| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2019 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <uapi/misc/habanalabs.h> |
| #include "habanalabs.h" |
| |
| #include <linux/mm.h> |
| #include <linux/slab.h> |
| #include <linux/uaccess.h> |
| |
| static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct hl_vm_va_block *va_block, *tmp; |
| dma_addr_t bus_addr; |
| u64 virt_addr; |
| u32 page_size = prop->pmmu.page_size; |
| s32 offset; |
| int rc; |
| |
| if (!hdev->supports_cb_mapping) { |
| dev_err_ratelimited(hdev->dev, |
| "Cannot map CB because no VA range is allocated for CB mapping\n"); |
| return -EINVAL; |
| } |
| |
| if (!hdev->mmu_enable) { |
| dev_err_ratelimited(hdev->dev, |
| "Cannot map CB because MMU is disabled\n"); |
| return -EINVAL; |
| } |
| |
| INIT_LIST_HEAD(&cb->va_block_list); |
| |
| for (bus_addr = cb->bus_address; |
| bus_addr < cb->bus_address + cb->size; |
| bus_addr += page_size) { |
| |
| virt_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, page_size); |
| if (!virt_addr) { |
| dev_err(hdev->dev, |
| "Failed to allocate device virtual address for CB\n"); |
| rc = -ENOMEM; |
| goto err_va_pool_free; |
| } |
| |
| va_block = kzalloc(sizeof(*va_block), GFP_KERNEL); |
| if (!va_block) { |
| rc = -ENOMEM; |
| gen_pool_free(ctx->cb_va_pool, virt_addr, page_size); |
| goto err_va_pool_free; |
| } |
| |
| va_block->start = virt_addr; |
| va_block->end = virt_addr + page_size - 1; |
| va_block->size = page_size; |
| list_add_tail(&va_block->node, &cb->va_block_list); |
| } |
| |
| mutex_lock(&ctx->mmu_lock); |
| |
| bus_addr = cb->bus_address; |
| offset = 0; |
| list_for_each_entry(va_block, &cb->va_block_list, node) { |
| rc = hl_mmu_map_page(ctx, va_block->start, bus_addr, |
| va_block->size, list_is_last(&va_block->node, |
| &cb->va_block_list)); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", |
| va_block->start); |
| goto err_va_umap; |
| } |
| |
| bus_addr += va_block->size; |
| offset += va_block->size; |
| } |
| |
| rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV); |
| |
| mutex_unlock(&ctx->mmu_lock); |
| |
| cb->is_mmu_mapped = true; |
| |
| return rc; |
| |
| err_va_umap: |
| list_for_each_entry(va_block, &cb->va_block_list, node) { |
| if (offset <= 0) |
| break; |
| hl_mmu_unmap_page(ctx, va_block->start, va_block->size, |
| offset <= va_block->size); |
| offset -= va_block->size; |
| } |
| |
| rc = hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); |
| |
| mutex_unlock(&ctx->mmu_lock); |
| |
| err_va_pool_free: |
| list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) { |
| gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size); |
| list_del(&va_block->node); |
| kfree(va_block); |
| } |
| |
| return rc; |
| } |
| |
| static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_vm_va_block *va_block, *tmp; |
| |
| mutex_lock(&ctx->mmu_lock); |
| |
| list_for_each_entry(va_block, &cb->va_block_list, node) |
| if (hl_mmu_unmap_page(ctx, va_block->start, va_block->size, |
| list_is_last(&va_block->node, |
| &cb->va_block_list))) |
| dev_warn_ratelimited(hdev->dev, |
| "Failed to unmap CB's va 0x%llx\n", |
| va_block->start); |
| |
| hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); |
| |
| mutex_unlock(&ctx->mmu_lock); |
| |
| list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) { |
| gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size); |
| list_del(&va_block->node); |
| kfree(va_block); |
| } |
| } |
| |
| static void cb_fini(struct hl_device *hdev, struct hl_cb *cb) |
| { |
| if (cb->is_internal) |
