| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "misc.h" |
| #include "ctree.h" |
| #include "block-rsv.h" |
| #include "space-info.h" |
| #include "transaction.h" |
| #include "block-group.h" |
| #include "disk-io.h" |
| |
| /* |
| * HOW DO BLOCK RESERVES WORK |
| * |
| * Think of block_rsv's as buckets for logically grouped metadata |
| * reservations. Each block_rsv has a ->size and a ->reserved. ->size is |
| * how large we want our block rsv to be, ->reserved is how much space is |
| * currently reserved for this block reserve. |
| * |
| * ->failfast exists for the truncate case, and is described below. |
| * |
| * NORMAL OPERATION |
| * |
| * -> Reserve |
| * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill |
| * |
| * We call into btrfs_reserve_metadata_bytes() with our bytes, which is |
| * accounted for in space_info->bytes_may_use, and then add the bytes to |
| * ->reserved, and ->size in the case of btrfs_block_rsv_add. |
| * |
| * ->size is an over-estimation of how much we may use for a particular |
| * operation. |
| * |
| * -> Use |
| * Entrance: btrfs_use_block_rsv |
| * |
| * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() |
| * to determine the appropriate block_rsv to use, and then verify that |
| * ->reserved has enough space for our tree block allocation. Once |
| * successful we subtract fs_info->nodesize from ->reserved. |
| * |
| * -> Finish |
| * Entrance: btrfs_block_rsv_release |
| * |
| * We are finished with our operation, subtract our individual reservation |
| * from ->size, and then subtract ->size from ->reserved and free up the |
| * excess if there is any. |
| * |
| * There is some logic here to refill the delayed refs rsv or the global rsv |
| * as needed, otherwise the excess is subtracted from |
| * space_info->bytes_may_use. |
| * |
| * TYPES OF BLOCK RESERVES |
| * |
| * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK |
| * These behave normally, as described above, just within the confines of the |
| * lifetime of their particular operation (transaction for the whole trans |
| * handle lifetime, for example). |
| * |
| * BLOCK_RSV_GLOBAL |
| * It is impossible to properly account for all the space that may be required |
| * to make our extent tree updates. This block reserve acts as an overflow |
| * buffer in case our delayed refs reserve does not reserve enough space to |
| * update the extent tree. |
| * |
| * We can steal from this in some cases as well, notably on evict() or |
| * truncate() in order to help users recover from ENOSPC conditions. |
| * |
| * BLOCK_RSV_DELALLOC |
| * The individual item sizes are determined by the per-inode size |
| * calculations, which are described with the delalloc code. This is pretty |
| * straightforward, it's just the calculation of ->size encodes a lot of |
| * different items, and thus it gets used when updating inodes, inserting file |
| * extents, and inserting checksums. |
| * |
| * BLOCK_RSV_DELREFS |
| * We keep a running tally of how many delayed refs we have on the system. |
| * We assume each one of these delayed refs are going to use a full |
| * reservation. We use the transaction items and pre-reserve space for every |
| * operation, and use this reservation to refill any gap between ->size and |
| * ->reserved that may exist. |
| * |
| * From there it's straightforward, removing a delayed ref means we remove its |
| * count from ->size and free up reservations as necessary. Since this is |
| * the most dynamic block reserve in the system, we will try to refill this |
| * block reserve first with any excess returned by any other block reserve. |
| * |
| * BLOCK_RSV_EMPTY |
| * This is the fallback block reserve to make us try to reserve space if we |
| * don't have a specific bucket for this allocation. It is mostly used for |
| * updating the device tree and such, since that is a separate pool we're |
| * content to just reserve space from the space_info on demand. |
| * |
| * BLOCK_RSV_TEMP |
| * This is used by things like truncate and iput. We will temporarily |
| * allocate a block reserve, set it to some size, and then truncate bytes |
| * until we have no space left. With ->failfast set we'll simply return |
| * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try |
