| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Driver for Motorola/Freescale IMX serial ports |
| * |
| * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. |
| * |
| * Author: Sascha Hauer <sascha@saschahauer.de> |
| * Copyright (C) 2004 Pengutronix |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/ioport.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/sysrq.h> |
| #include <linux/platform_device.h> |
| #include <linux/tty.h> |
| #include <linux/tty_flip.h> |
| #include <linux/serial_core.h> |
| #include <linux/serial.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/ktime.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/rational.h> |
| #include <linux/slab.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/io.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <asm/irq.h> |
| #include <linux/platform_data/dma-imx.h> |
| |
| #include "serial_mctrl_gpio.h" |
| |
| /* Register definitions */ |
| #define URXD0 0x0 /* Receiver Register */ |
| #define URTX0 0x40 /* Transmitter Register */ |
| #define UCR1 0x80 /* Control Register 1 */ |
| #define UCR2 0x84 /* Control Register 2 */ |
| #define UCR3 0x88 /* Control Register 3 */ |
| #define UCR4 0x8c /* Control Register 4 */ |
| #define UFCR 0x90 /* FIFO Control Register */ |
| #define USR1 0x94 /* Status Register 1 */ |
| #define USR2 0x98 /* Status Register 2 */ |
| #define UESC 0x9c /* Escape Character Register */ |
| #define UTIM 0xa0 /* Escape Timer Register */ |
| #define UBIR 0xa4 /* BRM Incremental Register */ |
| #define UBMR 0xa8 /* BRM Modulator Register */ |
| #define UBRC 0xac /* Baud Rate Count Register */ |
| #define IMX21_ONEMS 0xb0 /* One Millisecond register */ |
| #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ |
| #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ |
| |
| /* UART Control Register Bit Fields.*/ |
| #define URXD_DUMMY_READ (1<<16) |
| #define URXD_CHARRDY (1<<15) |
| #define URXD_ERR (1<<14) |
| #define URXD_OVRRUN (1<<13) |
| #define URXD_FRMERR (1<<12) |
| #define URXD_BRK (1<<11) |
| #define URXD_PRERR (1<<10) |
| #define URXD_RX_DATA (0xFF<<0) |
| #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ |
| #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ |
| #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ |
| #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ |
| #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ |
| #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ |
| #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ |
| #define UCR1_IREN (1<<7) /* Infrared interface enable */ |
| #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ |
| #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ |
| #define UCR1_SNDBRK (1<<4) /* Send break */ |
| #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ |
| #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ |
| #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ |
| #define UCR1_DOZE (1<<1) /* Doze */ |
| #define UCR1_UARTEN (1<<0) /* UART enabled */ |
| #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ |
| #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ |
| #define UCR2_CTSC (1<<13) /* CTS pin control */ |
| #define UCR2_CTS (1<<12) /* Clear to send */ |
| #define UCR2_ESCEN (1<<11) /* Escape enable */ |
| #define UCR2_PREN (1<<8) /* Parity enable */ |
| #define UCR2_PROE (1<<7) /* Parity odd/even */ |
| #define UCR2_STPB (1<<6) /* Stop */ |
| #define UCR2_WS (1<<5) /* Word size */ |
| #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ |
| #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ |
| #define UCR2_TXEN (1<<2) /* Transmitter enabled */ |
| #define UCR2_RXEN (1<<1) /* Receiver enabled */ |
| #define UCR2_SRST (1<<0) /* SW reset */ |
| #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ |
| #define UCR3_PARERREN (1<<12) /* Parity enable */ |
| #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ |
| #define UCR3_DSR (1<<10) /* Data set ready */ |
| #define UCR3_DCD (1<<9) /* Data carrier detect */ |
| #define UCR3_RI (1<<8) /* Ring indicator */ |
| #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ |
| #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ |
| #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ |
| #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ |
| #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ |
| #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ |
| #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ |
| #define UCR3_BPEN (1<<0) /* Preset registers enable */ |
| #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ |
| #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ |
| #define UCR4_INVR (1<<9) /* Inverted infrared reception */ |
| #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ |
| #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ |
| #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ |
| #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ |
| #define UCR4_IRSC (1<<5) /* IR special case */ |
| #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ |
| #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ |
| #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ |
| #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ |
| #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ |
| #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ |
| #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ |
| #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) |
| #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ |
| #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ |
| #define USR1_RTSS (1<<14) /* RTS pin status */ |
| #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ |
| #define USR1_RTSD (1<<12) /* RTS delta */ |
| #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ |
| #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ |
| #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ |
| #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ |
| #define USR1_DTRD (1<<7) /* DTR Delta */ |
| #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ |
| #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ |
| #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ |
| #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ |
| #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ |
| #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ |
| #define USR2_IDLE (1<<12) /* Idle condition */ |
| #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ |
| #define USR2_RIIN (1<<9) /* Ring Indicator Input */ |
| #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ |
| #define USR2_WAKE (1<<7) /* Wake */ |
| #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ |
| #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ |
| #define USR2_TXDC (1<<3) /* Transmitter complete */ |
| #define USR2_BRCD (1<<2) /* Break condition */ |
| #define USR2_ORE (1<<1) /* Overrun error */ |
| #define USR2_RDR (1<<0) /* Recv data ready */ |
| #define UTS_FRCPERR (1<<13) /* Force parity error */ |
| #define UTS_LOOP (1<<12) /* Loop tx and rx */ |
| #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ |
| #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ |
| #define UTS_TXFULL (1<<4) /* TxFIFO full */ |
| #define UTS_RXFULL (1<<3) /* RxFIFO full */ |
| #define UTS_SOFTRST (1<<0) /* Software reset */ |
| |
| /* We've been assigned a range on the "Low-density serial ports" major */ |
| #define SERIAL_IMX_MAJOR 207 |
| #define MINOR_START 16 |
| #define DEV_NAME "ttymxc" |
| |
| /* |
| * This determines how often we check the modem status signals |
| * for any change. They generally aren't connected to an IRQ |
| * so we have to poll them. We also check immediately before |
| * filling the TX fifo incase CTS has been dropped. |
| */ |
| #define MCTRL_TIMEOUT (250*HZ/1000) |
| |
| #define DRIVER_NAME "IMX-uart" |
| |
| #define UART_NR 8 |
| |
| /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ |
| enum imx_uart_type { |
| IMX1_UART, |
| IMX21_UART, |
| IMX53_UART, |
| IMX6Q_UART, |
| }; |
| |
| /* device type dependent stuff */ |
| struct imx_uart_data { |
| unsigned uts_reg; |
| enum imx_uart_type devtype; |
| }; |
| |
| enum imx_tx_state { |
| OFF, |
| WAIT_AFTER_RTS, |
| SEND, |
| WAIT_AFTER_SEND, |
| }; |
| |
| struct imx_port { |
| struct uart_port port; |
| struct timer_list timer; |
| unsigned int old_status; |
| unsigned int have_rtscts:1; |
| unsigned int have_rtsgpio:1; |
| unsigned int dte_mode:1; |
| unsigned int inverted_tx:1; |
| unsigned int inverted_rx:1; |
| struct clk *clk_ipg; |
| struct clk *clk_per; |
| const struct imx_uart_data *devdata; |
| |
| struct mctrl_gpios *gpios; |
| |
| /* shadow registers */ |
| unsigned int ucr1; |
| unsigned int ucr2; |
| unsigned int ucr3; |
| unsigned int ucr4; |
| unsigned int ufcr; |
| |
| /* DMA fields */ |
| unsigned int dma_is_enabled:1; |
| unsigned int dma_is_rxing:1; |
| unsigned int dma_is_txing:1; |
| struct dma_chan *dma_chan_rx, *dma_chan_tx; |
| struct scatterlist rx_sgl, tx_sgl[2]; |
| void *rx_buf; |
| struct circ_buf rx_ring; |
| unsigned int rx_buf_size; |
| unsigned int rx_period_length; |
