blob: 8eebf27d0ea246bbdaeef08fdffabfc544ff96e5 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
//
// Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/clk.h>
#include <linux/log2.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/consumer.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/tlv.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include "sgtl5000.h"
#define SGTL5000_DAP_REG_OFFSET 0x0100
#define SGTL5000_MAX_REG_OFFSET 0x013A
/* Delay for the VAG ramp up */
#define SGTL5000_VAG_POWERUP_DELAY 500 /* ms */
/* Delay for the VAG ramp down */
#define SGTL5000_VAG_POWERDOWN_DELAY 500 /* ms */
#define SGTL5000_OUTPUTS_MUTE (SGTL5000_HP_MUTE | SGTL5000_LINE_OUT_MUTE)
/* default value of sgtl5000 registers */
static const struct reg_default sgtl5000_reg_defaults[] = {
{ SGTL5000_CHIP_DIG_POWER, 0x0000 },
{ SGTL5000_CHIP_I2S_CTRL, 0x0010 },
{ SGTL5000_CHIP_SSS_CTRL, 0x0010 },
{ SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
{ SGTL5000_CHIP_DAC_VOL, 0x3c3c },
{ SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
{ SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
{ SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
{ SGTL5000_CHIP_ANA_CTRL, 0x0111 },
{ SGTL5000_CHIP_REF_CTRL, 0x0000 },
{ SGTL5000_CHIP_MIC_CTRL, 0x0000 },
{ SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
{ SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
{ SGTL5000_CHIP_PLL_CTRL, 0x5000 },
{ SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
{ SGTL5000_CHIP_ANA_STATUS, 0x0000 },
{ SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
{ SGTL5000_CHIP_ANA_TEST2, 0x0000 },
{ SGTL5000_DAP_CTRL, 0x0000 },
{ SGTL5000_DAP_PEQ, 0x0000 },
{ SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
{ SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
{ SGTL5000_DAP_AUDIO_EQ, 0x0000 },
{ SGTL5000_DAP_SURROUND, 0x0040 },
{ SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
{ SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
{ SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
{ SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
{ SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
{ SGTL5000_DAP_MAIN_CHAN, 0x8000 },
{ SGTL5000_DAP_MIX_CHAN, 0x0000 },
{ SGTL5000_DAP_AVC_CTRL, 0x5100 },
{ SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
{ SGTL5000_DAP_AVC_ATTACK, 0x0028 },
{ SGTL5000_DAP_AVC_DECAY, 0x0050 },
};
/* AVC: Threshold dB -> register: pre-calculated values */
static const u16 avc_thr_db2reg[97] = {
0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
/* regulator supplies for sgtl5000, VDDD is an optional external supply */
enum sgtl5000_regulator_supplies {
VDDA,
VDDIO,
VDDD,
SGTL5000_SUPPLY_NUM
};
/* vddd is optional supply */
static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
"VDDA",
"VDDIO",
"VDDD"
};
#define LDO_VOLTAGE 1200000
#define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
enum sgtl5000_micbias_resistor {
SGTL5000_MICBIAS_OFF = 0,
SGTL5000_MICBIAS_2K = 2,
SGTL5000_MICBIAS_4K = 4,
SGTL5000_MICBIAS_8K = 8,
};
enum {
I2S_LRCLK_STRENGTH_DISABLE,
I2S_LRCLK_STRENGTH_LOW,
I2S_LRCLK_STRENGTH_MEDIUM,
I2S_LRCLK_STRENGTH_HIGH,
};
enum {
I2S_SCLK_STRENGTH_DISABLE,
I2S_SCLK_STRENGTH_LOW,
I2S_SCLK_STRENGTH_MEDIUM,
I2S_SCLK_STRENGTH_HIGH,
};
enum {
HP_POWER_EVENT,
DAC_POWER_EVENT,
ADC_POWER_EVENT,
LAST_POWER_EVENT = ADC_POWER_EVENT
};
/* sgtl5000 private structure in codec */
struct sgtl5000_priv {
int sysclk; /* sysclk rate */
int master; /* i2s master or not */
int fmt; /* i2s data format */
struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
int num_supplies;
struct regmap *regmap;
struct clk *mclk;
int revision;
u8 micbias_resistor;
u8 micbias_voltage;
u8 lrclk_strength;
u8 sclk_strength;
u16 mute_state[LAST_POWER_EVENT + 1];
};
static inline int hp_sel_input(struct snd_soc_component *component)
{
return (snd_soc_component_read(component, SGTL5000_CHIP_ANA_CTRL) &
SGTL5000_HP_SEL_MASK) >> SGTL5000_HP_SEL_SHIFT;
}
static inline u16 mute_output(struct snd_soc_component *component,
u16 mute_mask)
{
u16 mute_reg = snd_soc_component_read(component,
SGTL5000_CHIP_ANA_CTRL);
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
mute_mask, mute_mask);
return mute_reg;
}
static inline void restore_output(struct snd_soc_component *component,
u16 mute_mask, u16 mute_reg)
{
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
mute_mask, mute_reg);
}
static void vag_power_on(struct snd_soc_component *component, u32 source)
{
if (snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER) &
SGTL5000_VAG_POWERUP)
return;
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
/* When VAG powering on to get local loop from Line-In, the sleep
* is required to avoid loud pop.
