| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * PowerPC64 SLB support. |
| * |
| * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM |
| * Based on earlier code written by: |
| * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com |
| * Copyright (c) 2001 Dave Engebretsen |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| */ |
| |
| #include <asm/asm-prototypes.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/paca.h> |
| #include <asm/ppc-opcode.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <asm/smp.h> |
| #include <linux/compiler.h> |
| #include <linux/context_tracking.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/udbg.h> |
| #include <asm/code-patching.h> |
| |
| enum slb_index { |
| LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ |
| KSTACK_INDEX = 1, /* Kernel stack map */ |
| }; |
| |
| static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); |
| |
| #define slb_esid_mask(ssize) \ |
| (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) |
| |
| static inline unsigned long mk_esid_data(unsigned long ea, int ssize, |
| enum slb_index index) |
| { |
| return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; |
| } |
| |
| static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, |
| unsigned long flags) |
| { |
| return (vsid << slb_vsid_shift(ssize)) | flags | |
| ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); |
| } |
| |
| static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, |
| unsigned long flags) |
| { |
| return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); |
| } |
| |
| static void assert_slb_presence(bool present, unsigned long ea) |
| { |
| #ifdef CONFIG_DEBUG_VM |
| unsigned long tmp; |
| |
| WARN_ON_ONCE(mfmsr() & MSR_EE); |
| |
| if (!cpu_has_feature(CPU_FTR_ARCH_206)) |
| return; |
| |
| /* |
| * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware |
| * ignores all other bits from 0-27, so just clear them all. |
| */ |
| ea &= ~((1UL << 28) - 1); |
| asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); |
| |
| WARN_ON(present == (tmp == 0)); |
| #endif |
| } |
| |
| static inline void slb_shadow_update(unsigned long ea, int ssize, |
| unsigned long flags, |
| enum slb_index index) |
| { |
| struct slb_shadow *p = get_slb_shadow(); |
| |
| /* |
| * Clear the ESID first so the entry is not valid while we are |
| * updating it. No write barriers are needed here, provided |
| * we only update the current CPU's SLB shadow buffer. |
| */ |
| WRITE_ONCE(p->save_area[index].esid, 0); |
| WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); |
| WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); |
| } |
| |
| static inline void slb_shadow_clear(enum slb_index index) |
| { |
| WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); |
| } |
| |
| static inline void create_shadowed_slbe(unsigned long ea, int ssize, |
| unsigned long flags, |
| enum slb_index index) |
| { |
| /* |
| * Updating the shadow buffer before writing the SLB ensures |
| * we don't get a stale entry here if we get preempted by PHYP |
| * between these two statements. |
| */ |
| slb_shadow_update(ea, ssize, flags, index); |
| |
| assert_slb_presence(false, ea); |
| asm volatile("slbmte %0,%1" : |
| : "r" (mk_vsid_data(ea, ssize, flags)), |
| "r" (mk_esid_data(ea, ssize, index)) |
| : "memory" ); |
| } |
| |
| /* |
| * Insert bolted entries into SLB (which may not be empty, so don't clear |
| * slb_cache_ptr). |
| */ |
| void __slb_restore_bolted_realmode(void) |
| { |
| struct slb_shadow *p = get_slb_shadow(); |
| enum slb_index index; |
| |
| /* No isync needed because realmode. */ |
| for (index = 0; index < SLB_NUM_BOLTED; index++) { |
| asm volatile("slbmte %0,%1" : |
| : "r" (be64_to_cpu(p->save_area[index].vsid)), |
| "r" (be64_to_cpu(p->save_area[index].esid))); |
| } |
| |
| assert_slb_presence(true, local_paca->kstack); |
| } |
| |
| /* |
