| /* |
| * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support |
| * Copyright (c) 2008 Marvell Semiconductor |
| * |
| * Copyright (c) 2015 CMC Electronics, Inc. |
| * Added support for VLAN Table Unit operations |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/etherdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/if_bridge.h> |
| #include <linux/jiffies.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/phy.h> |
| #include <net/dsa.h> |
| #include <net/switchdev.h> |
| #include "mv88e6xxx.h" |
| |
| static void assert_smi_lock(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| if (unlikely(!mutex_is_locked(&ps->smi_mutex))) { |
| dev_err(ds->master_dev, "SMI lock not held!\n"); |
| dump_stack(); |
| } |
| } |
| |
| /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will |
| * use all 32 SMI bus addresses on its SMI bus, and all switch registers |
| * will be directly accessible on some {device address,register address} |
| * pair. If the ADDR[4:0] pins are not strapped to zero, the switch |
| * will only respond to SMI transactions to that specific address, and |
| * an indirect addressing mechanism needs to be used to access its |
| * registers. |
| */ |
| static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD); |
| if (ret < 0) |
| return ret; |
| |
| if ((ret & SMI_CMD_BUSY) == 0) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, |
| int reg) |
| { |
| int ret; |
| |
| if (sw_addr == 0) |
| return mdiobus_read_nested(bus, addr, reg); |
| |
| /* Wait for the bus to become free. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the read command. */ |
| ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, |
| SMI_CMD_OP_22_READ | (addr << 5) | reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the read command to complete. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Read the data. */ |
| ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA); |
| if (ret < 0) |
| return ret; |
| |
| return ret & 0xffff; |
| } |
| |
| static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| assert_smi_lock(ds); |
| |
| ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg); |
| if (ret < 0) |
| return ret; |
| |
| dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| addr, reg, ret); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_reg_read(ds, addr, reg); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, |
| int reg, u16 val) |
| { |
| int ret; |
| |
| if (sw_addr == 0) |
| return mdiobus_write_nested(bus, addr, reg, val); |
| |
| /* Wait for the bus to become free. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the data to write. */ |
| ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val); |
| if (ret < 0) |
| return ret; |
| |
| /* Transmit the write command. */ |
| ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, |
| SMI_CMD_OP_22_WRITE | (addr << 5) | reg); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the write command to complete. */ |
| ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, |
| u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| assert_smi_lock(ds); |
| |
| dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| addr, reg, val); |
| |
| return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val); |
| } |
| |
| int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_reg_write(ds, addr, reg, val); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) |
| { |
| int err; |
| |
| err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_01, |
| (addr[0] << 8) | addr[1]); |
| if (err) |
| return err; |
| |
| err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_23, |
| (addr[2] << 8) | addr[3]); |
| if (err) |
| return err; |
| |
| return mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_MAC_45, |
| (addr[4] << 8) | addr[5]); |
| } |
| |
| int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < 6; i++) { |
| int j; |
| |
| /* Write the MAC address byte. */ |
| ret = mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, |
| GLOBAL2_SWITCH_MAC_BUSY | |
| (i << 8) | addr[i]); |
| if (ret) |
| return ret; |
| |
| /* Wait for the write to complete. */ |
| for (j = 0; j < 16; j++) { |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL2, |
| GLOBAL2_SWITCH_MAC); |
| if (ret < 0) |
| return ret; |
| |
| if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0) |
| break; |
| } |
| if (j == 16) |
| return -ETIMEDOUT; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) |
| { |
| if (addr >= 0) |
| return _mv88e6xxx_reg_read(ds, addr, regnum); |
| return 0xffff; |
| } |
| |
| static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, |
| u16 val) |
| { |
| if (addr >= 0) |
| return _mv88e6xxx_reg_write(ds, addr, regnum, val); |
| return 0; |
| } |
| |
| #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU |
| static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) |
| { |
| int ret; |
| unsigned long timeout; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL); |
| if (ret < 0) |
| return ret; |
| |
| ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL, |
| ret & ~GLOBAL_CONTROL_PPU_ENABLE); |
| if (ret) |
| return ret; |
| |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS); |
| if (ret < 0) |
| return ret; |
| |
| usleep_range(1000, 2000); |
| if ((ret & GLOBAL_STATUS_PPU_MASK) != |
| GLOBAL_STATUS_PPU_POLLING) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) |
| { |
| int ret, err; |
| unsigned long timeout; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_CONTROL); |
| if (ret < 0) |
| return ret; |
| |
| err = mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_CONTROL, |
| ret | GLOBAL_CONTROL_PPU_ENABLE); |
| if (err) |
| return err; |
| |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATUS); |
| if (ret < 0) |
| return ret; |
| |
| usleep_range(1000, 2000); |
| if ((ret & GLOBAL_STATUS_PPU_MASK) == |
| GLOBAL_STATUS_PPU_POLLING) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) |
| { |
| struct mv88e6xxx_priv_state *ps; |
| |
| ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); |
| if (mutex_trylock(&ps->ppu_mutex)) { |
| struct dsa_switch *ds = ps->ds; |
| |
| if (mv88e6xxx_ppu_enable(ds) == 0) |
| ps->ppu_disabled = 0; |
| mutex_unlock(&ps->ppu_mutex); |
| } |
| } |
| |
| static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) |
| { |
| struct mv88e6xxx_priv_state *ps = (void *)_ps; |
| |
| schedule_work(&ps->ppu_work); |
| } |
| |
| static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->ppu_mutex); |
| |
| /* If the PHY polling unit is enabled, disable it so that |
| * we can access the PHY registers. If it was already |
| * disabled, cancel the timer that is going to re-enable |
| * it. |
| */ |
| if (!ps->ppu_disabled) { |
| ret = mv88e6xxx_ppu_disable(ds); |
| if (ret < 0) { |
| mutex_unlock(&ps->ppu_mutex); |
| return ret; |
| } |
| ps->ppu_disabled = 1; |
| } else { |
| del_timer(&ps->ppu_timer); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| /* Schedule a timer to re-enable the PHY polling unit. */ |
| mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); |
| mutex_unlock(&ps->ppu_mutex); |
| } |
| |
| void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| mutex_init(&ps->ppu_mutex); |
| INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); |
| init_timer(&ps->ppu_timer); |
| ps->ppu_timer.data = (unsigned long)ps; |
| ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; |
| } |
| |
| int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) |
| { |
| int ret; |
| |
| ret = mv88e6xxx_ppu_access_get(ds); |
| if (ret >= 0) { |
| ret = mv88e6xxx_reg_read(ds, addr, regnum); |
| mv88e6xxx_ppu_access_put(ds); |
| } |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, |
| int regnum, u16 val) |
| { |
| int ret; |
| |
| ret = mv88e6xxx_ppu_access_get(ds); |
| if (ret >= 0) { |
| ret = mv88e6xxx_reg_write(ds, addr, regnum, val); |
| mv88e6xxx_ppu_access_put(ds); |
| } |
| |
| return ret; |
| } |
| #endif |
| |
| static bool mv88e6xxx_6065_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6031: |
| case PORT_SWITCH_ID_6061: |
| case PORT_SWITCH_ID_6035: |
| case PORT_SWITCH_ID_6065: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6095_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6092: |
| case PORT_SWITCH_ID_6095: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6097_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6046: |
| case PORT_SWITCH_ID_6085: |
| case PORT_SWITCH_ID_6096: |
| case PORT_SWITCH_ID_6097: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6165_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6123: |
| case PORT_SWITCH_ID_6161: |
| case PORT_SWITCH_ID_6165: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6185_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6121: |
| case PORT_SWITCH_ID_6122: |
| case PORT_SWITCH_ID_6152: |
| case PORT_SWITCH_ID_6155: |
| case PORT_SWITCH_ID_6182: |
| case PORT_SWITCH_ID_6185: |
| case PORT_SWITCH_ID_6108: |