| unsigned int rx_periods; |
| dma_cookie_t rx_cookie; |
| unsigned int tx_bytes; |
| unsigned int dma_tx_nents; |
| unsigned int saved_reg[10]; |
| bool context_saved; |
| |
| enum imx_tx_state tx_state; |
| struct hrtimer trigger_start_tx; |
| struct hrtimer trigger_stop_tx; |
| }; |
| |
| struct imx_port_ucrs { |
| unsigned int ucr1; |
| unsigned int ucr2; |
| unsigned int ucr3; |
| }; |
| |
| static struct imx_uart_data imx_uart_devdata[] = { |
| [IMX1_UART] = { |
| .uts_reg = IMX1_UTS, |
| .devtype = IMX1_UART, |
| }, |
| [IMX21_UART] = { |
| .uts_reg = IMX21_UTS, |
| .devtype = IMX21_UART, |
| }, |
| [IMX53_UART] = { |
| .uts_reg = IMX21_UTS, |
| .devtype = IMX53_UART, |
| }, |
| [IMX6Q_UART] = { |
| .uts_reg = IMX21_UTS, |
| .devtype = IMX6Q_UART, |
| }, |
| }; |
| |
| static const struct of_device_id imx_uart_dt_ids[] = { |
| { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, |
| { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, |
| { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, |
| { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); |
| |
| static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) |
| { |
| switch (offset) { |
| case UCR1: |
| sport->ucr1 = val; |
| break; |
| case UCR2: |
| sport->ucr2 = val; |
| break; |
| case UCR3: |
| sport->ucr3 = val; |
| break; |
| case UCR4: |
| sport->ucr4 = val; |
| break; |
| case UFCR: |
| sport->ufcr = val; |
| break; |
| default: |
| break; |
| } |
| writel(val, sport->port.membase + offset); |
| } |
| |
| static u32 imx_uart_readl(struct imx_port *sport, u32 offset) |
| { |
| switch (offset) { |
| case UCR1: |
| return sport->ucr1; |
| break; |
| case UCR2: |
| /* |
| * UCR2_SRST is the only bit in the cached registers that might |
| * differ from the value that was last written. As it only |
| * automatically becomes one after being cleared, reread |
| * conditionally. |
| */ |
| if (!(sport->ucr2 & UCR2_SRST)) |
| sport->ucr2 = readl(sport->port.membase + offset); |
| return sport->ucr2; |
| break; |
| case UCR3: |
| return sport->ucr3; |
| break; |
| case UCR4: |
| return sport->ucr4; |
| break; |
| case UFCR: |
| return sport->ufcr; |
| break; |
| default: |
| return readl(sport->port.membase + offset); |
| } |
| } |
| |
| static inline unsigned imx_uart_uts_reg(struct imx_port *sport) |
| { |
| return sport->devdata->uts_reg; |
| } |
| |
| static inline int imx_uart_is_imx1(struct imx_port *sport) |
| { |
| return sport->devdata->devtype == IMX1_UART; |
| } |
| |
| static inline int imx_uart_is_imx21(struct imx_port *sport) |
| { |
| return sport->devdata->devtype == IMX21_UART; |
| } |
| |
| static inline int imx_uart_is_imx53(struct imx_port *sport) |
| { |
| return sport->devdata->devtype == IMX53_UART; |
| } |
| |
| static inline int imx_uart_is_imx6q(struct imx_port *sport) |
| { |
| return sport->devdata->devtype == IMX6Q_UART; |
| } |
| /* |
| * Save and restore functions for UCR1, UCR2 and UCR3 registers |
| */ |
| #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) |
| static void imx_uart_ucrs_save(struct imx_port *sport, |
| struct imx_port_ucrs *ucr) |
| { |
| /* save control registers */ |
| ucr->ucr1 = imx_uart_readl(sport, UCR1); |
| ucr->ucr2 = imx_uart_readl(sport, UCR2); |
| ucr->ucr3 = imx_uart_readl(sport, UCR3); |
| } |
| |
| static void imx_uart_ucrs_restore(struct imx_port *sport, |
| struct imx_port_ucrs *ucr) |
| { |
| /* restore control registers */ |
| imx_uart_writel(sport, ucr->ucr1, UCR1); |
| imx_uart_writel(sport, ucr->ucr2, UCR2); |
| imx_uart_writel(sport, ucr->ucr3, UCR3); |
| } |
| #endif |
| |
| /* called with port.lock taken and irqs caller dependent */ |
| static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) |
| { |
| *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); |
| |
| sport->port.mctrl |= TIOCM_RTS; |
| mctrl_gpio_set(sport->gpios, sport->port.mctrl); |
| } |
| |
| /* called with port.lock taken and irqs caller dependent */ |
| static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) |
| { |
| *ucr2 &= ~UCR2_CTSC; |
| *ucr2 |= UCR2_CTS; |
| |
| sport->port.mctrl &= ~TIOCM_RTS; |
| mctrl_gpio_set(sport->gpios, sport->port.mctrl); |
| } |
| |
| static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) |
| { |
| hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_start_rx(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned int ucr1, ucr2; |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr2 = imx_uart_readl(sport, UCR2); |
| |
| ucr2 |= UCR2_RXEN; |
| |
| if (sport->dma_is_enabled) { |
| ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; |
| } else { |
| ucr1 |= UCR1_RRDYEN; |
| ucr2 |= UCR2_ATEN; |
| } |
| |
| /* Write UCR2 first as it includes RXEN */ |
| imx_uart_writel(sport, ucr2, UCR2); |
| imx_uart_writel(sport, ucr1, UCR1); |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_stop_tx(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| u32 ucr1, ucr4, usr2; |
| |
| if (sport->tx_state == OFF) |
| return; |
| |
| /* |
| * We are maybe in the SMP context, so if the DMA TX thread is running |
| * on other cpu, we have to wait for it to finish. |
| */ |
| if (sport->dma_is_txing) |
| return; |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); |
| |
| usr2 = imx_uart_readl(sport, USR2); |
| if (!(usr2 & USR2_TXDC)) { |
| /* The shifter is still busy, so retry once TC triggers */ |
| return; |
| } |
| |
| ucr4 = imx_uart_readl(sport, UCR4); |
| ucr4 &= ~UCR4_TCEN; |
| imx_uart_writel(sport, ucr4, UCR4); |
| |
| /* in rs485 mode disable transmitter */ |
| if (port->rs485.flags & SER_RS485_ENABLED) { |
| if (sport->tx_state == SEND) { |
| sport->tx_state = WAIT_AFTER_SEND; |
| start_hrtimer_ms(&sport->trigger_stop_tx, |
| port->rs485.delay_rts_after_send); |
| return; |
| } |
| |
| if (sport->tx_state == WAIT_AFTER_RTS || |
| sport->tx_state == WAIT_AFTER_SEND) { |
| u32 ucr2; |
| |
| hrtimer_try_to_cancel(&sport->trigger_start_tx); |
| |
| ucr2 = imx_uart_readl(sport, UCR2); |
| if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) |
| imx_uart_rts_active(sport, &ucr2); |
| else |
| imx_uart_rts_inactive(sport, &ucr2); |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| imx_uart_start_rx(port); |
| |
| sport->tx_state = OFF; |
| } |
| } else { |
| sport->tx_state = OFF; |
| } |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_stop_rx(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| u32 ucr1, ucr2, ucr4; |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr4 = imx_uart_readl(sport, UCR4); |
| |
| if (sport->dma_is_enabled) { |
| ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); |
| } else { |
| ucr1 &= ~UCR1_RRDYEN; |
| ucr2 &= ~UCR2_ATEN; |
| ucr4 &= ~UCR4_OREN; |
| } |
| imx_uart_writel(sport, ucr1, UCR1); |
| imx_uart_writel(sport, ucr4, UCR4); |
| |
| ucr2 &= ~UCR2_RXEN; |
| imx_uart_writel(sport, ucr2, UCR2); |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_enable_ms(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| |
| mod_timer(&sport->timer, jiffies); |
| |
| mctrl_gpio_enable_ms(sport->gpios); |
| } |
| |
| static void imx_uart_dma_tx(struct imx_port *sport); |
| |
| /* called with port.lock taken and irqs off */ |
| static inline void imx_uart_transmit_buffer(struct imx_port *sport) |
| { |
| struct circ_buf *xmit = &sport->port.state->xmit; |
| |
| if (sport->port.x_char) { |
| /* Send next char */ |
| imx_uart_writel(sport, sport->port.x_char, URTX0); |
| sport->port.icount.tx++; |
| sport->port.x_char = 0; |
| return; |
| } |
| |
| if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { |
| imx_uart_stop_tx(&sport->port); |
| return; |
| } |
| |
| if (sport->dma_is_enabled) { |
| u32 ucr1; |
| /* |
| * We've just sent a X-char Ensure the TX DMA is enabled |
| * and the TX IRQ is disabled. |
| **/ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~UCR1_TRDYEN; |
| if (sport->dma_is_txing) { |
| ucr1 |= UCR1_TXDMAEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| } else { |
| imx_uart_writel(sport, ucr1, UCR1); |
| imx_uart_dma_tx(sport); |
| } |
| |
| return; |
| } |
| |
| while (!uart_circ_empty(xmit) && |
| !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { |
| /* send xmit->buf[xmit->tail] |
| * out the port here */ |
| imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); |
| xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); |
| sport->port.icount.tx++; |
| } |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&sport->port); |
| |
| if (uart_circ_empty(xmit)) |
| imx_uart_stop_tx(&sport->port); |
| } |
| |
| static void imx_uart_dma_tx_callback(void *data) |
| { |
| struct imx_port *sport = data; |
| struct scatterlist *sgl = &sport->tx_sgl[0]; |
| struct circ_buf *xmit = &sport->port.state->xmit; |
| unsigned long flags; |
| u32 ucr1; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~UCR1_TXDMAEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| /* update the stat */ |
| xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); |
| sport->port.icount.tx += sport->tx_bytes; |
| |
| dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); |
| |
| sport->dma_is_txing = 0; |