*/
if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN &&
source == HP_POWER_EVENT)
msleep(SGTL5000_VAG_POWERUP_DELAY);
}
static int vag_power_consumers(struct snd_soc_component *component,
u16 ana_pwr_reg, u32 source)
{
int consumers = 0;
/* count dac/adc consumers unconditional */
if (ana_pwr_reg & SGTL5000_DAC_POWERUP)
consumers++;
if (ana_pwr_reg & SGTL5000_ADC_POWERUP)
consumers++;
/*
* If the event comes from HP and Line-In is selected,
* current action is 'DAC to be powered down'.
* As HP_POWERUP is not set when HP muxed to line-in,
* we need to keep VAG power ON.
*/
if (source == HP_POWER_EVENT) {
if (hp_sel_input(component) == SGTL5000_HP_SEL_LINE_IN)
consumers++;
} else {
if (ana_pwr_reg & SGTL5000_HP_POWERUP)
consumers++;
}
return consumers;
}
static void vag_power_off(struct snd_soc_component *component, u32 source)
{
u16 ana_pwr = snd_soc_component_read(component,
SGTL5000_CHIP_ANA_POWER);
if (!(ana_pwr & SGTL5000_VAG_POWERUP))
return;
/*
* This function calls when any of VAG power consumers is disappearing.
* Thus, if there is more than one consumer at the moment, as minimum
* one consumer will definitely stay after the end of the current
* event.
* Don't clear VAG_POWERUP if 2 or more consumers of VAG present:
* - LINE_IN (for HP events) / HP (for DAC/ADC events)
* - DAC
* - ADC
* (the current consumer is disappearing right now)
*/
if (vag_power_consumers(component, ana_pwr, source) >= 2)
return;
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_VAG_POWERUP, 0);
/* In power down case, we need wait 400-1000 ms
* when VAG fully ramped down.
* As longer we wait, as smaller pop we've got.
*/
msleep(SGTL5000_VAG_POWERDOWN_DELAY);
}
/*
* mic_bias power on/off share the same register bits with
* output impedance of mic bias, when power on mic bias, we
* need reclaim it to impedance value.
* 0x0 = Powered off
* 0x1 = 2Kohm
* 0x2 = 4Kohm
* 0x3 = 8Kohm
*/
static int mic_bias_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* change mic bias resistor */
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
SGTL5000_BIAS_R_MASK,
sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
SGTL5000_BIAS_R_MASK, 0);
break;
}
return 0;
}
static int vag_and_mute_control(struct snd_soc_component *component,
int event, int event_source)
{
static const u16 mute_mask[] = {
/*
* Mask for HP_POWER_EVENT.
* Muxing Headphones have to be wrapped with mute/unmute
* headphones only.
*/
SGTL5000_HP_MUTE,
/*
* Masks for DAC_POWER_EVENT/ADC_POWER_EVENT.
* Muxing DAC or ADC block have to wrapped with mute/unmute
* both headphones and line-out.
*/
SGTL5000_OUTPUTS_MUTE,
SGTL5000_OUTPUTS_MUTE
};
struct sgtl5000_priv *sgtl5000 =
snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
sgtl5000->mute_state[event_source] =
mute_output(component, mute_mask[event_source]);
break;
case SND_SOC_DAPM_POST_PMU:
vag_power_on(component, event_source);
restore_output(component, mute_mask[event_source],
sgtl5000->mute_state[event_source]);
break;
case SND_SOC_DAPM_PRE_PMD:
sgtl5000->mute_state[event_source] =
mute_output(component, mute_mask[event_source]);
vag_power_off(component, event_source);
break;
case SND_SOC_DAPM_POST_PMD:
restore_output(component, mute_mask[event_source],
sgtl5000->mute_state[event_source]);
break;
default:
break;
}
return 0;
}
/*
* Mute Headphone when power it up/down.
* Control VAG power on HP power path.
*/
static int headphone_pga_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
return vag_and_mute_control(component, event, HP_POWER_EVENT);
}
/* As manual describes, ADC/DAC powering up/down requires
* to mute outputs to avoid pops.
* Control VAG power on ADC/DAC power path.
*/
static int adc_updown_depop(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
return vag_and_mute_control(component, event, ADC_POWER_EVENT);
}
static int dac_updown_depop(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component =
snd_soc_dapm_to_component(w->dapm);
return vag_and_mute_control(component, event, DAC_POWER_EVENT);
}
/* input sources for ADC */
static const char *adc_mux_text[] = {
"MIC_IN", "LINE_IN"
};
static SOC_ENUM_SINGLE_DECL(adc_enum,
SGTL5000_CHIP_ANA_CTRL, 2,
adc_mux_text);
static const struct snd_kcontrol_new adc_mux =
SOC_DAPM_ENUM("Capture Mux", adc_enum);
/* input sources for headphone */
static const char *hp_mux_text[] = {
"DAC", "LINE_IN"
};
static SOC_ENUM_SINGLE_DECL(hp_enum,
SGTL5000_CHIP_ANA_CTRL, 6,
hp_mux_text);
static const struct snd_kcontrol_new hp_mux =
SOC_DAPM_ENUM("Headphone Mux", hp_enum);
/* input sources for DAC */
static const char *dac_mux_text[] = {
"ADC", "I2S", "Rsvrd", "DAP"
};
static SOC_ENUM_SINGLE_DECL(dac_enum,
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
dac_mux_text);
static const struct snd_kcontrol_new dac_mux =
SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
/* input sources for DAP */
static const char *dap_mux_text[] = {
"ADC", "I2S"
};
static SOC_ENUM_SINGLE_DECL(dap_enum,
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
dap_mux_text);
static const struct snd_kcontrol_new dap_mux =
SOC_DAPM_ENUM("DAP Mux", dap_enum);
/* input sources for DAP mix */
static const char *dapmix_mux_text[] = {
"ADC", "I2S"
};
static SOC_ENUM_SINGLE_DECL(dapmix_enum,
SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
dapmix_mux_text);
static const struct snd_kcontrol_new dapmix_mux =
SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("LINE_IN"),