| gen_pool_free(hdev->internal_cb_pool, |
| (uintptr_t)cb->kernel_address, cb->size); |
| else |
| hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size, |
| cb->kernel_address, cb->bus_address); |
| |
| kfree(cb); |
| } |
| |
| static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb) |
| { |
| if (cb->is_pool) { |
| spin_lock(&hdev->cb_pool_lock); |
| list_add(&cb->pool_list, &hdev->cb_pool); |
| spin_unlock(&hdev->cb_pool_lock); |
| } else { |
| cb_fini(hdev, cb); |
| } |
| } |
| |
| static void cb_release(struct kref *ref) |
| { |
| struct hl_device *hdev; |
| struct hl_cb *cb; |
| |
| cb = container_of(ref, struct hl_cb, refcount); |
| hdev = cb->hdev; |
| |
| hl_debugfs_remove_cb(cb); |
| |
| if (cb->is_mmu_mapped) |
| cb_unmap_mem(cb->ctx, cb); |
| |
| hl_ctx_put(cb->ctx); |
| |
| cb_do_release(hdev, cb); |
| } |
| |
| static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size, |
| int ctx_id, bool internal_cb) |
| { |
| struct hl_cb *cb = NULL; |
| u32 cb_offset; |
| void *p; |
| |
| /* |
| * We use of GFP_ATOMIC here because this function can be called from |
| * the latency-sensitive code path for command submission. Due to H/W |
| * limitations in some of the ASICs, the kernel must copy the user CB |
| * that is designated for an external queue and actually enqueue |
| * the kernel's copy. Hence, we must never sleep in this code section |
| * and must use GFP_ATOMIC for all memory allocations. |
| */ |
| if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled) |
| cb = kzalloc(sizeof(*cb), GFP_ATOMIC); |
| |
| if (!cb) |
| cb = kzalloc(sizeof(*cb), GFP_KERNEL); |
| |
| if (!cb) |
| return NULL; |
| |
| if (internal_cb) { |
| p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size); |
| if (!p) { |
| kfree(cb); |
| return NULL; |
| } |
| |
| cb_offset = p - hdev->internal_cb_pool_virt_addr; |
| cb->is_internal = true; |
| cb->bus_address = hdev->internal_cb_va_base + cb_offset; |
| } else if (ctx_id == HL_KERNEL_ASID_ID) { |
| p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, |
| &cb->bus_address, GFP_ATOMIC); |
| if (!p) |
| p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, |
| cb_size, &cb->bus_address, GFP_KERNEL); |
| } else { |
| p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size, |
| &cb->bus_address, |
| GFP_USER | __GFP_ZERO); |
| } |
| |
| if (!p) { |
| dev_err(hdev->dev, |
| "failed to allocate %d of dma memory for CB\n", |
| cb_size); |
| kfree(cb); |
| return NULL; |
| } |
| |
| cb->kernel_address = p; |
| cb->size = cb_size; |
| |
| return cb; |
| } |
| |
| int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| struct hl_ctx *ctx, u32 cb_size, bool internal_cb, |
| bool map_cb, u64 *handle) |
| { |
| struct hl_cb *cb; |
| bool alloc_new_cb = true; |
| int rc, ctx_id = ctx->asid; |
| |
| /* |
| * Can't use generic function to check this because of special case |
| * where we create a CB as part of the reset process |
| */ |
| if ((hdev->disabled) || (hdev->reset_info.in_reset && (ctx_id != HL_KERNEL_ASID_ID))) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is disabled or in reset. Can't create new CBs\n"); |
| rc = -EBUSY; |
| goto out_err; |
| } |
| |
| if (cb_size > SZ_2M) { |
| dev_err(hdev->dev, "CB size %d must be less than %d\n", |
| cb_size, SZ_2M); |
| rc = -EINVAL; |
| goto out_err; |
| } |
| |
| if (!internal_cb) { |
| /* Minimum allocation must be PAGE SIZE */ |
| if (cb_size < PAGE_SIZE) |
| cb_size = PAGE_SIZE; |
| |
| if (ctx_id == HL_KERNEL_ASID_ID && |
| cb_size <= hdev->asic_prop.cb_pool_cb_size) { |
| |
