpucp_packet pkt = {}; |
| |
| pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, |
| sizeof(pkt), 0, NULL); |
| } |
| |
| int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg, |
| u16 len, u32 timeout, u64 *result) |
| { |
| struct cpucp_packet *pkt; |
| dma_addr_t pkt_dma_addr; |
| u32 tmp; |
| int rc = 0; |
| |
| pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len, |
| &pkt_dma_addr); |
| if (!pkt) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for packet to CPU\n"); |
| return -ENOMEM; |
| } |
| |
| memcpy(pkt, msg, len); |
| |
| mutex_lock(&hdev->send_cpu_message_lock); |
| |
| if (hdev->disabled) |
| goto out; |
| |
| if (hdev->device_cpu_disabled) { |
| rc = -EIO; |
| goto out; |
| } |
| |
| rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc); |
| goto out; |
| } |
| |
| rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp, |
| (tmp == CPUCP_PACKET_FENCE_VAL), 1000, |
| timeout, true); |
| |
| hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id); |
| |
| if (rc == -ETIMEDOUT) { |
| dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp); |
| hdev->device_cpu_disabled = true; |
| goto out; |
| } |
| |
| tmp = le32_to_cpu(pkt->ctl); |
| |
| rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT; |
| if (rc) { |
| dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n", |
| rc, |
| (tmp & CPUCP_PKT_CTL_OPCODE_MASK) |
| >> CPUCP_PKT_CTL_OPCODE_SHIFT); |
| rc = -EIO; |
| } else if (result) { |
| *result = le64_to_cpu(pkt->result); |
| } |
| |
| out: |
| mutex_unlock(&hdev->send_cpu_message_lock); |
| |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt); |
| |
| return rc; |
| } |
| |
| int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type) |
| { |
| struct cpucp_packet pkt; |
| u64 result; |
| int rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.value = cpu_to_le64(event_type); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| 0, &result); |
| |
| if (rc) |
| dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type); |
| |
| return rc; |
| } |
| |
| int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr, |
| size_t irq_arr_size) |
| { |
| struct cpucp_unmask_irq_arr_packet *pkt; |
| size_t total_pkt_size; |
| u64 result; |
| int rc; |
| |
| total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) + |
| irq_arr_size; |
| |
| /* data should be aligned to 8 bytes in order to CPU-CP to copy it */ |
| total_pkt_size = (total_pkt_size + 0x7) & ~0x7; |
| |
| /* total_pkt_size is casted to u16 later on */ |
| if (total_pkt_size > USHRT_MAX) { |
| dev_err(hdev->dev, "too many elements in IRQ array\n"); |
| return -EINVAL; |
| } |
| |
| pkt = kzalloc(total_pkt_size, GFP_KERNEL); |
| if (!pkt) |
| return -ENOMEM; |
| |
| pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0])); |
| memcpy(&pkt->irqs, irq_arr, irq_arr_size); |
| |
| pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt, |
| total_pkt_size, 0, &result); |
| |
| if (rc) |
| dev_err(hdev->dev, "failed to unmask IRQ array\n"); |
| |
| kfree(pkt); |
| |
| return rc; |
| } |
| |
| int hl_fw_test_cpu_queue(struct hl_device *hdev) |
| { |
| struct cpucp_packet test_pkt = {}; |
| u64 result; |
| int rc; |
| |
| test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt, |
| sizeof(test_pkt), 0, &result); |
| |
| if (!rc) { |
| if (result != CPUCP_PACKET_FENCE_VAL) |
| dev_err(hdev->dev, |
| "CPU queue test failed (%#08llx)\n", result); |
| } else { |
| dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc); |
| } |
| |
| return rc; |
| } |
| |
| void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, |
| dma_addr_t *dma_handle) |
| { |
| u64 kernel_addr; |
| |
| kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size); |
| |
| *dma_handle = hdev->cpu_accessible_dma_address + |
| (kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem); |
| |
| return (void *) (uintptr_t) kernel_addr; |
| } |
| |
| void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, |
| void *vaddr) |
| { |
| gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr, |
| size); |
| } |
| |
| int hl_fw_send_heartbeat(struct hl_device *hdev) |
| { |
| struct cpucp_packet hb_pkt = {}; |
| u64 result; |
| int rc; |
| |
| hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt, |
| sizeof(hb_pkt), 0, &result); |
| |
| if ((rc) || (result != CPUCP_PACKET_FENCE_VAL)) |
| rc = -EIO; |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_info_get(struct hl_device *hdev, |
| u32 cpu_security_boot_status_reg) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct cpucp_packet pkt = {}; |
| void *cpucp_info_cpu_addr; |
| dma_addr_t cpucp_info_dma_addr; |
| u64 result; |
| int rc; |
| |
| cpucp_info_cpu_addr = |
| hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, |
| sizeof(struct cpucp_info), |
| &cpucp_info_dma_addr); |
| if (!cpucp_info_cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for CPU-CP info packet\n"); |
| return -ENOMEM; |
| } |
| |
| memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.addr = cpu_to_le64(cpucp_info_dma_addr); |
| pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info)); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP info pkt, error %d\n", rc); |
| goto out; |
| } |
| |
| memcpy(&prop->cpucp_info, cpucp_info_cpu_addr, |
| sizeof(prop->cpucp_info)); |
| |
| rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to build hwmon channel info, error %d\n", rc); |
| rc = -EFAULT; |
| goto out; |
| } |
| |
| /* Read FW application security bits again */ |
| if (hdev->asic_prop.fw_security_status_valid) |
| hdev->asic_prop.fw_app_security_map = |
| RREG32(cpu_security_boot_status_reg); |
| |
| out: |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, |
| sizeof(struct cpucp_info), cpucp_info_cpu_addr); |
| |
| return rc; |
| } |
| |
| int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size) |
| { |
| struct cpucp_packet pkt = {}; |
| void *eeprom_info_cpu_addr; |
| dma_addr_t eeprom_info_dma_addr; |
| u64 result; |
| int rc; |
| |
| eeprom_info_cpu_addr = |
| hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, |
| max_size, &eeprom_info_dma_addr); |
| if (!eeprom_info_cpu_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate DMA memory for CPU-CP EEPROM packet\n"); |
| return -ENOMEM; |
| } |
| |
| memset(eeprom_info_cpu_addr, 0, max_size); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.addr = cpu_to_le64(eeprom_info_dma_addr); |
| pkt.data_max_size = cpu_to_le32(max_size); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_EEPROM_TIMEOUT_USEC, &result); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP EEPROM packet, error %d\n", |
| rc); |
| goto out; |
| } |
| |
| /* result contains the actual size */ |
| memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size)); |
| |
| out: |
| hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size, |
| eeprom_info_cpu_addr); |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev, |
| struct hl_info_pci_counters *counters) |
| { |
| struct cpucp_packet pkt = {}; |
| u64 result; |
| int rc; |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| /* Fetch PCI rx counter */ |
| pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx); |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->rx_throughput = result; |
| |
| /* Fetch PCI tx counter */ |
| pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx); |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->tx_throughput = result; |
| |
| /* Fetch PCI replay counter */ |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CPU-CP PCI info pkt, error %d\n", rc); |
| return rc; |
| } |
| counters->replay_cnt = (u32) result; |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy) |
| { |
| struct cpucp_packet pkt = {}; |
| u64 result; |
| int rc; |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to handle CpuCP total energy pkt, error %d\n", |
| rc); |
| return rc; |
| } |
| |
| *total_energy = result; |
| |
| return rc; |
| } |
| |
| int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u16 pll_index, |
| u16 *pll_freq_arr) |
| { |
| struct cpucp_packet pkt; |
| u64 result; |
| int rc; |
| |
| memset(&pkt, 0, sizeof(pkt)); |
| |
| pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET << |
| CPUCP_PKT_CTL_OPCODE_SHIFT); |
| pkt.pll_type = __cpu_to_le16(pll_index); |
| |
| rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), |
| HL_CPUCP_INFO_TIMEOUT_USEC, &result); |
| if (rc) |
| dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc); |
| |
| pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result); |
| pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result); |
| pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result); |
| pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result); |
| |
| return rc; |
| } |
| |
| static void fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg, |
| u32 cpu_security_boot_status_reg) |
| { |
| u32 err_val, security_val; |
| |
| /* Some of the firmware status codes are deprecated in newer f/w |
| * versions. In those versions, the errors are reported |
| * in different registers. Therefore, we need to check those |
| * registers and print the exact errors. Moreover, there |
| * may be multiple errors, so we need to report on each error |
| * separately. Some of the error codes might indicate a state |
| * that is not an error per-se, but it is an error in production |