| |
| if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) |
| uart_write_wakeup(&sport->port); |
| |
| if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) |
| imx_uart_dma_tx(sport); |
| else if (sport->port.rs485.flags & SER_RS485_ENABLED) { |
| u32 ucr4 = imx_uart_readl(sport, UCR4); |
| ucr4 |= UCR4_TCEN; |
| imx_uart_writel(sport, ucr4, UCR4); |
| } |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_dma_tx(struct imx_port *sport) |
| { |
| struct circ_buf *xmit = &sport->port.state->xmit; |
| struct scatterlist *sgl = sport->tx_sgl; |
| struct dma_async_tx_descriptor *desc; |
| struct dma_chan *chan = sport->dma_chan_tx; |
| struct device *dev = sport->port.dev; |
| u32 ucr1, ucr4; |
| int ret; |
| |
| if (sport->dma_is_txing) |
| return; |
| |
| ucr4 = imx_uart_readl(sport, UCR4); |
| ucr4 &= ~UCR4_TCEN; |
| imx_uart_writel(sport, ucr4, UCR4); |
| |
| sport->tx_bytes = uart_circ_chars_pending(xmit); |
| |
| if (xmit->tail < xmit->head || xmit->head == 0) { |
| sport->dma_tx_nents = 1; |
| sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); |
| } else { |
| sport->dma_tx_nents = 2; |
| sg_init_table(sgl, 2); |
| sg_set_buf(sgl, xmit->buf + xmit->tail, |
| UART_XMIT_SIZE - xmit->tail); |
| sg_set_buf(sgl + 1, xmit->buf, xmit->head); |
| } |
| |
| ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); |
| if (ret == 0) { |
| dev_err(dev, "DMA mapping error for TX.\n"); |
| return; |
| } |
| desc = dmaengine_prep_slave_sg(chan, sgl, ret, |
| DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dma_unmap_sg(dev, sgl, sport->dma_tx_nents, |
| DMA_TO_DEVICE); |
| dev_err(dev, "We cannot prepare for the TX slave dma!\n"); |
| return; |
| } |
| desc->callback = imx_uart_dma_tx_callback; |
| desc->callback_param = sport; |
| |
| dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", |
| uart_circ_chars_pending(xmit)); |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 |= UCR1_TXDMAEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| /* fire it */ |
| sport->dma_is_txing = 1; |
| dmaengine_submit(desc); |
| dma_async_issue_pending(chan); |
| return; |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_start_tx(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| u32 ucr1; |
| |
| if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) |
| return; |
| |
| /* |
| * We cannot simply do nothing here if sport->tx_state == SEND already |
| * because UCR1_TXMPTYEN might already have been cleared in |
| * imx_uart_stop_tx(), but tx_state is still SEND. |
| */ |
| |
| if (port->rs485.flags & SER_RS485_ENABLED) { |
| if (sport->tx_state == OFF) { |
| u32 ucr2 = imx_uart_readl(sport, UCR2); |
| if (port->rs485.flags & SER_RS485_RTS_ON_SEND) |
| imx_uart_rts_active(sport, &ucr2); |
| else |
| imx_uart_rts_inactive(sport, &ucr2); |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) |
| imx_uart_stop_rx(port); |
| |
| sport->tx_state = WAIT_AFTER_RTS; |
| start_hrtimer_ms(&sport->trigger_start_tx, |
| port->rs485.delay_rts_before_send); |
| return; |
| } |
| |
| if (sport->tx_state == WAIT_AFTER_SEND |
| || sport->tx_state == WAIT_AFTER_RTS) { |
| |
| hrtimer_try_to_cancel(&sport->trigger_stop_tx); |
| |
| /* |
| * Enable transmitter and shifter empty irq only if DMA |
| * is off. In the DMA case this is done in the |
| * tx-callback. |
| */ |
| if (!sport->dma_is_enabled) { |
| u32 ucr4 = imx_uart_readl(sport, UCR4); |
| ucr4 |= UCR4_TCEN; |
| imx_uart_writel(sport, ucr4, UCR4); |
| } |
| |
| sport->tx_state = SEND; |
| } |
| } else { |
| sport->tx_state = SEND; |
| } |
| |
| if (!sport->dma_is_enabled) { |
| ucr1 = imx_uart_readl(sport, UCR1); |
| imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); |
| } |
| |
| if (sport->dma_is_enabled) { |
| if (sport->port.x_char) { |
| /* We have X-char to send, so enable TX IRQ and |
| * disable TX DMA to let TX interrupt to send X-char */ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~UCR1_TXDMAEN; |
| ucr1 |= UCR1_TRDYEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| return; |
| } |
| |
| if (!uart_circ_empty(&port->state->xmit) && |
| !uart_tx_stopped(port)) |
| imx_uart_dma_tx(sport); |
| return; |
| } |
| } |
| |
| static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| u32 usr1; |
| |
| imx_uart_writel(sport, USR1_RTSD, USR1); |
| usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; |
| uart_handle_cts_change(&sport->port, !!usr1); |
| wake_up_interruptible(&sport->port.state->port.delta_msr_wait); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| irqreturn_t ret; |
| |
| spin_lock(&sport->port.lock); |
| |
| ret = __imx_uart_rtsint(irq, dev_id); |
| |
| spin_unlock(&sport->port.lock); |
| |
| return ret; |
| } |
| |
| static irqreturn_t imx_uart_txint(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| |
| spin_lock(&sport->port.lock); |
| imx_uart_transmit_buffer(sport); |
| spin_unlock(&sport->port.lock); |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| unsigned int rx, flg, ignored = 0; |
| struct tty_port *port = &sport->port.state->port; |
| |
| while (imx_uart_readl(sport, USR2) & USR2_RDR) { |
| u32 usr2; |
| |
| flg = TTY_NORMAL; |
| sport->port.icount.rx++; |
| |
| rx = imx_uart_readl(sport, URXD0); |
| |
| usr2 = imx_uart_readl(sport, USR2); |
| if (usr2 & USR2_BRCD) { |
| imx_uart_writel(sport, USR2_BRCD, USR2); |
| if (uart_handle_break(&sport->port)) |
| continue; |
| } |
| |
| if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) |
| continue; |
| |
| if (unlikely(rx & URXD_ERR)) { |
| if (rx & URXD_BRK) |
| sport->port.icount.brk++; |
| else if (rx & URXD_PRERR) |
| sport->port.icount.parity++; |
| else if (rx & URXD_FRMERR) |
| sport->port.icount.frame++; |
| if (rx & URXD_OVRRUN) |
| sport->port.icount.overrun++; |
| |
| if (rx & sport->port.ignore_status_mask) { |
| if (++ignored > 100) |
| goto out; |
| continue; |
| } |
| |
| rx &= (sport->port.read_status_mask | 0xFF); |
| |
| if (rx & URXD_BRK) |
| flg = TTY_BREAK; |
| else if (rx & URXD_PRERR) |
| flg = TTY_PARITY; |
| else if (rx & URXD_FRMERR) |
| flg = TTY_FRAME; |
| if (rx & URXD_OVRRUN) |
| flg = TTY_OVERRUN; |
| |
| sport->port.sysrq = 0; |
| } |
| |
| if (sport->port.ignore_status_mask & URXD_DUMMY_READ) |
| goto out; |
| |
| if (tty_insert_flip_char(port, rx, flg) == 0) |
| sport->port.icount.buf_overrun++; |
| } |
| |
| out: |
| tty_flip_buffer_push(port); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t imx_uart_rxint(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| irqreturn_t ret; |
| |
| spin_lock(&sport->port.lock); |
| |
| ret = __imx_uart_rxint(irq, dev_id); |
| |
| spin_unlock(&sport->port.lock); |
| |
| return ret; |
| } |
| |
| static void imx_uart_clear_rx_errors(struct imx_port *sport); |
| |
| /* |
| * We have a modem side uart, so the meanings of RTS and CTS are inverted. |
| */ |
| static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) |
| { |
| unsigned int tmp = TIOCM_DSR; |
| unsigned usr1 = imx_uart_readl(sport, USR1); |
| unsigned usr2 = imx_uart_readl(sport, USR2); |
| |
| if (usr1 & USR1_RTSS) |
| tmp |= TIOCM_CTS; |
| |
| /* in DCE mode DCDIN is always 0 */ |
| if (!(usr2 & USR2_DCDIN)) |
| tmp |= TIOCM_CAR; |
| |
| if (sport->dte_mode) |
| if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) |
| tmp |= TIOCM_RI; |
| |
| return tmp; |
| } |
| |
| /* |
| * Handle any change of modem status signal since we were last called. |
| */ |
| static void imx_uart_mctrl_check(struct imx_port *sport) |
| { |
| unsigned int status, changed; |
| |
| status = imx_uart_get_hwmctrl(sport); |
| changed = status ^ sport->old_status; |
| |
| if (changed == 0) |
| return; |
| |
| sport->old_status = status; |
| |
| if (changed & TIOCM_RI && status & TIOCM_RI) |
| sport->port.icount.rng++; |
| if (changed & TIOCM_DSR) |
| sport->port.icount.dsr++; |
| if (changed & TIOCM_CAR) |
| uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); |
| if (changed & TIOCM_CTS) |
| uart_handle_cts_change(&sport->port, status & TIOCM_CTS); |
| |
| wake_up_interruptible(&sport->port.state->port.delta_msr_wait); |
| } |
| |
| static irqreturn_t imx_uart_int(int irq, void *dev_id) |
| { |
| struct imx_port *sport = dev_id; |
| unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; |
| irqreturn_t ret = IRQ_NONE; |
| |
| spin_lock(&sport->port.lock); |
| |
| usr1 = imx_uart_readl(sport, USR1); |
| usr2 = imx_uart_readl(sport, USR2); |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr3 = imx_uart_readl(sport, UCR3); |
| ucr4 = imx_uart_readl(sport, UCR4); |
| |
| /* |
| * Even if a condition is true that can trigger an irq only handle it if |
| * the respective irq source is enabled. This prevents some undesired |
| * actions, for example if a character that sits in the RX FIFO and that |
| * should be fetched via DMA is tried to be fetched using PIO. Or the |
| * receiver is currently off and so reading from URXD0 results in an |
| * exception. So just mask the (raw) status bits for disabled irqs. |
| */ |
| if ((ucr1 & UCR1_RRDYEN) == 0) |
| usr1 &= ~USR1_RRDY; |
| if ((ucr2 & UCR2_ATEN) == 0) |
| usr1 &= ~USR1_AGTIM; |
| if ((ucr1 & UCR1_TRDYEN) == 0) |