| * Insert the bolted entries into an empty SLB. |
| */ |
| void slb_restore_bolted_realmode(void) |
| { |
| __slb_restore_bolted_realmode(); |
| get_paca()->slb_cache_ptr = 0; |
| |
| get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; |
| get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; |
| } |
| |
| /* |
| * This flushes all SLB entries including 0, so it must be realmode. |
| */ |
| void slb_flush_all_realmode(void) |
| { |
| asm volatile("slbmte %0,%0; slbia" : : "r" (0)); |
| } |
| |
| /* |
| * This flushes non-bolted entries, it can be run in virtual mode. Must |
| * be called with interrupts disabled. |
| */ |
| void slb_flush_and_restore_bolted(void) |
| { |
| struct slb_shadow *p = get_slb_shadow(); |
| |
| BUILD_BUG_ON(SLB_NUM_BOLTED != 2); |
| |
| WARN_ON(!irqs_disabled()); |
| |
| /* |
| * We can't take a PMU exception in the following code, so hard |
| * disable interrupts. |
| */ |
| hard_irq_disable(); |
| |
| asm volatile("isync\n" |
| "slbia\n" |
| "slbmte %0, %1\n" |
| "isync\n" |
| :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)), |
| "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid)) |
| : "memory"); |
| assert_slb_presence(true, get_paca()->kstack); |
| |
| get_paca()->slb_cache_ptr = 0; |
| |
| get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; |
| get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; |
| } |
| |
| void slb_save_contents(struct slb_entry *slb_ptr) |
| { |
| int i; |
| unsigned long e, v; |
| |
| /* Save slb_cache_ptr value. */ |
| get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; |
| |
| if (!slb_ptr) |
| return; |
| |
| for (i = 0; i < mmu_slb_size; i++) { |
| asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); |
| asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); |
| slb_ptr->esid = e; |
| slb_ptr->vsid = v; |
| slb_ptr++; |
| } |
| } |
| |
| void slb_dump_contents(struct slb_entry *slb_ptr) |
| { |
| int i, n; |
| unsigned long e, v; |
| unsigned long llp; |
| |
| if (!slb_ptr) |
| return; |
| |
| pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); |
| pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); |
| |
| for (i = 0; i < mmu_slb_size; i++) { |
| e = slb_ptr->esid; |
| v = slb_ptr->vsid; |
| slb_ptr++; |
| |
| if (!e && !v) |
| continue; |
| |
| pr_err("%02d %016lx %016lx\n", i, e, v); |
| |
| if (!(e & SLB_ESID_V)) { |
| pr_err("\n"); |
| continue; |
| } |
| llp = v & SLB_VSID_LLP; |
| if (v & SLB_VSID_B_1T) { |
| pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", |
| GET_ESID_1T(e), |
| (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); |
| } else { |
| pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", |
| GET_ESID(e), |
| (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); |
| } |
| } |
| pr_err("----------------------------------\n"); |
| |
| /* Dump slb cache entires as well. */ |
| pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); |
| pr_err("Valid SLB cache entries:\n"); |
| n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); |
| for (i = 0; i < n; i++) |
| pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); |
| pr_err("Rest of SLB cache entries:\n"); |
| for (i = n; i < SLB_CACHE_ENTRIES; i++) |
| pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); |
| } |
| |
| void slb_vmalloc_update(void) |
| { |
| /* |
| * vmalloc is not bolted, so just have to flush non-bolted. |
| */ |
| slb_flush_and_restore_bolted(); |
| } |
| |
| static bool preload_hit(struct thread_info *ti, unsigned long esid) |
| { |
| unsigned char i; |
| |
| for (i = 0; i < ti->slb_preload_nr; i++) { |
| unsigned char idx; |
| |
| idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; |
| if (esid == ti->slb_preload_esid[idx]) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool preload_add(struct thread_info *ti, unsigned long ea) |
| { |
| unsigned char idx; |
| unsigned long esid; |
| |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { |
