| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2016 Broadcom |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/scatterlist.h> |
| #include <linux/crypto.h> |
| #include <linux/kthread.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/sched.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/io.h> |
| #include <linux/bitops.h> |
| |
| #include <crypto/algapi.h> |
| #include <crypto/aead.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/aes.h> |
| #include <crypto/des.h> |
| #include <crypto/hmac.h> |
| #include <crypto/sha.h> |
| #include <crypto/md5.h> |
| #include <crypto/authenc.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/hash.h> |
| #include <crypto/sha3.h> |
| |
| #include "util.h" |
| #include "cipher.h" |
| #include "spu.h" |
| #include "spum.h" |
| #include "spu2.h" |
| |
| /* ================= Device Structure ================== */ |
| |
| struct device_private iproc_priv; |
| |
| /* ==================== Parameters ===================== */ |
| |
| int flow_debug_logging; |
| module_param(flow_debug_logging, int, 0644); |
| MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging"); |
| |
| int packet_debug_logging; |
| module_param(packet_debug_logging, int, 0644); |
| MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging"); |
| |
| int debug_logging_sleep; |
| module_param(debug_logging_sleep, int, 0644); |
| MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep"); |
| |
| /* |
| * The value of these module parameters is used to set the priority for each |
| * algo type when this driver registers algos with the kernel crypto API. |
| * To use a priority other than the default, set the priority in the insmod or |
| * modprobe. Changing the module priority after init time has no effect. |
| * |
| * The default priorities are chosen to be lower (less preferred) than ARMv8 CE |
| * algos, but more preferred than generic software algos. |
| */ |
| static int cipher_pri = 150; |
| module_param(cipher_pri, int, 0644); |
| MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos"); |
| |
| static int hash_pri = 100; |
| module_param(hash_pri, int, 0644); |
| MODULE_PARM_DESC(hash_pri, "Priority for hash algos"); |
| |
| static int aead_pri = 150; |
| module_param(aead_pri, int, 0644); |
| MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos"); |
| |
| /* A type 3 BCM header, expected to precede the SPU header for SPU-M. |
| * Bits 3 and 4 in the first byte encode the channel number (the dma ringset). |
| * 0x60 - ring 0 |
| * 0x68 - ring 1 |
| * 0x70 - ring 2 |
| * 0x78 - ring 3 |
| */ |
| char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 }; |
| /* |
| * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN |
| * is set dynamically after reading SPU type from device tree. |
| */ |
| #define BCM_HDR_LEN iproc_priv.bcm_hdr_len |
| |
| /* min and max time to sleep before retrying when mbox queue is full. usec */ |
| #define MBOX_SLEEP_MIN 800 |
| #define MBOX_SLEEP_MAX 1000 |
| |
| /** |
| * select_channel() - Select a SPU channel to handle a crypto request. Selects |
| * channel in round robin order. |
| * |
| * Return: channel index |
| */ |
| static u8 select_channel(void) |
| { |
| u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan); |
| |
| return chan_idx % iproc_priv.spu.num_chan; |
| } |
| |
| /** |
| * spu_ablkcipher_rx_sg_create() - Build up the scatterlist of buffers used to |
| * receive a SPU response message for an ablkcipher request. Includes buffers to |
| * catch SPU message headers and the response data. |
| * @mssg: mailbox message containing the receive sg |
| * @rctx: crypto request context |
| * @rx_frag_num: number of scatterlist elements required to hold the |
| * SPU response message |
| * @chunksize: Number of bytes of response data expected |
| * @stat_pad_len: Number of bytes required to pad the STAT field to |
| * a 4-byte boundary |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Returns: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int |
| spu_ablkcipher_rx_sg_create(struct brcm_message *mssg, |
| struct iproc_reqctx_s *rctx, |
| u8 rx_frag_num, |
| unsigned int chunksize, u32 stat_pad_len) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 datalen; /* Number of bytes of response data expected */ |
| |
| mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (!mssg->spu.dst) |
| return -ENOMEM; |
| |
| sg = mssg->spu.dst; |
| sg_init_table(sg, rx_frag_num); |
| /* Space for SPU message header */ |
| sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| |
| /* If XTS tweak in payload, add buffer to receive encrypted tweak */ |
| if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| spu->spu_xts_tweak_in_payload()) |
| sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, |
| SPU_XTS_TWEAK_SIZE); |
| |
| /* Copy in each dst sg entry from request, up to chunksize */ |
| datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, |
| rctx->dst_nents, chunksize); |
| if (datalen < chunksize) { |
| pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u", |
| __func__, chunksize, datalen); |
| return -EFAULT; |
| } |
| |
| if (ctx->cipher.alg == CIPHER_ALG_RC4) |
| /* Add buffer to catch 260-byte SUPDT field for RC4 */ |
| sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak, SPU_SUPDT_LEN); |
| |
| if (stat_pad_len) |
| sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| |
| memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| |
| return 0; |
| } |
| |
| /** |
| * spu_ablkcipher_tx_sg_create() - Build up the scatterlist of buffers used to |
| * send a SPU request message for an ablkcipher request. Includes SPU message |
| * headers and the request data. |
| * @mssg: mailbox message containing the transmit sg |
| * @rctx: crypto request context |
| * @tx_frag_num: number of scatterlist elements required to construct the |
| * SPU request message |
| * @chunksize: Number of bytes of request data |
| * @pad_len: Number of pad bytes |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Returns: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int |
| spu_ablkcipher_tx_sg_create(struct brcm_message *mssg, |
| struct iproc_reqctx_s *rctx, |
| u8 tx_frag_num, unsigned int chunksize, u32 pad_len) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 datalen; /* Number of bytes of response data expected */ |
| u32 stat_len; |
| |
| mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (unlikely(!mssg->spu.src)) |
| return -ENOMEM; |
| |
| sg = mssg->spu.src; |
| sg_init_table(sg, tx_frag_num); |
| |
| sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| BCM_HDR_LEN + ctx->spu_req_hdr_len); |
| |
| /* if XTS tweak in payload, copy from IV (where crypto API puts it) */ |
| if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| spu->spu_xts_tweak_in_payload()) |
| sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE); |
| |
| /* Copy in each src sg entry from request, up to chunksize */ |
| datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| rctx->src_nents, chunksize); |
| if (unlikely(datalen < chunksize)) { |
| pr_err("%s(): failed to copy src sg to mbox msg", |
| __func__); |
| return -EFAULT; |
| } |
| |
| if (pad_len) |
| sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| |
| stat_len = spu->spu_tx_status_len(); |
| if (stat_len) { |
| memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| } |
| return 0; |
| } |
| |
| static int mailbox_send_message(struct brcm_message *mssg, u32 flags, |
| u8 chan_idx) |
| { |
| int err; |
| int retry_cnt = 0; |
| struct device *dev = &(iproc_priv.pdev->dev); |
| |
| err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg); |
| if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) { |
| while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) { |
| /* |
| * Mailbox queue is full. Since MAY_SLEEP is set, assume |
| * not in atomic context and we can wait and try again. |
| */ |
| retry_cnt++; |
| usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX); |
| err = mbox_send_message(iproc_priv.mbox[chan_idx], |
| mssg); |
| atomic_inc(&iproc_priv.mb_no_spc); |
| } |
| } |
| if (err < 0) { |
| atomic_inc(&iproc_priv.mb_send_fail); |
| return err; |
| } |
| |
| /* Check error returned by mailbox controller */ |
| err = mssg->error; |
| if (unlikely(err < 0)) { |
| dev_err(dev, "message error %d", err); |
| /* Signal txdone for mailbox channel */ |
| } |
| |
| /* Signal txdone for mailbox channel */ |
| mbox_client_txdone(iproc_priv.mbox[chan_idx], err); |
| return err; |
| } |
| |
| /** |
| * handle_ablkcipher_req() - Submit as much of a block cipher request as fits in |
| * a single SPU request message, starting at the current position in the request |
| * data. |
| * @rctx: Crypto request context |
| * |
| * This may be called on the crypto API thread, or, when a request is so large |
| * it must be broken into multiple SPU messages, on the thread used to invoke |
| * the response callback. When requests are broken into multiple SPU |
| * messages, we assume subsequent messages depend on previous results, and |
| * thus always wait for previous results before submitting the next message. |
| * Because requests are submitted in lock step like this, there is no need |
| * to synchronize access to request data structures. |
| * |
| * Return: -EINPROGRESS: request has been accepted and result will be returned |
| * asynchronously |
| * Any other value indicates an error |
| */ |
| static int handle_ablkcipher_req(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_async_request *areq = rctx->parent; |
| struct ablkcipher_request *req = |
| container_of(areq, struct ablkcipher_request, base); |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| struct spu_cipher_parms cipher_parms; |
| int err = 0; |
| unsigned int chunksize = 0; /* Num bytes of request to submit */ |
| int remaining = 0; /* Bytes of request still to process */ |
| int chunk_start; /* Beginning of data for current SPU msg */ |
| |
| /* IV or ctr value to use in this SPU msg */ |
| u8 local_iv_ctr[MAX_IV_SIZE]; |
| u32 stat_pad_len; /* num bytes to align status field */ |
| u32 pad_len; /* total length of all padding */ |
| bool update_key = false; |
| struct brcm_message *mssg; /* mailbox message */ |
| |
| /* number of entries in src and dst sg in mailbox message. */ |
| u8 rx_frag_num = 2; /* response header and STATUS */ |
| u8 tx_frag_num = 1; /* request header */ |
| |
| flow_log("%s\n", __func__); |
| |
| cipher_parms.alg = ctx->cipher.alg; |
| cipher_parms.mode = ctx->cipher.mode; |
| cipher_parms.type = ctx->cipher_type; |
| cipher_parms.key_len = ctx->enckeylen; |
| cipher_parms.key_buf = ctx->enckey; |
| cipher_parms.iv_buf = local_iv_ctr; |
| cipher_parms.iv_len = rctx->iv_ctr_len; |
| |
| mssg = &rctx->mb_mssg; |
| chunk_start = rctx->src_sent; |
| remaining = rctx->total_todo - chunk_start; |
| |
| /* determine the chunk we are breaking off and update the indexes */ |
| if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| (remaining > ctx->max_payload)) |
| chunksize = ctx->max_payload; |
| else |
| chunksize = remaining; |
| |
| rctx->src_sent += chunksize; |
| rctx->total_sent = rctx->src_sent; |
| |
| /* Count number of sg entries to be included in this request */ |
| rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); |
| rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); |
| |
| if ((ctx->cipher.mode == CIPHER_MODE_CBC) && |
| rctx->is_encrypt && chunk_start) |
| /* |
| * Encrypting non-first first chunk. Copy last block of |
| * previous result to IV for this chunk. |
| */ |
| sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr, |
| rctx->iv_ctr_len, |
| chunk_start - rctx->iv_ctr_len); |
| |
| if (rctx->iv_ctr_len) { |
| /* get our local copy of the iv */ |
| __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr, |
| rctx->iv_ctr_len); |
| |
| /* generate the next IV if possible */ |
| if ((ctx->cipher.mode == CIPHER_MODE_CBC) && |
| !rctx->is_encrypt) { |
| /* |
| * CBC Decrypt: next IV is the last ciphertext block in |
| * this chunk |
| */ |
| sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr, |
| rctx->iv_ctr_len, |
| rctx->src_sent - rctx->iv_ctr_len); |
| } else if (ctx->cipher.mode == CIPHER_MODE_CTR) { |
| /* |
| * The SPU hardware increments the counter once for |
| * each AES block of 16 bytes. So update the counter |
| * for the next chunk, if there is one. Note that for |
| * this chunk, the counter has already been copied to |
| * local_iv_ctr. We can assume a block size of 16, |
| * because we only support CTR mode for AES, not for |
| * any other cipher alg. |
| */ |
| add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4); |
| } |
| } |
| |
| if (ctx->cipher.alg == CIPHER_ALG_RC4) { |
| rx_frag_num++; |
| if (chunk_start) { |
| /* |
| * for non-first RC4 chunks, use SUPDT from previous |
| * response as key for this chunk. |
| */ |
| cipher_parms.key_buf = rctx->msg_buf.c.supdt_tweak; |
| update_key = true; |
| cipher_parms.type = CIPHER_TYPE_UPDT; |
| } else if (!rctx->is_encrypt) { |
| /* |
| * First RC4 chunk. For decrypt, key in pre-built msg |
| * header may have been changed if encrypt required |
| * multiple chunks. So revert the key to the |
| * ctx->enckey value. |
| */ |
| update_key = true; |
| cipher_parms.type = CIPHER_TYPE_INIT; |
| } |
| } |
| |
| if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| flow_log("max_payload infinite\n"); |
| else |
| flow_log("max_payload %u\n", ctx->max_payload); |
| |
| flow_log("sent:%u start:%u remains:%u size:%u\n", |
| rctx->src_sent, chunk_start, remaining, chunksize); |
| |
| /* Copy SPU header template created at setkey time */ |
| memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr, |
| sizeof(rctx->msg_buf.bcm_spu_req_hdr)); |
| |
| /* |
| * Pass SUPDT field as key. Key field in finish() call is only used |
| * when update_key has been set above for RC4. Will be ignored in |
| * all other cases. |
| */ |
| spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| ctx->spu_req_hdr_len, !(rctx->is_encrypt), |
| &cipher_parms, update_key, chunksize); |
| |
| atomic64_add(chunksize, &iproc_priv.bytes_out); |
| |
| stat_pad_len = spu->spu_wordalign_padlen(chunksize); |
| if (stat_pad_len) |
| rx_frag_num++; |
| pad_len = stat_pad_len; |
| if (pad_len) { |
| tx_frag_num++; |
| spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0, |
| 0, ctx->auth.alg, ctx->auth.mode, |
| rctx->total_sent, stat_pad_len); |
| } |
| |
| spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| ctx->spu_req_hdr_len); |
| packet_log("payload:\n"); |
| dump_sg(rctx->src_sg, rctx->src_skip, chunksize); |
| packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| |
| /* |
| * Build mailbox message containing SPU request msg and rx buffers |
| * to catch response message |
| */ |
| memset(mssg, 0, sizeof(*mssg)); |
| mssg->type = BRCM_MESSAGE_SPU; |
| mssg->ctx = rctx; /* Will be returned in response */ |
| |
| /* Create rx scatterlist to catch result */ |
| rx_frag_num += rctx->dst_nents; |
| |
| if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| spu->spu_xts_tweak_in_payload()) |
| rx_frag_num++; /* extra sg to insert tweak */ |
| |
| err = spu_ablkcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize, |
| stat_pad_len); |
| if (err) |
| return err; |
| |
| /* Create tx scatterlist containing SPU request message */ |
| tx_frag_num += rctx->src_nents; |
| if (spu->spu_tx_status_len()) |
| tx_frag_num++; |
| |
| if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| spu->spu_xts_tweak_in_payload()) |