| spin_lock(&hdev->cb_pool_lock); |
| if (!list_empty(&hdev->cb_pool)) { |
| cb = list_first_entry(&hdev->cb_pool, |
| typeof(*cb), pool_list); |
| list_del(&cb->pool_list); |
| spin_unlock(&hdev->cb_pool_lock); |
| alloc_new_cb = false; |
| } else { |
| spin_unlock(&hdev->cb_pool_lock); |
| dev_dbg(hdev->dev, "CB pool is empty\n"); |
| } |
| } |
| } |
| |
| if (alloc_new_cb) { |
| cb = hl_cb_alloc(hdev, cb_size, ctx_id, internal_cb); |
| if (!cb) { |
| rc = -ENOMEM; |
| goto out_err; |
| } |
| } |
| |
| cb->hdev = hdev; |
| cb->ctx = ctx; |
| hl_ctx_get(hdev, cb->ctx); |
| |
| if (map_cb) { |
| if (ctx_id == HL_KERNEL_ASID_ID) { |
| dev_err(hdev->dev, |
| "CB mapping is not supported for kernel context\n"); |
| rc = -EINVAL; |
| goto release_cb; |
| } |
| |
| rc = cb_map_mem(ctx, cb); |
| if (rc) |
| goto release_cb; |
| } |
| |
| spin_lock(&mgr->cb_lock); |
| rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC); |
| spin_unlock(&mgr->cb_lock); |
| |
| if (rc < 0) { |
| dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n"); |
| goto unmap_mem; |
| } |
| |
| cb->id = (u64) rc; |
| |
| kref_init(&cb->refcount); |
| spin_lock_init(&cb->lock); |
| |
| /* |
| * idr is 32-bit so we can safely OR it with a mask that is above |
| * 32 bit |
| */ |
| *handle = cb->id | HL_MMAP_TYPE_CB; |
| *handle <<= PAGE_SHIFT; |
| |
| hl_debugfs_add_cb(cb); |
| |
| return 0; |
| |
| unmap_mem: |
| if (cb->is_mmu_mapped) |
| cb_unmap_mem(cb->ctx, cb); |
| release_cb: |
| hl_ctx_put(cb->ctx); |
| cb_do_release(hdev, cb); |
| out_err: |
| *handle = 0; |
| |
| return rc; |
| } |
| |
| int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle) |
| { |
| struct hl_cb *cb; |
| u32 handle; |
| int rc = 0; |
| |
| /* |
| * handle was given to user to do mmap, I need to shift it back to |
| * how the idr module gave it to me |
| */ |
| cb_handle >>= PAGE_SHIFT; |
| handle = (u32) cb_handle; |
| |
| spin_lock(&mgr->cb_lock); |
| |
| cb = idr_find(&mgr->cb_handles, handle); |
| if (cb) { |
| idr_remove(&mgr->cb_handles, handle); |
| spin_unlock(&mgr->cb_lock); |
| kref_put(&cb->refcount, cb_release); |
| } else { |
| spin_unlock(&mgr->cb_lock); |
| dev_err(hdev->dev, |
| "CB destroy failed, no match to handle 0x%x\n", handle); |
| rc = -EINVAL; |
| } |
| |
| return rc; |
| } |
| |
| static int hl_cb_info(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| u64 cb_handle, u32 flags, u32 *usage_cnt, u64 *device_va) |
| { |
| struct hl_vm_va_block *va_block; |
| struct hl_cb *cb; |
| u32 handle; |
| int rc = 0; |
| |
| /* The CB handle was given to user to do mmap, so need to shift it back |
| * to the value which was allocated by the IDR module. |
| */ |
| cb_handle >>= PAGE_SHIFT; |
| handle = (u32) cb_handle; |
| |
| spin_lock(&mgr->cb_lock); |
| |
| cb = idr_find(&mgr->cb_handles, handle); |
| if (!cb) { |
| dev_err(hdev->dev, |
| "CB info failed, no match to handle 0x%x\n", handle); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| if (flags & HL_CB_FLAGS_GET_DEVICE_VA) { |
| va_block = list_first_entry(&cb->va_block_list, struct hl_vm_va_block, node); |
| if (va_block) { |
| *device_va = va_block->start; |
| } else { |
| dev_err(hdev->dev, "CB is not mapped to the device's MMU\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| } else { |
| *usage_cnt = atomic_read(&cb->cs_cnt); |
| } |
| |
| out: |
| spin_unlock(&mgr->cb_lock); |
| return rc; |
| } |
| |
| int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data) |
| { |
| union hl_cb_args *args = data; |
| struct hl_device *hdev = hpriv->hdev; |
| enum hl_device_status status; |