| /* EAs are stored >> 28 so 256MB segments don't need clearing */ |
| if (ea & ESID_MASK_1T) |
| ea &= ESID_MASK_1T; |
| } |
| |
| esid = ea >> SID_SHIFT; |
| |
| if (preload_hit(ti, esid)) |
| return false; |
| |
| idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; |
| ti->slb_preload_esid[idx] = esid; |
| if (ti->slb_preload_nr == SLB_PRELOAD_NR) |
| ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; |
| else |
| ti->slb_preload_nr++; |
| |
| return true; |
| } |
| |
| static void preload_age(struct thread_info *ti) |
| { |
| if (!ti->slb_preload_nr) |
| return; |
| ti->slb_preload_nr--; |
| ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; |
| } |
| |
| void slb_setup_new_exec(void) |
| { |
| struct thread_info *ti = current_thread_info(); |
| struct mm_struct *mm = current->mm; |
| unsigned long exec = 0x10000000; |
| |
| WARN_ON(irqs_disabled()); |
| |
| /* |
| * preload cache can only be used to determine whether a SLB |
| * entry exists if it does not start to overflow. |
| */ |
| if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) |
| return; |
| |
| hard_irq_disable(); |
| |
| /* |
| * We have no good place to clear the slb preload cache on exec, |
| * flush_thread is about the earliest arch hook but that happens |
| * after we switch to the mm and have aleady preloaded the SLBEs. |
| * |
| * For the most part that's probably okay to use entries from the |
| * previous exec, they will age out if unused. It may turn out to |
| * be an advantage to clear the cache before switching to it, |
| * however. |
| */ |
| |
| /* |
| * preload some userspace segments into the SLB. |
| * Almost all 32 and 64bit PowerPC executables are linked at |
| * 0x10000000 so it makes sense to preload this segment. |
| */ |
| if (!is_kernel_addr(exec)) { |
| if (preload_add(ti, exec)) |
| slb_allocate_user(mm, exec); |
| } |
| |
| /* Libraries and mmaps. */ |
| if (!is_kernel_addr(mm->mmap_base)) { |
| if (preload_add(ti, mm->mmap_base)) |
| slb_allocate_user(mm, mm->mmap_base); |
| } |
| |
| /* see switch_slb */ |
| asm volatile("isync" : : : "memory"); |
| |
| local_irq_enable(); |
| } |
| |
| void preload_new_slb_context(unsigned long start, unsigned long sp) |
| { |
| struct thread_info *ti = current_thread_info(); |
| struct mm_struct *mm = current->mm; |
| unsigned long heap = mm->start_brk; |
| |
| WARN_ON(irqs_disabled()); |
| |
| /* see above */ |
| if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) |
| return; |
| |
| hard_irq_disable(); |
| |
| /* Userspace entry address. */ |
| if (!is_kernel_addr(start)) { |
| if (preload_add(ti, start)) |
| slb_allocate_user(mm, start); |
| } |
| |
| /* Top of stack, grows down. */ |
| if (!is_kernel_addr(sp)) { |
| if (preload_add(ti, sp)) |
| slb_allocate_user(mm, sp); |
| } |
| |
| /* Bottom of heap, grows up. */ |
| if (heap && !is_kernel_addr(heap)) { |
| if (preload_add(ti, heap)) |
| slb_allocate_user(mm, heap); |
| } |
| |
| /* see switch_slb */ |
| asm volatile("isync" : : : "memory"); |
| |
| local_irq_enable(); |
| } |
| |
| |
| /* Flush all user entries from the segment table of the current processor. */ |
| void switch_slb(struct task_struct *tsk, struct mm_struct *mm) |
| { |
| struct thread_info *ti = task_thread_info(tsk); |
| unsigned char i; |
| |
| /* |
| * We need interrupts hard-disabled here, not just soft-disabled, |
| * so that a PMU interrupt can't occur, which might try to access |
| * user memory (to get a stack trace) and possible cause an SLB miss |
| * which would update the slb_cache/slb_cache_ptr fields in the PACA. |
| */ |
| hard_irq_disable(); |
| asm volatile("isync" : : : "memory"); |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| /* |
| * SLBIA IH=3 invalidates all Class=1 SLBEs and their |
| * associated lookaside structures, which matches what |
| * switch_slb wants. So ARCH_300 does not use the slb |
| * cache. |
| */ |