| case PORT_SWITCH_ID_6131: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6320_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6320: |
| case PORT_SWITCH_ID_6321: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6351_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6171: |
| case PORT_SWITCH_ID_6175: |
| case PORT_SWITCH_ID_6350: |
| case PORT_SWITCH_ID_6351: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool mv88e6xxx_6352_family(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| switch (ps->id) { |
| case PORT_SWITCH_ID_6172: |
| case PORT_SWITCH_ID_6176: |
| case PORT_SWITCH_ID_6240: |
| case PORT_SWITCH_ID_6352: |
| return true; |
| } |
| return false; |
| } |
| |
| static unsigned int mv88e6xxx_num_databases(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| /* The following devices have 4-bit identifiers for 16 databases */ |
| if (ps->id == PORT_SWITCH_ID_6061) |
| return 16; |
| |
| /* The following devices have 6-bit identifiers for 64 databases */ |
| if (ps->id == PORT_SWITCH_ID_6065) |
| return 64; |
| |
| /* The following devices have 8-bit identifiers for 256 databases */ |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| return 256; |
| |
| /* The following devices have 12-bit identifiers for 4096 databases */ |
| if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) |
| return 4096; |
| |
| return 0; |
| } |
| |
| static bool mv88e6xxx_has_fid_reg(struct dsa_switch *ds) |
| { |
| /* Does the device have dedicated FID registers for ATU and VTU ops? */ |
| if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool mv88e6xxx_has_stu(struct dsa_switch *ds) |
| { |
| /* Does the device have STU and dedicated SID registers for VTU ops? */ |
| if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) |
| return true; |
| |
| return false; |
| } |
| |
| /* We expect the switch to perform auto negotiation if there is a real |
| * phy. However, in the case of a fixed link phy, we force the port |
| * settings from the fixed link settings. |
| */ |
| void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port, |
| struct phy_device *phydev) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u32 reg; |
| int ret; |
| |
| if (!phy_is_pseudo_fixed_link(phydev)) |
| return; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); |
| if (ret < 0) |
| goto out; |
| |
| reg = ret & ~(PORT_PCS_CTRL_LINK_UP | |
| PORT_PCS_CTRL_FORCE_LINK | |
| PORT_PCS_CTRL_DUPLEX_FULL | |
| PORT_PCS_CTRL_FORCE_DUPLEX | |
| PORT_PCS_CTRL_UNFORCED); |
| |
| reg |= PORT_PCS_CTRL_FORCE_LINK; |
| if (phydev->link) |
| reg |= PORT_PCS_CTRL_LINK_UP; |
| |
| if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100) |
| goto out; |
| |
| switch (phydev->speed) { |
| case SPEED_1000: |
| reg |= PORT_PCS_CTRL_1000; |
| break; |
| case SPEED_100: |
| reg |= PORT_PCS_CTRL_100; |
| break; |
| case SPEED_10: |
| reg |= PORT_PCS_CTRL_10; |
| break; |
| default: |
| pr_info("Unknown speed"); |
| goto out; |
| } |
| |
| reg |= PORT_PCS_CTRL_FORCE_DUPLEX; |
| if (phydev->duplex == DUPLEX_FULL) |
| reg |= PORT_PCS_CTRL_DUPLEX_FULL; |
| |
| if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) && |
| (port >= ps->num_ports - 2)) { |
| if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) |
| reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK; |
| if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) |
| reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK; |
| if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID) |
| reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK | |
| PORT_PCS_CTRL_RGMII_DELAY_TXCLK); |
| } |
| _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg); |
| |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| static int _mv88e6xxx_stats_wait(struct dsa_switch *ds) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP); |
| if ((ret & GLOBAL_STATS_OP_BUSY) == 0) |
| return 0; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) |
| { |
| int ret; |
| |
| if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| port = (port + 1) << 5; |
| |
| /* Snapshot the hardware statistics counters for this port. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| GLOBAL_STATS_OP_CAPTURE_PORT | |
| GLOBAL_STATS_OP_HIST_RX_TX | port); |
| if (ret < 0) |
| return ret; |
| |
| /* Wait for the snapshotting to complete. */ |
| ret = _mv88e6xxx_stats_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) |
| { |
| u32 _val; |
| int ret; |
| |
| *val = 0; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| GLOBAL_STATS_OP_READ_CAPTURED | |
| GLOBAL_STATS_OP_HIST_RX_TX | stat); |
| if (ret < 0) |
| return; |
| |
| ret = _mv88e6xxx_stats_wait(ds); |
| if (ret < 0) |
| return; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); |
| if (ret < 0) |
| return; |
| |
| _val = ret << 16; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); |
| if (ret < 0) |
| return; |
| |
| *val = _val | ret; |
| } |
| |
| static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { |
| { "in_good_octets", 8, 0x00, BANK0, }, |
| { "in_bad_octets", 4, 0x02, BANK0, }, |
| { "in_unicast", 4, 0x04, BANK0, }, |
| { "in_broadcasts", 4, 0x06, BANK0, }, |
| { "in_multicasts", 4, 0x07, BANK0, }, |
| { "in_pause", 4, 0x16, BANK0, }, |
| { "in_undersize", 4, 0x18, BANK0, }, |
| { "in_fragments", 4, 0x19, BANK0, }, |
| { "in_oversize", 4, 0x1a, BANK0, }, |
| { "in_jabber", 4, 0x1b, BANK0, }, |
| { "in_rx_error", 4, 0x1c, BANK0, }, |
| { "in_fcs_error", 4, 0x1d, BANK0, }, |
| { "out_octets", 8, 0x0e, BANK0, }, |
| { "out_unicast", 4, 0x10, BANK0, }, |
| { "out_broadcasts", 4, 0x13, BANK0, }, |
| { "out_multicasts", 4, 0x12, BANK0, }, |
| { "out_pause", 4, 0x15, BANK0, }, |
| { "excessive", 4, 0x11, BANK0, }, |
| { "collisions", 4, 0x1e, BANK0, }, |
| { "deferred", 4, 0x05, BANK0, }, |
| { "single", 4, 0x14, BANK0, }, |
| { "multiple", 4, 0x17, BANK0, }, |
| { "out_fcs_error", 4, 0x03, BANK0, }, |
| { "late", 4, 0x1f, BANK0, }, |
| { "hist_64bytes", 4, 0x08, BANK0, }, |
| { "hist_65_127bytes", 4, 0x09, BANK0, }, |
| { "hist_128_255bytes", 4, 0x0a, BANK0, }, |
| { "hist_256_511bytes", 4, 0x0b, BANK0, }, |
| { "hist_512_1023bytes", 4, 0x0c, BANK0, }, |
| { "hist_1024_max_bytes", 4, 0x0d, BANK0, }, |
| { "sw_in_discards", 4, 0x10, PORT, }, |
| { "sw_in_filtered", 2, 0x12, PORT, }, |
| { "sw_out_filtered", 2, 0x13, PORT, }, |
| { "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| { "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, }, |
| }; |
| |
| static bool mv88e6xxx_has_stat(struct dsa_switch *ds, |
| struct mv88e6xxx_hw_stat *stat) |
| { |
| switch (stat->type) { |
| case BANK0: |
| return true; |
| case BANK1: |
| return mv88e6xxx_6320_family(ds); |
| case PORT: |
| return mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6185_family(ds) || |
| mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6165_family(ds) || |
| mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6352_family(ds); |
| } |
| return false; |
| } |
| |
| static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds, |
| struct mv88e6xxx_hw_stat *s, |
| int port) |
| { |
| u32 low; |
| u32 high = 0; |
| int ret; |
| u64 value; |
| |
| switch (s->type) { |
| case PORT: |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg); |
| if (ret < 0) |
| return UINT64_MAX; |
| |
| low = ret; |
| if (s->sizeof_stat == 4) { |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), |
| s->reg + 1); |
| if (ret < 0) |
| return UINT64_MAX; |
| high = ret; |
| } |
| break; |
| case BANK0: |
| case BANK1: |
| _mv88e6xxx_stats_read(ds, s->reg, &low); |
| if (s->sizeof_stat == 8) |
| _mv88e6xxx_stats_read(ds, s->reg + 1, &high); |
| } |
| value = (((u64)high) << 16) | low; |
| return value; |
| } |
| |
| void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) |
| { |
| struct mv88e6xxx_hw_stat *stat; |
| int i, j; |
| |
| for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { |
| stat = &mv88e6xxx_hw_stats[i]; |
| if (mv88e6xxx_has_stat(ds, stat)) { |
| memcpy(data + j * ETH_GSTRING_LEN, stat->string, |
| ETH_GSTRING_LEN); |
| j++; |
| } |
| } |
| } |
| |
| int mv88e6xxx_get_sset_count(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_hw_stat *stat; |
| int i, j; |
| |
| for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { |
| stat = &mv88e6xxx_hw_stats[i]; |
| if (mv88e6xxx_has_stat(ds, stat)) |
| j++; |
| } |
| return j; |
| } |
| |
| void |
| mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, |
| int port, uint64_t *data) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_hw_stat *stat; |
| int ret; |
| int i, j; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_stats_snapshot(ds, port); |
| if (ret < 0) { |
| mutex_unlock(&ps->smi_mutex); |
| return; |
| } |
| for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) { |
| stat = &mv88e6xxx_hw_stats[i]; |
| if (mv88e6xxx_has_stat(ds, stat)) { |
| data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port); |
| j++; |
| } |
| } |
| |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) |
| { |
| return 32 * sizeof(u16); |
| } |
| |
| void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, |