SND_SOC_DAPM_INPUT("MIC_IN"),
SND_SOC_DAPM_OUTPUT("HP_OUT"),
SND_SOC_DAPM_OUTPUT("LINE_OUT"),
SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
mic_bias_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA_E("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0,
headphone_pga_event,
SND_SOC_DAPM_PRE_POST_PMU |
SND_SOC_DAPM_PRE_POST_PMD),
SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
/* aif for i2s input */
SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
0, SGTL5000_CHIP_DIG_POWER,
0, 0),
/* aif for i2s output */
SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
0, SGTL5000_CHIP_DIG_POWER,
1, 0),
SND_SOC_DAPM_ADC_E("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0,
adc_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
SND_SOC_DAPM_PRE_POST_PMD),
SND_SOC_DAPM_DAC_E("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0,
dac_updown_depop, SND_SOC_DAPM_PRE_POST_PMU |
SND_SOC_DAPM_PRE_POST_PMD),
};
/* routes for sgtl5000 */
static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
{"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
{"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
{"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
{"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
{"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */
{"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */
{"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */
{"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */
{"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */
{"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */
{"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */
{"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */
{"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */
{"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */
{"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
{"LO", NULL, "DAC"}, /* dac --> line_out */
{"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
{"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
{"LINE_OUT", NULL, "LO"},
{"HP_OUT", NULL, "HP"},
};
/* custom function to fetch info of PCM playback volume */
static int dac_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0xfc - 0x3c;
return 0;
}
/*
* custom function to get of PCM playback volume
*
* dac volume register
* 15-------------8-7--------------0
* | R channel vol | L channel vol |
* -------------------------------
*
* PCM volume with 0.5017 dB steps from 0 to -90 dB
*
* register values map to dB
* 0x3B and less = Reserved
* 0x3C = 0 dB
* 0x3D = -0.5 dB
* 0xF0 = -90 dB
* 0xFC and greater = Muted
*
* register value map to userspace value
*
* register value 0x3c(0dB) 0xf0(-90dB)0xfc
* ------------------------------
* userspace value 0xc0 0
*/
static int dac_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
int reg;
int l;
int r;
reg = snd_soc_component_read(component, SGTL5000_CHIP_DAC_VOL);
/* get left channel volume */
l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
/* get right channel volume */
r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
/* make sure value fall in (0x3c,0xfc) */
l = clamp(l, 0x3c, 0xfc);
r = clamp(r, 0x3c, 0xfc);
/* invert it and map to userspace value */
l = 0xfc - l;
r = 0xfc - r;
ucontrol->value.integer.value[0] = l;
ucontrol->value.integer.value[1] = r;
return 0;
}
/*
* custom function to put of PCM playback volume
*
* dac volume register
* 15-------------8-7--------------0
* | R channel vol | L channel vol |
* -------------------------------
*
* PCM volume with 0.5017 dB steps from 0 to -90 dB
*
* register values map to dB
* 0x3B and less = Reserved
* 0x3C = 0 dB
* 0x3D = -0.5 dB
* 0xF0 = -90 dB
* 0xFC and greater = Muted
*
* userspace value map to register value
*
* userspace value 0xc0 0
* ------------------------------
* register value 0x3c(0dB) 0xf0(-90dB)0xfc
*/
static int dac_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
int reg;
int l;
int r;
l = ucontrol->value.integer.value[0];
r = ucontrol->value.integer.value[1];
/* make sure userspace volume fall in (0, 0xfc-0x3c) */
l = clamp(l, 0, 0xfc - 0x3c);
r = clamp(r, 0, 0xfc - 0x3c);
/* invert it, get the value can be set to register */
l = 0xfc - l;
r = 0xfc - r;
/* shift to get the register value */
reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
return 0;
}
/*
* custom function to get AVC threshold
*
* The threshold dB is calculated by rearranging the calculation from the
* avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
* dB = ( fls(register_value) - 14.347 ) * 6.02
*
* As this calculation is expensive and the threshold dB values may not exceed
* 0 to 96 we use pre-calculated values.
*/
static int avc_get_threshold(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
int db, i;
u16 reg = snd_soc_component_read(component, SGTL5000_DAP_AVC_THRESHOLD);
/* register value 0 => -96dB */
if (!reg) {
ucontrol->value.integer.value[0] = 96;
ucontrol->value.integer.value[1] = 96;
return 0;
}
/* get dB from register value (rounded down) */
for (i = 0; avc_thr_db2reg[i] > reg; i++)
;
db = i;
ucontrol->value.integer.value[0] = db;
ucontrol->value.integer.value[1] = db;
return 0;
}
/*
* custom function to put AVC threshold
*
* The register value is calculated by following formula:
* register_value = 10^(dB/20) * 0.636 * 2^15
* As this calculation is expensive and the threshold dB values may not exceed
* 0 to 96 we use pre-calculated values.