| asm volatile(PPC_SLBIA(3)); |
| } else { |
| unsigned long offset = get_paca()->slb_cache_ptr; |
| |
| if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && |
| offset <= SLB_CACHE_ENTRIES) { |
| unsigned long slbie_data = 0; |
| |
| for (i = 0; i < offset; i++) { |
| unsigned long ea; |
| |
| ea = (unsigned long) |
| get_paca()->slb_cache[i] << SID_SHIFT; |
| /* |
| * Could assert_slb_presence(true) here, but |
| * hypervisor or machine check could have come |
| * in and removed the entry at this point. |
| */ |
| |
| slbie_data = ea; |
| slbie_data |= user_segment_size(slbie_data) |
| << SLBIE_SSIZE_SHIFT; |
| slbie_data |= SLBIE_C; /* user slbs have C=1 */ |
| asm volatile("slbie %0" : : "r" (slbie_data)); |
| } |
| |
| /* Workaround POWER5 < DD2.1 issue */ |
| if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) |
| asm volatile("slbie %0" : : "r" (slbie_data)); |
| |
| } else { |
| struct slb_shadow *p = get_slb_shadow(); |
| unsigned long ksp_esid_data = |
| be64_to_cpu(p->save_area[KSTACK_INDEX].esid); |
| unsigned long ksp_vsid_data = |
| be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); |
| |
| asm volatile(PPC_SLBIA(1) "\n" |
| "slbmte %0,%1\n" |
| "isync" |
| :: "r"(ksp_vsid_data), |
| "r"(ksp_esid_data)); |
| |
| get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; |
| } |
| |
| get_paca()->slb_cache_ptr = 0; |
| } |
| get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; |
| |
| copy_mm_to_paca(mm); |
| |
| /* |
| * We gradually age out SLBs after a number of context switches to |
| * reduce reload overhead of unused entries (like we do with FP/VEC |
| * reload). Each time we wrap 256 switches, take an entry out of the |
| * SLB preload cache. |
| */ |
| tsk->thread.load_slb++; |
| if (!tsk->thread.load_slb) { |
| unsigned long pc = KSTK_EIP(tsk); |
| |
| preload_age(ti); |
| preload_add(ti, pc); |
| } |
| |
| for (i = 0; i < ti->slb_preload_nr; i++) { |
| unsigned char idx; |
| unsigned long ea; |
| |
| idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; |
| ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; |
| |
| slb_allocate_user(mm, ea); |
| } |
| |
| /* |
| * Synchronize slbmte preloads with possible subsequent user memory |
| * address accesses by the kernel (user mode won't happen until |
| * rfid, which is safe). |
| */ |
| asm volatile("isync" : : : "memory"); |
| } |
| |
| void slb_set_size(u16 size) |
| { |
| mmu_slb_size = size; |
| } |
| |
| void slb_initialize(void) |
| { |
| unsigned long linear_llp, vmalloc_llp, io_llp; |
| unsigned long lflags; |
| static int slb_encoding_inited; |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| unsigned long vmemmap_llp; |
| #endif |
| |
| /* Prepare our SLB miss handler based on our page size */ |
| linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; |
| io_llp = mmu_psize_defs[mmu_io_psize].sllp; |
| vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; |
| get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; |
| #endif |
| if (!slb_encoding_inited) { |
| slb_encoding_inited = 1; |
| pr_devel("SLB: linear LLP = %04lx\n", linear_llp); |
| pr_devel("SLB: io LLP = %04lx\n", io_llp); |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); |
| #endif |
| } |
| |
| get_paca()->stab_rr = SLB_NUM_BOLTED - 1; |
| get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; |
| get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; |
| |
| lflags = SLB_VSID_KERNEL | linear_llp; |
| |
| /* Invalidate the entire SLB (even entry 0) & all the ERATS */ |
| asm volatile("isync":::"memory"); |
| asm volatile("slbmte %0,%0"::"r" (0) : "memory"); |
| asm volatile("isync; slbia; isync":::"memory"); |
| create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); |
| |
| /* |
| * For the boot cpu, we're running on the stack in init_thread_union, |
| * which is in the first segment of the linear mapping, and also |
| * get_paca()->kstack hasn't been initialized yet. |