| tx_frag_num++; /* extra sg to insert tweak */ |
| |
| err = spu_ablkcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize, |
| pad_len); |
| if (err) |
| return err; |
| |
| err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); |
| if (unlikely(err < 0)) |
| return err; |
| |
| return -EINPROGRESS; |
| } |
| |
| /** |
| * handle_ablkcipher_resp() - Process a block cipher SPU response. Updates the |
| * total received count for the request and updates global stats. |
| * @rctx: Crypto request context |
| */ |
| static void handle_ablkcipher_resp(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| #ifdef DEBUG |
| struct crypto_async_request *areq = rctx->parent; |
| struct ablkcipher_request *req = ablkcipher_request_cast(areq); |
| #endif |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 payload_len; |
| |
| /* See how much data was returned */ |
| payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); |
| |
| /* |
| * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the |
| * encrypted tweak ("i") value; we don't count those. |
| */ |
| if ((ctx->cipher.mode == CIPHER_MODE_XTS) && |
| spu->spu_xts_tweak_in_payload() && |
| (payload_len >= SPU_XTS_TWEAK_SIZE)) |
| payload_len -= SPU_XTS_TWEAK_SIZE; |
| |
| atomic64_add(payload_len, &iproc_priv.bytes_in); |
| |
| flow_log("%s() offset: %u, bd_len: %u BD:\n", |
| __func__, rctx->total_received, payload_len); |
| |
| dump_sg(req->dst, rctx->total_received, payload_len); |
| if (ctx->cipher.alg == CIPHER_ALG_RC4) |
| packet_dump(" supdt ", rctx->msg_buf.c.supdt_tweak, |
| SPU_SUPDT_LEN); |
| |
| rctx->total_received += payload_len; |
| if (rctx->total_received == rctx->total_todo) { |
| atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]); |
| atomic_inc( |
| &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]); |
| } |
| } |
| |
| /** |
| * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to |
| * receive a SPU response message for an ahash request. |
| * @mssg: mailbox message containing the receive sg |
| * @rctx: crypto request context |
| * @rx_frag_num: number of scatterlist elements required to hold the |
| * SPU response message |
| * @digestsize: length of hash digest, in bytes |
| * @stat_pad_len: Number of bytes required to pad the STAT field to |
| * a 4-byte boundary |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Return: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int |
| spu_ahash_rx_sg_create(struct brcm_message *mssg, |
| struct iproc_reqctx_s *rctx, |
| u8 rx_frag_num, unsigned int digestsize, |
| u32 stat_pad_len) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| |
| mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (!mssg->spu.dst) |
| return -ENOMEM; |
| |
| sg = mssg->spu.dst; |
| sg_init_table(sg, rx_frag_num); |
| /* Space for SPU message header */ |
| sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| |
| /* Space for digest */ |
| sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); |
| |
| if (stat_pad_len) |
| sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| |
| memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| return 0; |
| } |
| |
| /** |
| * spu_ahash_tx_sg_create() - Build up the scatterlist of buffers used to send |
| * a SPU request message for an ahash request. Includes SPU message headers and |
| * the request data. |
| * @mssg: mailbox message containing the transmit sg |
| * @rctx: crypto request context |
| * @tx_frag_num: number of scatterlist elements required to construct the |
| * SPU request message |
| * @spu_hdr_len: length in bytes of SPU message header |
| * @hash_carry_len: Number of bytes of data carried over from previous req |
| * @new_data_len: Number of bytes of new request data |
| * @pad_len: Number of pad bytes |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Return: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int |
| spu_ahash_tx_sg_create(struct brcm_message *mssg, |
| struct iproc_reqctx_s *rctx, |
| u8 tx_frag_num, |
| u32 spu_hdr_len, |
| unsigned int hash_carry_len, |
| unsigned int new_data_len, u32 pad_len) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| u32 datalen; /* Number of bytes of response data expected */ |
| u32 stat_len; |
| |
| mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (!mssg->spu.src) |
| return -ENOMEM; |
| |
| sg = mssg->spu.src; |
| sg_init_table(sg, tx_frag_num); |
| |
| sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| BCM_HDR_LEN + spu_hdr_len); |
| |
| if (hash_carry_len) |
| sg_set_buf(sg++, rctx->hash_carry, hash_carry_len); |
| |
| if (new_data_len) { |
| /* Copy in each src sg entry from request, up to chunksize */ |
| datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| rctx->src_nents, new_data_len); |
| if (datalen < new_data_len) { |
| pr_err("%s(): failed to copy src sg to mbox msg", |
| __func__); |
| return -EFAULT; |
| } |
| } |
| |
| if (pad_len) |
| sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| |
| stat_len = spu->spu_tx_status_len(); |
| if (stat_len) { |
| memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * handle_ahash_req() - Process an asynchronous hash request from the crypto |
| * API. |
| * @rctx: Crypto request context |
| * |
| * Builds a SPU request message embedded in a mailbox message and submits the |
| * mailbox message on a selected mailbox channel. The SPU request message is |
| * constructed as a scatterlist, including entries from the crypto API's |
| * src scatterlist to avoid copying the data to be hashed. This function is |
| * called either on the thread from the crypto API, or, in the case that the |
| * crypto API request is too large to fit in a single SPU request message, |
| * on the thread that invokes the receive callback with a response message. |
| * Because some operations require the response from one chunk before the next |
| * chunk can be submitted, we always wait for the response for the previous |
| * chunk before submitting the next chunk. Because requests are submitted in |
| * lock step like this, there is no need to synchronize access to request data |
| * structures. |
| * |
| * Return: |
| * -EINPROGRESS: request has been submitted to SPU and response will be |
| * returned asynchronously |
| * -EAGAIN: non-final request included a small amount of data, which for |
| * efficiency we did not submit to the SPU, but instead stored |
| * to be submitted to the SPU with the next part of the request |
| * other: an error code |
| */ |
| static int handle_ahash_req(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_async_request *areq = rctx->parent; |
| struct ahash_request *req = ahash_request_cast(areq); |
| struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_ahash_tfm(ahash); |
| unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| |
| /* number of bytes still to be hashed in this req */ |
| unsigned int nbytes_to_hash = 0; |
| int err = 0; |
| unsigned int chunksize = 0; /* length of hash carry + new data */ |
| /* |
| * length of new data, not from hash carry, to be submitted in |
| * this hw request |
| */ |
| unsigned int new_data_len; |
| |
| unsigned int __maybe_unused chunk_start = 0; |
| u32 db_size; /* Length of data field, incl gcm and hash padding */ |
| int pad_len = 0; /* total pad len, including gcm, hash, stat padding */ |
| u32 data_pad_len = 0; /* length of GCM/CCM padding */ |
| u32 stat_pad_len = 0; /* length of padding to align STATUS word */ |
| struct brcm_message *mssg; /* mailbox message */ |
| struct spu_request_opts req_opts; |
| struct spu_cipher_parms cipher_parms; |
| struct spu_hash_parms hash_parms; |
| struct spu_aead_parms aead_parms; |
| unsigned int local_nbuf; |
| u32 spu_hdr_len; |
| unsigned int digestsize; |
| u16 rem = 0; |
| |
| /* |
| * number of entries in src and dst sg. Always includes SPU msg header. |
| * rx always includes a buffer to catch digest and STATUS. |
| */ |
| u8 rx_frag_num = 3; |
| u8 tx_frag_num = 1; |
| |
| flow_log("total_todo %u, total_sent %u\n", |
| rctx->total_todo, rctx->total_sent); |
| |
| memset(&req_opts, 0, sizeof(req_opts)); |
| memset(&cipher_parms, 0, sizeof(cipher_parms)); |
| memset(&hash_parms, 0, sizeof(hash_parms)); |
| memset(&aead_parms, 0, sizeof(aead_parms)); |
| |
| req_opts.bd_suppress = true; |
| hash_parms.alg = ctx->auth.alg; |
| hash_parms.mode = ctx->auth.mode; |
| hash_parms.type = HASH_TYPE_NONE; |
| hash_parms.key_buf = (u8 *)ctx->authkey; |
| hash_parms.key_len = ctx->authkeylen; |
| |
| /* |
| * For hash algorithms below assignment looks bit odd but |
| * it's needed for AES-XCBC and AES-CMAC hash algorithms |
| * to differentiate between 128, 192, 256 bit key values. |
| * Based on the key values, hash algorithm is selected. |
| * For example for 128 bit key, hash algorithm is AES-128. |
| */ |
| cipher_parms.type = ctx->cipher_type; |
| |
| mssg = &rctx->mb_mssg; |
| chunk_start = rctx->src_sent; |
| |
| /* |
| * Compute the amount remaining to hash. This may include data |
| * carried over from previous requests. |
| */ |
| nbytes_to_hash = rctx->total_todo - rctx->total_sent; |
| chunksize = nbytes_to_hash; |
| if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| (chunksize > ctx->max_payload)) |
| chunksize = ctx->max_payload; |
| |
| /* |
| * If this is not a final request and the request data is not a multiple |
| * of a full block, then simply park the extra data and prefix it to the |
| * data for the next request. |
| */ |
| if (!rctx->is_final) { |
| u8 *dest = rctx->hash_carry + rctx->hash_carry_len; |
| u16 new_len; /* len of data to add to hash carry */ |
| |
| rem = chunksize % blocksize; /* remainder */ |
| if (rem) { |
| /* chunksize not a multiple of blocksize */ |
| chunksize -= rem; |
| if (chunksize == 0) { |
| /* Don't have a full block to submit to hw */ |
| new_len = rem - rctx->hash_carry_len; |
| sg_copy_part_to_buf(req->src, dest, new_len, |
| rctx->src_sent); |
| rctx->hash_carry_len = rem; |
| flow_log("Exiting with hash carry len: %u\n", |
| rctx->hash_carry_len); |
| packet_dump(" buf: ", |
| rctx->hash_carry, |
| rctx->hash_carry_len); |
| return -EAGAIN; |
| } |
| } |
| } |
| |
| /* if we have hash carry, then prefix it to the data in this request */ |
| local_nbuf = rctx->hash_carry_len; |
| rctx->hash_carry_len = 0; |
| if (local_nbuf) |
| tx_frag_num++; |
| new_data_len = chunksize - local_nbuf; |
| |
| /* Count number of sg entries to be used in this request */ |
| rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, |
| new_data_len); |
| |
| /* AES hashing keeps key size in type field, so need to copy it here */ |
| if (hash_parms.alg == HASH_ALG_AES) |
| hash_parms.type = (enum hash_type)cipher_parms.type; |
| else |
| hash_parms.type = spu->spu_hash_type(rctx->total_sent); |
| |
| digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg, |
| hash_parms.type); |
| hash_parms.digestsize = digestsize; |
| |
| /* update the indexes */ |
| rctx->total_sent += chunksize; |
| /* if you sent a prebuf then that wasn't from this req->src */ |
| rctx->src_sent += new_data_len; |
| |
| if ((rctx->total_sent == rctx->total_todo) && rctx->is_final) |
| hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg, |
| hash_parms.mode, |
| chunksize, |
| blocksize); |
| |
| /* |
| * If a non-first chunk, then include the digest returned from the |
| * previous chunk so that hw can add to it (except for AES types). |
| */ |
| if ((hash_parms.type == HASH_TYPE_UPDT) && |
| (hash_parms.alg != HASH_ALG_AES)) { |
| hash_parms.key_buf = rctx->incr_hash; |
| hash_parms.key_len = digestsize; |
| } |
| |
| atomic64_add(chunksize, &iproc_priv.bytes_out); |
| |
| flow_log("%s() final: %u nbuf: %u ", |
| __func__, rctx->is_final, local_nbuf); |
| |
| if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| flow_log("max_payload infinite\n"); |
| else |
| flow_log("max_payload %u\n", ctx->max_payload); |
| |
| flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize); |
| |
| /* Prepend SPU header with type 3 BCM header */ |
| memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| |
| hash_parms.prebuf_len = local_nbuf; |
| spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + |
| BCM_HDR_LEN, |
| &req_opts, &cipher_parms, |
| &hash_parms, &aead_parms, |
| new_data_len); |
| |
| if (spu_hdr_len == 0) { |
| pr_err("Failed to create SPU request header\n"); |
| return -EFAULT; |
| } |
| |
| /* |
| * Determine total length of padding required. Put all padding in one |
| * buffer. |
| */ |
| data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize); |
| db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len, |
| 0, 0, hash_parms.pad_len); |
| if (spu->spu_tx_status_len()) |
| stat_pad_len = spu->spu_wordalign_padlen(db_size); |
| if (stat_pad_len) |
| rx_frag_num++; |
| pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len; |
| if (pad_len) { |
| tx_frag_num++; |
| spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len, |
| hash_parms.pad_len, ctx->auth.alg, |
| ctx->auth.mode, rctx->total_sent, |
| stat_pad_len); |
| } |
| |
| spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| spu_hdr_len); |
| packet_dump(" prebuf: ", rctx->hash_carry, local_nbuf); |
| flow_log("Data:\n"); |
| dump_sg(rctx->src_sg, rctx->src_skip, new_data_len); |
| packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| |
| /* |
| * Build mailbox message containing SPU request msg and rx buffers |
| * to catch response message |
| */ |
| memset(mssg, 0, sizeof(*mssg)); |
| mssg->type = BRCM_MESSAGE_SPU; |
| mssg->ctx = rctx; /* Will be returned in response */ |
| |
| /* Create rx scatterlist to catch result */ |
| err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize, |
| stat_pad_len); |
| if (err) |
| return err; |
| |
| /* Create tx scatterlist containing SPU request message */ |
| tx_frag_num += rctx->src_nents; |
| if (spu->spu_tx_status_len()) |
| tx_frag_num++; |
| err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, |
| local_nbuf, new_data_len, pad_len); |
| if (err) |
| return err; |
| |
| err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); |
| if (unlikely(err < 0)) |
| return err; |
| |
| return -EINPROGRESS; |
| } |
| |
| /** |
| * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash |
| * for an HMAC request. |
| * @req: The HMAC request from the crypto API |
| * @ctx: The session context |
| * |
| * Return: 0 if synchronous hash operation successful |
| * -EINVAL if the hash algo is unrecognized |
| * any other value indicates an error |
| */ |
| static int spu_hmac_outer_hash(struct ahash_request *req, |
| struct iproc_ctx_s *ctx) |
| { |
| struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| unsigned int blocksize = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| int rc; |
| |
| switch (ctx->auth.alg) { |
| case HASH_ALG_MD5: |
| rc = do_shash("md5", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| case HASH_ALG_SHA1: |
| rc = do_shash("sha1", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| case HASH_ALG_SHA224: |
| rc = do_shash("sha224", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| case HASH_ALG_SHA256: |
| rc = do_shash("sha256", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| case HASH_ALG_SHA384: |
| rc = do_shash("sha384", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| case HASH_ALG_SHA512: |
| rc = do_shash("sha512", req->result, ctx->opad, blocksize, |
| req->result, ctx->digestsize, NULL, 0); |
| break; |
| default: |
| pr_err("%s() Error : unknown hmac type\n", __func__); |
| rc = -EINVAL; |
| } |
| return rc; |
| } |
| |
| /** |