| struct ethtool_regs *regs, void *_p) |
| { |
| u16 *p = _p; |
| int i; |
| |
| regs->version = 0; |
| |
| memset(p, 0xff, 32 * sizeof(u16)); |
| |
| for (i = 0; i < 32; i++) { |
| int ret; |
| |
| ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i); |
| if (ret >= 0) |
| p[i] = ret; |
| } |
| } |
| |
| static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, |
| u16 mask) |
| { |
| unsigned long timeout = jiffies + HZ / 10; |
| |
| while (time_before(jiffies, timeout)) { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, reg, offset); |
| if (ret < 0) |
| return ret; |
| if (!(ret & mask)) |
| return 0; |
| |
| usleep_range(1000, 2000); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_wait(ds, reg, offset, mask); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_phy_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_BUSY); |
| } |
| |
| int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds) |
| { |
| return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| GLOBAL2_EEPROM_OP_LOAD); |
| } |
| |
| int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds) |
| { |
| return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| GLOBAL2_EEPROM_OP_BUSY); |
| } |
| |
| static int _mv88e6xxx_atu_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP, |
| GLOBAL_ATU_OP_BUSY); |
| } |
| |
| static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, |
| int regnum) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_22_READ | (addr << 5) | |
| regnum); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_phy_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA); |
| } |
| |
| static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, |
| int regnum, u16 val) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | |
| regnum); |
| |
| return _mv88e6xxx_phy_wait(ds); |
| } |
| |
| int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| reg = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| if (reg < 0) |
| goto out; |
| |
| e->eee_enabled = !!(reg & 0x0200); |
| e->tx_lpi_enabled = !!(reg & 0x0100); |
| |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); |
| if (reg < 0) |
| goto out; |
| |
| e->eee_active = !!(reg & PORT_STATUS_EEE); |
| reg = 0; |
| |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| return reg; |
| } |
| |
| int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, |
| struct phy_device *phydev, struct ethtool_eee *e) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int reg; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| if (ret < 0) |
| goto out; |
| |
| reg = ret & ~0x0300; |
| if (e->eee_enabled) |
| reg |= 0x0200; |
| if (e->tx_lpi_enabled) |
| reg |= 0x0100; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg); |
| out: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 fid, u16 cmd) |
| { |
| int ret; |
| |
| if (mv88e6xxx_has_fid_reg(ds)) { |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid); |
| if (ret < 0) |
| return ret; |
| } else if (mv88e6xxx_num_databases(ds) == 256) { |
| /* ATU DBNum[7:4] are located in ATU Control 15:12 */ |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL, |
| (ret & 0xfff) | |
| ((fid << 8) & 0xf000)); |
| if (ret < 0) |
| return ret; |
| |
| /* ATU DBNum[3:0] are located in ATU Operation 3:0 */ |
| cmd |= fid & 0xf; |
| } |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_atu_wait(ds); |
| } |
| |
| static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds, |
| struct mv88e6xxx_atu_entry *entry) |
| { |
| u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK; |
| |
| if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| unsigned int mask, shift; |
| |
| if (entry->trunk) { |
| data |= GLOBAL_ATU_DATA_TRUNK; |
| mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| } else { |
| mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| } |
| |
| data |= (entry->portv_trunkid << shift) & mask; |
| } |
| |
| return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data); |
| } |
| |
| static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds, |
| struct mv88e6xxx_atu_entry *entry, |
| bool static_too) |
| { |
| int op; |
| int err; |
| |
| err = _mv88e6xxx_atu_wait(ds); |
| if (err) |
| return err; |
| |
| err = _mv88e6xxx_atu_data_write(ds, entry); |
| if (err) |
| return err; |
| |
| if (entry->fid) { |
| op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB : |
| GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB; |
| } else { |
| op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL : |
| GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC; |
| } |
| |
| return _mv88e6xxx_atu_cmd(ds, entry->fid, op); |
| } |
| |
| static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too) |
| { |
| struct mv88e6xxx_atu_entry entry = { |
| .fid = fid, |
| .state = 0, /* EntryState bits must be 0 */ |
| }; |
| |
| return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); |
| } |
| |
| static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port, |
| int to_port, bool static_too) |
| { |
| struct mv88e6xxx_atu_entry entry = { |
| .trunk = false, |
| .fid = fid, |
| }; |
| |
| /* EntryState bits must be 0xF */ |
| entry.state = GLOBAL_ATU_DATA_STATE_MASK; |
| |
| /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */ |
| entry.portv_trunkid = (to_port & 0x0f) << 4; |
| entry.portv_trunkid |= from_port & 0x0f; |
| |
| return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); |
| } |
| |
| static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port, |
| bool static_too) |
| { |
| /* Destination port 0xF means remove the entries */ |
| return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too); |
| } |
| |
| static const char * const mv88e6xxx_port_state_names[] = { |
| [PORT_CONTROL_STATE_DISABLED] = "Disabled", |
| [PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening", |
| [PORT_CONTROL_STATE_LEARNING] = "Learning", |
| [PORT_CONTROL_STATE_FORWARDING] = "Forwarding", |
| }; |
| |
| static int _mv88e6xxx_port_state(struct dsa_switch *ds, int port, u8 state) |
| { |
| int reg, ret = 0; |
| u8 oldstate; |
| |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL); |
| if (reg < 0) |
| return reg; |
| |
| oldstate = reg & PORT_CONTROL_STATE_MASK; |
| |
| if (oldstate != state) { |
| /* Flush forwarding database if we're moving a port |
| * from Learning or Forwarding state to Disabled or |
| * Blocking or Listening state. |
| */ |
| if ((oldstate == PORT_CONTROL_STATE_LEARNING || |
| oldstate == PORT_CONTROL_STATE_FORWARDING) |
| && (state == PORT_CONTROL_STATE_DISABLED || |
| state == PORT_CONTROL_STATE_BLOCKING)) { |
| ret = _mv88e6xxx_atu_remove(ds, 0, port, false); |
| if (ret) |
| return ret; |
| } |
| |
| reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, |
| reg); |
| if (ret) |
| return ret; |
| |
| netdev_dbg(ds->ports[port], "PortState %s (was %s)\n", |
| mv88e6xxx_port_state_names[state], |
| mv88e6xxx_port_state_names[oldstate]); |
| } |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_port_based_vlan_map(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct net_device *bridge = ps->ports[port].bridge_dev; |
| const u16 mask = (1 << ps->num_ports) - 1; |
| u16 output_ports = 0; |
| int reg; |
| int i; |
| |
| /* allow CPU port or DSA link(s) to send frames to every port */ |
| if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { |
| output_ports = mask; |
| } else { |
| for (i = 0; i < ps->num_ports; ++i) { |
| /* allow sending frames to every group member */ |
| if (bridge && ps->ports[i].bridge_dev == bridge) |
| output_ports |= BIT(i); |
| |
| /* allow sending frames to CPU port and DSA link(s) */ |
| if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) |
| output_ports |= BIT(i); |
| } |
| } |
| |
| /* prevent frames from going back out of the port they came in on */ |
| output_ports &= ~BIT(port); |
| |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN); |
| if (reg < 0) |
| return reg; |
| |
| reg &= ~mask; |
| reg |= output_ports & mask; |
| |
| return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg); |
| } |
| |
| void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int stp_state; |
| |
| switch (state) { |
| case BR_STATE_DISABLED: |
| stp_state = PORT_CONTROL_STATE_DISABLED; |
| break; |
| case BR_STATE_BLOCKING: |
| case BR_STATE_LISTENING: |
| stp_state = PORT_CONTROL_STATE_BLOCKING; |
| break; |
| case BR_STATE_LEARNING: |
| stp_state = PORT_CONTROL_STATE_LEARNING; |
| break; |
| case BR_STATE_FORWARDING: |
| default: |
| stp_state = PORT_CONTROL_STATE_FORWARDING; |
| break; |
| } |
| |
| /* mv88e6xxx_port_stp_state_set may be called with softirqs disabled, |
| * so we can not update the port state directly but need to schedule it. |
| */ |
| ps->ports[port].state = stp_state; |
| set_bit(port, ps->port_state_update_mask); |
| schedule_work(&ps->bridge_work); |
| } |
| |
| static int _mv88e6xxx_port_pvid(struct dsa_switch *ds, int port, u16 *new, |
| u16 *old) |
| { |
| u16 pvid; |
| int ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN); |