| * For secondary cpus, we need to bolt the kernel stack entry now. |
| */ |
| slb_shadow_clear(KSTACK_INDEX); |
| if (raw_smp_processor_id() != boot_cpuid && |
| (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) |
| create_shadowed_slbe(get_paca()->kstack, |
| mmu_kernel_ssize, lflags, KSTACK_INDEX); |
| |
| asm volatile("isync":::"memory"); |
| } |
| |
| static void slb_cache_update(unsigned long esid_data) |
| { |
| int slb_cache_index; |
| |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| return; /* ISAv3.0B and later does not use slb_cache */ |
| |
| /* |
| * Now update slb cache entries |
| */ |
| slb_cache_index = local_paca->slb_cache_ptr; |
| if (slb_cache_index < SLB_CACHE_ENTRIES) { |
| /* |
| * We have space in slb cache for optimized switch_slb(). |
| * Top 36 bits from esid_data as per ISA |
| */ |
| local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; |
| local_paca->slb_cache_ptr++; |
| } else { |
| /* |
| * Our cache is full and the current cache content strictly |
| * doesn't indicate the active SLB conents. Bump the ptr |
| * so that switch_slb() will ignore the cache. |
| */ |
| local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; |
| } |
| } |
| |
| static enum slb_index alloc_slb_index(bool kernel) |
| { |
| enum slb_index index; |
| |
| /* |
| * The allocation bitmaps can become out of synch with the SLB |
| * when the _switch code does slbie when bolting a new stack |
| * segment and it must not be anywhere else in the SLB. This leaves |
| * a kernel allocated entry that is unused in the SLB. With very |
| * large systems or small segment sizes, the bitmaps could slowly |
| * fill with these entries. They will eventually be cleared out |
| * by the round robin allocator in that case, so it's probably not |
| * worth accounting for. |
| */ |
| |
| /* |
| * SLBs beyond 32 entries are allocated with stab_rr only |
| * POWER7/8/9 have 32 SLB entries, this could be expanded if a |
| * future CPU has more. |
| */ |
| if (local_paca->slb_used_bitmap != U32_MAX) { |
| index = ffz(local_paca->slb_used_bitmap); |
| local_paca->slb_used_bitmap |= 1U << index; |
| if (kernel) |
| local_paca->slb_kern_bitmap |= 1U << index; |
| } else { |
| /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ |
| index = local_paca->stab_rr; |
| if (index < (mmu_slb_size - 1)) |
| index++; |
| else |
| index = SLB_NUM_BOLTED; |
| local_paca->stab_rr = index; |
| if (index < 32) { |
| if (kernel) |
| local_paca->slb_kern_bitmap |= 1U << index; |
| else |
| local_paca->slb_kern_bitmap &= ~(1U << index); |
| } |
| } |
| BUG_ON(index < SLB_NUM_BOLTED); |
| |
| return index; |
| } |
| |
| static long slb_insert_entry(unsigned long ea, unsigned long context, |
| unsigned long flags, int ssize, bool kernel) |
| { |
| unsigned long vsid; |
| unsigned long vsid_data, esid_data; |
| enum slb_index index; |
| |
| vsid = get_vsid(context, ea, ssize); |
| if (!vsid) |
| return -EFAULT; |
| |
| /* |
| * There must not be a kernel SLB fault in alloc_slb_index or before |
| * slbmte here or the allocation bitmaps could get out of whack with |
| * the SLB. |
| * |
| * User SLB faults or preloads take this path which might get inlined |
| * into the caller, so add compiler barriers here to ensure unsafe |
| * memory accesses do not come between. |
| */ |
| barrier(); |
| |
| index = alloc_slb_index(kernel); |
| |
| vsid_data = __mk_vsid_data(vsid, ssize, flags); |
| esid_data = mk_esid_data(ea, ssize, index); |
| |
| /* |
| * No need for an isync before or after this slbmte. The exception |
| * we enter with and the rfid we exit with are context synchronizing. |
| * User preloads should add isync afterwards in case the kernel |
| * accesses user memory before it returns to userspace with rfid. |
| */ |
| assert_slb_presence(false, ea); |
| asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); |
| |
| barrier(); |
| |
| if (!kernel) |