| * ahash_req_done() - Process a hash result from the SPU hardware. |
| * @rctx: Crypto request context |
| * |
| * Return: 0 if successful |
| * < 0 if an error |
| */ |
| static int ahash_req_done(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_async_request *areq = rctx->parent; |
| struct ahash_request *req = ahash_request_cast(areq); |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| int err; |
| |
| memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize); |
| |
| if (spu->spu_type == SPU_TYPE_SPUM) { |
| /* byte swap the output from the UPDT function to network byte |
| * order |
| */ |
| if (ctx->auth.alg == HASH_ALG_MD5) { |
| __swab32s((u32 *)req->result); |
| __swab32s(((u32 *)req->result) + 1); |
| __swab32s(((u32 *)req->result) + 2); |
| __swab32s(((u32 *)req->result) + 3); |
| __swab32s(((u32 *)req->result) + 4); |
| } |
| } |
| |
| flow_dump(" digest ", req->result, ctx->digestsize); |
| |
| /* if this an HMAC then do the outer hash */ |
| if (rctx->is_sw_hmac) { |
| err = spu_hmac_outer_hash(req, ctx); |
| if (err < 0) |
| return err; |
| flow_dump(" hmac: ", req->result, ctx->digestsize); |
| } |
| |
| if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) { |
| atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]); |
| atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]); |
| } else { |
| atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]); |
| atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * handle_ahash_resp() - Process a SPU response message for a hash request. |
| * Checks if the entire crypto API request has been processed, and if so, |
| * invokes post processing on the result. |
| * @rctx: Crypto request context |
| */ |
| static void handle_ahash_resp(struct iproc_reqctx_s *rctx) |
| { |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| #ifdef DEBUG |
| struct crypto_async_request *areq = rctx->parent; |
| struct ahash_request *req = ahash_request_cast(areq); |
| struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); |
| unsigned int blocksize = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| #endif |
| /* |
| * Save hash to use as input to next op if incremental. Might be copying |
| * too much, but that's easier than figuring out actual digest size here |
| */ |
| memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE); |
| |
| flow_log("%s() blocksize:%u digestsize:%u\n", |
| __func__, blocksize, ctx->digestsize); |
| |
| atomic64_add(ctx->digestsize, &iproc_priv.bytes_in); |
| |
| if (rctx->is_final && (rctx->total_sent == rctx->total_todo)) |
| ahash_req_done(rctx); |
| } |
| |
| /** |
| * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive |
| * a SPU response message for an AEAD request. Includes buffers to catch SPU |
| * message headers and the response data. |
| * @mssg: mailbox message containing the receive sg |
| * @rctx: crypto request context |
| * @rx_frag_num: number of scatterlist elements required to hold the |
| * SPU response message |
| * @assoc_len: Length of associated data included in the crypto request |
| * @ret_iv_len: Length of IV returned in response |
| * @resp_len: Number of bytes of response data expected to be written to |
| * dst buffer from crypto API |
| * @digestsize: Length of hash digest, in bytes |
| * @stat_pad_len: Number of bytes required to pad the STAT field to |
| * a 4-byte boundary |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Returns: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int spu_aead_rx_sg_create(struct brcm_message *mssg, |
| struct aead_request *req, |
| struct iproc_reqctx_s *rctx, |
| u8 rx_frag_num, |
| unsigned int assoc_len, |
| u32 ret_iv_len, unsigned int resp_len, |
| unsigned int digestsize, u32 stat_pad_len) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 datalen; /* Number of bytes of response data expected */ |
| u32 assoc_buf_len; |
| u8 data_padlen = 0; |
| |
| if (ctx->is_rfc4543) { |
| /* RFC4543: only pad after data, not after AAD */ |
| data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| assoc_len + resp_len); |
| assoc_buf_len = assoc_len; |
| } else { |
| data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| resp_len); |
| assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode, |
| assoc_len, ret_iv_len, |
| rctx->is_encrypt); |
| } |
| |
| if (ctx->cipher.mode == CIPHER_MODE_CCM) |
| /* ICV (after data) must be in the next 32-bit word for CCM */ |
| data_padlen += spu->spu_wordalign_padlen(assoc_buf_len + |
| resp_len + |
| data_padlen); |
| |
| if (data_padlen) |
| /* have to catch gcm pad in separate buffer */ |
| rx_frag_num++; |
| |
| mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (!mssg->spu.dst) |
| return -ENOMEM; |
| |
| sg = mssg->spu.dst; |
| sg_init_table(sg, rx_frag_num); |
| |
| /* Space for SPU message header */ |
| sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len); |
| |
| if (assoc_buf_len) { |
| /* |
| * Don't write directly to req->dst, because SPU may pad the |
| * assoc data in the response |
| */ |
| memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len); |
| sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len); |
| } |
| |
| if (resp_len) { |
| /* |
| * Copy in each dst sg entry from request, up to chunksize. |
| * dst sg catches just the data. digest caught in separate buf. |
| */ |
| datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip, |
| rctx->dst_nents, resp_len); |
| if (datalen < (resp_len)) { |
| pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u", |
| __func__, resp_len, datalen); |
| return -EFAULT; |
| } |
| } |
| |
| /* If GCM/CCM data is padded, catch padding in separate buffer */ |
| if (data_padlen) { |
| memset(rctx->msg_buf.a.gcmpad, 0, data_padlen); |
| sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen); |
| } |
| |
| /* Always catch ICV in separate buffer */ |
| sg_set_buf(sg++, rctx->msg_buf.digest, digestsize); |
| |
| flow_log("stat_pad_len %u\n", stat_pad_len); |
| if (stat_pad_len) { |
| memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len); |
| sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len); |
| } |
| |
| memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN); |
| sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len()); |
| |
| return 0; |
| } |
| |
| /** |
| * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a |
| * SPU request message for an AEAD request. Includes SPU message headers and the |
| * request data. |
| * @mssg: mailbox message containing the transmit sg |
| * @rctx: crypto request context |
| * @tx_frag_num: number of scatterlist elements required to construct the |
| * SPU request message |
| * @spu_hdr_len: length of SPU message header in bytes |
| * @assoc: crypto API associated data scatterlist |
| * @assoc_len: length of associated data |
| * @assoc_nents: number of scatterlist entries containing assoc data |
| * @aead_iv_len: length of AEAD IV, if included |
| * @chunksize: Number of bytes of request data |
| * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM. |
| * @pad_len: Number of pad bytes |
| * @incl_icv: If true, write separate ICV buffer after data and |
| * any padding |
| * |
| * The scatterlist that gets allocated here is freed in spu_chunk_cleanup() |
| * when the request completes, whether the request is handled successfully or |
| * there is an error. |
| * |
| * Return: |
| * 0 if successful |
| * < 0 if an error |
| */ |
| static int spu_aead_tx_sg_create(struct brcm_message *mssg, |
| struct iproc_reqctx_s *rctx, |
| u8 tx_frag_num, |
| u32 spu_hdr_len, |
| struct scatterlist *assoc, |
| unsigned int assoc_len, |
| int assoc_nents, |
| unsigned int aead_iv_len, |
| unsigned int chunksize, |
| u32 aad_pad_len, u32 pad_len, bool incl_icv) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct scatterlist *sg; /* used to build sgs in mbox message */ |
| struct scatterlist *assoc_sg = assoc; |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 datalen; /* Number of bytes of data to write */ |
| u32 written; /* Number of bytes of data written */ |
| u32 assoc_offset = 0; |
| u32 stat_len; |
| |
| mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist), |
| rctx->gfp); |
| if (!mssg->spu.src) |
| return -ENOMEM; |
| |
| sg = mssg->spu.src; |
| sg_init_table(sg, tx_frag_num); |
| |
| sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr, |
| BCM_HDR_LEN + spu_hdr_len); |
| |
| if (assoc_len) { |
| /* Copy in each associated data sg entry from request */ |
| written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset, |
| assoc_nents, assoc_len); |
| if (written < assoc_len) { |
| pr_err("%s(): failed to copy assoc sg to mbox msg", |
| __func__); |
| return -EFAULT; |
| } |
| } |
| |
| if (aead_iv_len) |
| sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len); |
| |
| if (aad_pad_len) { |
| memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len); |
| sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len); |
| } |
| |
| datalen = chunksize; |
| if ((chunksize > ctx->digestsize) && incl_icv) |
| datalen -= ctx->digestsize; |
| if (datalen) { |
| /* For aead, a single msg should consume the entire src sg */ |
| written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip, |
| rctx->src_nents, datalen); |
| if (written < datalen) { |
| pr_err("%s(): failed to copy src sg to mbox msg", |
| __func__); |
| return -EFAULT; |
| } |
| } |
| |
| if (pad_len) { |
| memset(rctx->msg_buf.spu_req_pad, 0, pad_len); |
| sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len); |
| } |
| |
| if (incl_icv) |
| sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize); |
| |
| stat_len = spu->spu_tx_status_len(); |
| if (stat_len) { |
| memset(rctx->msg_buf.tx_stat, 0, stat_len); |
| sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len); |
| } |
| return 0; |
| } |
| |
| /** |
| * handle_aead_req() - Submit a SPU request message for the next chunk of the |
| * current AEAD request. |
| * @rctx: Crypto request context |
| * |
| * Unlike other operation types, we assume the length of the request fits in |
| * a single SPU request message. aead_enqueue() makes sure this is true. |
| * Comments for other op types regarding threads applies here as well. |
| * |
| * Unlike incremental hash ops, where the spu returns the entire hash for |
| * truncated algs like sha-224, the SPU returns just the truncated hash in |
| * response to aead requests. So digestsize is always ctx->digestsize here. |
| * |
| * Return: -EINPROGRESS: crypto request has been accepted and result will be |
| * returned asynchronously |
| * Any other value indicates an error |
| */ |
| static int handle_aead_req(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_async_request *areq = rctx->parent; |
| struct aead_request *req = container_of(areq, |
| struct aead_request, base); |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| int err; |
| unsigned int chunksize; |
| unsigned int resp_len; |
| u32 spu_hdr_len; |
| u32 db_size; |
| u32 stat_pad_len; |
| u32 pad_len; |
| struct brcm_message *mssg; /* mailbox message */ |
| struct spu_request_opts req_opts; |
| struct spu_cipher_parms cipher_parms; |
| struct spu_hash_parms hash_parms; |
| struct spu_aead_parms aead_parms; |
| int assoc_nents = 0; |
| bool incl_icv = false; |
| unsigned int digestsize = ctx->digestsize; |
| |
| /* number of entries in src and dst sg. Always includes SPU msg header. |
| */ |
| u8 rx_frag_num = 2; /* and STATUS */ |
| u8 tx_frag_num = 1; |
| |
| /* doing the whole thing at once */ |
| chunksize = rctx->total_todo; |
| |
| flow_log("%s: chunksize %u\n", __func__, chunksize); |
| |
| memset(&req_opts, 0, sizeof(req_opts)); |
| memset(&hash_parms, 0, sizeof(hash_parms)); |
| memset(&aead_parms, 0, sizeof(aead_parms)); |
| |
| req_opts.is_inbound = !(rctx->is_encrypt); |
| req_opts.auth_first = ctx->auth_first; |
| req_opts.is_aead = true; |
| req_opts.is_esp = ctx->is_esp; |
| |
| cipher_parms.alg = ctx->cipher.alg; |
| cipher_parms.mode = ctx->cipher.mode; |
| cipher_parms.type = ctx->cipher_type; |
| cipher_parms.key_buf = ctx->enckey; |
| cipher_parms.key_len = ctx->enckeylen; |
| cipher_parms.iv_buf = rctx->msg_buf.iv_ctr; |
| cipher_parms.iv_len = rctx->iv_ctr_len; |
| |
| hash_parms.alg = ctx->auth.alg; |
| hash_parms.mode = ctx->auth.mode; |
| hash_parms.type = HASH_TYPE_NONE; |
| hash_parms.key_buf = (u8 *)ctx->authkey; |
| hash_parms.key_len = ctx->authkeylen; |
| hash_parms.digestsize = digestsize; |
| |
| if ((ctx->auth.alg == HASH_ALG_SHA224) && |
| (ctx->authkeylen < SHA224_DIGEST_SIZE)) |
| hash_parms.key_len = SHA224_DIGEST_SIZE; |
| |
| aead_parms.assoc_size = req->assoclen; |
| if (ctx->is_esp && !ctx->is_rfc4543) { |
| /* |
| * 8-byte IV is included assoc data in request. SPU2 |
| * expects AAD to include just SPI and seqno. So |
| * subtract off the IV len. |
| */ |
| aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE; |
| |
| if (rctx->is_encrypt) { |
| aead_parms.return_iv = true; |
| aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE; |
| aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE; |
| } |
| } else { |
| aead_parms.ret_iv_len = 0; |
| } |
| |
| /* |
| * Count number of sg entries from the crypto API request that are to |
| * be included in this mailbox message. For dst sg, don't count space |
| * for digest. Digest gets caught in a separate buffer and copied back |
| * to dst sg when processing response. |
| */ |
| rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize); |
| rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize); |
| if (aead_parms.assoc_size) |
| assoc_nents = spu_sg_count(rctx->assoc, 0, |
| aead_parms.assoc_size); |
| |
| mssg = &rctx->mb_mssg; |
| |
| rctx->total_sent = chunksize; |
| rctx->src_sent = chunksize; |
| if (spu->spu_assoc_resp_len(ctx->cipher.mode, |
| aead_parms.assoc_size, |
| aead_parms.ret_iv_len, |
| rctx->is_encrypt)) |
| rx_frag_num++; |
| |
| aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode, |
| rctx->iv_ctr_len); |
| |
| if (ctx->auth.alg == HASH_ALG_AES) |
| hash_parms.type = (enum hash_type)ctx->cipher_type; |
| |
| /* General case AAD padding (CCM and RFC4543 special cases below) */ |
| aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| aead_parms.assoc_size); |
| |
| /* General case data padding (CCM decrypt special case below) */ |
| aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| chunksize); |
| |
| if (ctx->cipher.mode == CIPHER_MODE_CCM) { |
| /* |
| * for CCM, AAD len + 2 (rather than AAD len) needs to be |
| * 128-bit aligned |
| */ |
| aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len( |
| ctx->cipher.mode, |
| aead_parms.assoc_size + 2); |
| |
| /* |
| * And when decrypting CCM, need to pad without including |
| * size of ICV which is tacked on to end of chunk |
| */ |
| if (!rctx->is_encrypt) |
| aead_parms.data_pad_len = |
| spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, |
| chunksize - digestsize); |
| |
| /* CCM also requires software to rewrite portions of IV: */ |
| spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen, |
| chunksize, rctx->is_encrypt, |
| ctx->is_esp); |
| } |
| |
| if (ctx->is_rfc4543) { |
| /* |
| * RFC4543: data is included in AAD, so don't pad after AAD |
| * and pad data based on both AAD + data size |
| */ |
| aead_parms.aad_pad_len = 0; |
| if (!rctx->is_encrypt) |
| aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( |
| ctx->cipher.mode, |
| aead_parms.assoc_size + chunksize - |
| digestsize); |
| else |
| aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len( |