| usr1 &= ~USR1_TRDY; |
| if ((ucr4 & UCR4_TCEN) == 0) |
| usr2 &= ~USR2_TXDC; |
| if ((ucr3 & UCR3_DTRDEN) == 0) |
| usr1 &= ~USR1_DTRD; |
| if ((ucr1 & UCR1_RTSDEN) == 0) |
| usr1 &= ~USR1_RTSD; |
| if ((ucr3 & UCR3_AWAKEN) == 0) |
| usr1 &= ~USR1_AWAKE; |
| if ((ucr4 & UCR4_OREN) == 0) |
| usr2 &= ~USR2_ORE; |
| |
| if (usr1 & (USR1_RRDY | USR1_AGTIM)) { |
| imx_uart_writel(sport, USR1_AGTIM, USR1); |
| |
| __imx_uart_rxint(irq, dev_id); |
| ret = IRQ_HANDLED; |
| } |
| |
| if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { |
| imx_uart_transmit_buffer(sport); |
| ret = IRQ_HANDLED; |
| } |
| |
| if (usr1 & USR1_DTRD) { |
| imx_uart_writel(sport, USR1_DTRD, USR1); |
| |
| imx_uart_mctrl_check(sport); |
| |
| ret = IRQ_HANDLED; |
| } |
| |
| if (usr1 & USR1_RTSD) { |
| __imx_uart_rtsint(irq, dev_id); |
| ret = IRQ_HANDLED; |
| } |
| |
| if (usr1 & USR1_AWAKE) { |
| imx_uart_writel(sport, USR1_AWAKE, USR1); |
| ret = IRQ_HANDLED; |
| } |
| |
| if (usr2 & USR2_ORE) { |
| sport->port.icount.overrun++; |
| imx_uart_writel(sport, USR2_ORE, USR2); |
| ret = IRQ_HANDLED; |
| } |
| |
| spin_unlock(&sport->port.lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Return TIOCSER_TEMT when transmitter is not busy. |
| */ |
| static unsigned int imx_uart_tx_empty(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned int ret; |
| |
| ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; |
| |
| /* If the TX DMA is working, return 0. */ |
| if (sport->dma_is_txing) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static unsigned int imx_uart_get_mctrl(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned int ret = imx_uart_get_hwmctrl(sport); |
| |
| mctrl_gpio_get(sport->gpios, &ret); |
| |
| return ret; |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| u32 ucr3, uts; |
| |
| if (!(port->rs485.flags & SER_RS485_ENABLED)) { |
| u32 ucr2; |
| |
| /* |
| * Turn off autoRTS if RTS is lowered and restore autoRTS |
| * setting if RTS is raised. |
| */ |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 &= ~(UCR2_CTS | UCR2_CTSC); |
| if (mctrl & TIOCM_RTS) { |
| ucr2 |= UCR2_CTS; |
| /* |
| * UCR2_IRTS is unset if and only if the port is |
| * configured for CRTSCTS, so we use inverted UCR2_IRTS |
| * to get the state to restore to. |
| */ |
| if (!(ucr2 & UCR2_IRTS)) |
| ucr2 |= UCR2_CTSC; |
| } |
| imx_uart_writel(sport, ucr2, UCR2); |
| } |
| |
| ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; |
| if (!(mctrl & TIOCM_DTR)) |
| ucr3 |= UCR3_DSR; |
| imx_uart_writel(sport, ucr3, UCR3); |
| |
| uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; |
| if (mctrl & TIOCM_LOOP) |
| uts |= UTS_LOOP; |
| imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); |
| |
| mctrl_gpio_set(sport->gpios, mctrl); |
| } |
| |
| /* |
| * Interrupts always disabled. |
| */ |
| static void imx_uart_break_ctl(struct uart_port *port, int break_state) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned long flags; |
| u32 ucr1; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; |
| |
| if (break_state != 0) |
| ucr1 |= UCR1_SNDBRK; |
| |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| /* |
| * This is our per-port timeout handler, for checking the |
| * modem status signals. |
| */ |
| static void imx_uart_timeout(struct timer_list *t) |
| { |
| struct imx_port *sport = from_timer(sport, t, timer); |
| unsigned long flags; |
| |
| if (sport->port.state) { |
| spin_lock_irqsave(&sport->port.lock, flags); |
| imx_uart_mctrl_check(sport); |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); |
| } |
| } |
| |
| /* |
| * There are two kinds of RX DMA interrupts(such as in the MX6Q): |
| * [1] the RX DMA buffer is full. |
| * [2] the aging timer expires |
| * |
| * Condition [2] is triggered when a character has been sitting in the FIFO |
| * for at least 8 byte durations. |
| */ |
| static void imx_uart_dma_rx_callback(void *data) |
| { |
| struct imx_port *sport = data; |
| struct dma_chan *chan = sport->dma_chan_rx; |
| struct scatterlist *sgl = &sport->rx_sgl; |
| struct tty_port *port = &sport->port.state->port; |
| struct dma_tx_state state; |
| struct circ_buf *rx_ring = &sport->rx_ring; |
| enum dma_status status; |
| unsigned int w_bytes = 0; |
| unsigned int r_bytes; |
| unsigned int bd_size; |
| |
| status = dmaengine_tx_status(chan, sport->rx_cookie, &state); |
| |
| if (status == DMA_ERROR) { |
| imx_uart_clear_rx_errors(sport); |
| return; |
| } |
| |
| if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { |
| |
| /* |
| * The state-residue variable represents the empty space |
| * relative to the entire buffer. Taking this in consideration |
| * the head is always calculated base on the buffer total |
| * length - DMA transaction residue. The UART script from the |
| * SDMA firmware will jump to the next buffer descriptor, |
| * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). |
| * Taking this in consideration the tail is always at the |
| * beginning of the buffer descriptor that contains the head. |
| */ |
| |
| /* Calculate the head */ |
| rx_ring->head = sg_dma_len(sgl) - state.residue; |
| |
| /* Calculate the tail. */ |
| bd_size = sg_dma_len(sgl) / sport->rx_periods; |
| rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; |
| |
| if (rx_ring->head <= sg_dma_len(sgl) && |
| rx_ring->head > rx_ring->tail) { |
| |
| /* Move data from tail to head */ |
| r_bytes = rx_ring->head - rx_ring->tail; |
| |
| /* CPU claims ownership of RX DMA buffer */ |
| dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, |
| DMA_FROM_DEVICE); |
| |
| w_bytes = tty_insert_flip_string(port, |
| sport->rx_buf + rx_ring->tail, r_bytes); |
| |
| /* UART retrieves ownership of RX DMA buffer */ |
| dma_sync_sg_for_device(sport->port.dev, sgl, 1, |
| DMA_FROM_DEVICE); |
| |
| if (w_bytes != r_bytes) |
| sport->port.icount.buf_overrun++; |
| |
| sport->port.icount.rx += w_bytes; |
| } else { |
| WARN_ON(rx_ring->head > sg_dma_len(sgl)); |
| WARN_ON(rx_ring->head <= rx_ring->tail); |
| } |
| } |
| |
| if (w_bytes) { |
| tty_flip_buffer_push(port); |
| dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); |
| } |
| } |
| |
| static int imx_uart_start_rx_dma(struct imx_port *sport) |
| { |
| struct scatterlist *sgl = &sport->rx_sgl; |
| struct dma_chan *chan = sport->dma_chan_rx; |
| struct device *dev = sport->port.dev; |
| struct dma_async_tx_descriptor *desc; |
| int ret; |
| |
| sport->rx_ring.head = 0; |
| sport->rx_ring.tail = 0; |
| |
| sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); |
| ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); |
| if (ret == 0) { |
| dev_err(dev, "DMA mapping error for RX.\n"); |
| return -EINVAL; |
| } |
| |
| desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), |
| sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, |
| DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); |
| |
| if (!desc) { |
| dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); |
| dev_err(dev, "We cannot prepare for the RX slave dma!\n"); |
| return -EINVAL; |
| } |
| desc->callback = imx_uart_dma_rx_callback; |
| desc->callback_param = sport; |
| |
| dev_dbg(dev, "RX: prepare for the DMA.\n"); |
| sport->dma_is_rxing = 1; |
| sport->rx_cookie = dmaengine_submit(desc); |
| dma_async_issue_pending(chan); |
| return 0; |
| } |
| |
| static void imx_uart_clear_rx_errors(struct imx_port *sport) |
| { |
| struct tty_port *port = &sport->port.state->port; |
| u32 usr1, usr2; |
| |
| usr1 = imx_uart_readl(sport, USR1); |
| usr2 = imx_uart_readl(sport, USR2); |
| |
| if (usr2 & USR2_BRCD) { |
| sport->port.icount.brk++; |
| imx_uart_writel(sport, USR2_BRCD, USR2); |
| uart_handle_break(&sport->port); |
| if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) |
| sport->port.icount.buf_overrun++; |
| tty_flip_buffer_push(port); |
| } else { |
| if (usr1 & USR1_FRAMERR) { |
| sport->port.icount.frame++; |
| imx_uart_writel(sport, USR1_FRAMERR, USR1); |
| } else if (usr1 & USR1_PARITYERR) { |
| sport->port.icount.parity++; |
| imx_uart_writel(sport, USR1_PARITYERR, USR1); |
| } |
| } |
| |
| if (usr2 & USR2_ORE) { |
| sport->port.icount.overrun++; |
| imx_uart_writel(sport, USR2_ORE, USR2); |
| } |
| |
| } |
| |
| #define TXTL_DEFAULT 2 /* reset default */ |
| #define RXTL_DEFAULT 1 /* reset default */ |
| #define TXTL_DMA 8 /* DMA burst setting */ |
| #define RXTL_DMA 9 /* DMA burst setting */ |
| |
| static void imx_uart_setup_ufcr(struct imx_port *sport, |
| unsigned char txwl, unsigned char rxwl) |
| { |
| unsigned int val; |
| |
| /* set receiver / transmitter trigger level */ |
| val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); |
| val |= txwl << UFCR_TXTL_SHF | rxwl; |
| imx_uart_writel(sport, val, UFCR); |
| } |
| |
| static void imx_uart_dma_exit(struct imx_port *sport) |
| { |
| if (sport->dma_chan_rx) { |
| dmaengine_terminate_sync(sport->dma_chan_rx); |
| dma_release_channel(sport->dma_chan_rx); |
| sport->dma_chan_rx = NULL; |
| sport->rx_cookie = -EINVAL; |
| kfree(sport->rx_buf); |
| sport->rx_buf = NULL; |
| } |
| |
| if (sport->dma_chan_tx) { |
| dmaengine_terminate_sync(sport->dma_chan_tx); |