*/
static int avc_put_threshold(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
int db;
u16 reg;
db = (int)ucontrol->value.integer.value[0];
if (db < 0 || db > 96)
return -EINVAL;
reg = avc_thr_db2reg[db];
snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
return 0;
}
static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
/* tlv for mic gain, 0db 20db 30db 40db */
static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
);
/* tlv for DAP channels, 0% - 100% - 200% */
static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
/* tlv for bass bands, -11.75db to 12.0db, step .25db */
static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
/* tlv for hp volume, -51.5db to 12.0db, step .5db */
static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
/* tlv for lineout volume, 31 steps of .5db each */
static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
/* tlv for dap avc max gain, 0db, 6db, 12db */
static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
/* tlv for dap avc threshold, */
static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
/* SOC_DOUBLE_S8_TLV with invert */
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "PCM Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = dac_info_volsw,
.get = dac_get_volsw,
.put = dac_put_volsw,
},
SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
SGTL5000_CHIP_ANA_ADC_CTRL,
8, 1, 0, capture_6db_attenuate),
SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
SOC_SINGLE("Capture Switch", SGTL5000_CHIP_ANA_CTRL, 0, 1, 1),
SOC_DOUBLE_TLV("Headphone Playback Volume",
SGTL5000_CHIP_ANA_HP_CTRL,
0, 8,
0x7f, 1,
headphone_volume),
SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
4, 1, 1),
SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
5, 1, 0),
SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
0, 3, 0, mic_gain_tlv),
SOC_DOUBLE_TLV("Lineout Playback Volume",
SGTL5000_CHIP_LINE_OUT_VOL,
SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
0x1f, 1,
lineout_volume),
SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
0, 0xffff, 0, dap_volume),
SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
0, 0xffff, 0, dap_volume),
/* Automatic Volume Control (DAP AVC) */
SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
avc_max_gain),
SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
0, 96, 0, avc_get_threshold, avc_put_threshold,
avc_threshold),
SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
0, 0x5F, 0, bass_band),
SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
0, 0x5F, 0, bass_band),
SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
0, 0x5F, 0, bass_band),
SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
0, 0x5F, 0, bass_band),
SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
0, 0x5F, 0, bass_band),
};
/* mute the codec used by alsa core */
static int sgtl5000_mute_stream(struct snd_soc_dai *codec_dai, int mute, int direction)
{
struct snd_soc_component *component = codec_dai->component;
u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
/*
* During 'digital mute' do not mute DAC
* because LINE_IN would be muted aswell. We want to mute
* only I2S block - this can be done by powering it off
*/
snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
i2s_pwr, mute ? 0 : i2s_pwr);
return 0;
}
/* set codec format */
static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
u16 i2sctl = 0;
sgtl5000->master = 0;
/*
* i2s clock and frame master setting.
* ONLY support:
* - clock and frame slave,
* - clock and frame master
*/
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
case SND_SOC_DAIFMT_CBM_CFM:
i2sctl |= SGTL5000_I2S_MASTER;
sgtl5000->master = 1;
break;
default:
return -EINVAL;
}
/* setting i2s data format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_DSP_A:
i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
break;
case SND_SOC_DAIFMT_DSP_B:
i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
i2sctl |= SGTL5000_I2S_LRALIGN;
break;
case SND_SOC_DAIFMT_I2S:
i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
i2sctl |= SGTL5000_I2S_LRPOL;
break;
case SND_SOC_DAIFMT_LEFT_J:
i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
i2sctl |= SGTL5000_I2S_LRALIGN;
break;
default:
return -EINVAL;
}
sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
/* Clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
i2sctl |= SGTL5000_I2S_SCLK_INV;
break;
default:
return -EINVAL;
}
snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
return 0;
}
/* set codec sysclk */
static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
switch (clk_id) {
case SGTL5000_SYSCLK:
sgtl5000->sysclk = freq;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* set clock according to i2s frame clock,
* sgtl5000 provides 2 clock sources:
* 1. sys_mclk: sample freq can only be configured to
* 1/256, 1/384, 1/512 of sys_mclk.
* 2. pll: can derive any audio clocks.
*
* clock setting rules:
* 1. in slave mode, only sys_mclk can be used
* 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
* and above.
* 3. usage of sys_mclk is preferred over pll to save power.
*/
static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
{
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
int clk_ctl = 0;
int sys_fs; /* sample freq */
/*
* sample freq should be divided by frame clock,
* if frame clock is lower than 44.1 kHz, sample freq should be set to
* 32 kHz or 44.1 kHz.
*/
switch (frame_rate) {
case 8000:
case 16000:
sys_fs = 32000;
break;
case 11025:
case 22050:
sys_fs = 44100;
break;
default:
sys_fs = frame_rate;
break;
}
/* set divided factor of frame clock */
switch (sys_fs / frame_rate) {
case 4:
clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
break;
case 2:
clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
break;
case 1:
clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
break;
default:
return -EINVAL;
}
/* set the sys_fs according to frame rate */
switch (sys_fs) {
case 32000:
clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
break;
case 44100:
clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
break;
case 48000:
clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
break;
case 96000:
clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
break;
default:
dev_err(component->dev, "frame rate %d not supported\n",
frame_rate);
return -EINVAL;
}
/*
* calculate the divider of mclk/sample_freq,
* factor of freq = 96 kHz can only be 256, since mclk is in the range
* of 8 MHz - 27 MHz
*/
switch (sgtl5000->sysclk / frame_rate) {
case 256:
clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
SGTL5000_MCLK_FREQ_SHIFT;
break;
case 384:
clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
SGTL5000_MCLK_FREQ_SHIFT;
break;
case 512:
clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
SGTL5000_MCLK_FREQ_SHIFT;
break;
default:
/* if mclk does not satisfy the divider, use pll */
if (sgtl5000->master) {
clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
SGTL5000_MCLK_FREQ_SHIFT;
} else {
dev_err(component->dev,
"PLL not supported in slave mode\n");
dev_err(component->dev, "%d ratio is not supported. "
"SYS_MCLK needs to be 256, 384 or 512 * fs\n",
sgtl5000->sysclk / frame_rate);
return -EINVAL;
}
}
/* if using pll, please check manual 6.4.2 for detail */
if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
u64 out, t;
int div2;
int pll_ctl;
unsigned int in, int_div, frac_div;
if (sgtl5000->sysclk > 17000000) {
div2 = 1;
in = sgtl5000->sysclk / 2;
} else {
div2 = 0;
in = sgtl5000->sysclk;
}
if (sys_fs == 44100)
out = 180633600;
else
out = 196608000;
t = do_div(out, in);
int_div = out;
t *= 2048;
do_div(t, in);
frac_div = t;
pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
if (div2)
snd_soc_component_update_bits(component,
SGTL5000_CHIP_CLK_TOP_CTRL,
SGTL5000_INPUT_FREQ_DIV2,
SGTL5000_INPUT_FREQ_DIV2);
else
snd_soc_component_update_bits(component,
SGTL5000_CHIP_CLK_TOP_CTRL,
SGTL5000_INPUT_FREQ_DIV2,
0);
/* power up pll */
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
/* if using pll, clk_ctrl must be set after pll power up */
snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
} else {
/* otherwise, clk_ctrl must be set before pll power down */
snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
/* power down pll */
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
0);
}
return 0;
}
/*
* Set PCM DAI bit size and sample rate.