| ctx->cipher.mode, |
| aead_parms.assoc_size + chunksize); |
| |
| req_opts.is_rfc4543 = true; |
| } |
| |
| if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) { |
| incl_icv = true; |
| tx_frag_num++; |
| /* Copy ICV from end of src scatterlist to digest buf */ |
| sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize, |
| req->assoclen + rctx->total_sent - |
| digestsize); |
| } |
| |
| atomic64_add(chunksize, &iproc_priv.bytes_out); |
| |
| flow_log("%s()-sent chunksize:%u\n", __func__, chunksize); |
| |
| /* Prepend SPU header with type 3 BCM header */ |
| memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| |
| spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr + |
| BCM_HDR_LEN, &req_opts, |
| &cipher_parms, &hash_parms, |
| &aead_parms, chunksize); |
| |
| /* Determine total length of padding. Put all padding in one buffer. */ |
| db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0, |
| chunksize, aead_parms.aad_pad_len, |
| aead_parms.data_pad_len, 0); |
| |
| stat_pad_len = spu->spu_wordalign_padlen(db_size); |
| |
| if (stat_pad_len) |
| rx_frag_num++; |
| pad_len = aead_parms.data_pad_len + stat_pad_len; |
| if (pad_len) { |
| tx_frag_num++; |
| spu->spu_request_pad(rctx->msg_buf.spu_req_pad, |
| aead_parms.data_pad_len, 0, |
| ctx->auth.alg, ctx->auth.mode, |
| rctx->total_sent, stat_pad_len); |
| } |
| |
| spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN, |
| spu_hdr_len); |
| dump_sg(rctx->assoc, 0, aead_parms.assoc_size); |
| packet_dump(" aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len); |
| packet_log("BD:\n"); |
| dump_sg(rctx->src_sg, rctx->src_skip, chunksize); |
| packet_dump(" pad: ", rctx->msg_buf.spu_req_pad, pad_len); |
| |
| /* |
| * Build mailbox message containing SPU request msg and rx buffers |
| * to catch response message |
| */ |
| memset(mssg, 0, sizeof(*mssg)); |
| mssg->type = BRCM_MESSAGE_SPU; |
| mssg->ctx = rctx; /* Will be returned in response */ |
| |
| /* Create rx scatterlist to catch result */ |
| rx_frag_num += rctx->dst_nents; |
| resp_len = chunksize; |
| |
| /* |
| * Always catch ICV in separate buffer. Have to for GCM/CCM because of |
| * padding. Have to for SHA-224 and other truncated SHAs because SPU |
| * sends entire digest back. |
| */ |
| rx_frag_num++; |
| |
| if (((ctx->cipher.mode == CIPHER_MODE_GCM) || |
| (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) { |
| /* |
| * Input is ciphertxt plus ICV, but ICV not incl |
| * in output. |
| */ |
| resp_len -= ctx->digestsize; |
| if (resp_len == 0) |
| /* no rx frags to catch output data */ |
| rx_frag_num -= rctx->dst_nents; |
| } |
| |
| err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num, |
| aead_parms.assoc_size, |
| aead_parms.ret_iv_len, resp_len, digestsize, |
| stat_pad_len); |
| if (err) |
| return err; |
| |
| /* Create tx scatterlist containing SPU request message */ |
| tx_frag_num += rctx->src_nents; |
| tx_frag_num += assoc_nents; |
| if (aead_parms.aad_pad_len) |
| tx_frag_num++; |
| if (aead_parms.iv_len) |
| tx_frag_num++; |
| if (spu->spu_tx_status_len()) |
| tx_frag_num++; |
| err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len, |
| rctx->assoc, aead_parms.assoc_size, |
| assoc_nents, aead_parms.iv_len, chunksize, |
| aead_parms.aad_pad_len, pad_len, incl_icv); |
| if (err) |
| return err; |
| |
| err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx); |
| if (unlikely(err < 0)) |
| return err; |
| |
| return -EINPROGRESS; |
| } |
| |
| /** |
| * handle_aead_resp() - Process a SPU response message for an AEAD request. |
| * @rctx: Crypto request context |
| */ |
| static void handle_aead_resp(struct iproc_reqctx_s *rctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_async_request *areq = rctx->parent; |
| struct aead_request *req = container_of(areq, |
| struct aead_request, base); |
| struct iproc_ctx_s *ctx = rctx->ctx; |
| u32 payload_len; |
| unsigned int icv_offset; |
| u32 result_len; |
| |
| /* See how much data was returned */ |
| payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr); |
| flow_log("payload_len %u\n", payload_len); |
| |
| /* only count payload */ |
| atomic64_add(payload_len, &iproc_priv.bytes_in); |
| |
| if (req->assoclen) |
| packet_dump(" assoc_data ", rctx->msg_buf.a.resp_aad, |
| req->assoclen); |
| |
| /* |
| * Copy the ICV back to the destination |
| * buffer. In decrypt case, SPU gives us back the digest, but crypto |
| * API doesn't expect ICV in dst buffer. |
| */ |
| result_len = req->cryptlen; |
| if (rctx->is_encrypt) { |
| icv_offset = req->assoclen + rctx->total_sent; |
| packet_dump(" ICV: ", rctx->msg_buf.digest, ctx->digestsize); |
| flow_log("copying ICV to dst sg at offset %u\n", icv_offset); |
| sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest, |
| ctx->digestsize, icv_offset); |
| result_len += ctx->digestsize; |
| } |
| |
| packet_log("response data: "); |
| dump_sg(req->dst, req->assoclen, result_len); |
| |
| atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]); |
| if (ctx->cipher.alg == CIPHER_ALG_AES) { |
| if (ctx->cipher.mode == CIPHER_MODE_CCM) |
| atomic_inc(&iproc_priv.aead_cnt[AES_CCM]); |
| else if (ctx->cipher.mode == CIPHER_MODE_GCM) |
| atomic_inc(&iproc_priv.aead_cnt[AES_GCM]); |
| else |
| atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); |
| } else { |
| atomic_inc(&iproc_priv.aead_cnt[AUTHENC]); |
| } |
| } |
| |
| /** |
| * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request |
| * @rctx: request context |
| * |
| * Mailbox scatterlists are allocated for each chunk. So free them after |
| * processing each chunk. |
| */ |
| static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx) |
| { |
| /* mailbox message used to tx request */ |
| struct brcm_message *mssg = &rctx->mb_mssg; |
| |
| kfree(mssg->spu.src); |
| kfree(mssg->spu.dst); |
| memset(mssg, 0, sizeof(struct brcm_message)); |
| } |
| |
| /** |
| * finish_req() - Used to invoke the complete callback from the requester when |
| * a request has been handled asynchronously. |
| * @rctx: Request context |
| * @err: Indicates whether the request was successful or not |
| * |
| * Ensures that cleanup has been done for request |
| */ |
| static void finish_req(struct iproc_reqctx_s *rctx, int err) |
| { |
| struct crypto_async_request *areq = rctx->parent; |
| |
| flow_log("%s() err:%d\n\n", __func__, err); |
| |
| /* No harm done if already called */ |
| spu_chunk_cleanup(rctx); |
| |
| if (areq) |
| areq->complete(areq, err); |
| } |
| |
| /** |
| * spu_rx_callback() - Callback from mailbox framework with a SPU response. |
| * @cl: mailbox client structure for SPU driver |
| * @msg: mailbox message containing SPU response |
| */ |
| static void spu_rx_callback(struct mbox_client *cl, void *msg) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct brcm_message *mssg = msg; |
| struct iproc_reqctx_s *rctx; |
| int err = 0; |
| |
| rctx = mssg->ctx; |
| if (unlikely(!rctx)) { |
| /* This is fatal */ |
| pr_err("%s(): no request context", __func__); |
| err = -EFAULT; |
| goto cb_finish; |
| } |
| |
| /* process the SPU status */ |
| err = spu->spu_status_process(rctx->msg_buf.rx_stat); |
| if (err != 0) { |
| if (err == SPU_INVALID_ICV) |
| atomic_inc(&iproc_priv.bad_icv); |
| err = -EBADMSG; |
| goto cb_finish; |
| } |
| |
| /* Process the SPU response message */ |
| switch (rctx->ctx->alg->type) { |
| case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| handle_ablkcipher_resp(rctx); |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| handle_ahash_resp(rctx); |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| handle_aead_resp(rctx); |
| break; |
| default: |
| err = -EINVAL; |
| goto cb_finish; |
| } |
| |
| /* |
| * If this response does not complete the request, then send the next |
| * request chunk. |
| */ |
| if (rctx->total_sent < rctx->total_todo) { |
| /* Deallocate anything specific to previous chunk */ |
| spu_chunk_cleanup(rctx); |
| |
| switch (rctx->ctx->alg->type) { |
| case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| err = handle_ablkcipher_req(rctx); |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| err = handle_ahash_req(rctx); |
| if (err == -EAGAIN) |
| /* |
| * we saved data in hash carry, but tell crypto |
| * API we successfully completed request. |
| */ |
| err = 0; |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| err = handle_aead_req(rctx); |
| break; |
| default: |
| err = -EINVAL; |
| } |
| |
| if (err == -EINPROGRESS) |
| /* Successfully submitted request for next chunk */ |
| return; |
| } |
| |
| cb_finish: |
| finish_req(rctx, err); |
| } |
| |
| /* ==================== Kernel Cryptographic API ==================== */ |
| |
| /** |
| * ablkcipher_enqueue() - Handle ablkcipher encrypt or decrypt request. |
| * @req: Crypto API request |
| * @encrypt: true if encrypting; false if decrypting |
| * |
| * Return: -EINPROGRESS if request accepted and result will be returned |
| * asynchronously |
| * < 0 if an error |
| */ |
| static int ablkcipher_enqueue(struct ablkcipher_request *req, bool encrypt) |
| { |
| struct iproc_reqctx_s *rctx = ablkcipher_request_ctx(req); |
| struct iproc_ctx_s *ctx = |
| crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); |
| int err; |
| |
| flow_log("%s() enc:%u\n", __func__, encrypt); |
| |
| rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| rctx->parent = &req->base; |
| rctx->is_encrypt = encrypt; |
| rctx->bd_suppress = false; |
| rctx->total_todo = req->nbytes; |
| rctx->src_sent = 0; |
| rctx->total_sent = 0; |
| rctx->total_received = 0; |
| rctx->ctx = ctx; |
| |
| /* Initialize current position in src and dst scatterlists */ |
| rctx->src_sg = req->src; |
| rctx->src_nents = 0; |
| rctx->src_skip = 0; |
| rctx->dst_sg = req->dst; |
| rctx->dst_nents = 0; |
| rctx->dst_skip = 0; |
| |
| if (ctx->cipher.mode == CIPHER_MODE_CBC || |
| ctx->cipher.mode == CIPHER_MODE_CTR || |
| ctx->cipher.mode == CIPHER_MODE_OFB || |
| ctx->cipher.mode == CIPHER_MODE_XTS || |
| ctx->cipher.mode == CIPHER_MODE_GCM || |
| ctx->cipher.mode == CIPHER_MODE_CCM) { |
| rctx->iv_ctr_len = |
| crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); |
| memcpy(rctx->msg_buf.iv_ctr, req->info, rctx->iv_ctr_len); |
| } else { |
| rctx->iv_ctr_len = 0; |
| } |
| |
| /* Choose a SPU to process this request */ |
| rctx->chan_idx = select_channel(); |
| err = handle_ablkcipher_req(rctx); |
| if (err != -EINPROGRESS) |
| /* synchronous result */ |
| spu_chunk_cleanup(rctx); |
| |
| return err; |
| } |
| |
| static int des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| u32 tmp[DES_EXPKEY_WORDS]; |
| |
| if (keylen == DES_KEY_SIZE) { |
| if (des_ekey(tmp, key) == 0) { |
| if (crypto_ablkcipher_get_flags(cipher) & |
| CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) { |
| u32 flags = CRYPTO_TFM_RES_WEAK_KEY; |
| |
| crypto_ablkcipher_set_flags(cipher, flags); |
| return -EINVAL; |
| } |
| } |
| |
| ctx->cipher_type = CIPHER_TYPE_DES; |
| } else { |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int threedes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| |
| if (keylen == (DES_KEY_SIZE * 3)) { |
| u32 flags; |
| int ret; |
| |
| flags = crypto_ablkcipher_get_flags(cipher); |
| ret = __des3_verify_key(&flags, key); |
| if (unlikely(ret)) { |
| crypto_ablkcipher_set_flags(cipher, flags); |
| return ret; |
| } |
| |
| ctx->cipher_type = CIPHER_TYPE_3DES; |
| } else { |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| |
| if (ctx->cipher.mode == CIPHER_MODE_XTS) |
| /* XTS includes two keys of equal length */ |
| keylen = keylen / 2; |
| |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->cipher_type = CIPHER_TYPE_AES128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->cipher_type = CIPHER_TYPE_AES192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->cipher_type = CIPHER_TYPE_AES256; |
| break; |
| default: |
| crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) && |
| ((ctx->max_payload % AES_BLOCK_SIZE) != 0)); |
| return 0; |
| } |
| |
| static int rc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| int i; |
| |
| ctx->enckeylen = ARC4_MAX_KEY_SIZE + ARC4_STATE_SIZE; |
| |
| ctx->enckey[0] = 0x00; /* 0x00 */ |
| ctx->enckey[1] = 0x00; /* i */ |
| ctx->enckey[2] = 0x00; /* 0x00 */ |
| ctx->enckey[3] = 0x00; /* j */ |
| for (i = 0; i < ARC4_MAX_KEY_SIZE; i++) |
| ctx->enckey[i + ARC4_STATE_SIZE] = key[i % keylen]; |
| |
| ctx->cipher_type = CIPHER_TYPE_INIT; |
| |
| return 0; |
| } |
| |
| static int ablkcipher_setkey(struct crypto_ablkcipher *cipher, const u8 *key, |
| unsigned int keylen) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct iproc_ctx_s *ctx = crypto_ablkcipher_ctx(cipher); |
| struct spu_cipher_parms cipher_parms; |
| u32 alloc_len = 0; |
| int err; |
| |
| flow_log("ablkcipher_setkey() keylen: %d\n", keylen); |
| flow_dump(" key: ", key, keylen); |
| |
| switch (ctx->cipher.alg) { |
| case CIPHER_ALG_DES: |
| err = des_setkey(cipher, key, keylen); |
| break; |
| case CIPHER_ALG_3DES: |
| err = threedes_setkey(cipher, key, keylen); |
| break; |
| case CIPHER_ALG_AES: |
| err = aes_setkey(cipher, key, keylen); |
| break; |
| case CIPHER_ALG_RC4: |
| err = rc4_setkey(cipher, key, keylen); |
| break; |
| default: |
| pr_err("%s() Error: unknown cipher alg\n", __func__); |
| err = -EINVAL; |
| } |
| if (err) |
| return err; |
| |
| /* RC4 already populated ctx->enkey */ |
| if (ctx->cipher.alg != CIPHER_ALG_RC4) { |
| memcpy(ctx->enckey, key, keylen); |
| ctx->enckeylen = keylen; |
| } |
| /* SPU needs XTS keys in the reverse order the crypto API presents */ |
| if ((ctx->cipher.alg == CIPHER_ALG_AES) && |
| (ctx->cipher.mode == CIPHER_MODE_XTS)) { |
| unsigned int xts_keylen = keylen / 2; |
| |
| memcpy(ctx->enckey, key + xts_keylen, xts_keylen); |
| memcpy(ctx->enckey + xts_keylen, key, xts_keylen); |
| } |
| |
| if (spu->spu_type == SPU_TYPE_SPUM) |
| alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN; |
| else if (spu->spu_type == SPU_TYPE_SPU2) |
| alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN; |
| memset(ctx->bcm_spu_req_hdr, 0, alloc_len); |
| cipher_parms.iv_buf = NULL; |
| cipher_parms.iv_len = crypto_ablkcipher_ivsize(cipher); |
| flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len); |
| |
| cipher_parms.alg = ctx->cipher.alg; |
| cipher_parms.mode = ctx->cipher.mode; |
| cipher_parms.type = ctx->cipher_type; |
| cipher_parms.key_buf = ctx->enckey; |
| cipher_parms.key_len = ctx->enckeylen; |
| |
| /* Prepend SPU request message with BCM header */ |
| memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN); |
| ctx->spu_req_hdr_len = |
| spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN, |
| &cipher_parms); |
| |
| ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| ctx->enckeylen, |
| false); |
| |
| atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]); |
| |
| return 0; |
| } |
| |
| static int ablkcipher_encrypt(struct ablkcipher_request *req) |
| { |
| flow_log("ablkcipher_encrypt() nbytes:%u\n", req->nbytes); |
| |
| return ablkcipher_enqueue(req, true); |
| } |
| |
| static int ablkcipher_decrypt(struct ablkcipher_request *req) |
| { |
| flow_log("ablkcipher_decrypt() nbytes:%u\n", req->nbytes); |
| return ablkcipher_enqueue(req, false); |
| } |
| |
| static int ahash_enqueue(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| int err = 0; |
| const char *alg_name; |
| |
| flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes); |
| |
| rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| rctx->parent = &req->base; |