| * environment |
| */ |
| err_val = RREG32(boot_err0_reg); |
| if (!(err_val & CPU_BOOT_ERR0_ENABLED)) |
| return; |
| |
| if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL) |
| dev_err(hdev->dev, |
| "Device boot error - DRAM initialization failed\n"); |
| if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED) |
| dev_err(hdev->dev, "Device boot error - FIT image corrupted\n"); |
| if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL) |
| dev_err(hdev->dev, |
| "Device boot error - Thermal Sensor initialization failed\n"); |
| if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED) |
| dev_warn(hdev->dev, |
| "Device boot warning - Skipped DRAM initialization\n"); |
| if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) |
| dev_warn(hdev->dev, |
| "Device boot error - Skipped waiting for BMC\n"); |
| if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY) |
| dev_err(hdev->dev, |
| "Device boot error - Serdes data from BMC not available\n"); |
| if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL) |
| dev_err(hdev->dev, |
| "Device boot error - NIC F/W initialization failed\n"); |
| if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY) |
| dev_warn(hdev->dev, |
| "Device boot warning - security not ready\n"); |
| if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL) |
| dev_err(hdev->dev, "Device boot error - security failure\n"); |
| if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL) |
| dev_err(hdev->dev, "Device boot error - eFuse failure\n"); |
| |
| security_val = RREG32(cpu_security_boot_status_reg); |
| if (security_val & CPU_BOOT_DEV_STS0_ENABLED) |
| dev_dbg(hdev->dev, "Device security status %#x\n", |
| security_val); |
| } |
| |
| static void detect_cpu_boot_status(struct hl_device *hdev, u32 status) |
| { |
| /* Some of the status codes below are deprecated in newer f/w |
| * versions but we keep them here for backward compatibility |
| */ |
| switch (status) { |
| case CPU_BOOT_STATUS_NA: |
| dev_err(hdev->dev, |
| "Device boot error - BTL did NOT run\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_WFE: |
| dev_err(hdev->dev, |
| "Device boot error - Stuck inside WFE loop\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_BTL: |
| dev_err(hdev->dev, |
| "Device boot error - Stuck in BTL\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_PREBOOT: |
| dev_err(hdev->dev, |
| "Device boot error - Stuck in Preboot\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_SPL: |
| dev_err(hdev->dev, |
| "Device boot error - Stuck in SPL\n"); |
| break; |
| case CPU_BOOT_STATUS_IN_UBOOT: |
| dev_err(hdev->dev, |
| "Device boot error - Stuck in u-boot\n"); |
| break; |
| case CPU_BOOT_STATUS_DRAM_INIT_FAIL: |
| dev_err(hdev->dev, |
| "Device boot error - DRAM initialization failed\n"); |
| break; |
| case CPU_BOOT_STATUS_UBOOT_NOT_READY: |
| dev_err(hdev->dev, |
| "Device boot error - u-boot stopped by user\n"); |
| break; |
| case CPU_BOOT_STATUS_TS_INIT_FAIL: |
| dev_err(hdev->dev, |
| "Device boot error - Thermal Sensor initialization failed\n"); |
| break; |
| default: |
| dev_err(hdev->dev, |
| "Device boot error - Invalid status code %d\n", |
| status); |
| break; |
| } |
| } |
| |
| int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg, |
| u32 cpu_security_boot_status_reg, u32 boot_err0_reg, |
| u32 timeout) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u32 status, security_status; |
| int rc; |
| |
| if (!hdev->cpu_enable) |
| return 0; |
| |
| /* Need to check two possible scenarios: |
| * |
| * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where |
| * the preboot is waiting for the boot fit |
| * |
| * All other status values - for older firmwares where the uboot was |
| * loaded from the FLASH |
| */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_IN_UBOOT) || |
| (status == CPU_BOOT_STATUS_DRAM_RDY) || |
| (status == CPU_BOOT_STATUS_NIC_FW_RDY) || |
| (status == CPU_BOOT_STATUS_READY_TO_BOOT) || |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL) || |
| (status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT), |
| 10000, |
| timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, "Failed to read preboot version\n"); |
| detect_cpu_boot_status(hdev, status); |
| fw_read_errors(hdev, boot_err0_reg, |
| cpu_security_boot_status_reg); |
| return -EIO; |
| } |
| |
| rc = hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_PREBOOT); |
| if (rc) |
| return rc; |
| |
| security_status = RREG32(cpu_security_boot_status_reg); |
| |
| /* We read security status multiple times during boot: |
| * 1. preboot - we check if fw security feature is supported |