| if (ret < 0) |
| return ret; |
| |
| pvid = ret & PORT_DEFAULT_VLAN_MASK; |
| |
| if (new) { |
| ret &= ~PORT_DEFAULT_VLAN_MASK; |
| ret |= *new & PORT_DEFAULT_VLAN_MASK; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_DEFAULT_VLAN, ret); |
| if (ret < 0) |
| return ret; |
| |
| netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new, |
| pvid); |
| } |
| |
| if (old) |
| *old = pvid; |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid) |
| { |
| return _mv88e6xxx_port_pvid(ds, port, NULL, pvid); |
| } |
| |
| static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid) |
| { |
| return _mv88e6xxx_port_pvid(ds, port, &pvid, NULL); |
| } |
| |
| static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds) |
| { |
| return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP, |
| GLOBAL_VTU_OP_BUSY); |
| } |
| |
| static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_vtu_wait(ds); |
| } |
| |
| static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_vtu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL); |
| } |
| |
| static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds, |
| struct mv88e6xxx_vtu_stu_entry *entry, |
| unsigned int nibble_offset) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 regs[3]; |
| int i; |
| int ret; |
| |
| for (i = 0; i < 3; ++i) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_VTU_DATA_0_3 + i); |
| if (ret < 0) |
| return ret; |
| |
| regs[i] = ret; |
| } |
| |
| for (i = 0; i < ps->num_ports; ++i) { |
| unsigned int shift = (i % 4) * 4 + nibble_offset; |
| u16 reg = regs[i / 4]; |
| |
| entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds, |
| struct mv88e6xxx_vtu_stu_entry *entry, |
| unsigned int nibble_offset) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 regs[3] = { 0 }; |
| int i; |
| int ret; |
| |
| for (i = 0; i < ps->num_ports; ++i) { |
| unsigned int shift = (i % 4) * 4 + nibble_offset; |
| u8 data = entry->data[i]; |
| |
| regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift; |
| } |
| |
| for (i = 0; i < 3; ++i) { |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, |
| GLOBAL_VTU_DATA_0_3 + i, regs[i]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid) |
| { |
| return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, |
| vid & GLOBAL_VTU_VID_MASK); |
| } |
| |
| static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds, |
| struct mv88e6xxx_vtu_stu_entry *entry) |
| { |
| struct mv88e6xxx_vtu_stu_entry next = { 0 }; |
| int ret; |
| |
| ret = _mv88e6xxx_vtu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); |
| if (ret < 0) |
| return ret; |
| |
| next.vid = ret & GLOBAL_VTU_VID_MASK; |
| next.valid = !!(ret & GLOBAL_VTU_VID_VALID); |
| |
| if (next.valid) { |
| ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0); |
| if (ret < 0) |
| return ret; |
| |
| if (mv88e6xxx_has_fid_reg(ds)) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_VTU_FID); |
| if (ret < 0) |
| return ret; |
| |
| next.fid = ret & GLOBAL_VTU_FID_MASK; |
| } else if (mv88e6xxx_num_databases(ds) == 256) { |
| /* VTU DBNum[7:4] are located in VTU Operation 11:8, and |
| * VTU DBNum[3:0] are located in VTU Operation 3:0 |
| */ |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_VTU_OP); |
| if (ret < 0) |
| return ret; |
| |
| next.fid = (ret & 0xf00) >> 4; |
| next.fid |= ret & 0xf; |
| } |
| |
| if (mv88e6xxx_has_stu(ds)) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_VTU_SID); |
| if (ret < 0) |
| return ret; |
| |
| next.sid = ret & GLOBAL_VTU_SID_MASK; |
| } |
| } |
| |
| *entry = next; |
| return 0; |
| } |
| |
| int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port, |
| struct switchdev_obj_port_vlan *vlan, |
| int (*cb)(struct switchdev_obj *obj)) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_vtu_stu_entry next; |
| u16 pvid; |
| int err; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| err = _mv88e6xxx_port_pvid_get(ds, port, &pvid); |
| if (err) |
| goto unlock; |
| |
| err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK); |
| if (err) |
| goto unlock; |
| |
| do { |
| err = _mv88e6xxx_vtu_getnext(ds, &next); |
| if (err) |
| break; |
| |
| if (!next.valid) |
| break; |
| |
| if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) |
| continue; |
| |
| /* reinit and dump this VLAN obj */ |
| vlan->vid_begin = vlan->vid_end = next.vid; |
| vlan->flags = 0; |
| |
| if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED) |
| vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED; |
| |
| if (next.vid == pvid) |
| vlan->flags |= BRIDGE_VLAN_INFO_PVID; |
| |
| err = cb(&vlan->obj); |
| if (err) |
| break; |
| } while (next.vid < GLOBAL_VTU_VID_MASK); |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds, |
| struct mv88e6xxx_vtu_stu_entry *entry) |
| { |
| u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE; |
| u16 reg = 0; |
| int ret; |
| |
| ret = _mv88e6xxx_vtu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| if (!entry->valid) |
| goto loadpurge; |
| |
| /* Write port member tags */ |
| ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0); |
| if (ret < 0) |
| return ret; |
| |
| if (mv88e6xxx_has_stu(ds)) { |
| reg = entry->sid & GLOBAL_VTU_SID_MASK; |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (mv88e6xxx_has_fid_reg(ds)) { |
| reg = entry->fid & GLOBAL_VTU_FID_MASK; |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg); |
| if (ret < 0) |
| return ret; |
| } else if (mv88e6xxx_num_databases(ds) == 256) { |
| /* VTU DBNum[7:4] are located in VTU Operation 11:8, and |
| * VTU DBNum[3:0] are located in VTU Operation 3:0 |
| */ |
| op |= (entry->fid & 0xf0) << 8; |
| op |= entry->fid & 0xf; |
| } |
| |
| reg = GLOBAL_VTU_VID_VALID; |
| loadpurge: |
| reg |= entry->vid & GLOBAL_VTU_VID_MASK; |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_vtu_cmd(ds, op); |
| } |
| |
| static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid, |
| struct mv88e6xxx_vtu_stu_entry *entry) |
| { |
| struct mv88e6xxx_vtu_stu_entry next = { 0 }; |
| int ret; |
| |
| ret = _mv88e6xxx_vtu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, |
| sid & GLOBAL_VTU_SID_MASK); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID); |
| if (ret < 0) |
| return ret; |
| |
| next.sid = ret & GLOBAL_VTU_SID_MASK; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); |
| if (ret < 0) |
| return ret; |
| |
| next.valid = !!(ret & GLOBAL_VTU_VID_VALID); |
| |
| if (next.valid) { |
| ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2); |
| if (ret < 0) |
| return ret; |
| } |
| |
| *entry = next; |
| return 0; |
| } |
| |
| static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds, |
| struct mv88e6xxx_vtu_stu_entry *entry) |
| { |
| u16 reg = 0; |
| int ret; |
| |
| ret = _mv88e6xxx_vtu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| if (!entry->valid) |
| goto loadpurge; |
| |
| /* Write port states */ |
| ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2); |
| if (ret < 0) |
| return ret; |
| |
| reg = GLOBAL_VTU_VID_VALID; |
| loadpurge: |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); |
| if (ret < 0) |
| return ret; |
| |
| reg = entry->sid & GLOBAL_VTU_SID_MASK; |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE); |
| } |
| |
| static int _mv88e6xxx_port_fid(struct dsa_switch *ds, int port, u16 *new, |
| u16 *old) |
| { |
| u16 upper_mask; |
| u16 fid; |
| int ret; |
| |
| if (mv88e6xxx_num_databases(ds) == 4096) |
| upper_mask = 0xff; |
| else if (mv88e6xxx_num_databases(ds) == 256) |
| upper_mask = 0xf; |
| else |
| return -EOPNOTSUPP; |
| |
| /* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */ |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN); |
| if (ret < 0) |
| return ret; |
| |
| fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12; |
| |
| if (new) { |
| ret &= ~PORT_BASE_VLAN_FID_3_0_MASK; |
| ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, |
| ret); |
| if (ret < 0) |
| return ret; |
| } |
| |
| /* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */ |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_1); |
| if (ret < 0) |
| return ret; |
| |
| fid |= (ret & upper_mask) << 4; |
| |
| if (new) { |
| ret &= ~upper_mask; |
| ret |= (*new >> 4) & upper_mask; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, |
| ret); |
| if (ret < 0) |
| return ret; |
| |
| netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid); |
| } |
| |
| if (old) |
| *old = fid; |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_port_fid_get(struct dsa_switch *ds, int port, u16 *fid) |
| { |
| return _mv88e6xxx_port_fid(ds, port, NULL, fid); |
| } |
| |
| static int _mv88e6xxx_port_fid_set(struct dsa_switch *ds, int port, u16 fid) |
| { |
| return _mv88e6xxx_port_fid(ds, port, &fid, NULL); |
| } |
| |
| static int _mv88e6xxx_fid_new(struct dsa_switch *ds, u16 *fid) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID); |
| struct mv88e6xxx_vtu_stu_entry vlan; |
| int i, err; |
| |
| bitmap_zero(fid_bitmap, MV88E6XXX_N_FID); |