| * to make a new reservation. This is because these operations are |
| * unbounded, so we want to do as much work as we can, and then back off and |
| * re-reserve. |
| */ |
| |
| static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, |
| struct btrfs_block_rsv *dest, u64 num_bytes, |
| u64 *qgroup_to_release_ret) |
| { |
| struct btrfs_space_info *space_info = block_rsv->space_info; |
| u64 qgroup_to_release = 0; |
| u64 ret; |
| |
| spin_lock(&block_rsv->lock); |
| if (num_bytes == (u64)-1) { |
| num_bytes = block_rsv->size; |
| qgroup_to_release = block_rsv->qgroup_rsv_size; |
| } |
| block_rsv->size -= num_bytes; |
| if (block_rsv->reserved >= block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| block_rsv->reserved = block_rsv->size; |
| block_rsv->full = 1; |
| } else { |
| num_bytes = 0; |
| } |
| if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { |
| qgroup_to_release = block_rsv->qgroup_rsv_reserved - |
| block_rsv->qgroup_rsv_size; |
| block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; |
| } else { |
| qgroup_to_release = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| |
| ret = num_bytes; |
| if (num_bytes > 0) { |
| if (dest) { |
| spin_lock(&dest->lock); |
| if (!dest->full) { |
| u64 bytes_to_add; |
| |
| bytes_to_add = dest->size - dest->reserved; |
| bytes_to_add = min(num_bytes, bytes_to_add); |
| dest->reserved += bytes_to_add; |
| if (dest->reserved >= dest->size) |
| dest->full = 1; |
| num_bytes -= bytes_to_add; |
| } |
| spin_unlock(&dest->lock); |
| } |
| if (num_bytes) |
| btrfs_space_info_free_bytes_may_use(fs_info, |
| space_info, |
| num_bytes); |
| } |
| if (qgroup_to_release_ret) |
| *qgroup_to_release_ret = qgroup_to_release; |
| return ret; |
| } |
| |
| int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, |
| struct btrfs_block_rsv *dst, u64 num_bytes, |
| bool update_size) |
| { |
| int ret; |
| |
| ret = btrfs_block_rsv_use_bytes(src, num_bytes); |
| if (ret) |
| return ret; |
| |
| btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); |
| return 0; |
| } |
| |
| void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) |
| { |
| memset(rsv, 0, sizeof(*rsv)); |
| spin_lock_init(&rsv->lock); |
| rsv->type = type; |
| } |
| |
| void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *rsv, |
| unsigned short type) |
| { |
| btrfs_init_block_rsv(rsv, type); |
| rsv->space_info = btrfs_find_space_info(fs_info, |
| BTRFS_BLOCK_GROUP_METADATA); |
| } |
| |
| struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, |
| unsigned short type) |
| { |
| struct btrfs_block_rsv *block_rsv; |
| |
| block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); |
| if (!block_rsv) |
| return NULL; |
| |
| btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); |
| return block_rsv; |
| } |
| |
| void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *rsv) |
| { |
| if (!rsv) |
| return; |
| btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); |
| kfree(rsv); |
| } |
| |
| int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, u64 num_bytes, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| int ret; |
| |
| if (num_bytes == 0) |
| return 0; |
| |
| ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); |
| if (!ret) |
| btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = div_factor(block_rsv->size, min_factor); |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| spin_unlock(&block_rsv->lock); |
| |
| return ret; |
| } |
| |
| int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, u64 min_reserved, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| u64 num_bytes = 0; |
| int ret = -ENOSPC; |
| |
| if (!block_rsv) |
| return 0; |
| |
| spin_lock(&block_rsv->lock); |
| num_bytes = min_reserved; |
| if (block_rsv->reserved >= num_bytes) |
| ret = 0; |
| else |
| num_bytes -= block_rsv->reserved; |
| spin_unlock(&block_rsv->lock); |
| |
| if (!ret) |
| return 0; |
| |
| ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); |
| if (!ret) { |
| btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *block_rsv, u64 num_bytes, |
| u64 *qgroup_to_release) |
| { |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; |
| struct btrfs_block_rsv *target = NULL; |