| slb_cache_update(esid_data); |
| |
| return 0; |
| } |
| |
| static long slb_allocate_kernel(unsigned long ea, unsigned long id) |
| { |
| unsigned long context; |
| unsigned long flags; |
| int ssize; |
| |
| if (id == LINEAR_MAP_REGION_ID) { |
| |
| /* We only support upto MAX_PHYSMEM_BITS */ |
| if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS)) |
| return -EFAULT; |
| |
| flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| } else if (id == VMEMMAP_REGION_ID) { |
| |
| if (ea >= H_VMEMMAP_END) |
| return -EFAULT; |
| |
| flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; |
| #endif |
| } else if (id == VMALLOC_REGION_ID) { |
| |
| if (ea >= H_VMALLOC_END) |
| return -EFAULT; |
| |
| flags = local_paca->vmalloc_sllp; |
| |
| } else if (id == IO_REGION_ID) { |
| |
| if (ea >= H_KERN_IO_END) |
| return -EFAULT; |
| |
| flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; |
| |
| } else { |
| return -EFAULT; |
| } |
| |
| ssize = MMU_SEGSIZE_1T; |
| if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| ssize = MMU_SEGSIZE_256M; |
| |
| context = get_kernel_context(ea); |
| |
| return slb_insert_entry(ea, context, flags, ssize, true); |
| } |
| |
| static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) |
| { |
| unsigned long context; |
| unsigned long flags; |
| int bpsize; |
| int ssize; |
| |
| /* |
| * consider this as bad access if we take a SLB miss |
| * on an address above addr limit. |
| */ |
| if (ea >= mm_ctx_slb_addr_limit(&mm->context)) |
| return -EFAULT; |
| |
| context = get_user_context(&mm->context, ea); |
| if (!context) |
| return -EFAULT; |
| |
| if (unlikely(ea >= H_PGTABLE_RANGE)) { |
| WARN_ON(1); |
| return -EFAULT; |
| } |
| |
| ssize = user_segment_size(ea); |
| |
| bpsize = get_slice_psize(mm, ea); |
| flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; |
| |
| return slb_insert_entry(ea, context, flags, ssize, false); |
| } |
| |
| long do_slb_fault(struct pt_regs *regs, unsigned long ea) |
| { |
| unsigned long id = get_region_id(ea); |
| |
| /* IRQs are not reconciled here, so can't check irqs_disabled */ |
| VM_WARN_ON(mfmsr() & MSR_EE); |
| |
| if (unlikely(!(regs->msr & MSR_RI))) |
| return -EINVAL; |
| |
| /* |
| * SLB kernel faults must be very careful not to touch anything |
| * that is not bolted. E.g., PACA and global variables are okay, |
| * mm->context stuff is not. |
| * |
| * SLB user faults can access all of kernel memory, but must be |
| * careful not to touch things like IRQ state because it is not |
| * "reconciled" here. The difficulty is that we must use |
| * fast_exception_return to return from kernel SLB faults without |
| * looking at possible non-bolted memory. We could test user vs |
| * kernel faults in the interrupt handler asm and do a full fault, |
| * reconcile, ret_from_except for user faults which would make them |
| * first class kernel code. But for performance it's probably nicer |
| * if they go via fast_exception_return too. |
| */ |
| if (id >= LINEAR_MAP_REGION_ID) { |
| long err; |
| #ifdef CONFIG_DEBUG_VM |
| /* Catch recursive kernel SLB faults. */ |
| BUG_ON(local_paca->in_kernel_slb_handler); |
| local_paca->in_kernel_slb_handler = 1; |
| #endif |
| err = slb_allocate_kernel(ea, id); |
| #ifdef CONFIG_DEBUG_VM |
| local_paca->in_kernel_slb_handler = 0; |
| #endif |
| return err; |
| } else { |
| struct mm_struct *mm = current->mm; |
| long err; |
| |
| if (unlikely(!mm)) |
| return -EFAULT; |
| |
| err = slb_allocate_user(mm, ea); |
| if (!err) |
| preload_add(current_thread_info(), ea); |
| |
| return err; |
| } |
| } |
| |
| void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) |
| { |
| if (err == -EFAULT) { |
| if (user_mode(regs)) |
| _exception(SIGSEGV, regs, SEGV_BNDERR, ea); |
| else |
| bad_page_fault(regs, ea, SIGSEGV); |
| } else if (err == -EINVAL) { |
| unrecoverable_exception(regs); |
| } else { |
| BUG(); |
| } |
| } |