| u64 handle = 0, device_va; |
| u32 usage_cnt = 0; |
| int rc; |
| |
| if (!hl_device_operational(hdev, &status)) { |
| dev_warn_ratelimited(hdev->dev, |
| "Device is %s. Can't execute CB IOCTL\n", |
| hdev->status[status]); |
| return -EBUSY; |
| } |
| |
| switch (args->in.op) { |
| case HL_CB_OP_CREATE: |
| if (args->in.cb_size > HL_MAX_CB_SIZE) { |
| dev_err(hdev->dev, |
| "User requested CB size %d must be less than %d\n", |
| args->in.cb_size, HL_MAX_CB_SIZE); |
| rc = -EINVAL; |
| } else { |
| rc = hl_cb_create(hdev, &hpriv->cb_mgr, hpriv->ctx, |
| args->in.cb_size, false, |
| !!(args->in.flags & HL_CB_FLAGS_MAP), |
| &handle); |
| } |
| |
| memset(args, 0, sizeof(*args)); |
| args->out.cb_handle = handle; |
| break; |
| |
| case HL_CB_OP_DESTROY: |
| rc = hl_cb_destroy(hdev, &hpriv->cb_mgr, |
| args->in.cb_handle); |
| break; |
| |
| case HL_CB_OP_INFO: |
| rc = hl_cb_info(hdev, &hpriv->cb_mgr, args->in.cb_handle, |
| args->in.flags, |
| &usage_cnt, |
| &device_va); |
| |
| memset(&args->out, 0, sizeof(args->out)); |
| |
| if (args->in.flags & HL_CB_FLAGS_GET_DEVICE_VA) |
| args->out.device_va = device_va; |
| else |
| args->out.usage_cnt = usage_cnt; |
| break; |
| |
| default: |
| rc = -EINVAL; |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static void cb_vm_close(struct vm_area_struct *vma) |
| { |
| struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data; |
| long new_mmap_size; |
| |
| new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start); |
| |
| if (new_mmap_size > 0) { |
| cb->mmap_size = new_mmap_size; |
| return; |
| } |
| |
| spin_lock(&cb->lock); |
| cb->mmap = false; |
| spin_unlock(&cb->lock); |
| |
| hl_cb_put(cb); |
| vma->vm_private_data = NULL; |
| } |
| |
| static const struct vm_operations_struct cb_vm_ops = { |
| .close = cb_vm_close |
| }; |
| |
| int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) |
| { |
| struct hl_device *hdev = hpriv->hdev; |
| struct hl_cb *cb; |
| u32 handle, user_cb_size; |
| int rc; |
| |
| /* We use the page offset to hold the idr and thus we need to clear |
| * it before doing the mmap itself |
| */ |
| handle = vma->vm_pgoff; |
| vma->vm_pgoff = 0; |
| |
| /* reference was taken here */ |
| cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle); |
| if (!cb) { |
| dev_err(hdev->dev, |
| "CB mmap failed, no match to handle 0x%x\n", handle); |
| return -EINVAL; |
| } |
| |
| /* Validation check */ |
| user_cb_size = vma->vm_end - vma->vm_start; |
| if (user_cb_size != ALIGN(cb->size, PAGE_SIZE)) { |
| dev_err(hdev->dev, |
| "CB mmap failed, mmap size 0x%lx != 0x%x cb size\n", |
| vma->vm_end - vma->vm_start, cb->size); |
| rc = -EINVAL; |
| goto put_cb; |
| } |
| |
| if (!access_ok((void __user *) (uintptr_t) vma->vm_start, |
| user_cb_size)) { |
| dev_err(hdev->dev, |
| "user pointer is invalid - 0x%lx\n", |
| vma->vm_start); |
| |
| rc = -EINVAL; |
| goto put_cb; |
| } |
| |
| spin_lock(&cb->lock); |
| |
| if (cb->mmap) { |
| dev_err(hdev->dev, |
| "CB mmap failed, CB already mmaped to user\n"); |
| rc = -EINVAL; |
| goto release_lock; |
| } |
| |
| cb->mmap = true; |
| |
| spin_unlock(&cb->lock); |
| |
| vma->vm_ops = &cb_vm_ops; |
| |
| /* |
| * Note: We're transferring the cb reference to |
| * vma->vm_private_data here. |
| */ |
| |
| vma->vm_private_data = cb; |
| |
| rc = hdev->asic_funcs->mmap(hdev, vma, cb->kernel_address, |
| cb->bus_address, cb->size); |
| if (rc) { |
| spin_lock(&cb->lock); |
| cb->mmap = false; |
| goto release_lock; |
| } |
| |
| cb->mmap_size = cb->size; |
| vma->vm_pgoff = handle; |