| |
| /* Set every FID bit used by the (un)bridged ports */ |
| for (i = 0; i < ps->num_ports; ++i) { |
| err = _mv88e6xxx_port_fid_get(ds, i, fid); |
| if (err) |
| return err; |
| |
| set_bit(*fid, fid_bitmap); |
| } |
| |
| /* Set every FID bit used by the VLAN entries */ |
| err = _mv88e6xxx_vtu_vid_write(ds, GLOBAL_VTU_VID_MASK); |
| if (err) |
| return err; |
| |
| do { |
| err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| if (err) |
| return err; |
| |
| if (!vlan.valid) |
| break; |
| |
| set_bit(vlan.fid, fid_bitmap); |
| } while (vlan.vid < GLOBAL_VTU_VID_MASK); |
| |
| /* The reset value 0x000 is used to indicate that multiple address |
| * databases are not needed. Return the next positive available. |
| */ |
| *fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1); |
| if (unlikely(*fid >= mv88e6xxx_num_databases(ds))) |
| return -ENOSPC; |
| |
| /* Clear the database */ |
| return _mv88e6xxx_atu_flush(ds, *fid, true); |
| } |
| |
| static int _mv88e6xxx_vtu_new(struct dsa_switch *ds, u16 vid, |
| struct mv88e6xxx_vtu_stu_entry *entry) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_vtu_stu_entry vlan = { |
| .valid = true, |
| .vid = vid, |
| }; |
| int i, err; |
| |
| err = _mv88e6xxx_fid_new(ds, &vlan.fid); |
| if (err) |
| return err; |
| |
| /* exclude all ports except the CPU and DSA ports */ |
| for (i = 0; i < ps->num_ports; ++i) |
| vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i) |
| ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED |
| : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; |
| |
| if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { |
| struct mv88e6xxx_vtu_stu_entry vstp; |
| |
| /* Adding a VTU entry requires a valid STU entry. As VSTP is not |
| * implemented, only one STU entry is needed to cover all VTU |
| * entries. Thus, validate the SID 0. |
| */ |
| vlan.sid = 0; |
| err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp); |
| if (err) |
| return err; |
| |
| if (vstp.sid != vlan.sid || !vstp.valid) { |
| memset(&vstp, 0, sizeof(vstp)); |
| vstp.valid = true; |
| vstp.sid = vlan.sid; |
| |
| err = _mv88e6xxx_stu_loadpurge(ds, &vstp); |
| if (err) |
| return err; |
| } |
| } |
| |
| *entry = vlan; |
| return 0; |
| } |
| |
| static int _mv88e6xxx_vtu_get(struct dsa_switch *ds, u16 vid, |
| struct mv88e6xxx_vtu_stu_entry *entry, bool creat) |
| { |
| int err; |
| |
| if (!vid) |
| return -EINVAL; |
| |
| err = _mv88e6xxx_vtu_vid_write(ds, vid - 1); |
| if (err) |
| return err; |
| |
| err = _mv88e6xxx_vtu_getnext(ds, entry); |
| if (err) |
| return err; |
| |
| if (entry->vid != vid || !entry->valid) { |
| if (!creat) |
| return -EOPNOTSUPP; |
| /* -ENOENT would've been more appropriate, but switchdev expects |
| * -EOPNOTSUPP to inform bridge about an eventual software VLAN. |
| */ |
| |
| err = _mv88e6xxx_vtu_new(ds, vid, entry); |
| } |
| |
| return err; |
| } |
| |
| static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port, |
| u16 vid_begin, u16 vid_end) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_vtu_stu_entry vlan; |
| int i, err; |
| |
| if (!vid_begin) |
| return -EOPNOTSUPP; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| err = _mv88e6xxx_vtu_vid_write(ds, vid_begin - 1); |
| if (err) |
| goto unlock; |
| |
| do { |
| err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| if (err) |
| goto unlock; |
| |
| if (!vlan.valid) |
| break; |
| |
| if (vlan.vid > vid_end) |
| break; |
| |
| for (i = 0; i < ps->num_ports; ++i) { |
| if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i)) |
| continue; |
| |
| if (vlan.data[i] == |
| GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) |
| continue; |
| |
| if (ps->ports[i].bridge_dev == |
| ps->ports[port].bridge_dev) |
| break; /* same bridge, check next VLAN */ |
| |
| netdev_warn(ds->ports[port], |
| "hardware VLAN %d already used by %s\n", |
| vlan.vid, |
| netdev_name(ps->ports[i].bridge_dev)); |
| err = -EOPNOTSUPP; |
| goto unlock; |
| } |
| } while (vlan.vid < vid_end); |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| static const char * const mv88e6xxx_port_8021q_mode_names[] = { |
| [PORT_CONTROL_2_8021Q_DISABLED] = "Disabled", |
| [PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback", |
| [PORT_CONTROL_2_8021Q_CHECK] = "Check", |
| [PORT_CONTROL_2_8021Q_SECURE] = "Secure", |
| }; |
| |
| int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port, |
| bool vlan_filtering) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE : |
| PORT_CONTROL_2_8021Q_DISABLED; |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL_2); |
| if (ret < 0) |
| goto unlock; |
| |
| old = ret & PORT_CONTROL_2_8021Q_MASK; |
| |
| if (new != old) { |
| ret &= ~PORT_CONTROL_2_8021Q_MASK; |
| ret |= new & PORT_CONTROL_2_8021Q_MASK; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_2, |
| ret); |
| if (ret < 0) |
| goto unlock; |
| |
| netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n", |
| mv88e6xxx_port_8021q_mode_names[new], |
| mv88e6xxx_port_8021q_mode_names[old]); |
| } |
| |
| ret = 0; |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan, |
| struct switchdev_trans *trans) |
| { |
| int err; |
| |
| /* If the requested port doesn't belong to the same bridge as the VLAN |
| * members, do not support it (yet) and fallback to software VLAN. |
| */ |
| err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin, |
| vlan->vid_end); |
| if (err) |
| return err; |
| |
| /* We don't need any dynamic resource from the kernel (yet), |
| * so skip the prepare phase. |
| */ |
| return 0; |
| } |
| |
| static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid, |
| bool untagged) |
| { |
| struct mv88e6xxx_vtu_stu_entry vlan; |
| int err; |
| |
| err = _mv88e6xxx_vtu_get(ds, vid, &vlan, true); |
| if (err) |
| return err; |
| |
| vlan.data[port] = untagged ? |
| GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED : |
| GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED; |
| |
| return _mv88e6xxx_vtu_loadpurge(ds, &vlan); |
| } |
| |
| void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan, |
| struct switchdev_trans *trans) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; |
| bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; |
| u16 vid; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) |
| if (_mv88e6xxx_port_vlan_add(ds, port, vid, untagged)) |
| netdev_err(ds->ports[port], "failed to add VLAN %d%c\n", |
| vid, untagged ? 'u' : 't'); |
| |
| if (pvid && _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end)) |
| netdev_err(ds->ports[port], "failed to set PVID %d\n", |
| vlan->vid_end); |
| |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_vtu_stu_entry vlan; |
| int i, err; |
| |
| err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false); |
| if (err) |
| return err; |
| |
| /* Tell switchdev if this VLAN is handled in software */ |
| if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) |
| return -EOPNOTSUPP; |
| |
| vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; |
| |
| /* keep the VLAN unless all ports are excluded */ |
| vlan.valid = false; |
| for (i = 0; i < ps->num_ports; ++i) { |
| if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) |
| continue; |
| |
| if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) { |
| vlan.valid = true; |
| break; |
| } |
| } |
| |
| err = _mv88e6xxx_vtu_loadpurge(ds, &vlan); |
| if (err) |
| return err; |
| |
| return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false); |
| } |
| |
| int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_vlan *vlan) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 pvid, vid; |
| int err = 0; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| err = _mv88e6xxx_port_pvid_get(ds, port, &pvid); |
| if (err) |
| goto unlock; |
| |
| for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { |
| err = _mv88e6xxx_port_vlan_del(ds, port, vid); |
| if (err) |
| goto unlock; |
| |
| if (vid == pvid) { |
| err = _mv88e6xxx_port_pvid_set(ds, port, 0); |
| if (err) |
| goto unlock; |
| } |
| } |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds, |
| const unsigned char *addr) |
| { |
| int i, ret; |
| |
| for (i = 0; i < 3; i++) { |
| ret = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, |
| (addr[i * 2] << 8) | addr[i * 2 + 1]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr) |
| { |
| int i, ret; |
| |
| for (i = 0; i < 3; i++) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| GLOBAL_ATU_MAC_01 + i); |
| if (ret < 0) |
| return ret; |
| addr[i * 2] = ret >> 8; |
| addr[i * 2 + 1] = ret & 0xff; |
| } |
| |
| return 0; |
| } |
| |
| static int _mv88e6xxx_atu_load(struct dsa_switch *ds, |
| struct mv88e6xxx_atu_entry *entry) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_atu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_mac_write(ds, entry->mac); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_data_write(ds, entry); |
| if (ret < 0) |
| return ret; |
| |
| return _mv88e6xxx_atu_cmd(ds, entry->fid, GLOBAL_ATU_OP_LOAD_DB); |