| dma_release_channel(sport->dma_chan_tx); |
| sport->dma_chan_tx = NULL; |
| } |
| } |
| |
| static int imx_uart_dma_init(struct imx_port *sport) |
| { |
| struct dma_slave_config slave_config = {}; |
| struct device *dev = sport->port.dev; |
| int ret; |
| |
| /* Prepare for RX : */ |
| sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); |
| if (!sport->dma_chan_rx) { |
| dev_dbg(dev, "cannot get the DMA channel.\n"); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| slave_config.direction = DMA_DEV_TO_MEM; |
| slave_config.src_addr = sport->port.mapbase + URXD0; |
| slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| /* one byte less than the watermark level to enable the aging timer */ |
| slave_config.src_maxburst = RXTL_DMA - 1; |
| ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); |
| if (ret) { |
| dev_err(dev, "error in RX dma configuration.\n"); |
| goto err; |
| } |
| |
| sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; |
| sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); |
| if (!sport->rx_buf) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| sport->rx_ring.buf = sport->rx_buf; |
| |
| /* Prepare for TX : */ |
| sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); |
| if (!sport->dma_chan_tx) { |
| dev_err(dev, "cannot get the TX DMA channel!\n"); |
| ret = -EINVAL; |
| goto err; |
| } |
| |
| slave_config.direction = DMA_MEM_TO_DEV; |
| slave_config.dst_addr = sport->port.mapbase + URTX0; |
| slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| slave_config.dst_maxburst = TXTL_DMA; |
| ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); |
| if (ret) { |
| dev_err(dev, "error in TX dma configuration."); |
| goto err; |
| } |
| |
| return 0; |
| err: |
| imx_uart_dma_exit(sport); |
| return ret; |
| } |
| |
| static void imx_uart_enable_dma(struct imx_port *sport) |
| { |
| u32 ucr1; |
| |
| imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); |
| |
| /* set UCR1 */ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| sport->dma_is_enabled = 1; |
| } |
| |
| static void imx_uart_disable_dma(struct imx_port *sport) |
| { |
| u32 ucr1; |
| |
| /* clear UCR1 */ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); |
| |
| sport->dma_is_enabled = 0; |
| } |
| |
| /* half the RX buffer size */ |
| #define CTSTL 16 |
| |
| static int imx_uart_startup(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| int retval, i; |
| unsigned long flags; |
| int dma_is_inited = 0; |
| u32 ucr1, ucr2, ucr3, ucr4; |
| |
| retval = clk_prepare_enable(sport->clk_per); |
| if (retval) |
| return retval; |
| retval = clk_prepare_enable(sport->clk_ipg); |
| if (retval) { |
| clk_disable_unprepare(sport->clk_per); |
| return retval; |
| } |
| |
| imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); |
| |
| /* disable the DREN bit (Data Ready interrupt enable) before |
| * requesting IRQs |
| */ |
| ucr4 = imx_uart_readl(sport, UCR4); |
| |
| /* set the trigger level for CTS */ |
| ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); |
| ucr4 |= CTSTL << UCR4_CTSTL_SHF; |
| |
| imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); |
| |
| /* Can we enable the DMA support? */ |
| if (!uart_console(port) && imx_uart_dma_init(sport) == 0) |
| dma_is_inited = 1; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| /* Reset fifo's and state machines */ |
| i = 100; |
| |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 &= ~UCR2_SRST; |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) |
| udelay(1); |
| |
| /* |
| * Finally, clear and enable interrupts |
| */ |
| imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); |
| imx_uart_writel(sport, USR2_ORE, USR2); |
| |
| ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; |
| ucr1 |= UCR1_UARTEN; |
| if (sport->have_rtscts) |
| ucr1 |= UCR1_RTSDEN; |
| |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); |
| if (!sport->dma_is_enabled) |
| ucr4 |= UCR4_OREN; |
| if (sport->inverted_rx) |
| ucr4 |= UCR4_INVR; |
| imx_uart_writel(sport, ucr4, UCR4); |
| |
| ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; |
| /* |
| * configure tx polarity before enabling tx |
| */ |
| if (sport->inverted_tx) |
| ucr3 |= UCR3_INVT; |
| |
| if (!imx_uart_is_imx1(sport)) { |
| ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; |
| |
| if (sport->dte_mode) |
| /* disable broken interrupts */ |
| ucr3 &= ~(UCR3_RI | UCR3_DCD); |
| } |
| imx_uart_writel(sport, ucr3, UCR3); |
| |
| ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; |
| ucr2 |= (UCR2_RXEN | UCR2_TXEN); |
| if (!sport->have_rtscts) |
| ucr2 |= UCR2_IRTS; |
| /* |
| * make sure the edge sensitive RTS-irq is disabled, |
| * we're using RTSD instead. |
| */ |
| if (!imx_uart_is_imx1(sport)) |
| ucr2 &= ~UCR2_RTSEN; |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| /* |
| * Enable modem status interrupts |
| */ |
| imx_uart_enable_ms(&sport->port); |
| |
| if (dma_is_inited) { |
| imx_uart_enable_dma(sport); |
| imx_uart_start_rx_dma(sport); |
| } else { |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 |= UCR1_RRDYEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 |= UCR2_ATEN; |
| imx_uart_writel(sport, ucr2, UCR2); |
| } |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| return 0; |
| } |
| |
| static void imx_uart_shutdown(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned long flags; |
| u32 ucr1, ucr2, ucr4; |
| |
| if (sport->dma_is_enabled) { |
| dmaengine_terminate_sync(sport->dma_chan_tx); |
| if (sport->dma_is_txing) { |
| dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], |
| sport->dma_tx_nents, DMA_TO_DEVICE); |
| sport->dma_is_txing = 0; |
| } |
| dmaengine_terminate_sync(sport->dma_chan_rx); |
| if (sport->dma_is_rxing) { |
| dma_unmap_sg(sport->port.dev, &sport->rx_sgl, |
| 1, DMA_FROM_DEVICE); |
| sport->dma_is_rxing = 0; |
| } |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| imx_uart_stop_tx(port); |
| imx_uart_stop_rx(port); |
| imx_uart_disable_dma(sport); |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| imx_uart_dma_exit(sport); |
| } |
| |
| mctrl_gpio_disable_ms(sport->gpios); |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); |
| imx_uart_writel(sport, ucr2, UCR2); |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| /* |
| * Stop our timer. |
| */ |
| del_timer_sync(&sport->timer); |
| |
| /* |
| * Disable all interrupts, port and break condition. |
| */ |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| ucr4 = imx_uart_readl(sport, UCR4); |
| ucr4 &= ~UCR4_TCEN; |
| imx_uart_writel(sport, ucr4, UCR4); |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| clk_disable_unprepare(sport->clk_per); |
| clk_disable_unprepare(sport->clk_ipg); |
| } |
| |
| /* called with port.lock taken and irqs off */ |
| static void imx_uart_flush_buffer(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| struct scatterlist *sgl = &sport->tx_sgl[0]; |
| u32 ucr2; |
| int i = 100, ubir, ubmr, uts; |
| |
| if (!sport->dma_chan_tx) |
| return; |
| |
| sport->tx_bytes = 0; |
| dmaengine_terminate_all(sport->dma_chan_tx); |
| if (sport->dma_is_txing) { |
| u32 ucr1; |
| |
| dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, |
| DMA_TO_DEVICE); |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~UCR1_TXDMAEN; |
| imx_uart_writel(sport, ucr1, UCR1); |
| sport->dma_is_txing = 0; |
| } |
| |
| /* |
| * According to the Reference Manual description of the UART SRST bit: |
| * |
| * "Reset the transmit and receive state machines, |
| * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD |
| * and UTS[6-3]". |
| * |
| * We don't need to restore the old values from USR1, USR2, URXD and |
| * UTXD. UBRC is read only, so only save/restore the other three |
| * registers. |
| */ |
| ubir = imx_uart_readl(sport, UBIR); |
| ubmr = imx_uart_readl(sport, UBMR); |
| uts = imx_uart_readl(sport, IMX21_UTS); |
| |
| ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 &= ~UCR2_SRST; |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) |
| udelay(1); |
| |
| /* Restore the registers */ |
| imx_uart_writel(sport, ubir, UBIR); |
| imx_uart_writel(sport, ubmr, UBMR); |
| imx_uart_writel(sport, uts, IMX21_UTS); |
| } |
| |
| static void |
| imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, |
| struct ktermios *old) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned long flags; |
| u32 ucr2, old_ucr2, ufcr; |
| unsigned int baud, quot; |
| unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; |
| unsigned long div; |
| unsigned long num, denom, old_ubir, old_ubmr; |
| uint64_t tdiv64; |
| |
| /* |
| * We only support CS7 and CS8. |
| */ |
| while ((termios->c_cflag & CSIZE) != CS7 && |
| (termios->c_cflag & CSIZE) != CS8) { |
| termios->c_cflag &= ~CSIZE; |
| termios->c_cflag |= old_csize; |
| old_csize = CS8; |
| } |
| |
| del_timer_sync(&sport->timer); |
| |
| /* |
| * Ask the core to calculate the divisor for us. |
| */ |
| baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); |
| quot = uart_get_divisor(port, baud); |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| /* |