* input: params_rate, params_fmt
*/
static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
int channels = params_channels(params);
int i2s_ctl = 0;
int stereo;
int ret;
/* sysclk should already set */
if (!sgtl5000->sysclk) {
dev_err(component->dev, "%s: set sysclk first!\n", __func__);
return -EFAULT;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
stereo = SGTL5000_DAC_STEREO;
else
stereo = SGTL5000_ADC_STEREO;
/* set mono to save power */
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
channels == 1 ? 0 : stereo);
/* set codec clock base on lrclk */
ret = sgtl5000_set_clock(component, params_rate(params));
if (ret)
return ret;
/* set i2s data format */
switch (params_width(params)) {
case 16:
if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
return -EINVAL;
i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
SGTL5000_I2S_SCLKFREQ_SHIFT;
break;
case 20:
i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
SGTL5000_I2S_SCLKFREQ_SHIFT;
break;
case 24:
i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
SGTL5000_I2S_SCLKFREQ_SHIFT;
break;
case 32:
if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
return -EINVAL;
i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
SGTL5000_I2S_SCLKFREQ_SHIFT;
break;
default:
return -EINVAL;
}
snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
i2s_ctl);
return 0;
}
/*
* set dac bias
* common state changes:
* startup:
* off --> standby --> prepare --> on
* standby --> prepare --> on
*
* stop:
* on --> prepare --> standby
*/
static int sgtl5000_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
case SND_SOC_BIAS_PREPARE:
case SND_SOC_BIAS_STANDBY:
regcache_cache_only(sgtl->regmap, false);
ret = regcache_sync(sgtl->regmap);
if (ret) {
regcache_cache_only(sgtl->regmap, true);
return ret;
}
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_REFTOP_POWERUP,
SGTL5000_REFTOP_POWERUP);
break;
case SND_SOC_BIAS_OFF:
regcache_cache_only(sgtl->regmap, true);
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
SGTL5000_REFTOP_POWERUP, 0);
break;
}
return 0;
}
#define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
SNDRV_PCM_FMTBIT_S20_3LE |\
SNDRV_PCM_FMTBIT_S24_LE |\
SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops sgtl5000_ops = {
.hw_params = sgtl5000_pcm_hw_params,
.mute_stream = sgtl5000_mute_stream,
.set_fmt = sgtl5000_set_dai_fmt,
.set_sysclk = sgtl5000_set_dai_sysclk,
.no_capture_mute = 1,
};
static struct snd_soc_dai_driver sgtl5000_dai = {
.name = "sgtl5000",
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
/*
* only support 8~48K + 96K,
* TODO modify hw_param to support more
*/
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
.formats = SGTL5000_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
.formats = SGTL5000_FORMATS,
},
.ops = &sgtl5000_ops,
.symmetric_rate = 1,
};
static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case SGTL5000_CHIP_ID:
case SGTL5000_CHIP_ADCDAC_CTRL:
case SGTL5000_CHIP_ANA_STATUS:
return true;
}
return false;
}
static bool sgtl5000_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case SGTL5000_CHIP_ID:
case SGTL5000_CHIP_DIG_POWER:
case SGTL5000_CHIP_CLK_CTRL:
case SGTL5000_CHIP_I2S_CTRL:
case SGTL5000_CHIP_SSS_CTRL:
case SGTL5000_CHIP_ADCDAC_CTRL:
case SGTL5000_CHIP_DAC_VOL:
case SGTL5000_CHIP_PAD_STRENGTH:
case SGTL5000_CHIP_ANA_ADC_CTRL:
case SGTL5000_CHIP_ANA_HP_CTRL:
case SGTL5000_CHIP_ANA_CTRL:
case SGTL5000_CHIP_LINREG_CTRL:
case SGTL5000_CHIP_REF_CTRL:
case SGTL5000_CHIP_MIC_CTRL:
case SGTL5000_CHIP_LINE_OUT_CTRL:
case SGTL5000_CHIP_LINE_OUT_VOL:
case SGTL5000_CHIP_ANA_POWER:
case SGTL5000_CHIP_PLL_CTRL:
case SGTL5000_CHIP_CLK_TOP_CTRL:
case SGTL5000_CHIP_ANA_STATUS:
case SGTL5000_CHIP_SHORT_CTRL:
case SGTL5000_CHIP_ANA_TEST2:
case SGTL5000_DAP_CTRL:
case SGTL5000_DAP_PEQ:
case SGTL5000_DAP_BASS_ENHANCE:
case SGTL5000_DAP_BASS_ENHANCE_CTRL:
case SGTL5000_DAP_AUDIO_EQ:
case SGTL5000_DAP_SURROUND:
case SGTL5000_DAP_FLT_COEF_ACCESS:
case SGTL5000_DAP_COEF_WR_B0_MSB:
case SGTL5000_DAP_COEF_WR_B0_LSB:
case SGTL5000_DAP_EQ_BASS_BAND0:
case SGTL5000_DAP_EQ_BASS_BAND1:
case SGTL5000_DAP_EQ_BASS_BAND2:
case SGTL5000_DAP_EQ_BASS_BAND3:
case SGTL5000_DAP_EQ_BASS_BAND4:
case SGTL5000_DAP_MAIN_CHAN:
case SGTL5000_DAP_MIX_CHAN:
case SGTL5000_DAP_AVC_CTRL:
case SGTL5000_DAP_AVC_THRESHOLD:
case SGTL5000_DAP_AVC_ATTACK:
case SGTL5000_DAP_AVC_DECAY:
case SGTL5000_DAP_COEF_WR_B1_MSB:
case SGTL5000_DAP_COEF_WR_B1_LSB:
case SGTL5000_DAP_COEF_WR_B2_MSB:
case SGTL5000_DAP_COEF_WR_B2_LSB:
case SGTL5000_DAP_COEF_WR_A1_MSB:
case SGTL5000_DAP_COEF_WR_A1_LSB:
case SGTL5000_DAP_COEF_WR_A2_MSB:
case SGTL5000_DAP_COEF_WR_A2_LSB:
return true;
default:
return false;
}
}
/*
* This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
* to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
* The calculatation was done for all possible register values which
* is the array index and the following formula: 10^((idx−15)/40) * 100
*/
static const u8 vol_quot_table[] = {