| } |
| |
| static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port, |
| const unsigned char *addr, u16 vid, |
| u8 state) |
| { |
| struct mv88e6xxx_atu_entry entry = { 0 }; |
| struct mv88e6xxx_vtu_stu_entry vlan; |
| int err; |
| |
| /* Null VLAN ID corresponds to the port private database */ |
| if (vid == 0) |
| err = _mv88e6xxx_port_fid_get(ds, port, &vlan.fid); |
| else |
| err = _mv88e6xxx_vtu_get(ds, vid, &vlan, false); |
| if (err) |
| return err; |
| |
| entry.fid = vlan.fid; |
| entry.state = state; |
| ether_addr_copy(entry.mac, addr); |
| if (state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| entry.trunk = false; |
| entry.portv_trunkid = BIT(port); |
| } |
| |
| return _mv88e6xxx_atu_load(ds, &entry); |
| } |
| |
| int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_fdb *fdb, |
| struct switchdev_trans *trans) |
| { |
| /* We don't need any dynamic resource from the kernel (yet), |
| * so skip the prepare phase. |
| */ |
| return 0; |
| } |
| |
| void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_fdb *fdb, |
| struct switchdev_trans *trans) |
| { |
| int state = is_multicast_ether_addr(fdb->addr) ? |
| GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| GLOBAL_ATU_DATA_STATE_UC_STATIC; |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| mutex_lock(&ps->smi_mutex); |
| if (_mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state)) |
| netdev_err(ds->ports[port], "failed to load MAC address\n"); |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, |
| const struct switchdev_obj_port_fdb *fdb) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, |
| GLOBAL_ATU_DATA_STATE_UNUSED); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid, |
| struct mv88e6xxx_atu_entry *entry) |
| { |
| struct mv88e6xxx_atu_entry next = { 0 }; |
| int ret; |
| |
| next.fid = fid; |
| |
| ret = _mv88e6xxx_atu_wait(ds); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_cmd(ds, fid, GLOBAL_ATU_OP_GET_NEXT_DB); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_atu_mac_read(ds, next.mac); |
| if (ret < 0) |
| return ret; |
| |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); |
| if (ret < 0) |
| return ret; |
| |
| next.state = ret & GLOBAL_ATU_DATA_STATE_MASK; |
| if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| unsigned int mask, shift; |
| |
| if (ret & GLOBAL_ATU_DATA_TRUNK) { |
| next.trunk = true; |
| mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| } else { |
| next.trunk = false; |
| mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| } |
| |
| next.portv_trunkid = (ret & mask) >> shift; |
| } |
| |
| *entry = next; |
| return 0; |
| } |
| |
| static int _mv88e6xxx_port_fdb_dump_one(struct dsa_switch *ds, u16 fid, u16 vid, |
| int port, |
| struct switchdev_obj_port_fdb *fdb, |
| int (*cb)(struct switchdev_obj *obj)) |
| { |
| struct mv88e6xxx_atu_entry addr = { |
| .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, |
| }; |
| int err; |
| |
| err = _mv88e6xxx_atu_mac_write(ds, addr.mac); |
| if (err) |
| return err; |
| |
| do { |
| err = _mv88e6xxx_atu_getnext(ds, fid, &addr); |
| if (err) |
| break; |
| |
| if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED) |
| break; |
| |
| if (!addr.trunk && addr.portv_trunkid & BIT(port)) { |
| bool is_static = addr.state == |
| (is_multicast_ether_addr(addr.mac) ? |
| GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| GLOBAL_ATU_DATA_STATE_UC_STATIC); |
| |
| fdb->vid = vid; |
| ether_addr_copy(fdb->addr, addr.mac); |
| fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE; |
| |
| err = cb(&fdb->obj); |
| if (err) |
| break; |
| } |
| } while (!is_broadcast_ether_addr(addr.mac)); |
| |
| return err; |
| } |
| |
| int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port, |
| struct switchdev_obj_port_fdb *fdb, |
| int (*cb)(struct switchdev_obj *obj)) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct mv88e6xxx_vtu_stu_entry vlan = { |
| .vid = GLOBAL_VTU_VID_MASK, /* all ones */ |
| }; |
| u16 fid; |
| int err; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| /* Dump port's default Filtering Information Database (VLAN ID 0) */ |
| err = _mv88e6xxx_port_fid_get(ds, port, &fid); |
| if (err) |
| goto unlock; |
| |
| err = _mv88e6xxx_port_fdb_dump_one(ds, fid, 0, port, fdb, cb); |
| if (err) |
| goto unlock; |
| |
| /* Dump VLANs' Filtering Information Databases */ |
| err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid); |
| if (err) |
| goto unlock; |
| |
| do { |
| err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| if (err) |
| break; |
| |
| if (!vlan.valid) |
| break; |
| |
| err = _mv88e6xxx_port_fdb_dump_one(ds, vlan.fid, vlan.vid, port, |
| fdb, cb); |
| if (err) |
| break; |
| } while (vlan.vid < GLOBAL_VTU_VID_MASK); |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, |
| struct net_device *bridge) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 fid; |
| int i, err; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| /* Get or create the bridge FID and assign it to the port */ |
| for (i = 0; i < ps->num_ports; ++i) |
| if (ps->ports[i].bridge_dev == bridge) |
| break; |
| |
| if (i < ps->num_ports) |
| err = _mv88e6xxx_port_fid_get(ds, i, &fid); |
| else |
| err = _mv88e6xxx_fid_new(ds, &fid); |
| if (err) |
| goto unlock; |
| |
| err = _mv88e6xxx_port_fid_set(ds, port, fid); |
| if (err) |
| goto unlock; |
| |
| /* Assign the bridge and remap each port's VLANTable */ |
| ps->ports[port].bridge_dev = bridge; |
| |
| for (i = 0; i < ps->num_ports; ++i) { |
| if (ps->ports[i].bridge_dev == bridge) { |
| err = _mv88e6xxx_port_based_vlan_map(ds, i); |
| if (err) |
| break; |
| } |
| } |
| |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| struct net_device *bridge = ps->ports[port].bridge_dev; |
| u16 fid; |
| int i; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| /* Give the port a fresh Filtering Information Database */ |
| if (_mv88e6xxx_fid_new(ds, &fid) || |
| _mv88e6xxx_port_fid_set(ds, port, fid)) |
| netdev_warn(ds->ports[port], "failed to assign a new FID\n"); |
| |
| /* Unassign the bridge and remap each port's VLANTable */ |
| ps->ports[port].bridge_dev = NULL; |
| |
| for (i = 0; i < ps->num_ports; ++i) |
| if (i == port || ps->ports[i].bridge_dev == bridge) |
| if (_mv88e6xxx_port_based_vlan_map(ds, i)) |
| netdev_warn(ds->ports[i], "failed to remap\n"); |
| |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| static void mv88e6xxx_bridge_work(struct work_struct *work) |
| { |
| struct mv88e6xxx_priv_state *ps; |
| struct dsa_switch *ds; |
| int port; |
| |
| ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work); |
| ds = ps->ds; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| for (port = 0; port < ps->num_ports; ++port) |
| if (test_and_clear_bit(port, ps->port_state_update_mask) && |
| _mv88e6xxx_port_state(ds, port, ps->ports[port].state)) |
| netdev_warn(ds->ports[port], "failed to update state to %s\n", |
| mv88e6xxx_port_state_names[ps->ports[port].state]); |
| |
| mutex_unlock(&ps->smi_mutex); |
| } |
| |
| static int _mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, |
| int reg, int val) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| if (ret < 0) |
| goto restore_page_0; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val); |
| restore_page_0: |
| _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| |
| return ret; |
| } |
| |
| static int _mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, |
| int reg) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| if (ret < 0) |
| goto restore_page_0; |
| |
| ret = _mv88e6xxx_phy_read_indirect(ds, port, reg); |
| restore_page_0: |
| _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| |
| return ret; |
| } |
| |
| static int mv88e6xxx_power_on_serdes(struct dsa_switch *ds) |
| { |
| int ret; |
| |
| ret = _mv88e6xxx_phy_page_read(ds, REG_FIBER_SERDES, PAGE_FIBER_SERDES, |
| MII_BMCR); |
| if (ret < 0) |
| return ret; |
| |
| if (ret & BMCR_PDOWN) { |
| ret &= ~BMCR_PDOWN; |
| ret = _mv88e6xxx_phy_page_write(ds, REG_FIBER_SERDES, |
| PAGE_FIBER_SERDES, MII_BMCR, |
| ret); |
| } |
| |
| return ret; |
| } |
| |
| static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| u16 reg; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) { |
| /* MAC Forcing register: don't force link, speed, |
| * duplex or flow control state to any particular |
| * values on physical ports, but force the CPU port |
| * and all DSA ports to their maximum bandwidth and |
| * full duplex. |
| */ |
| reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); |
| if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { |
| reg &= ~PORT_PCS_CTRL_UNFORCED; |
| reg |= PORT_PCS_CTRL_FORCE_LINK | |
| PORT_PCS_CTRL_LINK_UP | |
| PORT_PCS_CTRL_DUPLEX_FULL | |
| PORT_PCS_CTRL_FORCE_DUPLEX; |
| if (mv88e6xxx_6065_family(ds)) |
| reg |= PORT_PCS_CTRL_100; |
| else |
| reg |= PORT_PCS_CTRL_1000; |
| } else { |
| reg |= PORT_PCS_CTRL_UNFORCED; |