| * Read current UCR2 and save it for future use, then clear all the bits |
| * except those we will or may need to preserve. |
| */ |
| old_ucr2 = imx_uart_readl(sport, UCR2); |
| ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); |
| |
| ucr2 |= UCR2_SRST | UCR2_IRTS; |
| if ((termios->c_cflag & CSIZE) == CS8) |
| ucr2 |= UCR2_WS; |
| |
| if (!sport->have_rtscts) |
| termios->c_cflag &= ~CRTSCTS; |
| |
| if (port->rs485.flags & SER_RS485_ENABLED) { |
| /* |
| * RTS is mandatory for rs485 operation, so keep |
| * it under manual control and keep transmitter |
| * disabled. |
| */ |
| if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) |
| imx_uart_rts_active(sport, &ucr2); |
| else |
| imx_uart_rts_inactive(sport, &ucr2); |
| |
| } else if (termios->c_cflag & CRTSCTS) { |
| /* |
| * Only let receiver control RTS output if we were not requested |
| * to have RTS inactive (which then should take precedence). |
| */ |
| if (ucr2 & UCR2_CTS) |
| ucr2 |= UCR2_CTSC; |
| } |
| |
| if (termios->c_cflag & CRTSCTS) |
| ucr2 &= ~UCR2_IRTS; |
| if (termios->c_cflag & CSTOPB) |
| ucr2 |= UCR2_STPB; |
| if (termios->c_cflag & PARENB) { |
| ucr2 |= UCR2_PREN; |
| if (termios->c_cflag & PARODD) |
| ucr2 |= UCR2_PROE; |
| } |
| |
| sport->port.read_status_mask = 0; |
| if (termios->c_iflag & INPCK) |
| sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); |
| if (termios->c_iflag & (BRKINT | PARMRK)) |
| sport->port.read_status_mask |= URXD_BRK; |
| |
| /* |
| * Characters to ignore |
| */ |
| sport->port.ignore_status_mask = 0; |
| if (termios->c_iflag & IGNPAR) |
| sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; |
| if (termios->c_iflag & IGNBRK) { |
| sport->port.ignore_status_mask |= URXD_BRK; |
| /* |
| * If we're ignoring parity and break indicators, |
| * ignore overruns too (for real raw support). |
| */ |
| if (termios->c_iflag & IGNPAR) |
| sport->port.ignore_status_mask |= URXD_OVRRUN; |
| } |
| |
| if ((termios->c_cflag & CREAD) == 0) |
| sport->port.ignore_status_mask |= URXD_DUMMY_READ; |
| |
| /* |
| * Update the per-port timeout. |
| */ |
| uart_update_timeout(port, termios->c_cflag, baud); |
| |
| /* custom-baudrate handling */ |
| div = sport->port.uartclk / (baud * 16); |
| if (baud == 38400 && quot != div) |
| baud = sport->port.uartclk / (quot * 16); |
| |
| div = sport->port.uartclk / (baud * 16); |
| if (div > 7) |
| div = 7; |
| if (!div) |
| div = 1; |
| |
| rational_best_approximation(16 * div * baud, sport->port.uartclk, |
| 1 << 16, 1 << 16, &num, &denom); |
| |
| tdiv64 = sport->port.uartclk; |
| tdiv64 *= num; |
| do_div(tdiv64, denom * 16 * div); |
| tty_termios_encode_baud_rate(termios, |
| (speed_t)tdiv64, (speed_t)tdiv64); |
| |
| num -= 1; |
| denom -= 1; |
| |
| ufcr = imx_uart_readl(sport, UFCR); |
| ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); |
| imx_uart_writel(sport, ufcr, UFCR); |
| |
| /* |
| * Two registers below should always be written both and in this |
| * particular order. One consequence is that we need to check if any of |
| * them changes and then update both. We do need the check for change |
| * as even writing the same values seem to "restart" |
| * transmission/receiving logic in the hardware, that leads to data |
| * breakage even when rate doesn't in fact change. E.g., user switches |
| * RTS/CTS handshake and suddenly gets broken bytes. |
| */ |
| old_ubir = imx_uart_readl(sport, UBIR); |
| old_ubmr = imx_uart_readl(sport, UBMR); |
| if (old_ubir != num || old_ubmr != denom) { |
| imx_uart_writel(sport, num, UBIR); |
| imx_uart_writel(sport, denom, UBMR); |
| } |
| |
| if (!imx_uart_is_imx1(sport)) |
| imx_uart_writel(sport, sport->port.uartclk / div / 1000, |
| IMX21_ONEMS); |
| |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) |
| imx_uart_enable_ms(&sport->port); |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| static const char *imx_uart_type(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| |
| return sport->port.type == PORT_IMX ? "IMX" : NULL; |
| } |
| |
| /* |
| * Configure/autoconfigure the port. |
| */ |
| static void imx_uart_config_port(struct uart_port *port, int flags) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| |
| if (flags & UART_CONFIG_TYPE) |
| sport->port.type = PORT_IMX; |
| } |
| |
| /* |
| * Verify the new serial_struct (for TIOCSSERIAL). |
| * The only change we allow are to the flags and type, and |
| * even then only between PORT_IMX and PORT_UNKNOWN |
| */ |
| static int |
| imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| int ret = 0; |
| |
| if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) |
| ret = -EINVAL; |
| if (sport->port.irq != ser->irq) |
| ret = -EINVAL; |
| if (ser->io_type != UPIO_MEM) |
| ret = -EINVAL; |
| if (sport->port.uartclk / 16 != ser->baud_base) |
| ret = -EINVAL; |
| if (sport->port.mapbase != (unsigned long)ser->iomem_base) |
| ret = -EINVAL; |
| if (sport->port.iobase != ser->port) |
| ret = -EINVAL; |
| if (ser->hub6 != 0) |
| ret = -EINVAL; |
| return ret; |
| } |
| |
| #if defined(CONFIG_CONSOLE_POLL) |
| |
| static int imx_uart_poll_init(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned long flags; |
| u32 ucr1, ucr2; |
| int retval; |
| |
| retval = clk_prepare_enable(sport->clk_ipg); |
| if (retval) |
| return retval; |
| retval = clk_prepare_enable(sport->clk_per); |
| if (retval) |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| /* |
| * Be careful about the order of enabling bits here. First enable the |
| * receiver (UARTEN + RXEN) and only then the corresponding irqs. |
| * This prevents that a character that already sits in the RX fifo is |
| * triggering an irq but the try to fetch it from there results in an |
| * exception because UARTEN or RXEN is still off. |
| */ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr2 = imx_uart_readl(sport, UCR2); |
| |
| if (imx_uart_is_imx1(sport)) |
| ucr1 |= IMX1_UCR1_UARTCLKEN; |
| |
| ucr1 |= UCR1_UARTEN; |
| ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); |
| |
| ucr2 |= UCR2_RXEN | UCR2_TXEN; |
| ucr2 &= ~UCR2_ATEN; |
| |
| imx_uart_writel(sport, ucr1, UCR1); |
| imx_uart_writel(sport, ucr2, UCR2); |
| |
| /* now enable irqs */ |
| imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); |
| imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); |
| |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| return 0; |
| } |
| |
| static int imx_uart_poll_get_char(struct uart_port *port) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) |
| return NO_POLL_CHAR; |
| |
| return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; |
| } |
| |
| static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| unsigned int status; |
| |
| /* drain */ |
| do { |
| status = imx_uart_readl(sport, USR1); |
| } while (~status & USR1_TRDY); |
| |
| /* write */ |
| imx_uart_writel(sport, c, URTX0); |
| |
| /* flush */ |
| do { |
| status = imx_uart_readl(sport, USR2); |
| } while (~status & USR2_TXDC); |
| } |
| #endif |
| |
| /* called with port.lock taken and irqs off or from .probe without locking */ |
| static int imx_uart_rs485_config(struct uart_port *port, |
| struct serial_rs485 *rs485conf) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| u32 ucr2; |
| |
| /* RTS is required to control the transmitter */ |
| if (!sport->have_rtscts && !sport->have_rtsgpio) |
| rs485conf->flags &= ~SER_RS485_ENABLED; |
| |
| if (rs485conf->flags & SER_RS485_ENABLED) { |
| /* Enable receiver if low-active RTS signal is requested */ |
| if (sport->have_rtscts && !sport->have_rtsgpio && |
| !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) |
| rs485conf->flags |= SER_RS485_RX_DURING_TX; |
| |
| /* disable transmitter */ |
| ucr2 = imx_uart_readl(sport, UCR2); |
| if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) |
| imx_uart_rts_active(sport, &ucr2); |
| else |
| imx_uart_rts_inactive(sport, &ucr2); |
| imx_uart_writel(sport, ucr2, UCR2); |
| } |
| |
| /* Make sure Rx is enabled in case Tx is active with Rx disabled */ |
| if (!(rs485conf->flags & SER_RS485_ENABLED) || |
| rs485conf->flags & SER_RS485_RX_DURING_TX) |
| imx_uart_start_rx(port); |
| |
| port->rs485 = *rs485conf; |
| |
| return 0; |
| } |
| |
| static const struct uart_ops imx_uart_pops = { |
| .tx_empty = imx_uart_tx_empty, |
| .set_mctrl = imx_uart_set_mctrl, |
| .get_mctrl = imx_uart_get_mctrl, |
| .stop_tx = imx_uart_stop_tx, |
| .start_tx = imx_uart_start_tx, |
| .stop_rx = imx_uart_stop_rx, |
| .enable_ms = imx_uart_enable_ms, |
| .break_ctl = imx_uart_break_ctl, |
| .startup = imx_uart_startup, |
| .shutdown = imx_uart_shutdown, |
| .flush_buffer = imx_uart_flush_buffer, |
| .set_termios = imx_uart_set_termios, |
| .type = imx_uart_type, |
| .config_port = imx_uart_config_port, |
| .verify_port = imx_uart_verify_port, |
| #if defined(CONFIG_CONSOLE_POLL) |
| .poll_init = imx_uart_poll_init, |
| .poll_get_char = imx_uart_poll_get_char, |
| .poll_put_char = imx_uart_poll_put_char, |
| #endif |
| }; |
| |
| static struct imx_port *imx_uart_ports[UART_NR]; |
| |
| #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) |
| static void imx_uart_console_putchar(struct uart_port *port, int ch) |