42, 45, 47, 50, 53, 56, 60, 63,
67, 71, 75, 79, 84, 89, 94, 100,
106, 112, 119, 126, 133, 141, 150, 158,
168, 178, 188, 200, 211, 224, 237, 251
};
/*
* sgtl5000 has 3 internal power supplies:
* 1. VAG, normally set to vdda/2
* 2. charge pump, set to different value
* according to voltage of vdda and vddio
* 3. line out VAG, normally set to vddio/2
*
* and should be set according to:
* 1. vddd provided by external or not
* 2. vdda and vddio voltage value. > 3.1v or not
*/
static int sgtl5000_set_power_regs(struct snd_soc_component *component)
{
int vddd;
int vdda;
int vddio;
u16 ana_pwr;
u16 lreg_ctrl;
int vag;
int lo_vag;
int vol_quot;
int lo_vol;
size_t i;
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
vddd = (sgtl5000->num_supplies > VDDD)
? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
: LDO_VOLTAGE;
vdda = vdda / 1000;
vddio = vddio / 1000;
vddd = vddd / 1000;
if (vdda <= 0 || vddio <= 0 || vddd < 0) {
dev_err(component->dev, "regulator voltage not set correctly\n");
return -EINVAL;
}
/* according to datasheet, maximum voltage of supplies */
if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
dev_err(component->dev,
"exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
vdda, vddio, vddd);
return -EINVAL;
}
/* reset value */
ana_pwr = snd_soc_component_read(component, SGTL5000_CHIP_ANA_POWER);
ana_pwr |= SGTL5000_DAC_STEREO |
SGTL5000_ADC_STEREO |
SGTL5000_REFTOP_POWERUP;
lreg_ctrl = snd_soc_component_read(component, SGTL5000_CHIP_LINREG_CTRL);
if (vddio < 3100 && vdda < 3100) {
/* enable internal oscillator used for charge pump */
snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
SGTL5000_INT_OSC_EN,
SGTL5000_INT_OSC_EN);
/* Enable VDDC charge pump */
ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
} else {
ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
/*
* if vddio == vdda the source of charge pump should be
* assigned manually to VDDIO
*/
if (regulator_is_equal(sgtl5000->supplies[VDDA].consumer,
sgtl5000->supplies[VDDIO].consumer)) {
lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
SGTL5000_VDDC_MAN_ASSN_SHIFT;
}
}
snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
/*
* set ADC/DAC VAG to vdda / 2,
* should stay in range (0.8v, 1.575v)
*/
vag = vdda / 2;
if (vag <= SGTL5000_ANA_GND_BASE)
vag = 0;
else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
(SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
else
vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
/* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
lo_vag = vddio / 2;
if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
lo_vag = 0;
else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
lo_vag = SGTL5000_LINE_OUT_GND_MAX;
else
lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
SGTL5000_LINE_OUT_GND_STP;
snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
SGTL5000_LINE_OUT_CURRENT_MASK |
SGTL5000_LINE_OUT_GND_MASK,
lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
SGTL5000_LINE_OUT_CURRENT_360u <<
SGTL5000_LINE_OUT_CURRENT_SHIFT);
/*
* Set lineout output level in range (0..31)
* the same value is used for right and left channel
*
* Searching for a suitable index solving this formula:
* idx = 40 * log10(vag_val / lo_cagcntrl) + 15
*/
vol_quot = lo_vag ? (vag * 100) / lo_vag : 0;
lo_vol = 0;
for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
if (vol_quot >= vol_quot_table[i])
lo_vol = i;
else
break;
}
snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
SGTL5000_LINE_OUT_VOL_LEFT_MASK,
lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
return 0;
}
static int sgtl5000_enable_regulators(struct i2c_client *client)
{
int ret;
int i;
int external_vddd = 0;
struct regulator *vddd;
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
sgtl5000->supplies[i].supply = supply_names[i];
vddd = regulator_get_optional(&client->dev, "VDDD");
if (IS_ERR(vddd)) {
/* See if it's just not registered yet */
if (PTR_ERR(vddd) == -EPROBE_DEFER)
return -EPROBE_DEFER;
} else {
external_vddd = 1;
regulator_put(vddd);
}
sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
- 1 + external_vddd;
ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
sgtl5000->supplies);
if (ret)
return ret;
ret = regulator_bulk_enable(sgtl5000->num_supplies,
sgtl5000->supplies);
if (!ret)
usleep_range(10, 20);
else
regulator_bulk_free(sgtl5000->num_supplies,
sgtl5000->supplies);
return ret;
}
static int sgtl5000_probe(struct snd_soc_component *component)
{
int ret;
u16 reg;
struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
unsigned int zcd_mask = SGTL5000_HP_ZCD_EN | SGTL5000_ADC_ZCD_EN;
/* power up sgtl5000 */
ret = sgtl5000_set_power_regs(component);
if (ret)
goto err;
/* enable small pop, introduce 400ms delay in turning off */
snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
SGTL5000_SMALL_POP, SGTL5000_SMALL_POP);
/* disable short cut detector */
snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
SGTL5000_ADC_EN | SGTL5000_DAC_EN);
/* enable dac volume ramp by default */
snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
SGTL5000_DAC_VOL_RAMP_EN |
SGTL5000_DAC_MUTE_RIGHT |
SGTL5000_DAC_MUTE_LEFT);
reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT |
(sgtl5000->sclk_strength) << SGTL5000_PAD_I2S_SCLK_SHIFT |
0x1f);
snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_CTRL,
zcd_mask, zcd_mask);
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
SGTL5000_BIAS_R_MASK,
sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
SGTL5000_BIAS_VOLT_MASK,
sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
/*
* enable DAP Graphic EQ
* TODO:
* Add control for changing between PEQ/Tone Control/GEQ
*/
snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
/* Unmute DAC after start */
snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
return 0;
err:
return ret;
}
static int sgtl5000_of_xlate_dai_id(struct snd_soc_component *component,
struct device_node *endpoint)
{
/* return dai id 0, whatever the endpoint index */
return 0;
}
static const struct snd_soc_component_driver sgtl5000_driver = {
.probe = sgtl5000_probe,
.set_bias_level = sgtl5000_set_bias_level,
.controls = sgtl5000_snd_controls,
.num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
.dapm_widgets = sgtl5000_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
.dapm_routes = sgtl5000_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
.of_xlate_dai_id = sgtl5000_of_xlate_dai_id,
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config sgtl5000_regmap = {
.reg_bits = 16,
.val_bits = 16,
.reg_stride = 2,
.max_register = SGTL5000_MAX_REG_OFFSET,
.volatile_reg = sgtl5000_volatile,
.readable_reg = sgtl5000_readable,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = sgtl5000_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
};
/*
* Write all the default values from sgtl5000_reg_defaults[] array into the
* sgtl5000 registers, to make sure we always start with the sane registers
* values as stated in the datasheet.
*
* Since sgtl5000 does not have a reset line, nor a reset command in software,
* we follow this approach to guarantee we always start from the default values
* and avoid problems like, not being able to probe after an audio playback
* followed by a system reset or a 'reboot' command in Linux
*/
static void sgtl5000_fill_defaults(struct i2c_client *client)
{
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
int i, ret, val, index;
for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
val = sgtl5000_reg_defaults[i].def;
index = sgtl5000_reg_defaults[i].reg;
ret = regmap_write(sgtl5000->regmap, index, val);
if (ret)
dev_err(&client->dev,
"%s: error %d setting reg 0x%02x to 0x%04x\n",
__func__, ret, index, val);
}
}
static int sgtl5000_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct sgtl5000_priv *sgtl5000;
int ret, reg, rev;
struct device_node *np = client->dev.of_node;
u32 value;
u16 ana_pwr;
sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
if (!sgtl5000)
return -ENOMEM;
i2c_set_clientdata(client, sgtl5000);
ret = sgtl5000_enable_regulators(client);
if (ret)
return ret;
sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
if (IS_ERR(sgtl5000->regmap)) {
ret = PTR_ERR(sgtl5000->regmap);
dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
goto disable_regs;
}
sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
if (IS_ERR(sgtl5000->mclk)) {
ret = PTR_ERR(sgtl5000->mclk);
/* Defer the probe to see if the clk will be provided later */
if (ret == -ENOENT)
ret = -EPROBE_DEFER;
dev_err_probe(&client->dev, ret, "Failed to get mclock\n");
goto disable_regs;
}
ret = clk_prepare_enable(sgtl5000->mclk);
if (ret) {
dev_err(&client->dev, "Error enabling clock %d\n", ret);
goto disable_regs;
}
/* Need 8 clocks before I2C accesses */
udelay(1);
/* read chip information */
ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, &reg);
if (ret) {
dev_err(&client->dev, "Error reading chip id %d\n", ret);
goto disable_clk;
}
if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
SGTL5000_PARTID_PART_ID) {
dev_err(&client->dev,
"Device with ID register %x is not a sgtl5000\n", reg);
ret = -ENODEV;
goto disable_clk;
}
rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
sgtl5000->revision = rev;
/* reconfigure the clocks in case we're using the PLL */
ret = regmap_write(sgtl5000->regmap,
SGTL5000_CHIP_CLK_CTRL,
SGTL5000_CHIP_CLK_CTRL_DEFAULT);
if (ret)
dev_err(&client->dev,
"Error %d initializing CHIP_CLK_CTRL\n", ret);
/* Mute everything to avoid pop from the following power-up */
ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_CTRL,
SGTL5000_CHIP_ANA_CTRL_DEFAULT);
if (ret) {
dev_err(&client->dev,
"Error %d muting outputs via CHIP_ANA_CTRL\n", ret);
goto disable_clk;
}
/*
* If VAG is powered-on (e.g. from previous boot), it would be disabled
* by the write to ANA_POWER in later steps of the probe code. This
* may create a loud pop even with all outputs muted. The proper way
* to circumvent this is disabling the bit first and waiting the proper
* cool-down time.