| } |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PCS_CTRL, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, |
| * disable Header mode, enable IGMP/MLD snooping, disable VLAN |
| * tunneling, determine priority by looking at 802.1p and IP |
| * priority fields (IP prio has precedence), and set STP state |
| * to Forwarding. |
| * |
| * If this is the CPU link, use DSA or EDSA tagging depending |
| * on which tagging mode was configured. |
| * |
| * If this is a link to another switch, use DSA tagging mode. |
| * |
| * If this is the upstream port for this switch, enable |
| * forwarding of unknown unicasts and multicasts. |
| */ |
| reg = 0; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) |
| reg = PORT_CONTROL_IGMP_MLD_SNOOP | |
| PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | |
| PORT_CONTROL_STATE_FORWARDING; |
| if (dsa_is_cpu_port(ds, port)) { |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| reg |= PORT_CONTROL_DSA_TAG; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA; |
| else |
| reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| reg |= PORT_CONTROL_FORWARD_UNKNOWN | |
| PORT_CONTROL_FORWARD_UNKNOWN_MC; |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) { |
| if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| reg |= PORT_CONTROL_EGRESS_ADD_TAG; |
| } |
| } |
| if (dsa_is_dsa_port(ds, port)) { |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| reg |= PORT_CONTROL_DSA_TAG; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| } |
| |
| if (port == dsa_upstream_port(ds)) |
| reg |= PORT_CONTROL_FORWARD_UNKNOWN | |
| PORT_CONTROL_FORWARD_UNKNOWN_MC; |
| } |
| if (reg) { |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_CONTROL, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* If this port is connected to a SerDes, make sure the SerDes is not |
| * powered down. |
| */ |
| if (mv88e6xxx_6352_family(ds)) { |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); |
| if (ret < 0) |
| goto abort; |
| ret &= PORT_STATUS_CMODE_MASK; |
| if ((ret == PORT_STATUS_CMODE_100BASE_X) || |
| (ret == PORT_STATUS_CMODE_1000BASE_X) || |
| (ret == PORT_STATUS_CMODE_SGMII)) { |
| ret = mv88e6xxx_power_on_serdes(ds); |
| if (ret < 0) |
| goto abort; |
| } |
| } |
| |
| /* Port Control 2: don't force a good FCS, set the maximum frame size to |
| * 10240 bytes, disable 802.1q tags checking, don't discard tagged or |
| * untagged frames on this port, do a destination address lookup on all |
| * received packets as usual, disable ARP mirroring and don't send a |
| * copy of all transmitted/received frames on this port to the CPU. |
| */ |
| reg = 0; |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds) || |
| mv88e6xxx_6185_family(ds)) |
| reg = PORT_CONTROL_2_MAP_DA; |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds)) |
| reg |= PORT_CONTROL_2_JUMBO_10240; |
| |
| if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) { |
| /* Set the upstream port this port should use */ |
| reg |= dsa_upstream_port(ds); |
| /* enable forwarding of unknown multicast addresses to |
| * the upstream port |
| */ |
| if (port == dsa_upstream_port(ds)) |
| reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; |
| } |
| |
| reg |= PORT_CONTROL_2_8021Q_DISABLED; |
| |
| if (reg) { |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_CONTROL_2, reg); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Association Vector: when learning source addresses |
| * of packets, add the address to the address database using |
| * a port bitmap that has only the bit for this port set and |
| * the other bits clear. |
| */ |
| reg = 1 << port; |
| /* Disable learning for DSA and CPU ports */ |
| if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) |
| reg = PORT_ASSOC_VECTOR_LOCKED_PORT; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg); |
| if (ret) |
| goto abort; |
| |
| /* Egress rate control 2: disable egress rate control. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2, |
| 0x0000); |
| if (ret) |
| goto abort; |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Do not limit the period of time that this port can |
| * be paused for by the remote end or the period of |
| * time that this port can pause the remote end. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PAUSE_CTRL, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port ATU control: disable limiting the number of |
| * address database entries that this port is allowed |
| * to use. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_ATU_CONTROL, 0x0000); |
| /* Priority Override: disable DA, SA and VTU priority |
| * override. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_PRI_OVERRIDE, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port Ethertype: use the Ethertype DSA Ethertype |
| * value. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_ETH_TYPE, ETH_P_EDSA); |
| if (ret) |
| goto abort; |
| /* Tag Remap: use an identity 802.1p prio -> switch |
| * prio mapping. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_TAG_REGMAP_0123, 0x3210); |
| if (ret) |
| goto abort; |
| |
| /* Tag Remap 2: use an identity 802.1p prio -> switch |
| * prio mapping. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_TAG_REGMAP_4567, 0x7654); |
| if (ret) |
| goto abort; |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Rate Control: disable ingress rate limiting. */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| PORT_RATE_CONTROL, 0x0001); |
| if (ret) |
| goto abort; |
| } |
| |
| /* Port Control 1: disable trunking, disable sending |
| * learning messages to this port. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000); |
| if (ret) |
| goto abort; |
| |
| /* Port based VLAN map: give each port its own address |
| * database, and allow bidirectional communication between the |
| * CPU and DSA port(s), and the other ports. |
| */ |
| ret = _mv88e6xxx_port_fid_set(ds, port, port + 1); |
| if (ret) |
| goto abort; |
| |
| ret = _mv88e6xxx_port_based_vlan_map(ds, port); |
| if (ret) |
| goto abort; |
| |
| /* Default VLAN ID and priority: don't set a default VLAN |
| * ID, and set the default packet priority to zero. |
| */ |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, |
| 0x0000); |
| abort: |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int mv88e6xxx_setup_ports(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int i; |
| |
| for (i = 0; i < ps->num_ports; i++) { |
| ret = mv88e6xxx_setup_port(ds, i); |
| if (ret < 0) |
| return ret; |
| } |
| return 0; |
| } |
| |
| int mv88e6xxx_setup_common(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| ps->ds = ds; |
| mutex_init(&ps->smi_mutex); |
| |
| INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work); |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_setup_global(struct dsa_switch *ds) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int err; |
| int i; |
| |
| mutex_lock(&ps->smi_mutex); |
| /* Set the default address aging time to 5 minutes, and |
| * enable address learn messages to be sent to all message |
| * ports. |
| */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_CONTROL, |
| 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL); |
| if (err) |
| goto unlock; |
| |
| /* Configure the IP ToS mapping registers. */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); |
| if (err) |
| goto unlock; |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); |
| if (err) |
| goto unlock; |
| |
| /* Configure the IEEE 802.1p priority mapping register. */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); |
| if (err) |
| goto unlock; |
| |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:0x to the CPU port. |
| */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); |
| if (err) |
| goto unlock; |
| |
| /* Ignore removed tag data on doubly tagged packets, disable |
| * flow control messages, force flow control priority to the |
| * highest, and send all special multicast frames to the CPU |
| * port at the highest priority. |
| */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, |
| 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 | |
| GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI); |
| if (err) |
| goto unlock; |
| |
| /* Program the DSA routing table. */ |
| for (i = 0; i < 32; i++) { |
| int nexthop = 0x1f; |
| |
| if (ds->pd->rtable && |
| i != ds->index && i < ds->dst->pd->nr_chips) |
| nexthop = ds->pd->rtable[i] & 0x1f; |
| |
| err = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL2, |
| GLOBAL2_DEVICE_MAPPING, |
| GLOBAL2_DEVICE_MAPPING_UPDATE | |
| (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop); |
| if (err) |
| goto unlock; |
| } |
| |
| /* Clear all trunk masks. */ |
| for (i = 0; i < 8; i++) { |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, |
| 0x8000 | |
| (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) | |
| ((1 << ps->num_ports) - 1)); |
| if (err) |
| goto unlock; |
| } |
| |
| /* Clear all trunk mappings. */ |
| for (i = 0; i < 16; i++) { |
| err = _mv88e6xxx_reg_write( |
| ds, REG_GLOBAL2, |