| rctx->ctx = ctx; |
| rctx->bd_suppress = true; |
| memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); |
| |
| /* Initialize position in src scatterlist */ |
| rctx->src_sg = req->src; |
| rctx->src_skip = 0; |
| rctx->src_nents = 0; |
| rctx->dst_sg = NULL; |
| rctx->dst_skip = 0; |
| rctx->dst_nents = 0; |
| |
| /* SPU2 hardware does not compute hash of zero length data */ |
| if ((rctx->is_final == 1) && (rctx->total_todo == 0) && |
| (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) { |
| alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); |
| flow_log("Doing %sfinal %s zero-len hash request in software\n", |
| rctx->is_final ? "" : "non-", alg_name); |
| err = do_shash((unsigned char *)alg_name, req->result, |
| NULL, 0, NULL, 0, ctx->authkey, |
| ctx->authkeylen); |
| if (err < 0) |
| flow_log("Hash request failed with error %d\n", err); |
| return err; |
| } |
| /* Choose a SPU to process this request */ |
| rctx->chan_idx = select_channel(); |
| |
| err = handle_ahash_req(rctx); |
| if (err != -EINPROGRESS) |
| /* synchronous result */ |
| spu_chunk_cleanup(rctx); |
| |
| if (err == -EAGAIN) |
| /* |
| * we saved data in hash carry, but tell crypto API |
| * we successfully completed request. |
| */ |
| err = 0; |
| |
| return err; |
| } |
| |
| static int __ahash_init(struct ahash_request *req) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| |
| flow_log("%s()\n", __func__); |
| |
| /* Initialize the context */ |
| rctx->hash_carry_len = 0; |
| rctx->is_final = 0; |
| |
| rctx->total_todo = 0; |
| rctx->src_sent = 0; |
| rctx->total_sent = 0; |
| rctx->total_received = 0; |
| |
| ctx->digestsize = crypto_ahash_digestsize(tfm); |
| /* If we add a hash whose digest is larger, catch it here. */ |
| WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE); |
| |
| rctx->is_sw_hmac = false; |
| |
| ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0, |
| true); |
| |
| return 0; |
| } |
| |
| /** |
| * spu_no_incr_hash() - Determine whether incremental hashing is supported. |
| * @ctx: Crypto session context |
| * |
| * SPU-2 does not support incremental hashing (we'll have to revisit and |
| * condition based on chip revision or device tree entry if future versions do |
| * support incremental hash) |
| * |
| * SPU-M also doesn't support incremental hashing of AES-XCBC |
| * |
| * Return: true if incremental hashing is not supported |
| * false otherwise |
| */ |
| bool spu_no_incr_hash(struct iproc_ctx_s *ctx) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| |
| if (spu->spu_type == SPU_TYPE_SPU2) |
| return true; |
| |
| if ((ctx->auth.alg == HASH_ALG_AES) && |
| (ctx->auth.mode == HASH_MODE_XCBC)) |
| return true; |
| |
| /* Otherwise, incremental hashing is supported */ |
| return false; |
| } |
| |
| static int ahash_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| const char *alg_name; |
| struct crypto_shash *hash; |
| int ret; |
| gfp_t gfp; |
| |
| if (spu_no_incr_hash(ctx)) { |
| /* |
| * If we get an incremental hashing request and it's not |
| * supported by the hardware, we need to handle it in software |
| * by calling synchronous hash functions. |
| */ |
| alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm)); |
| hash = crypto_alloc_shash(alg_name, 0, 0); |
| if (IS_ERR(hash)) { |
| ret = PTR_ERR(hash); |
| goto err; |
| } |
| |
| gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| ctx->shash = kmalloc(sizeof(*ctx->shash) + |
| crypto_shash_descsize(hash), gfp); |
| if (!ctx->shash) { |
| ret = -ENOMEM; |
| goto err_hash; |
| } |
| ctx->shash->tfm = hash; |
| |
| /* Set the key using data we already have from setkey */ |
| if (ctx->authkeylen > 0) { |
| ret = crypto_shash_setkey(hash, ctx->authkey, |
| ctx->authkeylen); |
| if (ret) |
| goto err_shash; |
| } |
| |
| /* Initialize hash w/ this key and other params */ |
| ret = crypto_shash_init(ctx->shash); |
| if (ret) |
| goto err_shash; |
| } else { |
| /* Otherwise call the internal function which uses SPU hw */ |
| ret = __ahash_init(req); |
| } |
| |
| return ret; |
| |
| err_shash: |
| kfree(ctx->shash); |
| err_hash: |
| crypto_free_shash(hash); |
| err: |
| return ret; |
| } |
| |
| static int __ahash_update(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| |
| flow_log("ahash_update() nbytes:%u\n", req->nbytes); |
| |
| if (!req->nbytes) |
| return 0; |
| rctx->total_todo += req->nbytes; |
| rctx->src_sent = 0; |
| |
| return ahash_enqueue(req); |
| } |
| |
| static int ahash_update(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| u8 *tmpbuf; |
| int ret; |
| int nents; |
| gfp_t gfp; |
| |
| if (spu_no_incr_hash(ctx)) { |
| /* |
| * If we get an incremental hashing request and it's not |
| * supported by the hardware, we need to handle it in software |
| * by calling synchronous hash functions. |
| */ |
| if (req->src) |
| nents = sg_nents(req->src); |
| else |
| return -EINVAL; |
| |
| /* Copy data from req scatterlist to tmp buffer */ |
| gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| tmpbuf = kmalloc(req->nbytes, gfp); |
| if (!tmpbuf) |
| return -ENOMEM; |
| |
| if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != |
| req->nbytes) { |
| kfree(tmpbuf); |
| return -EINVAL; |
| } |
| |
| /* Call synchronous update */ |
| ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes); |
| kfree(tmpbuf); |
| } else { |
| /* Otherwise call the internal function which uses SPU hw */ |
| ret = __ahash_update(req); |
| } |
| |
| return ret; |
| } |
| |
| static int __ahash_final(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| |
| flow_log("ahash_final() nbytes:%u\n", req->nbytes); |
| |
| rctx->is_final = 1; |
| |
| return ahash_enqueue(req); |
| } |
| |
| static int ahash_final(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| int ret; |
| |
| if (spu_no_incr_hash(ctx)) { |
| /* |
| * If we get an incremental hashing request and it's not |
| * supported by the hardware, we need to handle it in software |
| * by calling synchronous hash functions. |
| */ |
| ret = crypto_shash_final(ctx->shash, req->result); |
| |
| /* Done with hash, can deallocate it now */ |
| crypto_free_shash(ctx->shash->tfm); |
| kfree(ctx->shash); |
| |
| } else { |
| /* Otherwise call the internal function which uses SPU hw */ |
| ret = __ahash_final(req); |
| } |
| |
| return ret; |
| } |
| |
| static int __ahash_finup(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| |
| flow_log("ahash_finup() nbytes:%u\n", req->nbytes); |
| |
| rctx->total_todo += req->nbytes; |
| rctx->src_sent = 0; |
| rctx->is_final = 1; |
| |
| return ahash_enqueue(req); |
| } |
| |
| static int ahash_finup(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| u8 *tmpbuf; |
| int ret; |
| int nents; |
| gfp_t gfp; |
| |
| if (spu_no_incr_hash(ctx)) { |
| /* |
| * If we get an incremental hashing request and it's not |
| * supported by the hardware, we need to handle it in software |
| * by calling synchronous hash functions. |
| */ |
| if (req->src) { |
| nents = sg_nents(req->src); |
| } else { |
| ret = -EINVAL; |
| goto ahash_finup_exit; |
| } |
| |
| /* Copy data from req scatterlist to tmp buffer */ |
| gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| tmpbuf = kmalloc(req->nbytes, gfp); |
| if (!tmpbuf) { |
| ret = -ENOMEM; |
| goto ahash_finup_exit; |
| } |
| |
| if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) != |
| req->nbytes) { |
| ret = -EINVAL; |
| goto ahash_finup_free; |
| } |
| |
| /* Call synchronous update */ |
| ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes, |
| req->result); |
| } else { |
| /* Otherwise call the internal function which uses SPU hw */ |
| return __ahash_finup(req); |
| } |
| ahash_finup_free: |
| kfree(tmpbuf); |
| |
| ahash_finup_exit: |
| /* Done with hash, can deallocate it now */ |
| crypto_free_shash(ctx->shash->tfm); |
| kfree(ctx->shash); |
| return ret; |
| } |
| |
| static int ahash_digest(struct ahash_request *req) |
| { |
| int err = 0; |
| |
| flow_log("ahash_digest() nbytes:%u\n", req->nbytes); |
| |
| /* whole thing at once */ |
| err = __ahash_init(req); |
| if (!err) |
| err = __ahash_finup(req); |
| |
| return err; |
| } |
| |
| static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); |
| |
| flow_log("%s() ahash:%p key:%p keylen:%u\n", |
| __func__, ahash, key, keylen); |
| flow_dump(" key: ", key, keylen); |
| |
| if (ctx->auth.alg == HASH_ALG_AES) { |
| switch (keylen) { |
| case AES_KEYSIZE_128: |
| ctx->cipher_type = CIPHER_TYPE_AES128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->cipher_type = CIPHER_TYPE_AES192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->cipher_type = CIPHER_TYPE_AES256; |
| break; |
| default: |
| pr_err("%s() Error: Invalid key length\n", __func__); |
| return -EINVAL; |
| } |
| } else { |
| pr_err("%s() Error: unknown hash alg\n", __func__); |
| return -EINVAL; |
| } |
| memcpy(ctx->authkey, key, keylen); |
| ctx->authkeylen = keylen; |
| |
| return 0; |
| } |
| |
| static int ahash_export(struct ahash_request *req, void *out) |
| { |
| const struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out; |
| |
| spu_exp->total_todo = rctx->total_todo; |
| spu_exp->total_sent = rctx->total_sent; |
| spu_exp->is_sw_hmac = rctx->is_sw_hmac; |
| memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry)); |
| spu_exp->hash_carry_len = rctx->hash_carry_len; |
| memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash)); |
| |
| return 0; |
| } |
| |
| static int ahash_import(struct ahash_request *req, const void *in) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in; |
| |
| rctx->total_todo = spu_exp->total_todo; |
| rctx->total_sent = spu_exp->total_sent; |
| rctx->is_sw_hmac = spu_exp->is_sw_hmac; |
| memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry)); |
| rctx->hash_carry_len = spu_exp->hash_carry_len; |
| memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash)); |
| |
| return 0; |
| } |
| |
| static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key, |
| unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash); |
| unsigned int blocksize = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash)); |
| unsigned int digestsize = crypto_ahash_digestsize(ahash); |
| unsigned int index; |
| int rc; |
| |
| flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n", |
| __func__, ahash, key, keylen, blocksize, digestsize); |
| flow_dump(" key: ", key, keylen); |
| |
| if (keylen > blocksize) { |
| switch (ctx->auth.alg) { |
| case HASH_ALG_MD5: |
| rc = do_shash("md5", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA1: |
| rc = do_shash("sha1", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA224: |
| rc = do_shash("sha224", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA256: |
| rc = do_shash("sha256", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA384: |
| rc = do_shash("sha384", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA512: |
| rc = do_shash("sha512", ctx->authkey, key, keylen, NULL, |
| 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA3_224: |
| rc = do_shash("sha3-224", ctx->authkey, key, keylen, |
| NULL, 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA3_256: |
| rc = do_shash("sha3-256", ctx->authkey, key, keylen, |
| NULL, 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA3_384: |
| rc = do_shash("sha3-384", ctx->authkey, key, keylen, |
| NULL, 0, NULL, 0); |
| break; |
| case HASH_ALG_SHA3_512: |
| rc = do_shash("sha3-512", ctx->authkey, key, keylen, |
| NULL, 0, NULL, 0); |
| break; |
| default: |
| pr_err("%s() Error: unknown hash alg\n", __func__); |
| return -EINVAL; |
| } |
| if (rc < 0) { |
| pr_err("%s() Error %d computing shash for %s\n", |
| __func__, rc, hash_alg_name[ctx->auth.alg]); |
| return rc; |
| } |
| ctx->authkeylen = digestsize; |
| |
| flow_log(" keylen > digestsize... hashed\n"); |
| flow_dump(" newkey: ", ctx->authkey, ctx->authkeylen); |
| } else { |
| memcpy(ctx->authkey, key, keylen); |
| ctx->authkeylen = keylen; |
| } |
| |
| /* |
| * Full HMAC operation in SPUM is not verified, |
| * So keeping the generation of IPAD, OPAD and |
| * outer hashing in software. |
| */ |
| if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) { |
| memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen); |
| memset(ctx->ipad + ctx->authkeylen, 0, |
| blocksize - ctx->authkeylen); |
| ctx->authkeylen = 0; |
| memcpy(ctx->opad, ctx->ipad, blocksize); |
| |
| for (index = 0; index < blocksize; index++) { |
| ctx->ipad[index] ^= HMAC_IPAD_VALUE; |
| ctx->opad[index] ^= HMAC_OPAD_VALUE; |
| } |
| |
| flow_dump(" ipad: ", ctx->ipad, blocksize); |
| flow_dump(" opad: ", ctx->opad, blocksize); |
| } |
| ctx->digestsize = digestsize; |
| atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]); |
| |
| return 0; |
| } |
| |
| static int ahash_hmac_init(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| unsigned int blocksize = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| |
| flow_log("ahash_hmac_init()\n"); |
| |
| /* init the context as a hash */ |
| ahash_init(req); |
| |
| if (!spu_no_incr_hash(ctx)) { |
| /* SPU-M can do incr hashing but needs sw for outer HMAC */ |
| rctx->is_sw_hmac = true; |
| ctx->auth.mode = HASH_MODE_HASH; |
| /* start with a prepended ipad */ |
| memcpy(rctx->hash_carry, ctx->ipad, blocksize); |
| rctx->hash_carry_len = blocksize; |
| rctx->total_todo += blocksize; |
| } |
| |
| return 0; |
| } |
| |
| static int ahash_hmac_update(struct ahash_request *req) |
| { |
| flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes); |
| |
| if (!req->nbytes) |
| return 0; |
| |
| return ahash_update(req); |
| } |
| |
| static int ahash_hmac_final(struct ahash_request *req) |
| { |
| flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes); |
| |
| return ahash_final(req); |
| } |
| |
| static int ahash_hmac_finup(struct ahash_request *req) |
| { |
| flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes); |
| |
| return ahash_finup(req); |
| } |
| |
| static int ahash_hmac_digest(struct ahash_request *req) |
| { |
| struct iproc_reqctx_s *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm); |
| unsigned int blocksize = |
| crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm)); |
| |
| flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes); |
| |
| /* Perform initialization and then call finup */ |
| __ahash_init(req); |
| |
| if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) { |
| /* |
| * SPU2 supports full HMAC implementation in the |
| * hardware, need not to generate IPAD, OPAD and |
| * outer hash in software. |
| * Only for hash key len > hash block size, SPU2 |
| * expects to perform hashing on the key, shorten |
| * it to digest size and feed it as hash key. |
| */ |
| rctx->is_sw_hmac = false; |
| ctx->auth.mode = HASH_MODE_HMAC; |
| } else { |
| rctx->is_sw_hmac = true; |
| ctx->auth.mode = HASH_MODE_HASH; |
| /* start with a prepended ipad */ |
| memcpy(rctx->hash_carry, ctx->ipad, blocksize); |
| rctx->hash_carry_len = blocksize; |
| rctx->total_todo += blocksize; |
| } |
| |
| return __ahash_finup(req); |
| } |
| |
| /* aead helpers */ |
| |
| static int aead_need_fallback(struct aead_request *req) |
| { |
| struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); |
| u32 payload_len; |
| |
| /* |
| * SPU hardware cannot handle the AES-GCM/CCM case where plaintext |
| * and AAD are both 0 bytes long. So use fallback in this case. |
| */ |
| if (((ctx->cipher.mode == CIPHER_MODE_GCM) || |
| (ctx->cipher.mode == CIPHER_MODE_CCM)) && |