| |
| return 0; |
| |
| release_lock: |
| spin_unlock(&cb->lock); |
| put_cb: |
| hl_cb_put(cb); |
| return rc; |
| } |
| |
| struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr, |
| u32 handle) |
| { |
| struct hl_cb *cb; |
| |
| spin_lock(&mgr->cb_lock); |
| cb = idr_find(&mgr->cb_handles, handle); |
| |
| if (!cb) { |
| spin_unlock(&mgr->cb_lock); |
| dev_warn(hdev->dev, |
| "CB get failed, no match to handle 0x%x\n", handle); |
| return NULL; |
| } |
| |
| kref_get(&cb->refcount); |
| |
| spin_unlock(&mgr->cb_lock); |
| |
| return cb; |
| |
| } |
| |
| void hl_cb_put(struct hl_cb *cb) |
| { |
| kref_put(&cb->refcount, cb_release); |
| } |
| |
| void hl_cb_mgr_init(struct hl_cb_mgr *mgr) |
| { |
| spin_lock_init(&mgr->cb_lock); |
| idr_init(&mgr->cb_handles); |
| } |
| |
| void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr) |
| { |
| struct hl_cb *cb; |
| struct idr *idp; |
| u32 id; |
| |
| idp = &mgr->cb_handles; |
| |
| idr_for_each_entry(idp, cb, id) { |
| if (kref_put(&cb->refcount, cb_release) != 1) |
| dev_err(hdev->dev, |
| "CB %d for CTX ID %d is still alive\n", |
| id, cb->ctx->asid); |
| } |
| |
| idr_destroy(&mgr->cb_handles); |
| } |
| |
| struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, |
| bool internal_cb) |
| { |
| u64 cb_handle; |
| struct hl_cb *cb; |
| int rc; |
| |
| rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, cb_size, |
| internal_cb, false, &cb_handle); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to allocate CB for the kernel driver %d\n", rc); |
| return NULL; |
| } |
| |
| cb_handle >>= PAGE_SHIFT; |
| cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle); |
| /* hl_cb_get should never fail here */ |
| if (!cb) { |
| dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n", |
| (u32) cb_handle); |
| goto destroy_cb; |
| } |
| |
| return cb; |
| |
| destroy_cb: |
| hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT); |
| |
| return NULL; |
| } |
| |
| int hl_cb_pool_init(struct hl_device *hdev) |
| { |
| struct hl_cb *cb; |
| int i; |
| |
| INIT_LIST_HEAD(&hdev->cb_pool); |
| spin_lock_init(&hdev->cb_pool_lock); |
| |
| for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) { |
| cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size, |
| HL_KERNEL_ASID_ID, false); |
| if (cb) { |
| cb->is_pool = true; |
| list_add(&cb->pool_list, &hdev->cb_pool); |
| } else { |
| hl_cb_pool_fini(hdev); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int hl_cb_pool_fini(struct hl_device *hdev) |
| { |
| struct hl_cb *cb, *tmp; |
| |
| list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) { |
| list_del(&cb->pool_list); |
| cb_fini(hdev, cb); |
| } |
| |
| return 0; |
| } |
| |
| int hl_cb_va_pool_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| if (!hdev->supports_cb_mapping) |
| return 0; |
| |
| ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1); |
| if (!ctx->cb_va_pool) { |
| dev_err(hdev->dev, |
| "Failed to create VA gen pool for CB mapping\n"); |
| return -ENOMEM; |
| } |
| |
| rc = gen_pool_add(ctx->cb_va_pool, prop->cb_va_start_addr, |
| prop->cb_va_end_addr - prop->cb_va_start_addr, -1); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Failed to add memory to VA gen pool for CB mapping\n"); |
| goto err_pool_destroy; |
| } |
| |
| return 0; |
| |
| err_pool_destroy: |
| gen_pool_destroy(ctx->cb_va_pool); |
| |
| return rc; |
| } |
| |
| void hl_cb_va_pool_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hdev->supports_cb_mapping) |
| return; |
| |
| gen_pool_destroy(ctx->cb_va_pool); |
| } |