| GLOBAL2_TRUNK_MAPPING, |
| GLOBAL2_TRUNK_MAPPING_UPDATE | |
| (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT)); |
| if (err) |
| goto unlock; |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Send all frames with destination addresses matching |
| * 01:80:c2:00:00:2x to the CPU port. |
| */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, |
| GLOBAL2_MGMT_EN_2X, 0xffff); |
| if (err) |
| goto unlock; |
| |
| /* Initialise cross-chip port VLAN table to reset |
| * defaults. |
| */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, |
| GLOBAL2_PVT_ADDR, 0x9000); |
| if (err) |
| goto unlock; |
| |
| /* Clear the priority override table. */ |
| for (i = 0; i < 16; i++) { |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, |
| GLOBAL2_PRIO_OVERRIDE, |
| 0x8000 | (i << 8)); |
| if (err) |
| goto unlock; |
| } |
| } |
| |
| if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| mv88e6xxx_6320_family(ds)) { |
| /* Disable ingress rate limiting by resetting all |
| * ingress rate limit registers to their initial |
| * state. |
| */ |
| for (i = 0; i < ps->num_ports; i++) { |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, |
| GLOBAL2_INGRESS_OP, |
| 0x9000 | (i << 8)); |
| if (err) |
| goto unlock; |
| } |
| } |
| |
| /* Clear the statistics counters for all ports */ |
| err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| GLOBAL_STATS_OP_FLUSH_ALL); |
| if (err) |
| goto unlock; |
| |
| /* Wait for the flush to complete. */ |
| err = _mv88e6xxx_stats_wait(ds); |
| if (err < 0) |
| goto unlock; |
| |
| /* Clear all ATU entries */ |
| err = _mv88e6xxx_atu_flush(ds, 0, true); |
| if (err < 0) |
| goto unlock; |
| |
| /* Clear all the VTU and STU entries */ |
| err = _mv88e6xxx_vtu_stu_flush(ds); |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return err; |
| } |
| |
| int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| u16 is_reset = (ppu_active ? 0x8800 : 0xc800); |
| struct gpio_desc *gpiod = ds->pd->reset; |
| unsigned long timeout; |
| int ret; |
| int i; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| /* Set all ports to the disabled state. */ |
| for (i = 0; i < ps->num_ports; i++) { |
| ret = _mv88e6xxx_reg_read(ds, REG_PORT(i), PORT_CONTROL); |
| if (ret < 0) |
| goto unlock; |
| |
| ret = _mv88e6xxx_reg_write(ds, REG_PORT(i), PORT_CONTROL, |
| ret & 0xfffc); |
| if (ret) |
| goto unlock; |
| } |
| |
| /* Wait for transmit queues to drain. */ |
| usleep_range(2000, 4000); |
| |
| /* If there is a gpio connected to the reset pin, toggle it */ |
| if (gpiod) { |
| gpiod_set_value_cansleep(gpiod, 1); |
| usleep_range(10000, 20000); |
| gpiod_set_value_cansleep(gpiod, 0); |
| usleep_range(10000, 20000); |
| } |
| |
| /* Reset the switch. Keep the PPU active if requested. The PPU |
| * needs to be active to support indirect phy register access |
| * through global registers 0x18 and 0x19. |
| */ |
| if (ppu_active) |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc000); |
| else |
| ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x04, 0xc400); |
| if (ret) |
| goto unlock; |
| |
| /* Wait up to one second for reset to complete. */ |
| timeout = jiffies + 1 * HZ; |
| while (time_before(jiffies, timeout)) { |
| ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x00); |
| if (ret < 0) |
| goto unlock; |
| |
| if ((ret & is_reset) == is_reset) |
| break; |
| usleep_range(1000, 2000); |
| } |
| if (time_after(jiffies, timeout)) |
| ret = -ETIMEDOUT; |
| else |
| ret = 0; |
| unlock: |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_page_read(ds, port, page, reg); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, |
| int reg, int val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_page_write(ds, port, page, reg, val); |
| mutex_unlock(&ps->smi_mutex); |
| |
| return ret; |
| } |
| |
| static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| |
| if (port >= 0 && port < ps->num_ports) |
| return port; |
| return -EINVAL; |
| } |
| |
| int |
| mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_read(ds, addr, regnum); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write(ds, addr, regnum, val); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| int |
| mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum, |
| u16 val) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| int ret; |
| |
| if (addr < 0) |
| return addr; |
| |
| mutex_lock(&ps->smi_mutex); |
| ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| #ifdef CONFIG_NET_DSA_HWMON |
| |
| static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| int ret; |
| int val; |
| |
| *temp = 0; |
| |
| mutex_lock(&ps->smi_mutex); |
| |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6); |
| if (ret < 0) |
| goto error; |
| |
| /* Enable temperature sensor */ |
| ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| if (ret < 0) |
| goto error; |
| |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5)); |
| if (ret < 0) |
| goto error; |
| |
| /* Wait for temperature to stabilize */ |
| usleep_range(10000, 12000); |
| |
| val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| if (val < 0) { |
| ret = val; |
| goto error; |
| } |
| |
| /* Disable temperature sensor */ |
| ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5)); |
| if (ret < 0) |
| goto error; |
| |
| *temp = ((val & 0x1f) - 5) * 5; |
| |
| error: |
| _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0); |
| mutex_unlock(&ps->smi_mutex); |
| return ret; |
| } |
| |
| static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| *temp = 0; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (ret & 0xff) - 25; |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) |
| { |
| if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| return mv88e63xx_get_temp(ds, temp); |
| |
| return mv88e61xx_get_temp(ds, temp); |
| } |
| |
| int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| *temp = 0; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *temp = (((ret >> 8) & 0x1f) * 5) - 25; |
| |
| return 0; |
| } |
| |
| int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); |
| return mv88e6xxx_phy_page_write(ds, phy, 6, 26, |
| (ret & 0xe0ff) | (temp << 8)); |
| } |
| |
| int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm) |
| { |
| int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| int ret; |
| |
| if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| return -EOPNOTSUPP; |
| |
| *alarm = false; |
| |
| ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| if (ret < 0) |
| return ret; |
| |
| *alarm = !!(ret & 0x40); |
| |
| return 0; |
| } |
| #endif /* CONFIG_NET_DSA_HWMON */ |
| |
| static const char * |
| mv88e6xxx_lookup_name(unsigned int id, const struct mv88e6xxx_switch_id *table, |
| unsigned int num) |
| { |
| int i; |
| |
| for (i = 0; i < num; ++i) |
| if (table[i].id == (id & 0xfff0)) |
| return table[i].name; |
| |
| return NULL; |
| } |
| |
| const char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev, |
| int sw_addr, void **priv, |
| const struct mv88e6xxx_switch_id *table, |
| unsigned int num) |
| { |
| struct mv88e6xxx_priv_state *ps; |
| struct mii_bus *bus; |
| const char *name; |
| int id, prod_num, rev; |
| |
| bus = dsa_host_dev_to_mii_bus(host_dev); |
| if (!bus) |
| return NULL; |
| |
| id = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID); |
| if (id < 0) |
| return NULL; |
| |
| prod_num = (id & 0xfff0) >> 4; |
| rev = id & 0x000f; |
| |
| name = mv88e6xxx_lookup_name(id, table, num); |
| if (!name) |
| return NULL; |
| |
| ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL); |
| if (!ps) |
| return NULL; |
| |
| ps->bus = bus; |
| ps->sw_addr = sw_addr; |
| ps->id = id & 0xfff0; |
| |
| *priv = ps; |
| |
| dev_info(&ps->bus->dev, "switch 0x%x probed: %s, revision %u\n", |
| prod_num, name, rev); |
| |
| return name; |
| } |
| |
| static int __init mv88e6xxx_init(void) |
| { |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| register_switch_driver(&mv88e6131_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123) |
| register_switch_driver(&mv88e6123_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| register_switch_driver(&mv88e6352_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| register_switch_driver(&mv88e6171_switch_driver); |
| #endif |
| return 0; |
| } |
| module_init(mv88e6xxx_init); |
| |
| static void __exit mv88e6xxx_cleanup(void) |
| { |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| unregister_switch_driver(&mv88e6171_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| unregister_switch_driver(&mv88e6352_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123) |
| unregister_switch_driver(&mv88e6123_switch_driver); |
| #endif |
| #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| unregister_switch_driver(&mv88e6131_switch_driver); |
| #endif |
| } |
| module_exit(mv88e6xxx_cleanup); |
| |
| MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); |
| MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); |
| MODULE_LICENSE("GPL"); |