| (req->assoclen == 0)) { |
| if ((rctx->is_encrypt && (req->cryptlen == 0)) || |
| (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) { |
| flow_log("AES GCM/CCM needs fallback for 0 len req\n"); |
| return 1; |
| } |
| } |
| |
| /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */ |
| if ((ctx->cipher.mode == CIPHER_MODE_CCM) && |
| (spu->spu_type == SPU_TYPE_SPUM) && |
| (ctx->digestsize != 8) && (ctx->digestsize != 12) && |
| (ctx->digestsize != 16)) { |
| flow_log("%s() AES CCM needs fallback for digest size %d\n", |
| __func__, ctx->digestsize); |
| return 1; |
| } |
| |
| /* |
| * SPU-M on NSP has an issue where AES-CCM hash is not correct |
| * when AAD size is 0 |
| */ |
| if ((ctx->cipher.mode == CIPHER_MODE_CCM) && |
| (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) && |
| (req->assoclen == 0)) { |
| flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n", |
| __func__); |
| return 1; |
| } |
| |
| payload_len = req->cryptlen; |
| if (spu->spu_type == SPU_TYPE_SPUM) |
| payload_len += req->assoclen; |
| |
| flow_log("%s() payload len: %u\n", __func__, payload_len); |
| |
| if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| return 0; |
| else |
| return payload_len > ctx->max_payload; |
| } |
| |
| static void aead_complete(struct crypto_async_request *areq, int err) |
| { |
| struct aead_request *req = |
| container_of(areq, struct aead_request, base); |
| struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| |
| flow_log("%s() err:%d\n", __func__, err); |
| |
| areq->tfm = crypto_aead_tfm(aead); |
| |
| areq->complete = rctx->old_complete; |
| areq->data = rctx->old_data; |
| |
| areq->complete(areq, err); |
| } |
| |
| static int aead_do_fallback(struct aead_request *req, bool is_encrypt) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| int err; |
| u32 req_flags; |
| |
| flow_log("%s() enc:%u\n", __func__, is_encrypt); |
| |
| if (ctx->fallback_cipher) { |
| /* Store the cipher tfm and then use the fallback tfm */ |
| rctx->old_tfm = tfm; |
| aead_request_set_tfm(req, ctx->fallback_cipher); |
| /* |
| * Save the callback and chain ourselves in, so we can restore |
| * the tfm |
| */ |
| rctx->old_complete = req->base.complete; |
| rctx->old_data = req->base.data; |
| req_flags = aead_request_flags(req); |
| aead_request_set_callback(req, req_flags, aead_complete, req); |
| err = is_encrypt ? crypto_aead_encrypt(req) : |
| crypto_aead_decrypt(req); |
| |
| if (err == 0) { |
| /* |
| * fallback was synchronous (did not return |
| * -EINPROGRESS). So restore request state here. |
| */ |
| aead_request_set_callback(req, req_flags, |
| rctx->old_complete, req); |
| req->base.data = rctx->old_data; |
| aead_request_set_tfm(req, aead); |
| flow_log("%s() fallback completed successfully\n\n", |
| __func__); |
| } |
| } else { |
| err = -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static int aead_enqueue(struct aead_request *req, bool is_encrypt) |
| { |
| struct iproc_reqctx_s *rctx = aead_request_ctx(req); |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(aead); |
| int err; |
| |
| flow_log("%s() enc:%u\n", __func__, is_encrypt); |
| |
| if (req->assoclen > MAX_ASSOC_SIZE) { |
| pr_err |
| ("%s() Error: associated data too long. (%u > %u bytes)\n", |
| __func__, req->assoclen, MAX_ASSOC_SIZE); |
| return -EINVAL; |
| } |
| |
| rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG | |
| CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC; |
| rctx->parent = &req->base; |
| rctx->is_encrypt = is_encrypt; |
| rctx->bd_suppress = false; |
| rctx->total_todo = req->cryptlen; |
| rctx->src_sent = 0; |
| rctx->total_sent = 0; |
| rctx->total_received = 0; |
| rctx->is_sw_hmac = false; |
| rctx->ctx = ctx; |
| memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message)); |
| |
| /* assoc data is at start of src sg */ |
| rctx->assoc = req->src; |
| |
| /* |
| * Init current position in src scatterlist to be after assoc data. |
| * src_skip set to buffer offset where data begins. (Assoc data could |
| * end in the middle of a buffer.) |
| */ |
| if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg, |
| &rctx->src_skip) < 0) { |
| pr_err("%s() Error: Unable to find start of src data\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| rctx->src_nents = 0; |
| rctx->dst_nents = 0; |
| if (req->dst == req->src) { |
| rctx->dst_sg = rctx->src_sg; |
| rctx->dst_skip = rctx->src_skip; |
| } else { |
| /* |
| * Expect req->dst to have room for assoc data followed by |
| * output data and ICV, if encrypt. So initialize dst_sg |
| * to point beyond assoc len offset. |
| */ |
| if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg, |
| &rctx->dst_skip) < 0) { |
| pr_err("%s() Error: Unable to find start of dst data\n", |
| __func__); |
| return -EINVAL; |
| } |
| } |
| |
| if (ctx->cipher.mode == CIPHER_MODE_CBC || |
| ctx->cipher.mode == CIPHER_MODE_CTR || |
| ctx->cipher.mode == CIPHER_MODE_OFB || |
| ctx->cipher.mode == CIPHER_MODE_XTS || |
| ctx->cipher.mode == CIPHER_MODE_GCM) { |
| rctx->iv_ctr_len = |
| ctx->salt_len + |
| crypto_aead_ivsize(crypto_aead_reqtfm(req)); |
| } else if (ctx->cipher.mode == CIPHER_MODE_CCM) { |
| rctx->iv_ctr_len = CCM_AES_IV_SIZE; |
| } else { |
| rctx->iv_ctr_len = 0; |
| } |
| |
| rctx->hash_carry_len = 0; |
| |
| flow_log(" src sg: %p\n", req->src); |
| flow_log(" rctx->src_sg: %p, src_skip %u\n", |
| rctx->src_sg, rctx->src_skip); |
| flow_log(" assoc: %p, assoclen %u\n", rctx->assoc, req->assoclen); |
| flow_log(" dst sg: %p\n", req->dst); |
| flow_log(" rctx->dst_sg: %p, dst_skip %u\n", |
| rctx->dst_sg, rctx->dst_skip); |
| flow_log(" iv_ctr_len:%u\n", rctx->iv_ctr_len); |
| flow_dump(" iv: ", req->iv, rctx->iv_ctr_len); |
| flow_log(" authkeylen:%u\n", ctx->authkeylen); |
| flow_log(" is_esp: %s\n", ctx->is_esp ? "yes" : "no"); |
| |
| if (ctx->max_payload == SPU_MAX_PAYLOAD_INF) |
| flow_log(" max_payload infinite"); |
| else |
| flow_log(" max_payload: %u\n", ctx->max_payload); |
| |
| if (unlikely(aead_need_fallback(req))) |
| return aead_do_fallback(req, is_encrypt); |
| |
| /* |
| * Do memory allocations for request after fallback check, because if we |
| * do fallback, we won't call finish_req() to dealloc. |
| */ |
| if (rctx->iv_ctr_len) { |
| if (ctx->salt_len) |
| memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset, |
| ctx->salt, ctx->salt_len); |
| memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len, |
| req->iv, |
| rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset); |
| } |
| |
| rctx->chan_idx = select_channel(); |
| err = handle_aead_req(rctx); |
| if (err != -EINPROGRESS) |
| /* synchronous result */ |
| spu_chunk_cleanup(rctx); |
| |
| return err; |
| } |
| |
| static int aead_authenc_setkey(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| struct crypto_authenc_keys keys; |
| int ret; |
| |
| flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key, |
| keylen); |
| flow_dump(" key: ", key, keylen); |
| |
| ret = crypto_authenc_extractkeys(&keys, key, keylen); |
| if (ret) |
| goto badkey; |
| |
| if (keys.enckeylen > MAX_KEY_SIZE || |
| keys.authkeylen > MAX_KEY_SIZE) |
| goto badkey; |
| |
| ctx->enckeylen = keys.enckeylen; |
| ctx->authkeylen = keys.authkeylen; |
| |
| memcpy(ctx->enckey, keys.enckey, keys.enckeylen); |
| /* May end up padding auth key. So make sure it's zeroed. */ |
| memset(ctx->authkey, 0, sizeof(ctx->authkey)); |
| memcpy(ctx->authkey, keys.authkey, keys.authkeylen); |
| |
| switch (ctx->alg->cipher_info.alg) { |
| case CIPHER_ALG_DES: |
| if (ctx->enckeylen == DES_KEY_SIZE) { |
| u32 tmp[DES_EXPKEY_WORDS]; |
| u32 flags = CRYPTO_TFM_RES_WEAK_KEY; |
| |
| if (des_ekey(tmp, keys.enckey) == 0) { |
| if (crypto_aead_get_flags(cipher) & |
| CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) { |
| crypto_aead_set_flags(cipher, flags); |
| return -EINVAL; |
| } |
| } |
| |
| ctx->cipher_type = CIPHER_TYPE_DES; |
| } else { |
| goto badkey; |
| } |
| break; |
| case CIPHER_ALG_3DES: |
| if (ctx->enckeylen == (DES_KEY_SIZE * 3)) { |
| u32 flags; |
| |
| flags = crypto_aead_get_flags(cipher); |
| ret = __des3_verify_key(&flags, keys.enckey); |
| if (unlikely(ret)) { |
| crypto_aead_set_flags(cipher, flags); |
| return ret; |
| } |
| |
| ctx->cipher_type = CIPHER_TYPE_3DES; |
| } else { |
| crypto_aead_set_flags(cipher, |
| CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| break; |
| case CIPHER_ALG_AES: |
| switch (ctx->enckeylen) { |
| case AES_KEYSIZE_128: |
| ctx->cipher_type = CIPHER_TYPE_AES128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->cipher_type = CIPHER_TYPE_AES192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->cipher_type = CIPHER_TYPE_AES256; |
| break; |
| default: |
| goto badkey; |
| } |
| break; |
| case CIPHER_ALG_RC4: |
| ctx->cipher_type = CIPHER_TYPE_INIT; |
| break; |
| default: |
| pr_err("%s() Error: Unknown cipher alg\n", __func__); |
| return -EINVAL; |
| } |
| |
| flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| ctx->authkeylen); |
| flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); |
| flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); |
| |
| /* setkey the fallback just in case we needto use it */ |
| if (ctx->fallback_cipher) { |
| flow_log(" running fallback setkey()\n"); |
| |
| ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| ctx->fallback_cipher->base.crt_flags |= |
| tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen); |
| if (ret) { |
| flow_log(" fallback setkey() returned:%d\n", ret); |
| tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| tfm->crt_flags |= |
| (ctx->fallback_cipher->base.crt_flags & |
| CRYPTO_TFM_RES_MASK); |
| } |
| } |
| |
| ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| ctx->enckeylen, |
| false); |
| |
| atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); |
| |
| return ret; |
| |
| badkey: |
| ctx->enckeylen = 0; |
| ctx->authkeylen = 0; |
| ctx->digestsize = 0; |
| |
| crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| static int aead_gcm_ccm_setkey(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| struct crypto_tfm *tfm = crypto_aead_tfm(cipher); |
| |
| int ret = 0; |
| |
| flow_log("%s() keylen:%u\n", __func__, keylen); |
| flow_dump(" key: ", key, keylen); |
| |
| if (!ctx->is_esp) |
| ctx->digestsize = keylen; |
| |
| ctx->enckeylen = keylen; |
| ctx->authkeylen = 0; |
| memcpy(ctx->enckey, key, ctx->enckeylen); |
| |
| switch (ctx->enckeylen) { |
| case AES_KEYSIZE_128: |
| ctx->cipher_type = CIPHER_TYPE_AES128; |
| break; |
| case AES_KEYSIZE_192: |
| ctx->cipher_type = CIPHER_TYPE_AES192; |
| break; |
| case AES_KEYSIZE_256: |
| ctx->cipher_type = CIPHER_TYPE_AES256; |
| break; |
| default: |
| goto badkey; |
| } |
| |
| flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| ctx->authkeylen); |
| flow_dump(" enc: ", ctx->enckey, ctx->enckeylen); |
| flow_dump(" auth: ", ctx->authkey, ctx->authkeylen); |
| |
| /* setkey the fallback just in case we need to use it */ |
| if (ctx->fallback_cipher) { |
| flow_log(" running fallback setkey()\n"); |
| |
| ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; |
| ctx->fallback_cipher->base.crt_flags |= |
| tfm->crt_flags & CRYPTO_TFM_REQ_MASK; |
| ret = crypto_aead_setkey(ctx->fallback_cipher, key, |
| keylen + ctx->salt_len); |
| if (ret) { |
| flow_log(" fallback setkey() returned:%d\n", ret); |
| tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| tfm->crt_flags |= |
| (ctx->fallback_cipher->base.crt_flags & |
| CRYPTO_TFM_RES_MASK); |
| } |
| } |
| |
| ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, |
| ctx->enckeylen, |
| false); |
| |
| atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]); |
| |
| flow_log(" enckeylen:%u authkeylen:%u\n", ctx->enckeylen, |
| ctx->authkeylen); |
| |
| return ret; |
| |
| badkey: |
| ctx->enckeylen = 0; |
| ctx->authkeylen = 0; |
| ctx->digestsize = 0; |
| |
| crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| /** |
| * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES. |
| * @cipher: AEAD structure |
| * @key: Key followed by 4 bytes of salt |
| * @keylen: Length of key plus salt, in bytes |
| * |
| * Extracts salt from key and stores it to be prepended to IV on each request. |
| * Digest is always 16 bytes |
| * |
| * Return: Value from generic gcm setkey. |
| */ |
| static int aead_gcm_esp_setkey(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| |
| flow_log("%s\n", __func__); |
| ctx->salt_len = GCM_ESP_SALT_SIZE; |
| ctx->salt_offset = GCM_ESP_SALT_OFFSET; |
| memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); |
| keylen -= GCM_ESP_SALT_SIZE; |
| ctx->digestsize = GCM_ESP_DIGESTSIZE; |
| ctx->is_esp = true; |
| flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); |
| |
| return aead_gcm_ccm_setkey(cipher, key, keylen); |
| } |
| |
| /** |
| * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC. |
| * cipher: AEAD structure |
| * key: Key followed by 4 bytes of salt |
| * keylen: Length of key plus salt, in bytes |
| * |
| * Extracts salt from key and stores it to be prepended to IV on each request. |
| * Digest is always 16 bytes |
| * |
| * Return: Value from generic gcm setkey. |
| */ |
| static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| |
| flow_log("%s\n", __func__); |
| ctx->salt_len = GCM_ESP_SALT_SIZE; |
| ctx->salt_offset = GCM_ESP_SALT_OFFSET; |
| memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE); |
| keylen -= GCM_ESP_SALT_SIZE; |
| ctx->digestsize = GCM_ESP_DIGESTSIZE; |
| ctx->is_esp = true; |
| ctx->is_rfc4543 = true; |
| flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE); |
| |
| return aead_gcm_ccm_setkey(cipher, key, keylen); |
| } |
| |
| /** |
| * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES. |
| * @cipher: AEAD structure |
| * @key: Key followed by 4 bytes of salt |
| * @keylen: Length of key plus salt, in bytes |
| * |
| * Extracts salt from key and stores it to be prepended to IV on each request. |
| * Digest is always 16 bytes |
| * |
| * Return: Value from generic ccm setkey. |
| */ |
| static int aead_ccm_esp_setkey(struct crypto_aead *cipher, |
| const u8 *key, unsigned int keylen) |
| { |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| |
| flow_log("%s\n", __func__); |
| ctx->salt_len = CCM_ESP_SALT_SIZE; |
| ctx->salt_offset = CCM_ESP_SALT_OFFSET; |
| memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE); |
| keylen -= CCM_ESP_SALT_SIZE; |
| ctx->is_esp = true; |
| flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE); |
| |
| return aead_gcm_ccm_setkey(cipher, key, keylen); |
| } |
| |
| static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize) |
| { |
| struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher); |
| int ret = 0; |
| |
| flow_log("%s() authkeylen:%u authsize:%u\n", |
| __func__, ctx->authkeylen, authsize); |
| |
| ctx->digestsize = authsize; |
| |
| /* setkey the fallback just in case we needto use it */ |
| if (ctx->fallback_cipher) { |
| flow_log(" running fallback setauth()\n"); |
| |
| ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize); |
| if (ret) |
| flow_log(" fallback setauth() returned:%d\n", ret); |
| } |
| |
| return ret; |
| } |
| |
| static int aead_encrypt(struct aead_request *req) |
| { |
| flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen, |
| req->cryptlen); |
| dump_sg(req->src, 0, req->cryptlen + req->assoclen); |
| flow_log(" assoc_len:%u\n", req->assoclen); |
| |
| return aead_enqueue(req, true); |
| } |
| |
| static int aead_decrypt(struct aead_request *req) |
| { |
| flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen); |
| dump_sg(req->src, 0, req->cryptlen + req->assoclen); |
| flow_log(" assoc_len:%u\n", req->assoclen); |
| |
| return aead_enqueue(req, false); |
| } |
| |
| /* ==================== Supported Cipher Algorithms ==================== */ |
| |
| static struct iproc_alg_s driver_algs[] = { |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "gcm(aes)", |
| .cra_driver_name = "gcm-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| }, |
| .setkey = aead_gcm_ccm_setkey, |
| .ivsize = GCM_AES_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_GCM, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_GCM, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "ccm(aes)", |
| .cra_driver_name = "ccm-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| }, |
| .setkey = aead_gcm_ccm_setkey, |
| .ivsize = CCM_AES_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CCM, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_CCM, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "rfc4106(gcm(aes))", |
| .cra_driver_name = "gcm-aes-esp-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| }, |
| .setkey = aead_gcm_esp_setkey, |
| .ivsize = GCM_RFC4106_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_GCM, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_GCM, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "rfc4309(ccm(aes))", |
| .cra_driver_name = "ccm-aes-esp-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| }, |
| .setkey = aead_ccm_esp_setkey, |
| .ivsize = CCM_AES_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CCM, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_CCM, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "rfc4543(gcm(aes))", |
| .cra_driver_name = "gmac-aes-esp-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
| }, |
| .setkey = rfc4543_gcm_esp_setkey, |
| .ivsize = GCM_RFC4106_IV_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_GCM, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_GCM, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_MD5, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA1, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),cbc(aes))", |
| .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA256, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(des))", |
| .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_MD5, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(des))", |
| .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA1, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha224),cbc(des))", |
| .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA224_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA224, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),cbc(des))", |
| .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA256, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha384),cbc(des))", |
| .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA384_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA384, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha512),cbc(des))", |
| .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES_BLOCK_SIZE, |
| .maxauthsize = SHA512_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA512, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(md5),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = MD5_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_MD5, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA1_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA1, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha224),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA224_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA224, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA256_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA256, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha384),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA384_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA384, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AEAD, |
| .alg.aead = { |
| .base = { |
| .cra_name = "authenc(hmac(sha512),cbc(des3_ede))", |
| .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC |
| }, |
| .setkey = aead_authenc_setkey, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| .maxauthsize = SHA512_DIGEST_SIZE, |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA512, |
| .mode = HASH_MODE_HMAC, |
| }, |
| .auth_first = 0, |
| }, |
| |
| /* ABLKCIPHER algorithms. */ |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ecb(arc4)", |
| .cra_driver_name = "ecb-arc4-iproc", |
| .cra_blocksize = ARC4_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = ARC4_MIN_KEY_SIZE, |
| .max_keysize = ARC4_MAX_KEY_SIZE, |
| .ivsize = 0, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_RC4, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ofb(des)", |
| .cra_driver_name = "ofb-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_OFB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "cbc(des)", |
| .cra_driver_name = "cbc-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .ivsize = DES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ecb(des)", |
| .cra_driver_name = "ecb-des-iproc", |
| .cra_blocksize = DES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES_KEY_SIZE, |
| .max_keysize = DES_KEY_SIZE, |
| .ivsize = 0, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_DES, |
| .mode = CIPHER_MODE_ECB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ofb(des3_ede)", |
| .cra_driver_name = "ofb-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_OFB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "cbc(des3_ede)", |
| .cra_driver_name = "cbc-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = DES3_EDE_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ecb(des3_ede)", |
| .cra_driver_name = "ecb-des3-iproc", |
| .cra_blocksize = DES3_EDE_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = DES3_EDE_KEY_SIZE, |
| .max_keysize = DES3_EDE_KEY_SIZE, |
| .ivsize = 0, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_3DES, |
| .mode = CIPHER_MODE_ECB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ofb(aes)", |
| .cra_driver_name = "ofb-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_OFB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CBC, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = 0, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_ECB, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "ctr(aes)", |
| .cra_driver_name = "ctr-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_CTR, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_ABLKCIPHER, |
| .alg.crypto = { |
| .cra_name = "xts(aes)", |
| .cra_driver_name = "xts-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ablkcipher = { |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_AES, |
| .mode = CIPHER_MODE_XTS, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_NONE, |
| .mode = HASH_MODE_NONE, |
| }, |
| }, |
| |
| /* AHASH algorithms. */ |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = MD5_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "md5", |
| .cra_driver_name = "md5-iproc", |
| .cra_blocksize = MD5_BLOCK_WORDS * 4, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_MD5, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = MD5_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(md5)", |
| .cra_driver_name = "hmac-md5-iproc", |
| .cra_blocksize = MD5_BLOCK_WORDS * 4, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_MD5, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "sha1-iproc", |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA1, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA1_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha1)", |
| .cra_driver_name = "hmac-sha1-iproc", |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA1, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA224_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha224", |
| .cra_driver_name = "sha224-iproc", |
| .cra_blocksize = SHA224_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA224, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA224_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha224)", |
| .cra_driver_name = "hmac-sha224-iproc", |
| .cra_blocksize = SHA224_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA224, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-iproc", |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA256, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| {.type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA256_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha256)", |
| .cra_driver_name = "hmac-sha256-iproc", |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA256, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA384_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha384", |
| .cra_driver_name = "sha384-iproc", |
| .cra_blocksize = SHA384_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA384, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA384_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha384)", |
| .cra_driver_name = "hmac-sha384-iproc", |
| .cra_blocksize = SHA384_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA384, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA512_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha512", |
| .cra_driver_name = "sha512-iproc", |
| .cra_blocksize = SHA512_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA512, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA512_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha512)", |
| .cra_driver_name = "hmac-sha512-iproc", |
| .cra_blocksize = SHA512_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA512, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_224_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha3-224", |
| .cra_driver_name = "sha3-224-iproc", |
| .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_224, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_224_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha3-224)", |
| .cra_driver_name = "hmac-sha3-224-iproc", |
| .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_224, |
| .mode = HASH_MODE_HMAC |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_256_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha3-256", |
| .cra_driver_name = "sha3-256-iproc", |
| .cra_blocksize = SHA3_256_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_256, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_256_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha3-256)", |
| .cra_driver_name = "hmac-sha3-256-iproc", |
| .cra_blocksize = SHA3_256_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_256, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_384_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha3-384", |
| .cra_driver_name = "sha3-384-iproc", |
| .cra_blocksize = SHA3_224_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_384, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_384_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha3-384)", |
| .cra_driver_name = "hmac-sha3-384-iproc", |
| .cra_blocksize = SHA3_384_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_384, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_512_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "sha3-512", |
| .cra_driver_name = "sha3-512-iproc", |
| .cra_blocksize = SHA3_512_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_512, |
| .mode = HASH_MODE_HASH, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = SHA3_512_DIGEST_SIZE, |
| .halg.base = { |
| .cra_name = "hmac(sha3-512)", |
| .cra_driver_name = "hmac-sha3-512-iproc", |
| .cra_blocksize = SHA3_512_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_SHA3_512, |
| .mode = HASH_MODE_HMAC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = AES_BLOCK_SIZE, |
| .halg.base = { |
| .cra_name = "xcbc(aes)", |
| .cra_driver_name = "xcbc-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_XCBC, |
| }, |
| }, |
| { |
| .type = CRYPTO_ALG_TYPE_AHASH, |
| .alg.hash = { |
| .halg.digestsize = AES_BLOCK_SIZE, |
| .halg.base = { |
| .cra_name = "cmac(aes)", |
| .cra_driver_name = "cmac-aes-iproc", |
| .cra_blocksize = AES_BLOCK_SIZE, |
| } |
| }, |
| .cipher_info = { |
| .alg = CIPHER_ALG_NONE, |
| .mode = CIPHER_MODE_NONE, |
| }, |
| .auth_info = { |
| .alg = HASH_ALG_AES, |
| .mode = HASH_MODE_CMAC, |
| }, |
| }, |
| }; |
| |
| static int generic_cra_init(struct crypto_tfm *tfm, |
| struct iproc_alg_s *cipher_alg) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| unsigned int blocksize = crypto_tfm_alg_blocksize(tfm); |
| |
| flow_log("%s()\n", __func__); |
| |
| ctx->alg = cipher_alg; |
| ctx->cipher = cipher_alg->cipher_info; |
| ctx->auth = cipher_alg->auth_info; |
| ctx->auth_first = cipher_alg->auth_first; |
| ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg, |
| ctx->cipher.mode, |
| blocksize); |
| ctx->fallback_cipher = NULL; |
| |
| ctx->enckeylen = 0; |
| ctx->authkeylen = 0; |
| |
| atomic_inc(&iproc_priv.stream_count); |
| atomic_inc(&iproc_priv.session_count); |
| |
| return 0; |
| } |
| |
| static int ablkcipher_cra_init(struct crypto_tfm *tfm) |
| { |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct iproc_alg_s *cipher_alg; |
| |
| flow_log("%s()\n", __func__); |
| |
| tfm->crt_ablkcipher.reqsize = sizeof(struct iproc_reqctx_s); |
| |
| cipher_alg = container_of(alg, struct iproc_alg_s, alg.crypto); |
| return generic_cra_init(tfm, cipher_alg); |
| } |
| |
| static int ahash_cra_init(struct crypto_tfm *tfm) |
| { |
| int err; |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct iproc_alg_s *cipher_alg; |
| |
| cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s, |
| alg.hash); |
| |
| err = generic_cra_init(tfm, cipher_alg); |
| flow_log("%s()\n", __func__); |
| |
| /* |
| * export state size has to be < 512 bytes. So don't include msg bufs |
| * in state size. |
| */ |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct iproc_reqctx_s)); |
| |
| return err; |
| } |
| |
| static int aead_cra_init(struct crypto_aead *aead) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| struct crypto_alg *alg = tfm->__crt_alg; |
| struct aead_alg *aalg = container_of(alg, struct aead_alg, base); |
| struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s, |
| alg.aead); |
| |
| int err = generic_cra_init(tfm, cipher_alg); |
| |
| flow_log("%s()\n", __func__); |
| |
| crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s)); |
| ctx->is_esp = false; |
| ctx->salt_len = 0; |
| ctx->salt_offset = 0; |
| |
| /* random first IV */ |
| get_random_bytes(ctx->iv, MAX_IV_SIZE); |
| flow_dump(" iv: ", ctx->iv, MAX_IV_SIZE); |
| |
| if (!err) { |
| if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| flow_log("%s() creating fallback cipher\n", __func__); |
| |
| ctx->fallback_cipher = |
| crypto_alloc_aead(alg->cra_name, 0, |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->fallback_cipher)) { |
| pr_err("%s() Error: failed to allocate fallback for %s\n", |
| __func__, alg->cra_name); |
| return PTR_ERR(ctx->fallback_cipher); |
| } |
| } |
| } |
| |
| return err; |
| } |
| |
| static void generic_cra_exit(struct crypto_tfm *tfm) |
| { |
| atomic_dec(&iproc_priv.session_count); |
| } |
| |
| static void aead_cra_exit(struct crypto_aead *aead) |
| { |
| struct crypto_tfm *tfm = crypto_aead_tfm(aead); |
| struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm); |
| |
| generic_cra_exit(tfm); |