| * 2. boot cpu - we get boot cpu security status |
| * 3. FW application - we get FW application security status |
| * |
| * Preboot: |
| * Check security status bit (CPU_BOOT_DEV_STS0_ENABLED), if it is set |
| * check security enabled bit (CPU_BOOT_DEV_STS0_SECURITY_EN) |
| */ |
| if (security_status & CPU_BOOT_DEV_STS0_ENABLED) { |
| hdev->asic_prop.fw_security_status_valid = 1; |
| prop->fw_security_disabled = |
| !(security_status & CPU_BOOT_DEV_STS0_SECURITY_EN); |
| } else { |
| hdev->asic_prop.fw_security_status_valid = 0; |
| prop->fw_security_disabled = true; |
| } |
| |
| dev_info(hdev->dev, "firmware-level security is %s\n", |
| prop->fw_security_disabled ? "disabled" : "enabled"); |
| |
| return 0; |
| } |
| |
| int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg, |
| u32 msg_to_cpu_reg, u32 cpu_msg_status_reg, |
| u32 cpu_security_boot_status_reg, u32 boot_err0_reg, |
| bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout) |
| { |
| u32 status; |
| int rc; |
| |
| if (!(hdev->fw_loading & FW_TYPE_BOOT_CPU)) |
| return 0; |
| |
| dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n", |
| cpu_timeout / USEC_PER_SEC); |
| |
| /* Wait for boot FIT request */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT, |
| 10000, |
| boot_fit_timeout); |
| |
| if (rc) { |
| dev_dbg(hdev->dev, |
| "No boot fit request received, resuming boot\n"); |
| } else { |
| rc = hdev->asic_funcs->load_boot_fit_to_device(hdev); |
| if (rc) |
| goto out; |
| |
| /* Clear device CPU message status */ |
| WREG32(cpu_msg_status_reg, CPU_MSG_CLR); |
| |
| /* Signal device CPU that boot loader is ready */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); |
| |
| /* Poll for CPU device ack */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_msg_status_reg, |
| status, |
| status == CPU_MSG_OK, |
| 10000, |
| boot_fit_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Timeout waiting for boot fit load ack\n"); |
| goto out; |
| } |
| |
| /* Clear message */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| } |
| |
| /* Make sure CPU boot-loader is running */ |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_DRAM_RDY) || |
| (status == CPU_BOOT_STATUS_NIC_FW_RDY) || |
| (status == CPU_BOOT_STATUS_READY_TO_BOOT) || |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| 10000, |
| cpu_timeout); |
| |
| dev_dbg(hdev->dev, "uboot status = %d\n", status); |
| |
| /* Read U-Boot version now in case we will later fail */ |
| hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_UBOOT); |
| |
| /* Read boot_cpu security bits */ |
| if (hdev->asic_prop.fw_security_status_valid) |
| hdev->asic_prop.fw_boot_cpu_security_map = |
| RREG32(cpu_security_boot_status_reg); |
| |
| if (rc) { |
| detect_cpu_boot_status(hdev, status); |
| rc = -EIO; |
| goto out; |
| } |
| |
| if (!(hdev->fw_loading & FW_TYPE_LINUX)) { |
| dev_info(hdev->dev, "Skip loading Linux F/W\n"); |
| goto out; |
| } |
| |
| if (status == CPU_BOOT_STATUS_SRAM_AVAIL) |
| goto out; |
| |
| dev_info(hdev->dev, |
| "Loading firmware to device, may take some time...\n"); |
| |
| rc = hdev->asic_funcs->load_firmware_to_device(hdev); |
| if (rc) |
| goto out; |
| |
| if (skip_bmc) { |
| WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED), |
| 10000, |
| cpu_timeout); |
| |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to get ACK on skipping BMC, %d\n", |
| status); |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| rc = -EIO; |
| goto out; |
| } |
| } |
| |
| WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY); |
| |
| rc = hl_poll_timeout( |
| hdev, |
| cpu_boot_status_reg, |
| status, |
| (status == CPU_BOOT_STATUS_SRAM_AVAIL), |
| 10000, |
| cpu_timeout); |
| |
| /* Clear message */ |
| WREG32(msg_to_cpu_reg, KMD_MSG_NA); |
| |
| if (rc) { |
| if (status == CPU_BOOT_STATUS_FIT_CORRUPTED) |
| dev_err(hdev->dev, |
| "Device reports FIT image is corrupted\n"); |
| else |
| dev_err(hdev->dev, |
| "Failed to load firmware to device, %d\n", |
| status); |
| |
| rc = -EIO; |
| goto out; |
| } |
| |
| /* Read FW application security bits */ |
| if (hdev->asic_prop.fw_security_status_valid) { |
| hdev->asic_prop.fw_app_security_map = |
| RREG32(cpu_security_boot_status_reg); |
| |
| if (hdev->asic_prop.fw_app_security_map & |
| CPU_BOOT_DEV_STS0_FW_HARD_RST_EN) |
| hdev->asic_prop.hard_reset_done_by_fw = true; |
| } |
| |
| dev_dbg(hdev->dev, "Firmware hard-reset is %s\n", |
| hdev->asic_prop.hard_reset_done_by_fw ? "enabled" : "disabled"); |
| |
| dev_info(hdev->dev, "Successfully loaded firmware to device\n"); |
| |
| out: |
| fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg); |
| |
| return rc; |
| } |