| |
| /* |
| * If we are the delayed_rsv then push to the global rsv, otherwise dump |
| * into the delayed rsv if it is not full. |
| */ |
| if (block_rsv == delayed_rsv) |
| target = global_rsv; |
| else if (block_rsv != global_rsv && !delayed_rsv->full) |
| target = delayed_rsv; |
| |
| if (target && block_rsv->space_info != target->space_info) |
| target = NULL; |
| |
| return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, |
| qgroup_to_release); |
| } |
| |
| int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) |
| { |
| int ret = -ENOSPC; |
| |
| spin_lock(&block_rsv->lock); |
| if (block_rsv->reserved >= num_bytes) { |
| block_rsv->reserved -= num_bytes; |
| if (block_rsv->reserved < block_rsv->size) |
| block_rsv->full = 0; |
| ret = 0; |
| } |
| spin_unlock(&block_rsv->lock); |
| return ret; |
| } |
| |
| void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, |
| u64 num_bytes, bool update_size) |
| { |
| spin_lock(&block_rsv->lock); |
| block_rsv->reserved += num_bytes; |
| if (update_size) |
| block_rsv->size += num_bytes; |
| else if (block_rsv->reserved >= block_rsv->size) |
| block_rsv->full = 1; |
| spin_unlock(&block_rsv->lock); |
| } |
| |
| int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, |
| struct btrfs_block_rsv *dest, u64 num_bytes, |
| int min_factor) |
| { |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| u64 min_bytes; |
| |
| if (global_rsv->space_info != dest->space_info) |
| return -ENOSPC; |
| |
| spin_lock(&global_rsv->lock); |
| min_bytes = div_factor(global_rsv->size, min_factor); |
| if (global_rsv->reserved < min_bytes + num_bytes) { |
| spin_unlock(&global_rsv->lock); |
| return -ENOSPC; |
| } |
| global_rsv->reserved -= num_bytes; |
| if (global_rsv->reserved < global_rsv->size) |
| global_rsv->full = 0; |
| spin_unlock(&global_rsv->lock); |
| |
| btrfs_block_rsv_add_bytes(dest, num_bytes, true); |
| return 0; |
| } |
| |
| void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; |
| struct btrfs_space_info *sinfo = block_rsv->space_info; |
| struct btrfs_root *root, *tmp; |
| u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); |
| unsigned int min_items = 1; |
| |
| /* |
| * The global block rsv is based on the size of the extent tree, the |
| * checksum tree and the root tree. If the fs is empty we want to set |
| * it to a minimal amount for safety. |
| * |
| * We also are going to need to modify the minimum of the tree root and |
| * any global roots we could touch. |
| */ |
| read_lock(&fs_info->global_root_lock); |
| rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, |
| rb_node) { |
| if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID || |
| root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || |
| root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { |
| num_bytes += btrfs_root_used(&root->root_item); |
| min_items++; |
| } |
| } |
| read_unlock(&fs_info->global_root_lock); |
| |
| /* |
| * But we also want to reserve enough space so we can do the fallback |
| * global reserve for an unlink, which is an additional 5 items (see the |
| * comment in __unlink_start_trans for what we're modifying.) |
| * |
| * But we also need space for the delayed ref updates from the unlink, |
| * so its 10, 5 for the actual operation, and 5 for the delayed ref |
| * updates. |
| */ |
| min_items += 10; |
| |
| num_bytes = max_t(u64, num_bytes, |
| btrfs_calc_insert_metadata_size(fs_info, min_items)); |
| |
| spin_lock(&sinfo->lock); |
| spin_lock(&block_rsv->lock); |
| |
| block_rsv->size = min_t(u64, num_bytes, SZ_512M); |
| |
| if (block_rsv->reserved < block_rsv->size) { |
| num_bytes = block_rsv->size - block_rsv->reserved; |
| btrfs_space_info_update_bytes_may_use(fs_info, sinfo, |
| num_bytes); |
| block_rsv->reserved = block_rsv->size; |
| } else if (block_rsv->reserved > block_rsv->size) { |
| num_bytes = block_rsv->reserved - block_rsv->size; |
| btrfs_space_info_update_bytes_may_use(fs_info, sinfo, |
| -num_bytes); |
| block_rsv->reserved = block_rsv->size; |
| btrfs_try_granting_tickets(fs_info, sinfo); |
| } |
| |
| if (block_rsv->reserved == block_rsv->size) |
| block_rsv->full = 1; |
| else |
| block_rsv->full = 0; |
| |
| if (block_rsv->size >= sinfo->total_bytes) |