*/
ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, &value);
if (ret) {
dev_err(&client->dev, "Failed to read ANA_POWER: %d\n", ret);
goto disable_clk;
}
if (value & SGTL5000_VAG_POWERUP) {
ret = regmap_update_bits(sgtl5000->regmap,
SGTL5000_CHIP_ANA_POWER,
SGTL5000_VAG_POWERUP,
0);
if (ret) {
dev_err(&client->dev, "Error %d disabling VAG\n", ret);
goto disable_clk;
}
msleep(SGTL5000_VAG_POWERDOWN_DELAY);
}
/* Follow section 2.2.1.1 of AN3663 */
ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
if (sgtl5000->num_supplies <= VDDD) {
/* internal VDDD at 1.2V */
ret = regmap_update_bits(sgtl5000->regmap,
SGTL5000_CHIP_LINREG_CTRL,
SGTL5000_LINREG_VDDD_MASK,
LINREG_VDDD);
if (ret)
dev_err(&client->dev,
"Error %d setting LINREG_VDDD\n", ret);
ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
dev_info(&client->dev,
"Using internal LDO instead of VDDD: check ER1 erratum\n");
} else {
/* using external LDO for VDDD
* Clear startup powerup and simple powerup
* bits to save power
*/
ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
| SGTL5000_LINREG_SIMPLE_POWERUP);
dev_dbg(&client->dev, "Using external VDDD\n");
}
ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
if (ret)
dev_err(&client->dev,
"Error %d setting CHIP_ANA_POWER to %04x\n",
ret, ana_pwr);
if (np) {
if (!of_property_read_u32(np,
"micbias-resistor-k-ohms", &value)) {
switch (value) {
case SGTL5000_MICBIAS_OFF:
sgtl5000->micbias_resistor = 0;
break;
case SGTL5000_MICBIAS_2K:
sgtl5000->micbias_resistor = 1;
break;
case SGTL5000_MICBIAS_4K:
sgtl5000->micbias_resistor = 2;
break;
case SGTL5000_MICBIAS_8K:
sgtl5000->micbias_resistor = 3;
break;
default:
sgtl5000->micbias_resistor = 2;
dev_err(&client->dev,
"Unsuitable MicBias resistor\n");
}
} else {
/* default is 4Kohms */
sgtl5000->micbias_resistor = 2;
}
if (!of_property_read_u32(np,
"micbias-voltage-m-volts", &value)) {
/* 1250mV => 0 */
/* steps of 250mV */
if ((value >= 1250) && (value <= 3000))
sgtl5000->micbias_voltage = (value / 250) - 5;
else {
sgtl5000->micbias_voltage = 0;
dev_err(&client->dev,
"Unsuitable MicBias voltage\n");
}
} else {
sgtl5000->micbias_voltage = 0;
}
}
sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
if (!of_property_read_u32(np, "lrclk-strength", &value)) {
if (value > I2S_LRCLK_STRENGTH_HIGH)
value = I2S_LRCLK_STRENGTH_LOW;
sgtl5000->lrclk_strength = value;
}
sgtl5000->sclk_strength = I2S_SCLK_STRENGTH_LOW;
if (!of_property_read_u32(np, "sclk-strength", &value)) {
if (value > I2S_SCLK_STRENGTH_HIGH)
value = I2S_SCLK_STRENGTH_LOW;
sgtl5000->sclk_strength = value;
}
/* Ensure sgtl5000 will start with sane register values */
sgtl5000_fill_defaults(client);
ret = devm_snd_soc_register_component(&client->dev,
&sgtl5000_driver, &sgtl5000_dai, 1);
if (ret)
goto disable_clk;
return 0;
disable_clk:
clk_disable_unprepare(sgtl5000->mclk);
disable_regs:
regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
return ret;
}
static int sgtl5000_i2c_remove(struct i2c_client *client)
{
struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
clk_disable_unprepare(sgtl5000->mclk);
regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
return 0;
}
static const struct i2c_device_id sgtl5000_id[] = {
{"sgtl5000", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
static const struct of_device_id sgtl5000_dt_ids[] = {
{ .compatible = "fsl,sgtl5000", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
static struct i2c_driver sgtl5000_i2c_driver = {
.driver = {
.name = "sgtl5000",
.of_match_table = sgtl5000_dt_ids,
},
.probe = sgtl5000_i2c_probe,
.remove = sgtl5000_i2c_remove,
.id_table = sgtl5000_id,
};
module_i2c_driver(sgtl5000_i2c_driver);
MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
MODULE_LICENSE("GPL");