| { |
| struct imx_port *sport = (struct imx_port *)port; |
| |
| while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) |
| barrier(); |
| |
| imx_uart_writel(sport, ch, URTX0); |
| } |
| |
| /* |
| * Interrupts are disabled on entering |
| */ |
| static void |
| imx_uart_console_write(struct console *co, const char *s, unsigned int count) |
| { |
| struct imx_port *sport = imx_uart_ports[co->index]; |
| struct imx_port_ucrs old_ucr; |
| unsigned long flags; |
| unsigned int ucr1; |
| int locked = 1; |
| |
| if (sport->port.sysrq) |
| locked = 0; |
| else if (oops_in_progress) |
| locked = spin_trylock_irqsave(&sport->port.lock, flags); |
| else |
| spin_lock_irqsave(&sport->port.lock, flags); |
| |
| /* |
| * First, save UCR1/2/3 and then disable interrupts |
| */ |
| imx_uart_ucrs_save(sport, &old_ucr); |
| ucr1 = old_ucr.ucr1; |
| |
| if (imx_uart_is_imx1(sport)) |
| ucr1 |= IMX1_UCR1_UARTCLKEN; |
| ucr1 |= UCR1_UARTEN; |
| ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); |
| |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); |
| |
| uart_console_write(&sport->port, s, count, imx_uart_console_putchar); |
| |
| /* |
| * Finally, wait for transmitter to become empty |
| * and restore UCR1/2/3 |
| */ |
| while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); |
| |
| imx_uart_ucrs_restore(sport, &old_ucr); |
| |
| if (locked) |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| /* |
| * If the port was already initialised (eg, by a boot loader), |
| * try to determine the current setup. |
| */ |
| static void |
| imx_uart_console_get_options(struct imx_port *sport, int *baud, |
| int *parity, int *bits) |
| { |
| |
| if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { |
| /* ok, the port was enabled */ |
| unsigned int ucr2, ubir, ubmr, uartclk; |
| unsigned int baud_raw; |
| unsigned int ucfr_rfdiv; |
| |
| ucr2 = imx_uart_readl(sport, UCR2); |
| |
| *parity = 'n'; |
| if (ucr2 & UCR2_PREN) { |
| if (ucr2 & UCR2_PROE) |
| *parity = 'o'; |
| else |
| *parity = 'e'; |
| } |
| |
| if (ucr2 & UCR2_WS) |
| *bits = 8; |
| else |
| *bits = 7; |
| |
| ubir = imx_uart_readl(sport, UBIR) & 0xffff; |
| ubmr = imx_uart_readl(sport, UBMR) & 0xffff; |
| |
| ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; |
| if (ucfr_rfdiv == 6) |
| ucfr_rfdiv = 7; |
| else |
| ucfr_rfdiv = 6 - ucfr_rfdiv; |
| |
| uartclk = clk_get_rate(sport->clk_per); |
| uartclk /= ucfr_rfdiv; |
| |
| { /* |
| * The next code provides exact computation of |
| * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) |
| * without need of float support or long long division, |
| * which would be required to prevent 32bit arithmetic overflow |
| */ |
| unsigned int mul = ubir + 1; |
| unsigned int div = 16 * (ubmr + 1); |
| unsigned int rem = uartclk % div; |
| |
| baud_raw = (uartclk / div) * mul; |
| baud_raw += (rem * mul + div / 2) / div; |
| *baud = (baud_raw + 50) / 100 * 100; |
| } |
| |
| if (*baud != baud_raw) |
| dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", |
| baud_raw, *baud); |
| } |
| } |
| |
| static int |
| imx_uart_console_setup(struct console *co, char *options) |
| { |
| struct imx_port *sport; |
| int baud = 9600; |
| int bits = 8; |
| int parity = 'n'; |
| int flow = 'n'; |
| int retval; |
| |
| /* |
| * Check whether an invalid uart number has been specified, and |
| * if so, search for the first available port that does have |
| * console support. |
| */ |
| if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) |
| co->index = 0; |
| sport = imx_uart_ports[co->index]; |
| if (sport == NULL) |
| return -ENODEV; |
| |
| /* For setting the registers, we only need to enable the ipg clock. */ |
| retval = clk_prepare_enable(sport->clk_ipg); |
| if (retval) |
| goto error_console; |
| |
| if (options) |
| uart_parse_options(options, &baud, &parity, &bits, &flow); |
| else |
| imx_uart_console_get_options(sport, &baud, &parity, &bits); |
| |
| imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); |
| |
| retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); |
| |
| if (retval) { |
| clk_disable_unprepare(sport->clk_ipg); |
| goto error_console; |
| } |
| |
| retval = clk_prepare_enable(sport->clk_per); |
| if (retval) |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| error_console: |
| return retval; |
| } |
| |
| static int |
| imx_uart_console_exit(struct console *co) |
| { |
| struct imx_port *sport = imx_uart_ports[co->index]; |
| |
| clk_disable_unprepare(sport->clk_per); |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| return 0; |
| } |
| |
| static struct uart_driver imx_uart_uart_driver; |
| static struct console imx_uart_console = { |
| .name = DEV_NAME, |
| .write = imx_uart_console_write, |
| .device = uart_console_device, |
| .setup = imx_uart_console_setup, |
| .exit = imx_uart_console_exit, |
| .flags = CON_PRINTBUFFER, |
| .index = -1, |
| .data = &imx_uart_uart_driver, |
| }; |
| |
| #define IMX_CONSOLE &imx_uart_console |
| |
| #else |
| #define IMX_CONSOLE NULL |
| #endif |
| |
| static struct uart_driver imx_uart_uart_driver = { |
| .owner = THIS_MODULE, |
| .driver_name = DRIVER_NAME, |
| .dev_name = DEV_NAME, |
| .major = SERIAL_IMX_MAJOR, |
| .minor = MINOR_START, |
| .nr = ARRAY_SIZE(imx_uart_ports), |
| .cons = IMX_CONSOLE, |
| }; |
| |
| static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) |
| { |
| struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| if (sport->tx_state == WAIT_AFTER_RTS) |
| imx_uart_start_tx(&sport->port); |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) |
| { |
| struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| if (sport->tx_state == WAIT_AFTER_SEND) |
| imx_uart_stop_tx(&sport->port); |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| |
| return HRTIMER_NORESTART; |
| } |
| |
| /* Default RX DMA buffer configuration */ |
| #define RX_DMA_PERIODS 16 |
| #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) |
| |
| static int imx_uart_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct imx_port *sport; |
| void __iomem *base; |
| u32 dma_buf_conf[2]; |
| int ret = 0; |
| u32 ucr1; |
| struct resource *res; |
| int txirq, rxirq, rtsirq; |
| |
| sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); |
| if (!sport) |
| return -ENOMEM; |
| |
| sport->devdata = of_device_get_match_data(&pdev->dev); |
| |
| ret = of_alias_get_id(np, "serial"); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); |
| return ret; |
| } |
| sport->port.line = ret; |
| |
| if (of_get_property(np, "uart-has-rtscts", NULL) || |
| of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) |
| sport->have_rtscts = 1; |
| |
| if (of_get_property(np, "fsl,dte-mode", NULL)) |
| sport->dte_mode = 1; |
| |
| if (of_get_property(np, "rts-gpios", NULL)) |
| sport->have_rtsgpio = 1; |
| |
| if (of_get_property(np, "fsl,inverted-tx", NULL)) |
| sport->inverted_tx = 1; |
| |
| if (of_get_property(np, "fsl,inverted-rx", NULL)) |
| sport->inverted_rx = 1; |
| |
| if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { |
| sport->rx_period_length = dma_buf_conf[0]; |
| sport->rx_periods = dma_buf_conf[1]; |
| } else { |
| sport->rx_period_length = RX_DMA_PERIOD_LEN; |
| sport->rx_periods = RX_DMA_PERIODS; |
| } |
| |
| if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { |
| dev_err(&pdev->dev, "serial%d out of range\n", |
| sport->port.line); |
| return -EINVAL; |
| } |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(base)) |
| return PTR_ERR(base); |
| |
| rxirq = platform_get_irq(pdev, 0); |
| if (rxirq < 0) |
| return rxirq; |
| txirq = platform_get_irq_optional(pdev, 1); |
| rtsirq = platform_get_irq_optional(pdev, 2); |
| |
| sport->port.dev = &pdev->dev; |
| sport->port.mapbase = res->start; |
| sport->port.membase = base; |
| sport->port.type = PORT_IMX; |
| sport->port.iotype = UPIO_MEM; |
| sport->port.irq = rxirq; |
| sport->port.fifosize = 32; |
| sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); |
| sport->port.ops = &imx_uart_pops; |
| sport->port.rs485_config = imx_uart_rs485_config; |
| sport->port.flags = UPF_BOOT_AUTOCONF; |
| timer_setup(&sport->timer, imx_uart_timeout, 0); |
| |
| sport->gpios = mctrl_gpio_init(&sport->port, 0); |
| if (IS_ERR(sport->gpios)) |
| return PTR_ERR(sport->gpios); |
| |
| sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); |
| if (IS_ERR(sport->clk_ipg)) { |
| ret = PTR_ERR(sport->clk_ipg); |
| dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); |
| return ret; |
| } |
| |
| sport->clk_per = devm_clk_get(&pdev->dev, "per"); |
| if (IS_ERR(sport->clk_per)) { |
| ret = PTR_ERR(sport->clk_per); |
| dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); |
| return ret; |
| } |
| |
| sport->port.uartclk = clk_get_rate(sport->clk_per); |
| |
| /* For register access, we only need to enable the ipg clock. */ |
| ret = clk_prepare_enable(sport->clk_ipg); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); |
| return ret; |
| } |
| |
| /* initialize shadow register values */ |
| sport->ucr1 = readl(sport->port.membase + UCR1); |
| sport->ucr2 = readl(sport->port.membase + UCR2); |