| sinfo->force_alloc = CHUNK_ALLOC_FORCE; |
| spin_unlock(&block_rsv->lock); |
| spin_unlock(&sinfo->lock); |
| } |
| |
| void btrfs_init_root_block_rsv(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| switch (root->root_key.objectid) { |
| case BTRFS_CSUM_TREE_OBJECTID: |
| case BTRFS_EXTENT_TREE_OBJECTID: |
| case BTRFS_FREE_SPACE_TREE_OBJECTID: |
| root->block_rsv = &fs_info->delayed_refs_rsv; |
| break; |
| case BTRFS_ROOT_TREE_OBJECTID: |
| case BTRFS_DEV_TREE_OBJECTID: |
| case BTRFS_QUOTA_TREE_OBJECTID: |
| root->block_rsv = &fs_info->global_block_rsv; |
| break; |
| case BTRFS_CHUNK_TREE_OBJECTID: |
| root->block_rsv = &fs_info->chunk_block_rsv; |
| break; |
| default: |
| root->block_rsv = NULL; |
| break; |
| } |
| } |
| |
| void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_space_info *space_info; |
| |
| space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); |
| fs_info->chunk_block_rsv.space_info = space_info; |
| |
| space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); |
| fs_info->global_block_rsv.space_info = space_info; |
| fs_info->trans_block_rsv.space_info = space_info; |
| fs_info->empty_block_rsv.space_info = space_info; |
| fs_info->delayed_block_rsv.space_info = space_info; |
| fs_info->delayed_refs_rsv.space_info = space_info; |
| |
| btrfs_update_global_block_rsv(fs_info); |
| } |
| |
| void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) |
| { |
| btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, |
| NULL); |
| WARN_ON(fs_info->trans_block_rsv.size > 0); |
| WARN_ON(fs_info->trans_block_rsv.reserved > 0); |
| WARN_ON(fs_info->chunk_block_rsv.size > 0); |
| WARN_ON(fs_info->chunk_block_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_block_rsv.size > 0); |
| WARN_ON(fs_info->delayed_block_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); |
| WARN_ON(fs_info->delayed_refs_rsv.size > 0); |
| } |
| |
| static struct btrfs_block_rsv *get_block_rsv( |
| const struct btrfs_trans_handle *trans, |
| const struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *block_rsv = NULL; |
| |
| if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || |
| (root == fs_info->uuid_root) || |
| (trans->adding_csums && |
| root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID)) |
| block_rsv = trans->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = root->block_rsv; |
| |
| if (!block_rsv) |
| block_rsv = &fs_info->empty_block_rsv; |
| |
| return block_rsv; |
| } |
| |
| struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| u32 blocksize) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_block_rsv *block_rsv; |
| struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; |
| int ret; |
| bool global_updated = false; |
| |
| block_rsv = get_block_rsv(trans, root); |
| |
| if (unlikely(block_rsv->size == 0)) |
| goto try_reserve; |
| again: |
| ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); |
| if (!ret) |
| return block_rsv; |
| |
| if (block_rsv->failfast) |
| return ERR_PTR(ret); |
| |
| if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { |
| global_updated = true; |
| btrfs_update_global_block_rsv(fs_info); |
| goto again; |
| } |
| |
| /* |
| * The global reserve still exists to save us from ourselves, so don't |
| * warn_on if we are short on our delayed refs reserve. |
| */ |
| if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && |
| btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { |
| static DEFINE_RATELIMIT_STATE(_rs, |
| DEFAULT_RATELIMIT_INTERVAL * 10, |
| /*DEFAULT_RATELIMIT_BURST*/ 1); |
| if (__ratelimit(&_rs)) |
| WARN(1, KERN_DEBUG |
| "BTRFS: block rsv %d returned %d\n", |
| block_rsv->type, ret); |
| } |
| try_reserve: |
| ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, |
| BTRFS_RESERVE_NO_FLUSH); |
| if (!ret) |
| return block_rsv; |
| /* |
| * If we couldn't reserve metadata bytes try and use some from |
| * the global reserve if its space type is the same as the global |
| * reservation. |
| */ |
| if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && |
| block_rsv->space_info == global_rsv->space_info) { |
| ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); |
| if (!ret) |
| return global_rsv; |
| } |
| return ERR_PTR(ret); |
| } |