| |
| if (ctx->fallback_cipher) { |
| crypto_free_aead(ctx->fallback_cipher); |
| ctx->fallback_cipher = NULL; |
| } |
| } |
| |
| /** |
| * spu_functions_register() - Specify hardware-specific SPU functions based on |
| * SPU type read from device tree. |
| * @dev: device structure |
| * @spu_type: SPU hardware generation |
| * @spu_subtype: SPU hardware version |
| */ |
| static void spu_functions_register(struct device *dev, |
| enum spu_spu_type spu_type, |
| enum spu_spu_subtype spu_subtype) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| |
| if (spu_type == SPU_TYPE_SPUM) { |
| dev_dbg(dev, "Registering SPUM functions"); |
| spu->spu_dump_msg_hdr = spum_dump_msg_hdr; |
| spu->spu_payload_length = spum_payload_length; |
| spu->spu_response_hdr_len = spum_response_hdr_len; |
| spu->spu_hash_pad_len = spum_hash_pad_len; |
| spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len; |
| spu->spu_assoc_resp_len = spum_assoc_resp_len; |
| spu->spu_aead_ivlen = spum_aead_ivlen; |
| spu->spu_hash_type = spum_hash_type; |
| spu->spu_digest_size = spum_digest_size; |
| spu->spu_create_request = spum_create_request; |
| spu->spu_cipher_req_init = spum_cipher_req_init; |
| spu->spu_cipher_req_finish = spum_cipher_req_finish; |
| spu->spu_request_pad = spum_request_pad; |
| spu->spu_tx_status_len = spum_tx_status_len; |
| spu->spu_rx_status_len = spum_rx_status_len; |
| spu->spu_status_process = spum_status_process; |
| spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload; |
| spu->spu_ccm_update_iv = spum_ccm_update_iv; |
| spu->spu_wordalign_padlen = spum_wordalign_padlen; |
| if (spu_subtype == SPU_SUBTYPE_SPUM_NS2) |
| spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload; |
| else |
| spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload; |
| } else { |
| dev_dbg(dev, "Registering SPU2 functions"); |
| spu->spu_dump_msg_hdr = spu2_dump_msg_hdr; |
| spu->spu_ctx_max_payload = spu2_ctx_max_payload; |
| spu->spu_payload_length = spu2_payload_length; |
| spu->spu_response_hdr_len = spu2_response_hdr_len; |
| spu->spu_hash_pad_len = spu2_hash_pad_len; |
| spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len; |
| spu->spu_assoc_resp_len = spu2_assoc_resp_len; |
| spu->spu_aead_ivlen = spu2_aead_ivlen; |
| spu->spu_hash_type = spu2_hash_type; |
| spu->spu_digest_size = spu2_digest_size; |
| spu->spu_create_request = spu2_create_request; |
| spu->spu_cipher_req_init = spu2_cipher_req_init; |
| spu->spu_cipher_req_finish = spu2_cipher_req_finish; |
| spu->spu_request_pad = spu2_request_pad; |
| spu->spu_tx_status_len = spu2_tx_status_len; |
| spu->spu_rx_status_len = spu2_rx_status_len; |
| spu->spu_status_process = spu2_status_process; |
| spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload; |
| spu->spu_ccm_update_iv = spu2_ccm_update_iv; |
| spu->spu_wordalign_padlen = spu2_wordalign_padlen; |
| } |
| } |
| |
| /** |
| * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox |
| * channel for the SPU being probed. |
| * @dev: SPU driver device structure |
| * |
| * Return: 0 if successful |
| * < 0 otherwise |
| */ |
| static int spu_mb_init(struct device *dev) |
| { |
| struct mbox_client *mcl = &iproc_priv.mcl; |
| int err, i; |
| |
| iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan, |
| sizeof(struct mbox_chan *), GFP_KERNEL); |
| if (!iproc_priv.mbox) |
| return -ENOMEM; |
| |
| mcl->dev = dev; |
| mcl->tx_block = false; |
| mcl->tx_tout = 0; |
| mcl->knows_txdone = true; |
| mcl->rx_callback = spu_rx_callback; |
| mcl->tx_done = NULL; |
| |
| for (i = 0; i < iproc_priv.spu.num_chan; i++) { |
| iproc_priv.mbox[i] = mbox_request_channel(mcl, i); |
| if (IS_ERR(iproc_priv.mbox[i])) { |
| err = (int)PTR_ERR(iproc_priv.mbox[i]); |
| dev_err(dev, |
| "Mbox channel %d request failed with err %d", |
| i, err); |
| iproc_priv.mbox[i] = NULL; |
| goto free_channels; |
| } |
| } |
| |
| return 0; |
| free_channels: |
| for (i = 0; i < iproc_priv.spu.num_chan; i++) { |
| if (iproc_priv.mbox[i]) |
| mbox_free_channel(iproc_priv.mbox[i]); |
| } |
| |
| return err; |
| } |
| |
| static void spu_mb_release(struct platform_device *pdev) |
| { |
| int i; |
| |
| for (i = 0; i < iproc_priv.spu.num_chan; i++) |
| mbox_free_channel(iproc_priv.mbox[i]); |
| } |
| |
| static void spu_counters_init(void) |
| { |
| int i; |
| int j; |
| |
| atomic_set(&iproc_priv.session_count, 0); |
| atomic_set(&iproc_priv.stream_count, 0); |
| atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan); |
| atomic64_set(&iproc_priv.bytes_in, 0); |
| atomic64_set(&iproc_priv.bytes_out, 0); |
| for (i = 0; i < SPU_OP_NUM; i++) { |
| atomic_set(&iproc_priv.op_counts[i], 0); |
| atomic_set(&iproc_priv.setkey_cnt[i], 0); |
| } |
| for (i = 0; i < CIPHER_ALG_LAST; i++) |
| for (j = 0; j < CIPHER_MODE_LAST; j++) |
| atomic_set(&iproc_priv.cipher_cnt[i][j], 0); |
| |
| for (i = 0; i < HASH_ALG_LAST; i++) { |
| atomic_set(&iproc_priv.hash_cnt[i], 0); |
| atomic_set(&iproc_priv.hmac_cnt[i], 0); |
| } |
| for (i = 0; i < AEAD_TYPE_LAST; i++) |
| atomic_set(&iproc_priv.aead_cnt[i], 0); |
| |
| atomic_set(&iproc_priv.mb_no_spc, 0); |
| atomic_set(&iproc_priv.mb_send_fail, 0); |
| atomic_set(&iproc_priv.bad_icv, 0); |
| } |
| |
| static int spu_register_ablkcipher(struct iproc_alg_s *driver_alg) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct crypto_alg *crypto = &driver_alg->alg.crypto; |
| int err; |
| |
| /* SPU2 does not support RC4 */ |
| if ((driver_alg->cipher_info.alg == CIPHER_ALG_RC4) && |
| (spu->spu_type == SPU_TYPE_SPU2)) |
| return 0; |
| |
| crypto->cra_module = THIS_MODULE; |
| crypto->cra_priority = cipher_pri; |
| crypto->cra_alignmask = 0; |
| crypto->cra_ctxsize = sizeof(struct iproc_ctx_s); |
| |
| crypto->cra_init = ablkcipher_cra_init; |
| crypto->cra_exit = generic_cra_exit; |
| crypto->cra_type = &crypto_ablkcipher_type; |
| crypto->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY; |
| |
| crypto->cra_ablkcipher.setkey = ablkcipher_setkey; |
| crypto->cra_ablkcipher.encrypt = ablkcipher_encrypt; |
| crypto->cra_ablkcipher.decrypt = ablkcipher_decrypt; |
| |
| err = crypto_register_alg(crypto); |
| /* Mark alg as having been registered, if successful */ |
| if (err == 0) |
| driver_alg->registered = true; |
| pr_debug(" registered ablkcipher %s\n", crypto->cra_driver_name); |
| return err; |
| } |
| |
| static int spu_register_ahash(struct iproc_alg_s *driver_alg) |
| { |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct ahash_alg *hash = &driver_alg->alg.hash; |
| int err; |
| |
| /* AES-XCBC is the only AES hash type currently supported on SPU-M */ |
| if ((driver_alg->auth_info.alg == HASH_ALG_AES) && |
| (driver_alg->auth_info.mode != HASH_MODE_XCBC) && |
| (spu->spu_type == SPU_TYPE_SPUM)) |
| return 0; |
| |
| /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */ |
| if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) && |
| (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2)) |
| return 0; |
| |
| hash->halg.base.cra_module = THIS_MODULE; |
| hash->halg.base.cra_priority = hash_pri; |
| hash->halg.base.cra_alignmask = 0; |
| hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s); |
| hash->halg.base.cra_init = ahash_cra_init; |
| hash->halg.base.cra_exit = generic_cra_exit; |
| hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC; |
| hash->halg.statesize = sizeof(struct spu_hash_export_s); |
| |
| if (driver_alg->auth_info.mode != HASH_MODE_HMAC) { |
| hash->init = ahash_init; |
| hash->update = ahash_update; |
| hash->final = ahash_final; |
| hash->finup = ahash_finup; |
| hash->digest = ahash_digest; |
| if ((driver_alg->auth_info.alg == HASH_ALG_AES) && |
| ((driver_alg->auth_info.mode == HASH_MODE_XCBC) || |
| (driver_alg->auth_info.mode == HASH_MODE_CMAC))) { |
| hash->setkey = ahash_setkey; |
| } |
| } else { |
| hash->setkey = ahash_hmac_setkey; |
| hash->init = ahash_hmac_init; |
| hash->update = ahash_hmac_update; |
| hash->final = ahash_hmac_final; |
| hash->finup = ahash_hmac_finup; |
| hash->digest = ahash_hmac_digest; |
| } |
| hash->export = ahash_export; |
| hash->import = ahash_import; |
| |
| err = crypto_register_ahash(hash); |
| /* Mark alg as having been registered, if successful */ |
| if (err == 0) |
| driver_alg->registered = true; |
| pr_debug(" registered ahash %s\n", |
| hash->halg.base.cra_driver_name); |
| return err; |
| } |
| |
| static int spu_register_aead(struct iproc_alg_s *driver_alg) |
| { |
| struct aead_alg *aead = &driver_alg->alg.aead; |
| int err; |
| |
| aead->base.cra_module = THIS_MODULE; |
| aead->base.cra_priority = aead_pri; |
| aead->base.cra_alignmask = 0; |
| aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s); |
| |
| aead->base.cra_flags |= CRYPTO_ALG_ASYNC; |
| /* setkey set in alg initialization */ |
| aead->setauthsize = aead_setauthsize; |
| aead->encrypt = aead_encrypt; |
| aead->decrypt = aead_decrypt; |
| aead->init = aead_cra_init; |
| aead->exit = aead_cra_exit; |
| |
| err = crypto_register_aead(aead); |
| /* Mark alg as having been registered, if successful */ |
| if (err == 0) |
| driver_alg->registered = true; |
| pr_debug(" registered aead %s\n", aead->base.cra_driver_name); |
| return err; |
| } |
| |
| /* register crypto algorithms the device supports */ |
| static int spu_algs_register(struct device *dev) |
| { |
| int i, j; |
| int err; |
| |
| for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { |
| switch (driver_algs[i].type) { |
| case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| err = spu_register_ablkcipher(&driver_algs[i]); |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| err = spu_register_ahash(&driver_algs[i]); |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| err = spu_register_aead(&driver_algs[i]); |
| break; |
| default: |
| dev_err(dev, |
| "iproc-crypto: unknown alg type: %d", |
| driver_algs[i].type); |
| err = -EINVAL; |
| } |
| |
| if (err) { |
| dev_err(dev, "alg registration failed with error %d\n", |
| err); |
| goto err_algs; |
| } |
| } |
| |
| return 0; |
| |
| err_algs: |
| for (j = 0; j < i; j++) { |
| /* Skip any algorithm not registered */ |
| if (!driver_algs[j].registered) |
| continue; |
| switch (driver_algs[j].type) { |
| case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| crypto_unregister_alg(&driver_algs[j].alg.crypto); |
| driver_algs[j].registered = false; |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| crypto_unregister_ahash(&driver_algs[j].alg.hash); |
| driver_algs[j].registered = false; |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| crypto_unregister_aead(&driver_algs[j].alg.aead); |
| driver_algs[j].registered = false; |
| break; |
| } |
| } |
| return err; |
| } |
| |
| /* ==================== Kernel Platform API ==================== */ |
| |
| static struct spu_type_subtype spum_ns2_types = { |
| SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2 |
| }; |
| |
| static struct spu_type_subtype spum_nsp_types = { |
| SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP |
| }; |
| |
| static struct spu_type_subtype spu2_types = { |
| SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1 |
| }; |
| |
| static struct spu_type_subtype spu2_v2_types = { |
| SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2 |
| }; |
| |
| static const struct of_device_id bcm_spu_dt_ids[] = { |
| { |
| .compatible = "brcm,spum-crypto", |
| .data = &spum_ns2_types, |
| }, |
| { |
| .compatible = "brcm,spum-nsp-crypto", |
| .data = &spum_nsp_types, |
| }, |
| { |
| .compatible = "brcm,spu2-crypto", |
| .data = &spu2_types, |
| }, |
| { |
| .compatible = "brcm,spu2-v2-crypto", |
| .data = &spu2_v2_types, |
| }, |
| { /* sentinel */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids); |
| |
| static int spu_dt_read(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct spu_hw *spu = &iproc_priv.spu; |
| struct resource *spu_ctrl_regs; |
| const struct spu_type_subtype *matched_spu_type; |
| struct device_node *dn = pdev->dev.of_node; |
| int err, i; |
| |
| /* Count number of mailbox channels */ |
| spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells"); |
| |
| matched_spu_type = of_device_get_match_data(dev); |
| if (!matched_spu_type) { |
| dev_err(&pdev->dev, "Failed to match device\n"); |
| return -ENODEV; |
| } |
| |
| spu->spu_type = matched_spu_type->type; |
| spu->spu_subtype = matched_spu_type->subtype; |
| |
| i = 0; |
| for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs = |
| platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) { |
| |
| spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs); |
| if (IS_ERR(spu->reg_vbase[i])) { |
| err = PTR_ERR(spu->reg_vbase[i]); |
| dev_err(&pdev->dev, "Failed to map registers: %d\n", |
| err); |
| spu->reg_vbase[i] = NULL; |
| return err; |
| } |
| } |
| spu->num_spu = i; |
| dev_dbg(dev, "Device has %d SPUs", spu->num_spu); |
| |
| return 0; |
| } |
| |
| int bcm_spu_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct spu_hw *spu = &iproc_priv.spu; |
| int err = 0; |
| |
| iproc_priv.pdev = pdev; |
| platform_set_drvdata(iproc_priv.pdev, |
| &iproc_priv); |
| |
| err = spu_dt_read(pdev); |
| if (err < 0) |
| goto failure; |
| |
| err = spu_mb_init(&pdev->dev); |
| if (err < 0) |
| goto failure; |
| |
| if (spu->spu_type == SPU_TYPE_SPUM) |
| iproc_priv.bcm_hdr_len = 8; |
| else if (spu->spu_type == SPU_TYPE_SPU2) |
| iproc_priv.bcm_hdr_len = 0; |
| |
| spu_functions_register(&pdev->dev, spu->spu_type, spu->spu_subtype); |
| |
| spu_counters_init(); |
| |
| spu_setup_debugfs(); |
| |
| err = spu_algs_register(dev); |
| if (err < 0) |
| goto fail_reg; |
| |
| return 0; |
| |
| fail_reg: |
| spu_free_debugfs(); |
| failure: |
| spu_mb_release(pdev); |
| dev_err(dev, "%s failed with error %d.\n", __func__, err); |
| |
| return err; |
| } |
| |
| int bcm_spu_remove(struct platform_device *pdev) |
| { |
| int i; |
| struct device *dev = &pdev->dev; |
| char *cdn; |
| |
| for (i = 0; i < ARRAY_SIZE(driver_algs); i++) { |
| /* |
| * Not all algorithms were registered, depending on whether |
| * hardware is SPU or SPU2. So here we make sure to skip |
| * those algorithms that were not previously registered. |
| */ |
| if (!driver_algs[i].registered) |
| continue; |
| |
| switch (driver_algs[i].type) { |
| case CRYPTO_ALG_TYPE_ABLKCIPHER: |
| crypto_unregister_alg(&driver_algs[i].alg.crypto); |
| dev_dbg(dev, " unregistered cipher %s\n", |
| driver_algs[i].alg.crypto.cra_driver_name); |
| driver_algs[i].registered = false; |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| crypto_unregister_ahash(&driver_algs[i].alg.hash); |
| cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name; |
| dev_dbg(dev, " unregistered hash %s\n", cdn); |
| driver_algs[i].registered = false; |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| crypto_unregister_aead(&driver_algs[i].alg.aead); |
| dev_dbg(dev, " unregistered aead %s\n", |
| driver_algs[i].alg.aead.base.cra_driver_name); |
| driver_algs[i].registered = false; |
| break; |
| } |
| } |
| spu_free_debugfs(); |
| spu_mb_release(pdev); |
| return 0; |
| } |
| |
| /* ===== Kernel Module API ===== */ |
| |
| static struct platform_driver bcm_spu_pdriver = { |
| .driver = { |
| .name = "brcm-spu-crypto", |
| .of_match_table = of_match_ptr(bcm_spu_dt_ids), |
| }, |
| .probe = bcm_spu_probe, |
| .remove = bcm_spu_remove, |
| }; |
| module_platform_driver(bcm_spu_pdriver); |
| |
| MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); |
| MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver"); |
| MODULE_LICENSE("GPL v2"); |