| sport->ucr3 = readl(sport->port.membase + UCR3); |
| sport->ucr4 = readl(sport->port.membase + UCR4); |
| sport->ufcr = readl(sport->port.membase + UFCR); |
| |
| ret = uart_get_rs485_mode(&sport->port); |
| if (ret) { |
| clk_disable_unprepare(sport->clk_ipg); |
| return ret; |
| } |
| |
| if (sport->port.rs485.flags & SER_RS485_ENABLED && |
| (!sport->have_rtscts && !sport->have_rtsgpio)) |
| dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); |
| |
| /* |
| * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) |
| * signal cannot be set low during transmission in case the |
| * receiver is off (limitation of the i.MX UART IP). |
| */ |
| if (sport->port.rs485.flags & SER_RS485_ENABLED && |
| sport->have_rtscts && !sport->have_rtsgpio && |
| (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && |
| !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) |
| dev_err(&pdev->dev, |
| "low-active RTS not possible when receiver is off, enabling receiver\n"); |
| |
| imx_uart_rs485_config(&sport->port, &sport->port.rs485); |
| |
| /* Disable interrupts before requesting them */ |
| ucr1 = imx_uart_readl(sport, UCR1); |
| ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); |
| imx_uart_writel(sport, ucr1, UCR1); |
| |
| if (!imx_uart_is_imx1(sport) && sport->dte_mode) { |
| /* |
| * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI |
| * and influences if UCR3_RI and UCR3_DCD changes the level of RI |
| * and DCD (when they are outputs) or enables the respective |
| * irqs. So set this bit early, i.e. before requesting irqs. |
| */ |
| u32 ufcr = imx_uart_readl(sport, UFCR); |
| if (!(ufcr & UFCR_DCEDTE)) |
| imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); |
| |
| /* |
| * Disable UCR3_RI and UCR3_DCD irqs. They are also not |
| * enabled later because they cannot be cleared |
| * (confirmed on i.MX25) which makes them unusable. |
| */ |
| imx_uart_writel(sport, |
| IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, |
| UCR3); |
| |
| } else { |
| u32 ucr3 = UCR3_DSR; |
| u32 ufcr = imx_uart_readl(sport, UFCR); |
| if (ufcr & UFCR_DCEDTE) |
| imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); |
| |
| if (!imx_uart_is_imx1(sport)) |
| ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; |
| imx_uart_writel(sport, ucr3, UCR3); |
| } |
| |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| sport->trigger_start_tx.function = imx_trigger_start_tx; |
| sport->trigger_stop_tx.function = imx_trigger_stop_tx; |
| |
| /* |
| * Allocate the IRQ(s) i.MX1 has three interrupts whereas later |
| * chips only have one interrupt. |
| */ |
| if (txirq > 0) { |
| ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, |
| dev_name(&pdev->dev), sport); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request rx irq: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, |
| dev_name(&pdev->dev), sport); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request tx irq: %d\n", |
| ret); |
| return ret; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, |
| dev_name(&pdev->dev), sport); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request rts irq: %d\n", |
| ret); |
| return ret; |
| } |
| } else { |
| ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, |
| dev_name(&pdev->dev), sport); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to request irq: %d\n", ret); |
| return ret; |
| } |
| } |
| |
| imx_uart_ports[sport->port.line] = sport; |
| |
| platform_set_drvdata(pdev, sport); |
| |
| return uart_add_one_port(&imx_uart_uart_driver, &sport->port); |
| } |
| |
| static int imx_uart_remove(struct platform_device *pdev) |
| { |
| struct imx_port *sport = platform_get_drvdata(pdev); |
| |
| return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); |
| } |
| |
| static void imx_uart_restore_context(struct imx_port *sport) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sport->port.lock, flags); |
| if (!sport->context_saved) { |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| return; |
| } |
| |
| imx_uart_writel(sport, sport->saved_reg[4], UFCR); |
| imx_uart_writel(sport, sport->saved_reg[5], UESC); |
| imx_uart_writel(sport, sport->saved_reg[6], UTIM); |
| imx_uart_writel(sport, sport->saved_reg[7], UBIR); |
| imx_uart_writel(sport, sport->saved_reg[8], UBMR); |
| imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); |
| imx_uart_writel(sport, sport->saved_reg[0], UCR1); |
| imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); |
| imx_uart_writel(sport, sport->saved_reg[2], UCR3); |
| imx_uart_writel(sport, sport->saved_reg[3], UCR4); |
| sport->context_saved = false; |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| static void imx_uart_save_context(struct imx_port *sport) |
| { |
| unsigned long flags; |
| |
| /* Save necessary regs */ |
| spin_lock_irqsave(&sport->port.lock, flags); |
| sport->saved_reg[0] = imx_uart_readl(sport, UCR1); |
| sport->saved_reg[1] = imx_uart_readl(sport, UCR2); |
| sport->saved_reg[2] = imx_uart_readl(sport, UCR3); |
| sport->saved_reg[3] = imx_uart_readl(sport, UCR4); |
| sport->saved_reg[4] = imx_uart_readl(sport, UFCR); |
| sport->saved_reg[5] = imx_uart_readl(sport, UESC); |
| sport->saved_reg[6] = imx_uart_readl(sport, UTIM); |
| sport->saved_reg[7] = imx_uart_readl(sport, UBIR); |
| sport->saved_reg[8] = imx_uart_readl(sport, UBMR); |
| sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); |
| sport->context_saved = true; |
| spin_unlock_irqrestore(&sport->port.lock, flags); |
| } |
| |
| static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) |
| { |
| u32 ucr3; |
| |
| ucr3 = imx_uart_readl(sport, UCR3); |
| if (on) { |
| imx_uart_writel(sport, USR1_AWAKE, USR1); |
| ucr3 |= UCR3_AWAKEN; |
| } else { |
| ucr3 &= ~UCR3_AWAKEN; |
| } |
| imx_uart_writel(sport, ucr3, UCR3); |
| |
| if (sport->have_rtscts) { |
| u32 ucr1 = imx_uart_readl(sport, UCR1); |
| if (on) { |
| imx_uart_writel(sport, USR1_RTSD, USR1); |
| ucr1 |= UCR1_RTSDEN; |
| } else { |
| ucr1 &= ~UCR1_RTSDEN; |
| } |
| imx_uart_writel(sport, ucr1, UCR1); |
| } |
| } |
| |
| static int imx_uart_suspend_noirq(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| |
| imx_uart_save_context(sport); |
| |
| clk_disable(sport->clk_ipg); |
| |
| pinctrl_pm_select_sleep_state(dev); |
| |
| return 0; |
| } |
| |
| static int imx_uart_resume_noirq(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| int ret; |
| |
| pinctrl_pm_select_default_state(dev); |
| |
| ret = clk_enable(sport->clk_ipg); |
| if (ret) |
| return ret; |
| |
| imx_uart_restore_context(sport); |
| |
| return 0; |
| } |
| |
| static int imx_uart_suspend(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| int ret; |
| |
| uart_suspend_port(&imx_uart_uart_driver, &sport->port); |
| disable_irq(sport->port.irq); |
| |
| ret = clk_prepare_enable(sport->clk_ipg); |
| if (ret) |
| return ret; |
| |
| /* enable wakeup from i.MX UART */ |
| imx_uart_enable_wakeup(sport, true); |
| |
| return 0; |
| } |
| |
| static int imx_uart_resume(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| |
| /* disable wakeup from i.MX UART */ |
| imx_uart_enable_wakeup(sport, false); |
| |
| uart_resume_port(&imx_uart_uart_driver, &sport->port); |
| enable_irq(sport->port.irq); |
| |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| return 0; |
| } |
| |
| static int imx_uart_freeze(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| |
| uart_suspend_port(&imx_uart_uart_driver, &sport->port); |
| |
| return clk_prepare_enable(sport->clk_ipg); |
| } |
| |
| static int imx_uart_thaw(struct device *dev) |
| { |
| struct imx_port *sport = dev_get_drvdata(dev); |
| |
| uart_resume_port(&imx_uart_uart_driver, &sport->port); |
| |
| clk_disable_unprepare(sport->clk_ipg); |
| |
| return 0; |
| } |
| |
| static const struct dev_pm_ops imx_uart_pm_ops = { |
| .suspend_noirq = imx_uart_suspend_noirq, |
| .resume_noirq = imx_uart_resume_noirq, |
| .freeze_noirq = imx_uart_suspend_noirq, |
| .restore_noirq = imx_uart_resume_noirq, |
| .suspend = imx_uart_suspend, |
| .resume = imx_uart_resume, |
| .freeze = imx_uart_freeze, |
| .thaw = imx_uart_thaw, |
| .restore = imx_uart_thaw, |
| }; |
| |
| static struct platform_driver imx_uart_platform_driver = { |
| .probe = imx_uart_probe, |
| .remove = imx_uart_remove, |
| |
| .driver = { |
| .name = "imx-uart", |
| .of_match_table = imx_uart_dt_ids, |
| .pm = &imx_uart_pm_ops, |
| }, |
| }; |
| |
| static int __init imx_uart_init(void) |
| { |
| int ret = uart_register_driver(&imx_uart_uart_driver); |
| |
| if (ret) |
| return ret; |
| |
| ret = platform_driver_register(&imx_uart_platform_driver); |
| if (ret != 0) |
| uart_unregister_driver(&imx_uart_uart_driver); |
| |
| return ret; |
| } |
| |
| static void __exit imx_uart_exit(void) |
| { |
| platform_driver_unregister(&imx_uart_platform_driver); |
| uart_unregister_driver(&imx_uart_uart_driver); |
| } |
| |
| module_init(imx_uart_init); |
| module_exit(imx_uart_exit); |
| |
| MODULE_AUTHOR("Sascha Hauer"); |
| MODULE_DESCRIPTION("IMX generic serial port driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:imx-uart"); |